Let $f: \{0,1\}^n \to \{0, 1\}$ be a boolean function, and let $f_\land (x, y) = f(x \land y)$ denote the AND-function of $f$, where $x \land y$ denotes bit-wise AND. We study the deterministic communication complexity of $f_\land$ and show that, up to a $\log n$ factor, it is ... more >>>
A major open problem at the interface of quantum computing and communication complexity is whether quantum protocols can be exponentially more efficient than classical protocols for computing total Boolean functions; the prevailing conjecture is that they are not. In a seminal work, Razborov (2002) resolved this question for AND-functions of ... more >>>