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Abstract

We show the following Reduction Lemma: any e-biased sample space with respect to (Boolean)
linear tests is also 2e-biased with respect to any system of independent linear tests. Combining this
result with the previous constructions of e-biased sample space with respect to linear tests, we obtain
the first efficient construction of discrepancy sets (i.e. two-sided pseudo-random sets) for Boolean affine
spaces. We also give a different version of the powering construction of e-biased sample spaces given
by Alon et ol in order to obtain k-wise e-biased sample spaces with respect to any affine spaces.

The second main contribution of this paper is a new direct connection between the efficient con-
struction of pseudo-random (both two-sided and one-sided) sets for Boolean affine spaces and the
explicit construction of Boolean functions having hard branching program complexity.

In the case of 1-read branching programs (1-Br.Pr.), this connection relies on a different interpre-
tation of Simon and Szegedy’s Theorem in terms of Boolean linear systems. Our constructions of non
trivial (i.e. of cardinality 20(")) discrepancy sets for Boolean affine spaces of dimension greater than
n/2 yield a set of Boolean functions in PH having very hard 1-Br.Pr. size. In particular, we obtain a
Boolean function in NPNPﬂP/poly having 1-Br.Pr. size not smaller than 2"~41°8 " This bound is tight
and improves over the best previously known bound which was 2"~ where s = O(n2/3log'/® n) [22].

For the more general case of non deterministic, syntactic k-read branching programs (k-Br.Pr.),
we introduce a new method to derive explicit, exponential lower bounds that envolves the efficient
construction of hitting sets (i.e. one-sided pseudo-random sets) for affine spaces of dimension o(n/2) .
Using an “orthogonal” representation of small Boolean affine spaces and again the Reduction Lemma,
we give the required construction of hitting sets thus obtaining an explicit Boolean function that

belongs to PH and has k-Br.Pr. size not smaller than 27" ~°" for any k = o <T1golg(£—n)- This asymptot-

ically improves the exponents of the previous known lower bounds given in [8, 12, 20] for some range
of k.



1 Introduction

This paper presents two sets of new results in complexity theory. The first set concerns the efficient
construction of small spaces that looks random to a certain class of Boolean functions. We give a natural
generalization of Naor and Naor’s definition of e-biased sample space for linear tests [17] to the case of
system of independent linear tests and then we present some efficient constructions of small sets that
satisfy this stronger property. The second set of results instead concerns the explicit construction of
Boolean functions having hard branching programs complexity. We indeed use the first set of results to
derive new explicit lower bounds for this computational model.

Small Random Sets for Affine Spaces

The efficient construction of small sample spaces that approximate uniform probability distributions turns
out to be an important method for the aim of de-randomization. A nice construction of “good” random
sample spaces is that introduced by Naor and Naor [17]. We quote this result in terms of discrepancy
sets. A Boolean function f : {0,1}" — {0,1} is said linear if it can be written as a linear combination of
the input variables with coefficients in {0, 1}.

Definition 1.1 A subset S C {0,1}" is e-discrepant for linear functions if, for any Boolean linear
function f : {0,1}" — {0,1}, |Prs(f(Z) = 0) — Prs(f(Z) = 1)| < €. Further, S is said to be k-wise
e-discrepant if the “test” linear functions in the above definition can have at most k non-zero coefficients.

(Note that, according to the definition in [17], a subset is an e-biased sample space w.r.t linear tests iff it
is e-discrepant for linear functions).

The main motivation in constructing e-discrepancy sets for linear functions relies on the fact that sev-
eral probabilistic algorithms (see [17]) work efficiently when the sample space has just the e-discrepancy
property for small values of e. Furthemore, the efficient construction of e-discrepancy sets for linear func-
tions also yields small spaces which are k-wise d-dependent [7, 24], a weaker notion of k-wise independent
sample spaces that still works for certain classes of probabilistic algorithms.

The main result of [17] is the efficient construction of an e-discrepancy set for linear functions of size
O((n/e)°M), and the consequent k-wise e-discrepancy set for linear functions of size O((klogn)/e)°M).
Such constructions are then exploited, in the same paper, to obtain a small sample space yielding k-wise
0-dependence. Three simpler and better (in some parameter ranges) constructions of e-discrepancy sets
for linear functions have been introduced by Alon et al in [1]. All of them yield sample spaces of size
O((n/€)?). Their third method is called the powering construction and will be strongly used in our paper
(a formal description is given in Section 2.1).

Still motivated by the general goal of de-randomization, much recent research [4, 5, 10, 15] has been
devoted to the efficient construction of hitting sets, i.e. the one-sided version of discrepancy sets. In the
general definition, given a class F of Boolean functions of n inputs, a subset H C {0,1}" is a hitting set
for F if, for any non-zero function f € F, H contains at least one inputs on which f outputs 1.

Our Results. A general question often investigated in complexity theory is whether the complexity of a
certain problem significantly increases when more mutually independent instances have to be solved “in
parallel” (this kind of problems is known in literature as the direct-sum problem [9, 16]). A natural way to
introduce the direct-sum problem in the context of the discrepancy sets for linear functions is clearly that
of considering the case of system of linear functions. We can thus address the problem of constructing



small sample spaces which are e-discrepant w.r.t. such systems. More formally, let AFF(n,k,s) be the
set of all n variables linear systems A% (A € {0,1}°*" and Z € {0,1}") of at most s linear functions in
which at most k variables appear with a non-zero coefficient (such variables are said essential). Note
that the restriction on the number of essential variables is the generalization of the definition of k-wise
e-discrepancy set for linear tests given by Naor and Naor. Indeed for s = 1, we get exactly the latter
concept.

Definition 1.2 Let € > 0. A (multi)set S C {0,1}" is said to be e-discrepant for AFF(n,k,s) if for
any AT € AFF(n,k,s) with rank(A) = s, and for any b € {0, 1}° such that the linear system AT = b is
feasible, it holds |Przcs(AZ = b) —27%| <.

Note that 27% equals the probability that & is a solution of AZ = b when z is chosen uniformly at random
from {0,1}". Our main result can be stated in the following way

Theorem 1.1 Let n > 0. For any k,s < n and for any € > 0 it is possible to efficiently construct an
e-discrepancy set D(n,k,s) for AFF(n,k,s) of size |D(n,k,s)| < (2k(logn + 1))/e)?.

The above theorem implies that the size of the sample space does not surprisingly depend on the number
s of independent linear functions that the sample space must satisfy. We thus have an interesting solution
of this particular “instance” of the direct-sum problem. This fact relies on a Reduction Lemma which is
one of the main technical contributions of this paper.

Lemma 1.1 (Reduction Lemma.) Let € > 0. If S C {0,1}" is e-discrepant for AFF(n,n,1) then it
is 2e-discrepant for AFF(n,n,n).

Thanks to this result, any previous construction of e-discrepancy sets for linear functions turns out to be
an e-discrepancy set also for AFF(n,n,n). Further, the result in Theorem 1.1 concerning AFF(n,k, s)
(i.e. when a non trivial bound on the number of essential variable is imposed) is achieved by constructing
an e-discrepancy set for AFF(n, k, s) which is based on the powering construction given by Alon et al [1].

As already observed, another important problem in the theory of de-randomization is the efficient
construction of the one-sided version of discrepancy sets, i.e., hitting sets. It is easy to verify that
Theorem 1.1 yields a hitting set for AFF(n,k,s) if and only if € < 1/2%. In fact, in this case we have
|D(n, k,s)| < (2k(logn + 1))/e)? = 2k(logn + 1)2%° that gives a hitting set of non trivial size (i.e. of
size smaller than 2") only when s < n/2, i.e., when the affine space is large. However, when the affine
space is small there is a more efficient way to represent it by using the corresponding orthogonal space
(which is large). Combining this idea with the Reduction Lemma, we derive an efficient construction of
non trivial hitting sets in the case of small affine spaces.

Theorem 1.2 For any n > 0 and m < n it is possible to efficiently construct a hitting set H(n,m) for
AFF(n,n,n —m) such that |H(n,m)| < 2n—mtm(O(1)logn)/vm

The above construction thus gives a non trivial hitting set when m > ﬁ log? n.

The construction of small pseudo-random sets finds its natural application in decreasing the use of
randomness in some classes of probabilistc algorithms. In this paper, we will show a different application
of our previous results: as we will describe in the next section, both discrepancy and hitting sets for
affine spaces can be used to de-randomize the construction of some Boolean functions having exponential
branching programs size.



Branching Programs

In several previous works [2, 3, 6, 11, 18, 19] the explicit constructon of a computationally-hard function
with respect to a certain class C of algorithms has been used to derive small sample spaces able to de-
randomize a somewhat probabilistic version of the algorithms in C. Here, we revert this connection and
we use our sample spaces to define a set of explicit functions having hard complexity with respect to
read-1-time-branching programs and non deterministic syntactic read-k-times branching programs.

Branching programs (Br.Pr.’s) are a general model to compute Boolean functions. In what follows
we adopt notations and terminology of [22]. A Br.Pr. is a directed acyclic graph where one of the
nodes, called source, has fan-in 0 and some other nodes, called terminals, have fan-out 0. Each non
terminal nodes is labelled by the index of an input Boolean variable and has fan-out 2. The two arcs
leaving a non terminal node are respectively labelled 0 and 1. A Br.Pr. computes a Boolean function
f:{0,1}" — {0,1} on input (z1,...,z,) as follows. Starting the computation from the source node, if
a generic node is reached, the corresponding input variable is tested and the computation chooses the
arc corresponding to the actual value of this input variable. The process terminates when a sink node
is reached and its label represents the output of f(x1,...,2,). The size of a Br.Pr. is the number of
its nodes. In order to investigate the computing power of branching programs, several restrictions have
been considered, in particular, that of assuming a fixed bound on the maximum number of reading the
input variables. A read-k-times Br.Pr. is allowed to read each variable at most k times along any valid
computation and, in a syntactic read-k-times Br.Pr., this reading restriction holds to any path from the
source to any sink. Notice that while a read-1-time Br.Pr. is always a syntactic read-1-time Br.Pr., for
k > 2 this does not hold. Clearly, the branching program model can also be made nondeterministic by
allowing the existence of more arcs labeled with the same value that leave a same node.

The research in branching programs is extremly active from both theoretical and practical point of
view [22, 13, 21, 25]. In complexity theory, among other problems, that of finding lower bounds for the
size of read-k-times Br.Pr.’s for explicit Boolean functions has been deeply studied (see [8, 12, 21, 22]).
One of the “challenging” goals in this field is that of obtaining a superpolynomial lower bound for a
Boolean function computable in polynomial time since it would immediatly imply P # LOG. To our
knowledge, the best known explicit lower bound for read-1-time-branching programs (1-br.pr.’s) is due to
Savicky and Zak [22] that derive a Boolean function in P that, for any sufficiently large n, has 1-br.pr.
size not smaller than 2"~%, where s = O(n2/ 31n!/3 n). We emphasize that, for this model, there are no
known harder explicit functions even in classes larger than P, while there is a non constructive proof that
some functions require 1-Br.Pr.’s of size O(2"7'°6™). On the other hand, the general upper bound on
the size of 1-Br.Pr. is O(2"1987),

For non-deterministic syntactic read-k-times Br.Pr.’s (k-Br.Pr.) when k > 2, there are explicit lower
bounds of exponential size when £ = O(logn) [8, 12, 20]. Borodin et al [8] showed an explicit family
of Boolean functions such that any k-Br.Pr. computing it must have a number of labeled edges not
smaller than exp(Q2(n)/(4* * k%))) when k < clogn for a fixed constant 0 < ¢ < 1. A lower bound of size
exp(Q2(y/n/k%*)) have been independently proved by Okolnishnikova [20]. More recently, Jukna studied
the Okolnishnikova’s function and obtained an exponential gap between the size of Br.Pr. required
for such a function and that required for its complement. For more general cases, i.e. either when k
growes faster than any logarithmic function or when the branching programs are non syntactic, finding
exponential lower bound is still an open question.

Our Results. In the case of 1-read branching programs, Simon and Szegedy [23] provided a nice combi-
natorial theorem that, given any Boolean function f : {0,1}" — {0,1} and any fixed input dimension



r < n, establishes a relationship between the maximum number of pairwise different subfunctions of f
having input dimension r and the 1-br.pr. size required for f. This theorem gives a very useful method
to obtain explicit lower bounds for this computational model [22]. We first give a new interpretation of
Simon and Szegedy’s Theorem in terms of Boolean linear systems. Then, by applying this interpretation
to some appropriate versions of the generator functions of our discrepancy sets for Boolean affine spaces
we achieve the following lower bounds that have asymptotically larger exponents than that obtained by
Savicky and Zak [22].

Theorem 1.3 It is possible to construct:

a) a Boolean function in NPNP A P/poly having 1-Br.Pr. size not smaller than 2™ /4n (observe that this
bound is optimal);

b) a Boolean function in DTIME(200°6* ) N\ P /poly having 1-Br.Pr. size not smaller than 2™ /nO®W);

¢) a Boolean function in DTIME(ZO(10g2 ") NNP having 1-Br.Pr. size not smaller than 2" /nOo8n)

For the more general case of k-Br.Pr.’s, we introduce a new method to derive explicit, exponential
lower bounds that uses concepts introduced by Borodin et al. Our method relies on the following result.
Given any Boolean function f : {0,1}" — {0,1}, let N} ={# €{0,1}" : f(Z) =1} and Lg_(f) be the
size of smallest k-Br.Pr. that computes f.

Theorem 1.4 Let t > log?n, k = o(logn/logt) and let f(z1,...,z,) be a boolean function such that
|N}\ > 271 and Ly_p(f) < on' for some constant 0 < € < 1. Then, for sufficiently large n, the set
N} contains an affine space of dimension not smaller than t/4.

We then consider the complement function F(x; ...z,) of the characteristic function of the hitting set
‘H(n,m) in Theorem 1.2 (for an appropriate choice of logn < m < n/2). By the definition of hitting sets,
it should be clear that F; cannot contain any affine subspace of dimension not smaller than m. We will
thus show the following lower bound that improves over those in [8] and [12] for some range of k.

Theorem 1.5 Let k = 0(%%2_71)' There ezists a Boolean function F* = {F*:{0,1}" — {0,1},n > 0}
1-o(1)

that belongs to PH and, for sufficiently large n, Ly_y.(F) > 2"

1.1 Preliminaries

Given a subset W C {0,1}", its size is denoted by |W/|, and its probability with respect to the uniform
distribution in {0,1}" is denoted by Pr(W); the notation Prg(W) instead refers to case in which the
uniform distribution is defined on the sample space S.

A Boolean function f : {0,1}" — {0,1} is said linear if a vector @ = (a1,...,an) € {0,1}" exists such
that f can be written as f(z1,...,2n8) = a121 ® ... ® ayzn. Given two binary vectors @ = (a1,...,an)
and b = (bi,...,bx) from {0,1}", we define ¢ = @& b as the vector whose the i-th component is given by
the xor of the i-th components of @ and b. The inner product is defined as < &, b>= a1 ®...®anby .
The finite field GF(2V) will be represented by the standard one-to-one mapping bin : GF(2V) — {0,1}"
such that bin(a + b) = bin(a) @ bin(b) and bin(0) = (0,...,0).

Furthermore, given any element a € GF(2V) and an integer k > 0, we will make use of the concatenation
of powers Ufa, k) € {0,1}*" where U(a,k) = bin(a®)bin(a'). ..bin(gk—l). For the sake of brevity, the
improper notation @’ will replace the term bin(aj )



2 The Reduction Lemma

For any subset S C {0,1}" and for any @ € {0,1}" we define

e(S,@) =11/2 = (Y <a&z>/|s])|
LES
and the “discrepancy” degree of S as €(S) = max{e(S,a@) : a@ e {0,1}", @ # 0}. Note that S C {0,1}"
is e-discrepant for AFF(N, N, 1) iff ¢(S) < e. We now introduce the discrepancy degree w.r.t. systems
of linear functions. For any choice of & € {0,1}* and &; € {0,1}" fori =1,...s, we define

HT €S :<@,T>=o0451=1,...,s}
5]

(S, &1,...,05,01,...,05) =

and we let £5(S) be the maximum of the difference 2% — 7(S, &1,...,ds,01,...,05)| , over all possible
linearly independent s-ple of vectors @;’s and vectors & € {0,1}°.

Our interest in the above definition relies on the fact that a set S is e-discrepant for AFF(N, N, s) iff
es(S) < e. We can now present the Reduction Lemma according to the above definitions (for the proof
see Section A.1).

Lemma 2.1 (The Reduction Lemma) Let S C {0, l}N. If a,...,ds are linearly independent and
7 €{0,1}*, then
_ - o 1
|2 5_71'(5,051,-..,045,0'1,...,0'3)| S (2— 28——1> E(S)

Hence if S is e-discrepant w.r.t. AFF(N,N,1) then it is 2e-discrepant w.r.t. AFF(N,N,s), for any
s<N.

2.1 Applying the Reduction Lemma to Alon et al’s Powering Construction

In this section we first describe the powering construction of the e-discrepancy set Ly , C {0, 1}N given
by Alon et alin [1], and we then combine it with our Reduction Lemma in order to get a good discrepancy
set for the general class AFF(N,N,N).

Definition 2.1 (The Powering Sample Space [1]) The generic vector [ in the sample space N,z 18

specified by two vectors T,§ € {0,1}*. The i-th bit of [ is the inner product of the i-th power of £ and vy.
Clearly, we have that L} ,| = 227

Theorem 2.1 ([1]) For any N >0 and z < N, it holds e(L} ,) < s2r. Hence Ly, is soer-discrepant
for AFF(N,N,1).

Notice also that Alon et al's e-discrepancy set for linear functions is the set L} , for z = log(N/e).
By applying the Reduction Lemma to Theorem 2.1 we can easily prove the following

Corollary 2.1 If &,...,ds € {0,1}" are linearly independent then, for any & € {0,1}*,

<N-277%.

—s o= =
‘2 — (LN 4 @1ye e ey A5, 01, .., 05)

Hence L} , is (N2 ?)-discrepant for AFF(N,N,N).



The above combination of the Alon et al’'s powering construction and our Reduction Lemma can be
slightly modified in order to obtain a discrepancy set for AFF (N, k,s) that takes in consideration the
number k of essential variables (this construction is described in Section A.2).

Theorem 2.2 (Discrepancy set for AFF(N,k,N)) For any N > 0, and 0 < k,z < N, the set
Dy(N, k,z) is (k[log N'|27%)-discrepant for AFF(N,k,N).

3 Hitting Sets for Small Affine Spaces

In this section we give an efficient construction of non trivial hitting sets for small affine spaces, i.e., for
large systems of linear equations. The key idea of the construction is the fact that any affine subspace
S can be represented by using its corresponding orthogonal subspace S+ in {0,1}", and if S has small
dimension then S has a large dimension. The orthogonal subspace is thus described by a small linear
system and so we can apply the powering construction of the previous section!. Our first main task
will thus be the construction of a different representation of small affine spaces using their respective

orthogonal subspaces.

If A C {0,1}" then rank(A) denotes the maximal number of linear independent vectors (A will be
also considered as a Boolean matrix). Given @ € {0,1}", the term [d@)/ denotes the the first j bits of @.
Furthermore, we will use the notation [A}Y = {[@) : @ € A} . and define rank;(A) = rank([A]7).

The small affine space that we want to hit is described by the following linear system

{<(_iz',.’f,">= b, 1=1,2,...,n—m, (1)

where @; € {0,1}" , 4 = 1,2,....,n —m and b; € {0,1}. We let A = {@1,...,dn—m} and assume that
rank(A) = n — m. As stated before we are interested in the case in which m is small, i.e., 0 < m < n/2.
Our first step is to partition the matrix A into s > 16 smaller submatrices having almost equal rank. Let

N (n, s) be the set of vectors N = (n1,...,ns) with positive integer components such that n;+...+n; = n.
Let K = m/s and wlog assume that & > 2. Then, for sufficiently large n, given any A = {d1,...,dp—m},
for any fixed s > 16, we can always choose a vector N = (ny,no,...,ns) € N(n,s) such that

ranky, . 4n,(A) —ranky, + 4n, ,(A) =n;—m;and k<m; <k+1, foranyi=1,...,s. (2)

Note that mi +mo+...+ms = m. Let & = (Z1,Zs,...,Ls), where the length of Z; is n;. Then, by using
a standart diagonalization method for linear systems, we can represent the solution space of the system
in Eq.( 1) with a set of smaller linear systems:

{< b, 71> = ub, Vb €By ... {< b, Ty > =u’ V by € By

for some B; C {0,1}"™ such that |B;| = n; — m; and rank(B;) = n; — my, (i=1,...,s) and for some
uli € {0,1}, i =1...5s (clearly, both B;’s and u}i’s depend on the initial system in Eq. (1).

Let t = [logs] + 1 and consider any subset D = {di,...,dy_s} of vectors from {0,1}". Then the
orthogonal space (w.r.t. [D]7) S(D,j) is the set of solutions of system < [d;)/, (z1,22,...,2;) >= 0 for
i=1,...,k—t. For any N € N(n,s), we then consider the sets of prefix combinations from S(D,n;)’s,

!This new representation of small affine spaces does not allow to preserve the discrepancy property of our sample space
but only their hitting property.



ie., S(D,N) = 8(D,n;) x ...8(D,n,). The next result provides the orthogonal condition that a set of
vectors D must satisfy in order to let S(D, N) contain at least one solution of the linear system in Eq. (1)
(for a formal proof see Section A.3.1).

Lemma 3.1 Let D = {dy,...,dx_} C {0,1}" and N € N(n,s). If for any i = 1,2,...,s rank(B; U
[D]™) = n; —m; + k —t, then S(D, N) contains at least one solution of the system in Eq. (1).

Lemma 3.1 suggests us the way to construct a hitting set for the system in Eq. (1): it suffices to find
a vector set D that satisfies the “orthogonal” condition in Lemma 3.1 for any possible choices of B;’s,
i=1,...,s. It is not hard to see that a random subset D from {0,1}" of size k — t satisfies, with high
probability, the above condition. Our idea is to de-randomize the process by choosing our hitting set as
the union of all subsets of size kK —t from the powering discrepancy set ‘C;,( given any 16 < s < n,

for any subset N € N(n, s) we let

[ogn]+t)

H(N) = U S(D,N),
Dg‘c:t,(l'logn'|+t) t [Dl=k—t
and we define our hitting set #(n, s) as the union of 7(NN) over all possible choices of N from N (n, ).
The hitting property of H(n,s) is a consequence of the fact that, from Corollary 2.1, £} (Mogn]+t)
contains at least one solution of any linear systems in AFF(n,n,o(n)). This implies the following result
(for a proof see Section A.4).

Lemma 3.2 Let t = [logs] +1, N = (ny,...,n,) € N(n,s). Let By,...,B, be such that for any
i=1,...,8 B; C{0,1}"" with |B;| = n; — m; where k < m; < k+ 1, and rank(B;) = n; — m;. Then a

vector subset D C L o014y etists such that |D| = k —t and rank(B; U [D]"%) = n; —m; + k —t, for
anyt=1,...,s.

We have now at hand all the ingredients to derive a hitting set for small affine subspaces.

Theorem 3.1 For any 1 < m < n, for any 16 < s < n, the set H(n,s) C {0,1}" is a hitting set for
AFF(n,n,n —m). Furthermore, If s = O(y/m) then

O(1)logn
vm

[H(n,s)| < gnmAm

Proof. Consider the system in Eq. (1). As before mentioned, for any s > 16 (and in particular for

s = [y/m]), we can choose vector N € N(n,s), , that satisfies Condition (2). Lemma 3.2 then implies

that a subset D from L} ([logn]+1) exists that satisfies the orthogonal condition in Lemma 3.1. This

lemma implies that S(D, N) contains at least one solutions of the system in Eq. (1). The first claim of
the theorem thus follows from the fact that S(D, N) C H(n, s).

Concerning the size of the hitting set, assume that s = [/m]; then by definition of ¥ and ¢ we have
(here we omit some standard calculations)

|7-[(]\7)| < <22(flog1ﬂ+t))3f[2n,-7(k7t) < 2n—m+m%5—".

i=1



It follows that

_ 20logmn _ 22logn
Tm < QT e e n < QT T T

n ) 2n—m+m201°5"

[H(n, )| < ( )
O

Finally, we remark that the set #(n,[/(m)]) turns out to be a non trivial hitting set (i.e. of size
asymptotically smaller than 2") for AFF(n,n,n —m) for any m > ﬁ log? n.

4 New Explicit Lower Bounds for Branching Programs

4.1 Lower Bound for 1-Read Branching Programs

We adopt notations and terminolgy introduced in [22]. In particular, for a partial input we mean any
element from {0, 1,*} where the positions containing 0 or 1 mean that the corresponding input bit is
fixed, while the notation * mean that the corresponding input bit is free. We say that a partial input
v is defined on the set I C {0,1}" if v; € {0,1} iff i € I. Partial inputs define subfunctions of a given
Boolean functions f : {0,1}" — {0,1} in the following natural way. For any set I C {1,2,...,n}, let
B(I) be the set of all partial inputs defined on I. Given any partial input v € B(I), the subfunction f|,
of f(z1,...,zy) is obtained by setting z; = v; for any i € I. The set of inputs on which f|, is defined
consists of the Boolean rectangle R(v) of dimension n — |I|, R(v) = {(a1,-..,an) : a; = v(i), 1 € I}.
Given any function f : {0,1}" — {0,1} and any subset I C {1,2,...,n}, let

v(f, 1) = Urengg)l{uGB(I) S = flo} -

In the case of 1-br.pr.’s, Simon and Szegedy introduced a nice technique to derive explicit lower bounds
that enjoys of the following theorem.

Theorem 4.1 ([23]) Let f be a Boolean variables of n variables and let r < n. The size of any 1-Br.Pr.
computing f is at least 27" /(max{v(f,I): |I| =n—r1}).

Our next goal is to give a suitable interpretation of this theorem for the family of n-inputs Boolean
functions powF = { f;z e @€{0, 1}¥7} where ff, (%) is the inner product between & and the concatenation
of the first k powers of 7, i.e. f,‘f,k(a‘:') =< &,U(Z,k) > . Let I C{1,2,...,n} such that |I| = n —r; for any
u,v € B(I) we consider the zor vector df (u,v) € {0,1}" where df (u,v); = 1 iff i € I and v; # u;. Then
the condition (implicitly required by Theorem 4.1)

fﬁk'v = fg,k|u : (3)

is equivalent to require that for all ¥ € R(v), 7f“,k(a'c') @ f,‘zk(f@ df (v,u)) = 0. Therefore, by definition of

[k it is equivalent to require that vector & € {0, 1}k" is a solution of the following Boolean system of

|R(v)| = 2" linear equations
<a, (U k)e{UEedf(v,u),k)) >=0, Z € R(v) . (4)

So, in order to obtain a lower bound as large as possible, we need to minimize the number of a’s that
satisfy the above system. This is achieved by choosing r and k in order to make the equations linearly



independent. If indeed we set 7 = [logn] + 1, and k = 2" then, by definitions of U(Z, k) and df (v,u),
vectors U(Z, k) ® U(Z & df(v,u),k) are linearly independent for any ¥ € R(v) and for any different
v,u € B(I). This implies that for any fixed choice of v and v such that u # v, the number of & satisfying
the linear system is 2¥"27" where h = 2". By applying standard counting arguments, it would be possible
to show that a vector @ selected uniformly at random from {0,1}*" will not satisfy the linear system
in Eq. (4) for any I such that |I| = n —r and for any different u,v € B(I) with high probability. This
however will not give an explicit and efficient construction of a Boolean function having asymptotically
maximal 1-Br.Pr. complexity. The key idea is to use the sample space E;kyt that can efficiently de-
randomize the probabilistic construction described above. Indeed, let ¢ = 2" and let G(y1,...,y2:) be
the Boolean generator of the set L7, , described in Section 2.1. By applying Corollary 2.1 with N = kn,

s = 2", and z = t we easily have that the system in Eq. (4) for @ = G (ﬁ) is satisfied for not more than
224(272" 4 2r+1p2~t) different (3’s. It follows that the number of 3’s for which the system is satisfied for
some (at least one) I, with |[I| = n — r, and some (at least one pair) different v,u € B(I) is at most
22t(2—2’“ + 21"+1n2—t) < n > on—T < 22t210gn+3n2—2nn10gn+22n < 22750(1) .
, < <
Consequently, an element Gy € {0,1}?" exists such that @ = G(3y) does not satisfy System (4) for any

I with |I| =n —r, and for any v # u from B(I). By applying the above deterministc construction and
Theorem 4.1, we easily prove the following result.

Theorem 4.2 There ezxists a function F* = {F} : {0,1}" — {0,1},n > 0} that belongs to NPNPﬁP/poly
and such that, for almost every n > 0, Ly_y.(F}) > 22

= 4n"

Proof. For any n > 0, we choose with a non-determistic algorithm a vector E € {0, 1}2t such that condition
(3) does not hold for any I with |I| = n —r and for any v # u from B(I). Then we let F! = Frf,(cﬂ);
it is easy to verify that the function can be computed with circuits of polynomial size provided that
the correct 3 is given and also that F' € npNP. Finally, by applying Theorem 4.1, we have that
Li_p(F}) > 27T > 27 /4n. O

Using the same de-randomization technique based on sampling from the discrepancy set L7, ,, it is
possible to show the other explicit lower bounds stated in Theorem 1.3 (a complete proof will be given
in the full version of this paper).

4.2 A Lower Bound for k-Branching Programs

In this section, we make use of definitions and results from [8].

Definition 4.1 ([8]) A Boolean function g(z1,...,zy) is a (k,a)-rectangle if g can be represented in the
form

ka
g = N\ gi(X))
=1

where g; is a Boolean function depending only on wariables from X; C {z1,...,z,}, | Xi| < [n/a] and
each variable belongs to at most k of the sets {X1,..., Xga}-



Let Li_4-(f) be the size of the smallest (nondeterministic syntactic) k-Br.Pr. that computes f.

Lemma 4.1 [8] Let f(z1...,z,) be a Boolean function such that Liy_p(f) < M and let a and k be
positive integers. Then f is an OR of at most (2M)?*® (k, a)-rectangles.

The next lemma provides a method to represent any (k,a)-rectangle (with any £ > 1) as an OR of a
certain number of (1, a(k))-rectangles where a(k) is exponential in k£ (the proof is given in Section B).

Lemma 4.2 Let g(x1,...,2,) be a (k,a)-rectangle and assume that for some t > 2 it holds
4t m + (@ k) e < 1.
Then g is an OR of at most 2n—"/(2t"™") (1,2 - tk)-rectangles.

Our interest in the above lemma is given by the following connection between (1,T)-rectangles and
Boolean affine subspaces (the proof is given in Section C). Let Ng1 be the set of Z such that g(Z) = 1.

Lemma 4.3 If g(z1,...,zy) is a (1,T)-rectangle then it contains an affine space of dimension at least
(INgD/((n/T) +1).

By combining the above three lemmas it is not hard to derive a new connetction between the k-Br.Pr.
size of a given function f : {0,1}" — {0,1} and its “behaviour” w.r.t. to the class of affine spaces in

{0,1)"

Theorem 4.3 Let t > log’n and k = o (282). Let f: {0,1}" — {0,1} be such that |N}| > 2! and
g logt !

Lo (f) = M < on' " for some constant 0 < ¢ < 1. Then, for sufficiently large n, the subset N}
contains a (at least one) Boolean affine subspace in {0,1}" of dimension at least t/4.

Sketch of the proof. If we choose a = 16kt%**! then, for sufficiently large n, we obtain
(4tF Y /n + @* k) /e < o(n)+1/4<1.

By combining Lemma 4.1 and Lemma 4.2, we have that f is an OR of at most r (1,2 - t¥)-rectangles,
where 7 < (2M)%egn—n/@*7Y) < on—n/(457Y) - Gince [N}| > 2!, the above inequality implies that
N} contains at least one (1,2 - ¢¥)-rectangle of size not smaller than (2n=1)/(2n—n/(4t* 1)) = gn/(4tF 1) -1,
From Lemma 4.3 this rectangle contains an affine space of dimension at least
k—1y)__
log (20/6*°D=1) gty 1 1mjttl) o

(n/(2tF)) + 1 (n/(2tF))+1 = 2 (n/(2tF)) ~ 4~
|

For any n > 0, we define the Boolean function F2(z1,...,z,) as the complement of the characteristic
function of the hitting set #(n,/m) given by Theorem 3.1 where we set m = [log*n]. From the
construction of H(n,s) shown in Section 3, it is not hard to show that the family F* = {F}, n > 0}
belongs to PH. Furthermore, from Theorem 3.1 we have that |#(n, O(log?n))| = o(2"), so, by applying
Theorem 4.3, we obtain the following lower bound.

1—o(1)

Corollary 4.1 If k = O(Flgolgorgl—n) then, for sufficiently large n, Ly_p(Fx) > 2" .
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A Proofs

A.1 Proof of the Reduction Lemma

Fix § C {0,1}" and a set of s linearly independent vectors @i, ...,d, from {0,1}". For any & =
(01,...,05) we define the “discrepancy degree” of S as ¢(&) = «(S,a1,...,0s,01,...,05); for any b =
(b1,...,bs) € {0,1}°, we define the vector @(b) = b1a@1 @ ... ® bs@s. For the sum

QL) = > <Lab) >,
les
we have that

QB = Y <lh@@...@bd, >= > (h <Ld >@... @b <l,d>) =
les les

= > > <b3>|;

F=(715--7s)€{0,1}° \ s : <l-:&‘1>:’)’1,...,<l-:d's>:’ys

S0,

QL) = Y aW<bi>= Y @) <by> . (5)

ye{0,1}* 7€{0,1}*\{0}

Two cases may arise depending on whether or not & = 0.
1.) For @ # 0, Eq. (5) implies that

>oeb) = X > a@<bhi>=

b <ba>=1 b : <b,e>=17c{0,1}*\{0}
= Y a@® Y <bi>=q@2 '+ Y e(y)2? (6)
y€{0,1}4\{0} b <ba>=1 y€{0,1}5\{0,5}

where the last equality is due to the fact the the number of b # 0 such that < 5, d>=1and < 5, ¥y>=1
for non zero & # 7 is equal to 2°72. Similarly we have

> QB = > ) <by>= Y a3 (7)

b: <b,&>=0, b0 7€{0,13°\{0} b: <b,5>=0, b#0 7€{0,1}°\{0,5}

@2 = Y Q) — Q(b) (8)
b <ba>=1 b: <b,3>=0 , b#0

By definition of €(S), for any b # 0, it is not hard to prove that

-

s1(5-<9) <@ <131 (5 +()) - 9)
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Then from Eq.s (8) and (9), we have that

27113 (5 - €(8)) = @~ = 18] (5 + () <a@2 <

1 1
< 28| (3 +(8)) - 7 - 0S| (5 - e(9))
It follows that

275 —(2—-217%)g(8) < % <275 4 (2-217%)e(S) .

2.) For & = 0, we can obtain the same bounds in the following way.
eb = Y a@®)X <bi>= Y g2t =22(IS| - q(0)).
b b£0 7€{0,1}°\{0} B 7€{0,1}°\{0}
This implies that

@ .1 .
‘S‘ =1 25—1‘5"5%6@( ) : (10)

Catl

By using the same argument yielding Eq. (9), we get

AN

@-visl(;-4) < X b < @-1is|(5+£(3) (11)

b: b0

From Eq. 10 and 11, we obtain

In the same way, we can derive the lower bound for %:

L > 275 — (2 217%)g(9).

A.2 A Discrepancy Set for Linear Systems with a Limited Number of Essential
Variables

The aim of this section is to modify the powering construction given in the previous section in order to
obtain a discrepancy set for AFF (N, k, s) that takes in consideration the number % of essential variables.

Let n =log N and 1 < z < n. Consider the N elements d1,...,dy of GF(2"). For any @ € GF(2"),
we define the concatenation of powers U (@, k) = @’@' ...a@* ! and, given a vector e E};n,z, we construct

the following vector of N bits

(<[:U(d’lak) >7<[:U(a"2’k) >aa<l—:U(a’.Nak) >)

14



The new powering discrepancy set is then defined as

D(NakVZ) = U {(< Z:U(alak) >, < i;U(62ak) >0, < l_;U(&.N7k) >)} .
l_’EL;;n,Z
Clearly, we have |D(N, k, z)| = |£,”;n7 .| = 2?%. Informally speaking, the discrepancy property of D(N, k, 2)
is a consequence of the fact that given any k pairwise different a@;, i« = 1,...,k from GF(2"), the

corresponding k vectors U(d@;, k) in GF(2"F) are linearly independent

Theorem A.1 (Discrepancy set for AFF(N,k,N)) For any N > 0, and 0 < k,z < N, the set
Dy(N, k, z) is (k[log N|27%)-discrepant for AFF(N,k,N).

Proof. Consider the set W of all solutions of a fixed linear system < l_i,:f >= [,...,< l_;,:i"’ >= (s
where vectors lq,...,ls from {0, 1}N are linearly independent. Assume also that the number of essential
variables is at most k, i.e., the number of 1’s in the or vector I1 V... VI is at most k. Consider a fixed
I € L}, , and its corresponding string in D(N, k, z):

’Jl = (< i:U(&l,k) >, < [.(U(a%k) >, < l_;U(aNak) >)
For I; = (XL,...,Ay) (i =1,...,s), we define vectors R; € GF(2k") as

B = NU(@,k) ® \yU (@2, k) @ ... @ XyU (@, k).

It is possible to prove that Rl, . ,RS are linearly independent. This indeed follows from three facts: 1)
any k vectors of type U(dj, k) are linearly independent; 2) at most k& of such vectors appear in each R;.
3) The linear combinations of them remain linearly independent.

Then, for any 1 = 1,...,s, we have

<@y > =< (XL, Ny), (K LU, k) >, .., < LU (N, k) >) > =
=N <LU@Lk) >®...0Ny <L,U(@@y, k) >) > =
= <LXU@Lk) &... e \NyU(dy, k) >=<LR > .

Our final step is to reduce to conditions required by Corollary 2.1. Indeed, the equation < l_;, U >=0; is

—

equivalent to [(R;) = §;. It follows that, for any [ such that v; € W N'D(N, k, z), we have
<LRi>=p1 ..., <R >=;.

where ﬁl, ... ,ﬁs are linearly independent. Corollary 2.1 thus implies the thesis. O

A.3 Proofs of Lemmas 3.1 and 3.2
A.3.1 Proof of Lemma 3.1

From the hypothesis on rank(B; U [D]™), if we assume that u?i = 0 for any b; € [D]™, it easily follows
that the system

{< Z_);',fz' > = u,(l_);) ,Vgi € B;U [D]n’

admits a solution and B; N[D]™ = (. This immediatly implies the lemma.
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A.4 Proof of Lemma 3.2

We show an iterative method to construct the set D by adding one new element to it in order to satisfy
the orthogonal property specified by the lemma. Assume we already have the set

Dj C Ly (fiogn] +1)
with |[D| = j (0 < j < k —t) such that
rank(B; U [D;]") =n; —m; + 5 , i=1,...,s.

We then consider the homogeneous system
{< gz,fz > = 0, forany gz € B; U [D]]nq‘ ,

whose solution space has dimension m; — j. Let {#%, .. -} be a vector basis of this space, and define

.,m]

V;-i € {0,1}" as the concatentation of '17; and dummy 0’s. Observe that for any @ € {0,1}", we have
<VZ a>—<'u @™ > .

For any fixed i € {1,..., s}, the vector [@]™ cannot be represented as a linear combination of vectors
from (B; U [D;]™) iff the following system is not satisfied

{<I7;',a'>:0 ct=1,..,mi—7 . (12)
For any fixed i, Corollary 2.1 implies that the probability that a vector @ from L (log n]+1) satisfies
the system in Eq. (12) is at most
9i=mi | o~(flogn]+t),, < olk—t=1)=k 4 g—t _ 39—t _ 3o—(Nlogs]+1) o 31
- 2 2 “4s
Tt follows that the probability that a vector @ chosen uniformly at random from L* n,([log n]+2) satisfies
Condition (12) is true for at least one i from {1,...,s} is at most
31 _3
“1s T 4
So, there exists @ from L7 ([ n]+t) Such that for all i € {1,...,s} the system in Eq. (12) is not satisfied.
We then define D1 = U {@}; the construction terminates when j =k — ¢ and we set D = Dj_4.

B Proof of Lemma 4.2

For any fixed 7 € {1,...,ka}, consider the subset X; C {z1,...,z,} where | X;| < [n/a] and assume that
each variable belongs to at most &k subsets from {Xi,..., X, ka} Let g(i) be the number of sets X; such
that z; € Xj.

Let us fix an integer ¢ > 2 and then select randomly a function ¢ : {1,...,ka} — {1,...,t} with
uniform distribution. Let us consider the Boolean function &;;(¢) defined over all possible choices of ¢
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such that & ;(¢) = 1 if for all j for which z; € X it holds ¢(j) = s, and & ;(¢) = 0 otherwise. Then, for
any fixed s, we let

n
Es(d) = Zé‘s,z((l’) :
i=1
Our first goal is study the expected behaviour of the above random variable. In particular, if E (x)

denotes the expected value of a given random variable, then using Chebichev’s inequaltiy, it is possible
to prove the following bound. For any fixed s = {1,...,t} and for any 0 <e <1

_ _ _ 1 (tF %k
Pr (|25 —E(Es)| 2 €E (Es)) < ) <_ +— . (13)
e \n a
Now, let g(x1,...,z,) be a (k,a)-rectangle and assume that for some t > 2
4tk+1 42kt
+ < 1.
n a
From Eq. (13), for any fixed s, we get
_ 1n 1 _ _ 1. tk 1%k
Pr (:S < 575_’“) < P (:s < §E(us)> < Pr <|:5 —E(Ey)| > EE(:S)> <4 <; + — |-

Consequently

Pr(flse{l,...,t} D E <

N | =
%S
~——
IA

n a

tk tQkk 4tk—|—1 4t2k+1k)
t-41 —+ < + <
n a

Therefore, a function ¢ exists such that

— 1n
Vs e{l,...,t}: Eg(p) > 51k
For any s, we can thus choose X such that

n

X2 = T

—| y and X: - ﬂ Xj .
i ¢l)=s

We then define

X5 = {ml,,wn}\<UX:> .
s=0

Since g is a (k, a)-rectangle, we can write g as follows

9(@1s-- s ) = /\( A gj(Xj)> :

=1 \j : ¢(j)=s
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Let v be a partial input from B(Xg) then, for any j = 1,...,ka, if ¢(j) = s then X; \ X5 = Xj. It
follows that the function

(/\ (wi@v(wi))> ( /\ gj(Xj))
1€Xg J:o(d)=s

depends only on the variables from X7, so there exist functions g¥(X7), s =1,...,t, such that
¢
iEXy s=1

and g can be written in the following form

t
9@, ymn) =\ (/\ (:vi®v(wi))) (/\ g}’(ﬁ)) ; (14)
s=1

veB(Xy) \i€X]

Observe now that if s # v then X} N X = § and, moreover, for any s = 1,...,¢, |X}| < [n/(2tF)].
Consequently the representation in Eq. (14) of g is an OR of 25| of (1, 2t*)-rectangles. The Lemma is
proved by observing that

* n . n

C Proof of Lemma 4.3

Let
9=\ 9(Xi) -
i=1

Since k = 1, the sets X;’s are pairwise disjoint. Further, we have that

a

INg| = TTINgl -

i=1
Let 7 be the number of i’s such that [Ny > 1. Since
N < (2FF1)7,
then
| Ng|
~ (n/T)+1°

Let A; be the affine space of maximum dimension d; such that A; C N,. Observe that if [Nj| > 1 then
d; > 1 since any two different points yield an affine space of dimension 1. We thus consider the affine
space A = Ay X ... x A,. The dimension of A is at least r.
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