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Abstract

In several previous works the explicit construction of a computationally-hard function with respect
to a certain class of algorithms or Boolean circuits has been used to derive small pseudo-random spaces.
In this paper, we revert this connection by presenting two new direct relations between the efficient
construction of pseudo-random (both two-sided and one-sided) sets for Boolean affine spaces and the
explicit construction of Boolean functions having hard branching program complexity.

In the case of 1-read branching programs (1-Br.Pr.), we show that the construction of non trivial
(i.e. of cardinality 2°(™)) discrepancy sets (i.e. two-sided pseudo-random sets) for Boolean affine spaces
of dimension greater than n/2 yield a set of explicit Boolean functions having very hard 1-Br.Pr. size.
Then, by combining the previous constructions of e-biased sample spaces for linear tests and a simple
“Reduction” Lemma, we derive the required discrepancy set and obtain a Boolean function in P having

2 2 . NP
1-Br.Pr. size not smaller than 27~ ?(1°6" ") and a Boolean function in DTIME(2°0°8" %)) having 1-
Br.Pr. size not smaller than 27~'°84"_ This bound is optimal and improves over the best previously
known lower bound that was 2n—3n""* [24].

As for the more general case of non deterministic, syntactic k-read branching programs (k-Br.Pr.),
we introduce a new method to derive explicit, exponential lower bounds that involves the efficient
construction of hitting sets (i.e. one-sided pseudo-random sets) for affine spaces of dimension o(n/2).
Using an appropriate “orthogonal” representation of small Boolean affine spaces, we provide these

hitting sets thus obtaining an explicit Boolean function in P that has k-Br.Pr. size not smaller than
2n1—c(1)

for some range of k.

for any k =o (rlg"]gﬁ—n)- This improves the previous known lower bounds given in [8, 12, 21]

*Contact Author: Centre Universitaire Informatique, University of Geneva, 24 rue General Dufour, 1204 geneva (Switzer-
land), Fax: +41-22-705-7780



1 Introduction

Branching programs

Research in branching programs is extremly active from both theoretical and practical point of view [23,
13, 22, 26, 28]. Branching programs (Br.Pr.’s) have often been used as data structures to represent finite
Boolean functions. Moreover, the problem of finding lower bounds for the size of Br.Pr.’s for explicit
Boolean functions has been deeply studied in [8, 12, 22, 23]. Similarly to the case of circuit complexity,
it turned out that the task of finding explicit lower bounds in the case of general Br.Pr.’s was not
carried out very successfully. This intrinsic difficulty led to consider several restrictions, one of the most
important ones is that of setting a fixed bound for the maximum number of times that an input variable
can be read by a Br.Pr.

A read-k-times Br.Pr. is allowed to read each variable at most k times along any valid computation
and, in a syntactic read-k-times Br.Pr., this reading restriction holds for any path from the source to
any sink. Notice that while a read-1-time Br.Pr. is always a syntactic read-1-time Br.Pr., for k > 2 this
does not hold. Clearly, the Br.Pr. model can also be made non deterministic by allowing the existence
of more arcs labeled with the same value that leave the same node.

To our knowledge, the best known explicit lower bound for read-1-time-branching programs (1-
Br.Pr.s) is due to Savicky and Zak [23, 24]; they derived a Boolean function in P having, for any
sufficiently large n, 1-Br.Pr. size not smaller than 2", where s = O(n!/?). We also emphasize that for
this model there are no known harder explicit functions even in classes larger than P, while a non explicit
lower (and optimal) bound of size ©(2"71°8™) is known.

Regarding non-deterministic syntactic read-k-times Br.Pr.’s (k-Br.Pr.’s) when k > 2, there are
explicit lower bounds of exponential size when k£ = O(logn) [8, 12, 21]. Borodin et al [8] showed an
explicit family of Boolean functions such that any k-Br.Pr. computing it must have a number of labeled
edges not smaller than exp(Q2(n)/(4* x k?))) when k < clogn for a fixed constant 0 < ¢ < 1. A lower
bound of size exp(Q(v/n/k?*)) has been independently proved by Okolnishnikova [21]. More recently,
Jukna studied the Okolnishnikova’s function and obtained an exponential gap between the size of any
Br.Pr. required for such a function and that required for its complement. Finding exponential lower
bounds when k grows faster than any logarithmic function or when the branching programs are non
syntactic is still an open question.

Our results

In several previous works [2, 3, 6, 11, 19, 20] the explicit construction of a computationally-hard function
with respect to a certain class C of algorithms (or Boolean circuits) has been used to derive small pseudo-
random spaces able to de-randomize a somewhat probabilistic version of C. Here we revert this connection
by showing how to use efficient constructions of pseudo-random spaces for linear tests [18] to define a
set of explicit functions having very hard complexity with respect to read-1-time-branching programs and
non deterministic syntactic read-k-times branching programs.

Read-1-time-branching programs and discrepancy sets for large affine spaces

In the case of 1-Br.Pr.’s, Simon ans Szegedy [25] obtained a valuable combinatorial theorem (see The-
orem 3.1) that provides a useful method to obtain lower bounds [23]. In short, our first result is the
construction, for any n, k > 0 and for any o € {0,1}*", of a finite Boolean function f< : {0,1}" — {0,1}



for which Simon and Szegedy’s Theorem implies the following property: if « is not a solution of a certain
set F of linear systems having ©(n) linear equations then f has hard 1-Br.Pr. size (the precise lower
bound is a function of some parameters of the systems in F). Therefore, in order to efficiently construct
a family of hard functions, we need to derive an a that has the above property for any positive integers
k and n.

Since the solution space of any linear system is an affine space, we would be able to efficiently carry
out this task if we could construct a family of small discrepancy sets for affine spaces. More formally, let
AFF(n,k,s) be the set of all n variables linear systems Az = b (where A € {0,1}°*", z € {0,1}", and
b € {0,1}°) of at most s linear functions in which at most k variables appear with non-zero coefficients
(such variables are said essential). The systems in AFF(n,k,s) will be simply denoted as pairs (A, b).

Definition 1.1 Let € > 0. A (multi)set S C {0,1}" is said to be e-discrepant for AFF(n,k,s) if for
any feasible system (A,b) € AFF(n,k,s) with rank(A) = s, it holds |Pryes(Az =b) —27°%| <e.

Note that 27 * equals the probability that z is a solution of (A,b) when z is chosen uniformly at random
from {0,1}".

The case in which the linear system has only one equation, i.e. the classes AFF(n,k,1), has been
studied extensively in the literature: in particular, Naor and Naor [18] introduced the following definition.

Definition 1.2 A subset S C {0,1}" is e-discrepant for linear functions if, for any Boolean linear
function f : {0,1}" — {0,1}, |Prs(f(z) = 0) — Prg(f(z) = 1)| < €. Further, S is said to be k-wise
e-discrepant if the “test” linear functions in the above definition can have at most k non-zero coefficients

Note that, according to the definition in [18], a set is an e-biased sample space w.r.t linear tests iff it
is e-discrepant for linear functions; furthermore, the restriction k£ on the number of essential variables in
the definition of AFF(n,k,s) is the generalization of the definition of k-wise e-discrepancy set for linear
tests given by Naor and Naor.

One of the major reasons for constructing e-discrepancy sets for linear functions relies on the fact
that they can be used to de-randomize some probabilistic algorithms (see [18]).

The main result of [18] is the efficient construction of an e-discrepancy set for linear functions of size
O((n/€)°M) and a k-wise e-discrepancy set for linear functions of size O((klogn)/e)°™1)). Three simpler
and better (in some parameter ranges) constructions of e-discrepancy sets for linear functions have been
introduced by Alon et al in [1]. All of them yield sample spaces of size O((n/€)?). Their third method is
called the powering construction and will be extensively used in our paper (a formal description is given
in Section 2.1). All such sample spaces can be constructed in time polynomial in n/e.

However, the above efficient constructions of discrepancy sets for linear functions cannot be directly
applied to our goal of constructing a Boolean function having hard 1- Br.Pr. since we need a discrepancy
set for the more general case AFF(n,k,0(n)). The next result provides an elegant solution for this
problem.

Lemma 1.1 (Reduction Lemma.) Let ¢ > 0. If S C {0,1}" is e-discrepant for AFF(n,n,1) then it
is 2e-discrepant for AFF(n,n,n).

This lemma can be proved by combining some properties of the Fourier coefficients of the characteristic
functions of Boolean affine spaces and other technical results from [17]. In Section A.1, instead we provide
a more direct and simpler proof of the Lemma that, as a result, does not require the use of Fourier analysis.

Thanks to this lemma, any previous construction of e-discrepancy sets for linear functions turns out
to be a 2e-discrepancy set also for AFF(n,n,n).



Theorem 1.1 Let n > 0. For any k,s < n and for any € > 0 it is possible to efficiently construct an
e-discrepancy set D(n,k,s) for AFF(n,k,s) of size |D(n,k,s)| < (2k(logn +1))/e)?.

The result concerning AFF(n, k, s) (i.e. when a non trivial bound on the number of essential variable
is imposed) is obtained by providing a different version of the powering construction given by Alon et
al [1].

Finally, by combining the construction of the parameterized family of Boolean functions f“’s, the
selection of the “correct” a by using Theorem 1.1 and Simon ans Szegedy ’s Theorem, we achieve the
following lower bounds which are exponentially larger than that obtained by Savicky and Zak [23].

Theorem 1.2 It is possible to construct:
a) a Boolean function in P having 1-Br.Pr. size not smaller than on—0(

NP
b) a Boolean function in [)T”\/|E(2O(log2 ")) N P/poly having 1-Br.Pr. size not smaller than gn—logdn
(this bound is optimal);

log?n).
J

Non deterministic syntactic read-k-times branching programs and hitting sets for small
affine spaces

In the more general case of k-Br.Pr.’s, we introduce a new method to derive explicit, exponential lower
bounds that uses concepts introduced by Borodin et al [8].

Our method relies on the following result. Given any Boolean function f : {0,1}" — {0,1}, let
N} = {z € {0,1}" : f(z) =1} and Li_4(f) be the size of smallest k-Br.Pr. that computes f.

Theorem 1.3 Let t > log?n, k = o(logn/logt) and let f(z1,...,zn) be a boolean function such that
|N1\ > 271 and Ly (f) < on'~ “ for some constant 0 < € < 1. Then for sufficiently large n, the set
Nf contains an affine space of dimension not smaller than t/4.

The above theorem implies that the complement of the characteristic function of a family of hitting
sets (i.e. one-sided random sets) [4, 5, 10, 15] for affine spaces is a good candidate to get hard k-Br.Pr.
size. Thus, the next goal is to obtain an efficient construction of such hitting sets. In the general
definition, given a class F of Boolean functions of n inputs, a subset H C {0,1}" is a hitting set for F
if, for any non-zero function f € F, H contains at least one inputs on which f outputs 1. It is easy to
verify that Theorem 1.1 guarantees a hitting set for AFF(n,k, s) if and only if e < 1/2°. Indeed, in this
case we have |D(n,k,s)| < (2k(logn + 1))/e)2 = 2k(logn + 1)22% that gives a hitting set of non trivial
size (i.e. of size 0(2")) only when s < n/2, i.e., when the corresponding affine space is large. However,
when the affine space is small there is a more efficient way to represent it by using its orthogonal space
(which is large). Combining this idea with the Reduction Lemma, we derive an efficient construction of
non trivial hitting sets in the case of small affine spaces.

Theorem 1.4 For any n > 0 and m < n it is possible to efficiently construct a hitting set H(n,m) for
AFF(n,n,n —m) such that |[H(n,m)| < 2n—m+m(O()logn)/vm

The above construction thus provides a non trivial hitting set when m > c¢log? n for some constant ¢ > 0.
This is a strong improvement over the best previously known construction that yields a non trivial hitting
set only when n —m = o(n) [4, 17].



We then consider the complement function F2(z; ...xz,) of the characteristic function of the hitting
set H(n, m) in Theorem 1.4 (for an appropriate choice of logn < m < n/2). By definition of hitting sets,
it should be clear that F,‘% cannot contain any affine subspace of dimension not smaller than m. Hence,
Theorem 1.3 implies the following lower bound that improves over those in [8] and [12] for some range of
k.

Theorem 1.5 Let k = o(log)ﬁ)gn). There exists a Boolean function F* = {F%:{0,1}" — {0,1},n > 0}
1—o0(1)

that belongs to P and, for sufficiently large n, Li p.(F2) > 27

Organization of the paper

The rest of the paper consists of two main sections. Section 2 is devoted to the constructions of both
discrepancy and hitting sets for affine spaces. Then, these constructions are used in Section 3 to derive
the explicit lower bounds for branching programs.

2 Pseudo-random sets for affine spaces

Given a subset W C {0,1}", its size is denoted by |W|, and its probability with respect to the uniform
distribution in {0,1}" is denoted by Pr(W); Instead, the notation Prg(W') refers to case in which the
uniform distribution is defined on the sample space S.

A Boolean function f : {0,1}" — {0,1} is said linear if a vector a = (a1,...,an) € {0,1}" exists such
that f can be written as f(z1,...,2n8) = a121 ® ... ® ayzy. Given two binary vectors a = (a1,...,an)
and b = (b1,...,by) from {0, 1}N, we define ¢ = a @ b as the vector whose the i-th component is given by
the xor of the i-th components of a and b. The inner product is defined as < a,b > = a1b1D...Danby .
The finite field GF(2V) will be represented by the standard one-to-one mapping bin : GF(2V) — {0,1}"
such that bin(a + b) = bin(a) @ bin(b) and bin(0) = (0,...,0).

Furthermore, given any element a € GF(2V) and an integer k > 0, we will make use of the concatenation
of powers Ufa, k) € {0,1}*" where U(a,k) = bin(a®)bin(a!)...bin(aF~!). For the sake of brevity, the
notation a’ will replace the term bin(a?).

2.1 Discrepancy sets for large affine spaces

For any subset S C {0,1}" and for any a € {0,1}" we define

e(S,a)=11/2 = (Y <a,z>/|S])|
TES
and the “discrepancy” degree of S as £(S) = max{e(S, @) : a € {0,1}", a # 0}. Note that S C {0,1}"
is e-discrepant for AFF(N, N, 1) iff ¢(S) < e. We now introduce the discrepancy degree w.r.t. systems
of linear functions. For any choice of o € {0,1}* and o; € {0,1}" for i = 1,...s, we define

Hzx el :<ajz>=0;1=1,...,s}
5]

w(S,a1,...,05,01,...,05) =

and we let £5(S) be the maximum of the difference |27% — 7(S, 01, ...,as,01,...,05)| , over all possible
linearly independent s-ple of vectors ;’s and vectors o € {0,1}°.



Our interest in the above definition relies on the fact that a set S is e-discrepant for AFF(N, N, s) iff
es(S) < e. We can now present the Reduction Lemma according to the above definitions (for the proof
see Section A.1).

Lemma 2.1 (The Reduction Lemma) Let S C {0,1}". If ay,..., o, are linearly independent and
o €{0,1}°, then

1
|27% — (S, a1,...,05,01,...,04)| < (2 — 231> e(S).

Hence if S is e-discrepant w.r.t. AFF(N,N,1) then it is 2e-discrepant w.r.t. AFF(N,N,s), for any
s <N.

We now describe the powering construction of the e-discrepancy set Ly , C {0, 1}N given by Alon et
al in [1] and then we combine it with the Reduction Lemma in order to get a good discrepancy set for
the general class AFF(N,N,N).

Definition 2.1 [The Powering Sample Space | [1] The generic vector | in the sample space Ly, is
specified by two vectors x,y € {0,1}°. The i-th bit of | is the inner product of the i-th power of x and y.
Clearly, we have that |L} | = 227

Theorem 2.1 [1] For any N > 0 and z < N, it holds e(L} ,) < 22% Hence Ly , is %—discr@pant
for AFF(N,N,1).

Notice also that Alon et al's e-discrepancy set for linear functions is the set L} , for z = log(N/e). By
applying the Reduction Lemma to Theorem 2.1 we can easily prove the following

Corollary 2.1 If ay,...,as € {0,1}" are linearly independent and o € {0,1}°, then

<N-277%.

‘275 - Tr(‘c}k\f,z’ala cee 05,01, .. ’Us)
Hence LY , is (N27%)-discrepant for AFF(N, N, N).

The above combination of the Alon et al's powering construction and the Reduction Lemma can be
slightly modified in order to obtain a discrepancy set for AFF(N,k,s) that takes in consideration the
number k of essential variables (this construction is described in Section A.2).

Theorem 2.2 (Discrepancy set for AFF(N,k,N)) For any N > 0, and 0 < k,z < N, it is possible
to construct a set Do(N, k,z) which is (k[log N|27%)-discrepant for AFF(N,k,N).

2.2 Hitting sets for small affine spaces

In this section we give an efficient construction of non trivial hitting sets for small affine spaces, i.e., for
large systems of linear equations. The key idea of the construction is the fact that any affine subspace
S can be represented by using its corresponding orthogonal subspace S* in {0,1}", and if S has small
dimension then St has a large dimension. The orthogonal subspace is thus described by a small linear



system and so we can apply the powering construction of the previous section!. Our first main task

will thus be the construction of a different representation of small affine spaces using their respective
orthogonal subspaces.

If A C {0,1}" then rank(A) denotes the maximal number of linear independent vectors (A will be
also considered as a Boolean matrix). Given a € {0,1}", the term [a}’ denotes the the first j bits of a.
Furthermore, we will use the notation [A]Y = {[a)? : a € A}, and define rank;(A) = rank([4}).

The small affine space that we want to hit is described by the following linear system

{<aj,x > = b; whereaq; €{0,1}", b; €{0,1} i=1,2,...,n—m . (1)

We let A = {a1,...,an—m} and assume that rank(A) = n —m. As stated before we are interested in
the case in which m is small, i.e., 0 < m < n/2. Our first step is to partition the matrix A into s > 16
smaller submatrices having almost equal rank. Let A (n,s) be the set of vectors N = (ny,...,ns) with
positive integer components such that ny + ... + ng = n. Let £ = m/s and wlog assume that k£ > 2.
Then, for sufficiently large n, given any A = {a1,...,an_n}, for any fixed s > 16, we can always choose
a vector N = (ny,na,...,ns) € N(n,s) such that

rankp, 4 4n,(A) —ranky, 4y 4n, ,(A) =n;—m;and k<m; <k+1, foranyi=1,...,s. (2)

Note that mq +mao+...+ms = m. Let £ = (z1,z9,...,2Zs), where the length of z; is n;. Then, by using
a standart diagonalization method for linear systems, we can represent the solution space of the system
in Eq.( 1) with a set of smaller linear systems:

{<b,zy;> = dd", VheB ..... {<bg,xy > = u¥, Vb, e B,

for some B; C {0,1}" such that |B;| = n; — m; and rank(B;) = n; — m; (i=1,...,s) and for some
ul € {0,1},i=1...s (clearly, both B;’s and u’’s depend on the system in Eq. (1)).

Let ¢ = [logs]| + 1 and consider any subset D = {d,...,dg_¢} of vectors from {0,1}". Then the
orthogonal space (w.r.t. [D]?) S(D,j) is the set of solutions of system < [d;]%, (z1,z2,...,7;) >= 0 for
i=1,...,k —t. For any N € N(n,s), we then consider the sets of prefix combinations from S(D,n;)’s,
ie, S(D,N) = 8(D,n1) x...S5(D,ns). The next result provides the orthogonal condition that a set of
vectors D must satisfy in order to let S(D, N) contain at least one solution of the linear system in Eq. (1)
(for a formal proof see Section A.3.1).

Lemma 2.2 Let D = {dy,...,dg_+} C {0,1}" and N € N(n,s). If for any i = 1,2,...,s rank(B; U
[D]™) =n; —m; + k —t, then S(D, N) contains at least one solution of the system in Eq. (1).

Lemma 2.2 suggests us the way to construct a hitting set for the system in Eq. (1): it suffices to find
a vector set D that satisfies the “orthogonal” condition in Lemma 2.2 for any possible choices of B;’s,
i=1,...,s It is not hard to see that a random subset D from {0,1}" of size k — t satisfies, with high
probability, the above condition. Our idea is to de-randomize the process by choosing our hitting set as
the union of all subsets of size kK —t from the powering discrepancy set E;‘L,( given any 16 < s < n,
for any subset N € N(n,s) we let

H(N) = U S(D,N)

DL (nogn1 ) * 1PI=k=t

Mogn]+t)’

'This new representation of small affine spaces does not allow to preserve the discrepancy property of our sample space
but only their hitting property.



and we define our hitting set #(n, s) as the union of H(N) over all possible choices of N from N (n, s).
The hitting property of H(n, s) is a consequence of the fact that, from Corollary 2.1, L (log n+¢) contains
at least one solution of any linear systems in AFF(n,n,t — 1). This implies the following result (for a

proof see Section A.3.2).

Lemma 2.3 Let t = [logs] +1, N = (ny,...,ns) € N(n,s). Let By,...,Bs be such that for any
i=1,...,s B; C{0,1}"™ wzth|B|—nZ—mzwherek<m1§k+1 and rank( Z)—nz—m, Then a
vector subset D C ) ezists such that |D| = k —t and rank(B; U [D]™) = n; —m; + k —t, for
anyi=1,...,s.

n,([logn]+t

We have now at hand all the ingredients to derive a hitting set for small affine subspaces.

Theorem 2.3 For any 1 < m < n, for any 16 < s < n, the set H(n,s) C {0,1}" is a hitting set for
AFF(n,n,n —m). Furthermore, If s = ©(y/m) then

O(1)logn
vm

[H(n,s)] < 277

Proof. Consider the system in Eq. (1). As before mentioned, for any s > 16 (and in particular for
s = [y/m]), we can choose vector N € N (n,s) that satisfies Condition (2). Lemma 2.3 then implies
that a subset D from L} ([logn]+t) exists that satisfies the orthogonal condition in Lemma 2.2. This
lemma implies that S(D, N) contains at least one solution of the system in Eq. (1). The first claim of
the theorem thus follows from the fact that S(D, N) C H(n,s).

Concerning the size of the hitting set, assume that s = [/m]; then by definition of k£ and ¢ we have (here
we omit some standard computations)

20logn

IH(N)| < (22(flogn1+t)>sHZnﬁ(/ﬁt) < grmtmIUR
i=1

It follows that

n ) 2n—m+m20 logn n_m+m22 logn

m(n,sns(s_l <2 v

O

Finally, we remark that the set #H(n \/_ (m)]) turns out to be a non trivial hitting set (i.e. of size o(2"))
for AFF(n,n,n —m) for any m > clog n for some constant ¢ > 0.

3 New explicit lower bounds for branching programs

In what follows we adopt notations and terminology from [23]. A Br.Pr. is a directed acyclic graph
where one of the nodes, called source, has fan-in 0 and some other nodes, called terminals, have fan-out
0. Each non terminal nodes is labelled by the index of an input Boolean variable and has fan-out 2. The
two arcs leaving a non terminal node are respectively labelled 0 and 1. A Br.Pr. computes a Boolean
function f : {0,1}" — {0,1} on a fixed input as follows. Starting the computation from the source node,
if a generic node is reached, the corresponding input variable is tested and the computation chooses the
arc corresponding to the actual value of this input variable. The process terminates when a sink node is
reached and its label represents the output of f. The size of a Br.Pr. is the number of its nodes.



3.1 Lower bound for 1-read branching programs

We adopt notations and terminolgy introduced in [23]. In particular, for a partial input we mean any
element from {0, 1, *} where the positions containing 0 or 1 mean that the corresponding input bit is
fixed, while the notation * mean that the corresponding input bit is free. We say that a partial input
v is defined on the set I C {0,1}" if v; € {0,1} iff + € I. Partial inputs define subfunctions of a given
Boolean functions f : {0,1}" — {0,1} in the following natural way. For any set I C {1,2,...,n}, let
B(I) be the set of all partial inputs defined on I. Given any partial input v € B(I), the subfunction f|,
of f(z1,...,zn) is obtained by setting z; = v; for any i € I. The set of inputs on which f|, is defined
consists of the Boolean rectangle R(v) of dimension n — |I|, R(v) = {(a1,-..,an) : a; = v(i), 1 € I}.
Given any function f : {0,1}" — {0,1} and any subset I C {1,2,...,n}, let

v(f, 1) = vrenlg(?;)l{uEB(I) D flu=flo} -

In the case of 1-Br.Pr.’s, Simon and Szegedy introduced a nice technique to derive explicit lower
bounds that enjoys of the following theorem.

Theorem 3.1 [25] Let f be a Boolean function of n variables and let r < n. The size of any 1-Br.Pr.
computing f is at least 2"7"[(max{v(f,I): |I| =n—r}).

Our next goal is to give a suitable interpretation of this theorem for the family of n-inputs Boolean func-
tions powF, = {f%, : @ € {0,1}*"} where £, (z) is the inner product between a and the concatenation
of the first & powefs of z,ie. i (z) =<aq, U(a:, k) > .Let I C{1,2,...,n} such that |I| = n —r; for any
u,v € B(I) we consider the zor Vector df (u,v) € {0,1}" where df (u,v); =1 iff i € I and v; # u;. Then
the condition (implicitly required by Theorem 3.1)

fv?,k|v = fg,lc|u- (3)

is equivalent to require that for all z € R(v), fr(z) ® f5(z @ df (v,u)) = 0. Therefore, by definition

of ff:, > 1t is equivalent to require that a € {0, 1}’“" is a solution of the following Boolean system of
|R(v)| = 2" linear equations

{<a,(U(z,k) Uz @ df (v,u),k)) >=0, z € R(v) . (4)

So, in order to obtain a lower bound as large as possible, we need to efficiently find an o that does not
satisfy the above system for any choice of I and for any u # v from B(I). The first step to this aim is
to choose r and k in order to make the equations linearly independent. If indeed we set r = [logn] + 1,
and k = 27! then, by definitions of U(z, k) and df (v, u), vectors U(z, k) ® U(z @ df (v,u), k) are linearly
independent for any z € R(v) and for any different v,u € B(I). This implies that for any fixed choice of
u and v such that u # v, the number of « satisfying the linear system is 2¥"2~" where h = 2".

By applying standard counting arguments, it would be possible to show that a vector a selected
uniformly at random from {0, 1}]m will not satisfy the linear system in Eq. (4) for any I such that
|I| = n—r and for any different u,v € B(I) with high probability. This however will not give an explicit
and efficient construction of a Boolean function having asymptotically maximal 1-Br.Pr. complexity.
The key idea is to use the discrepancy set L7, , (given in Section 2.1) to efficiently de-randomize the
probabilistic construction described above. Indeed, let G(y1,...,y2:) (the correct choice of the “price”



t is given later) be the Boolean generator of the set Lkt By applying Corollary 2.1 with N = kn,
s =27, and z = ¢ we easily have that the system in Eq. (4) for o = G(f) is satisfied for not more than
22(272" 4 2r+t1n2~*) different 3’s. It follows that the number of 3’s for which the system is satisfied for
some (at least one) I, with |I| = n — r, and some (at least one pair) different v,u € B(I) is at most

224272 4 27 t1n2h) ( i > 92r,
r
Now, if we choose ¢t > clog?n for a sufficiently large positive constant ¢, we have that the above value is
bounded by 2%0(1). It follows that an element 3y € {0, 1}2t exists such that ag = G(fp) does not satisfy
System (4) for any I with |I| = n —r, and for any v # u from B(I). By applying the above deterministc
construction and Theorem 3.1, we can prove the following results.

Theorem 3.2 a). There ezists a function F' = {F}! :{0,1}" — {0,1},n > 0} that is constructable in

NP
DTIME(2O(10g2 ™) NP/poly and such that, for almost every n > 0, Li_y.(Fl) > 2nlos(4n),
b). There ezists a function F? = {F2? :{0,1}" — {0,1},n > 0} that is constructable in P and such that,
for almost every n > 0, Ly_y, (F2) > an—0(og”n),

Proof. a). As described before the theorem, for any n > 0, we let 7 = [logn] + 1, & = 2"! and
t > clog?n. We then choose a “good” vector 8 € {0,1}* such that condition (3) does not hold for
any I with |I| = n —r and for any v # u from B(I). Finally, we define F} = f,(f). It is easy to
verify that the function can be computed by a circuit of polynomial size provided that the correct I}

NP
is given and also that F' € DTIME(20(10g2 n))
Ly p(FL) >27T > 2" /4n.
b). The construction is similar to that of the first case. The only difference is that the new function F2

has now an auxilary input of s = O(log?n) bits that specifies the input for the Boolean generator G.
More formally, F2 : {0,1}° x {0,1}" — {0, 1}, is defined as

F2(,z) = f07(x) .

Since G works in time polynomial in its output size (this is a direct consequence of the powering construc-
tion given in [1] - see Definition 2.1), it is easy to show that F? can be constructed in time polynomial in
n. Since, in the worst-case, F? cannot be easier than F'!, the lower bound for F? is a conseqence of the
first case and of the fact that the size of the input of F? is O(log? n) bits larger than the input of F.

O

. Moreover, by applying Theorem 3.1, we have that

3.2 A lower bound for i-branching programs

Theorem 3.3 Let t > logZn and k = o (ll%gg—?) Let f:{0,1}" — {0,1} be such that |N}| > 2" and
Lo (f) = M < on' for some constant 0 < € < 1. Then, for sufficiently large n, the subset N}

contains a (at least one) Boolean affine subspace in {0,1}" of dimension at least t/4.

In order to prove the above Theorem we will make use of some concepts and results untroduced by
Borodin et al in [8].



Definition 3.1 [8/ A Boolean function g(x1,...,zy,) is a (k,a)-rectangle if g can be represented in the
form

ka
g = N\ (X))
=1

where g; is a Boolean function depending only on wariables from X; C {z1,...,z,}, | Xi| < [n/a] and
each variable belongs to at most k of the sets {X1,..., Xka}-

The next lemma provides an interesting relation between (1,T)-rectangles and Boolean affine subspaces
(the proof is given in Section A.4). Let N!} be the set of z such that g(z) = 1.

Lemma 3.1 If g(z1,...,2,) is a (1,T)-rectangle then N!} contains an affine space of dimension at least
(INgD)/((n/T) +1).

Let Lg_p-(f) be the size of the smallest (non deterministic syntactic) k-Br.Pr. that computes f.
Borodin et al showed that the existence of an upper bound on the k-Br.Pr. size of a given Boolean
function yields a possible “rectangular” representation of it.

Lemma 3.2 [8] Let f(z1...,z,) be a Boolean function such that Lig_p.(f) < M and let a and k be
positive integers. Then f is an OR of at most (2M)?*® (k, a)-rectangles.

The next lemma provides a method to represent any (k,a)-rectangle (with any £ > 1) as an OR of a
certain number of (1,a(k))-rectangles where a(k) is exponential in k (the proof is given in Section A.5).

Lemma 3.3 Let g(z1,...,2z,) be a (k,a)-rectangle and assume that for some t > 2 it holds
4tk n + (@ k) e < 1.
Then g is an OR of at most gn—n/(2t571) (1,2 - tk)-rectangles.

Proof of Theorem 3.3

If we choose a = 16kt%**! then, for sufficiently large n, we obtain

4tk /n 4+ (4% k) /a < o(n)+1/4<1.
By combining Lemma 3.2 and Lemma, 3.3, we have that f is an OR of at most r (1,2 - t¥)-rectangles,
where r < (2M)2ka2"*”/(2tk_l) < on-n/U*7) | Gince |N}\ > 2771, the above inequality implies that
N} contains at least one (1,2 - t¥)-rectangle of size not smaller than (2"‘1)/(2”_"/(4tk_1)) = gn/(4t*~1)-1,
From Lemma 3.1 this rectangle contains an affine space of dimension at least

log (20" 7)1 Lttty

(n/2)+1 (/@) +1 = 2(m/(2tF) — 4

O

For any n > 0, we define the Boolean function F(z1,...,z,) as the complement of the characteristic
function of the hitting set #(n,/m) given by Theorem 2.3 where we set m = [log*n]. From the
construction of #(n, s) shown in Section 2.2, we can prove that the family F* = {F2% n > 0} can be
constructed in polynomial time (a formal proof is given in Section A.6). Furthermore, from Theorem 2.3
we have that |#H(n,O(log?n))| = o(2"); so, by applying Theorem 3.3, we obtain the following lower
bound.

10



Corollary 3.1 Ifk = O(F&gog—n) then, for sufficiently large n, Ly_y.(F¥) > gnt~o®
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A Proofs

A.1 Proof of Lemma 2.1

Fix § C {0,1}" and a set of s linearly independent vectors ar,...,a, from {0,1}". For any o =
(01,...,05) we consider the “discrepancy degree” of S w.r.t. o:
d(o) =n(S,a1,...,05,01,...,05)

and define ¢(o) = d(o) - |S|. For any b = (b1,...,bs) € {0,1}°, we also consider the linear combination
ad) = bja; @ ... ® bsas. The sum

QM) = > <la®) >,

les

can be written as

Q) = > <Lby®..0ba,>= > (b <loy>®...0b; <la,>) =
les les

= Z ( Z <b,7>>;

Y=(Y15e-y7s)€{0,1}° \IES : <l,a1>=71,...,<l,05s>="7s
S0,
Q)= Y an<by>= > ad)<by>. (5)
7€{0,1}° v€{0,1}3°\{0}
Two cases may arise depending on whether or not o = 0.
1.) For o # 0, Eq. (5) implies that

Y. Qb = X Yoo a) <by>-=

b: <bo>=1 b : <b,o>=1~€{0,1}*\{0}
= Y qvn Y <by>=q@27 + > g(y)2"? (6)
Ve[, \{0} b : <bo>=1 7e{0,11\{0,0}

where the last equality is due to the fact the the number of b # 0 such that < b0 >=1and < b,y >=1
for non zero o # v is equal to 2° 2. Similarly we have

> Qb)= >, g > <by>= > qy2> (7)

b: <bo>=0, b#0 ~ve{0,1}°\{0} b: <bo>=0, b£0 ~v€{0,1}*\{0,0}

Combining Eq.s (6) and (7), we get

g2t = > Q) - > Q(b) (8)

b: <bo>=1 b: <byo>=0, b#0
We remind that

e(S) = max{e(S,a) : a€ {0, 1}N, a # 0} where e(S,a) =1]1/2 — ( Z <a,z>/|S|)|;
TES

13



For any b # 0, it is then easy to prove that

s1(3-29) <@ <181 (5 +()) - 9

Then from Eq.s (8) and (9), we have that
s—1 1 s—1 1 s—1
27118] (5 - e(8)) — @~ 1)Is] (3 +£(5)) <al)2! <

1 1
< 21| (5 +s(5)) — (@2 = 1|8 (5 - 5(5)) .
It follows that

275 —(2-27%)g(8) < % <275 4 (2-2"7%)e(S) .

2.) For 0 = 0, we can obtain the same bounds in the following way.

Yo=Y amY <by>= Y g2 =271(IS| - q(0)).

b : b£0 v€{0,1}*\{0} b v€{0,1}°\{0}

This implies that

a0 1
5 1 25‘1|5|b§é0Q(b)' (10)

By using the same argument yielding Eq. (9), we get

-8l (3-9) < X Qo) < @ -1is|(5+9)). (1)

b : b£0

(From Eq. 10 and 11, we obtain

In the same way, we can derive the lower bound for %:

q(0)

s > 27° — (2 -217%)g(9).
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A.2 A discrepancy set for linear systems with a limited number of essential variables

The aim of this section is to modify the powering construction given in the previous section in order to
obtain a discrepancy set for AFF (N, k, s) that takes in consideration the number k of essential variables.
Let n =1log N and 1 < z < n. Consider the N elements aj,...,ay of GF(2"). For any a € GF(2"),

we define the concatenation of powers U(a, k) = a%al...a*~! and, given a vector [ € £}, we construct

the following vector of N bits
(<l,U(ay,k) >, <1,U(ag, k) >,...,<1,U(an, k) >)
The new powering discrepancy set is then defined as

DZ(N,k’z) = U {(< laU(al,k) >, < Z,U(GZak) >y < Z,U(G‘N,k) >)} .
leLs;

kn,z

Clearly, we have |Dy(N, k, 2)| = L}, .| = 222 Informally speaking, the discrepancy property of D(N, k, 2)
is a consequence of the fact that given any k pairwise different a;, i = 1,...,k from GF(2"), the
corresponding k vectors U (a;, k) in GF(2"F) are linearly independent

Theorem A.1 (Discrepancy set for AFF(N,k,N)) For any N > 0, and 0 < k,z < N, the set
Dy(N, k, z) is (k[log N|27%)-discrepant for AFF(N,k,N).

Proof. Consider the set W of all solutions of a fixed linear system < l1,z >= (1,...,< lg,x >= [
where vectors Iy, ...,ls from {0, 1}N are linearly independent. Assume also that the number of essential
variables is at most k, i.e., the number of 1’s in the or vector I; V...V I, is at most k. Consider a fixed
l € L}, , and its corresponding string in Dy (N, k, 2):

v = (< , U(al, k) >, < l(U(az,k) >, <l U(G,N,k') >)
For I; = (\},...,\i) (i=1,...,s), we define vectors R; € GF(2*") as

Ri = MNU(a1,k) ® XoU(az, k) @ ... @ XyUl(an, k).

It is possible to prove that R, ..., Ry are linearly independent. This indeed follows from three facts: 1)
any k vectors of type U(a;, k) are linearly independent; 2) at most & of such vectors appear in each R;.
3) The linear combinations of them remain linearly independent. Then, for any i = 1,...,s, we have

<lyu>=< (A, 0, (< LU(a, k) >,...,<,U(ay, k) >) > =
=X <LU(a,k)>®...0 Xy <,U(an, k) >) > =
= <L,AU(a,k)® ... XyUlan, k) > = <L,R; > .

Our final step is to reduce to conditions required by Corollary 2.1. Indeed, the equation < l;,v; >= ; is
equivalent to I(R;) = ;. It follows that, for any [ such that v; € W N Dy(N, k, z), we have

<lLRi>=p0 ..., <l,Rs >= s .

where Ry, ..., R are linearly independent. Corollary 2.1 thus implies the thesis. O
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A.3 Proofs of lemmas 2.2 and 2.3
A.3.1 Proof of lemma 2.2

From the hypothesis on rank(B; U [D]™), if we assume that u® = 0 for any b; € [D]™, it easily follows
that the system

{< bi,x; > = u,(bz) , Vb; € B; U [D]n’

admits a solution and B; N [D]™ = (. This immediatly implies the lemma.

A.3.2 Proof of lemma 2.3

We show an iterative method to construct the set D by adding one new element to it in order to satisfy
the orthogonal property specified by the lemma. Assume we already have the set

Dj € L, (Nogn]+1)
with |D| = j (0 < j < k —t) such that

rank(B; U [D;]™) =n; —m; + 3 , i=1,...,s.
We then consider the homogeneous system

{<bj,z; >= 0, foranyb; € B;U[D;]",

whose solution space has dimension m; — j. Let {v!,..., } be a vector basis of this space, and define

i .
mi;—J

Vji € {0,1}" as the concatentation of v}- and dummy 0’s. Observe that for any a € {0,1}", we have
< Vji,a > = <'u§-,[a]”" > .

For any fixed ¢ € {1,..., s}, the vector [a]™ cannot be represented as a linear combination of vectors
from (B; U [D;]™) iff the following system is not satisfied

{<V;',a>=0 Jt=1,...,mi—j. (12)
For any fixed i, Corollary 2.1 implies that the probability that a vector a from L7 ([log n]-+1) satisfies
the system in Eq. (12) is at most
9i—mi 4 o—(flogn]+t),, < olk—t—1)—k 4 g—t _ 39—t _ 3o—(llogs]+1) o 31
- 2 2 ~4s
It follows that the probability that a vector a chosen uniformly at random from L} ([og n] +2) satisfies
Condition (12) is true for at least one 7 from {1,...,s} is at most
31 3
s—— = —
4s 4’

So, there exists a from L7 .. 1) such that for all ¢ € {1,..., s} the system in Eq. (12) is not satisfied.
We then define D1 = D; U {a}; the construction terminates when j = k —¢ and we set D = Dj_,.
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A.4 Proof of lemma 3.1
Let

g= /a\ 9i(Xi) -
=1

Since k = 1, the sets X;’s are pairwise disjoint. Further, we have that

a

INgl =TI Nl -
i=1

Let 7 be the number of i’s such that |NJ.| > 1. Since
INY| < (2[%1)T ,
then
|V
= (n/T)+1"
Let A; be the affine space of maximum dimension d; such that A; C N, !}i' Observe that if \Ngli| > 1 then

d; > 1 since any two different points yield an affine space of dimension 1. We thus consider the affine
space A = Ay X ... X A,. The dimension of A is at least r.

A.5 Proof of lemma 3.3

For any fixed 7 € {1,...,ka}, consider the subset X; C {z1,...,z,} where | X;| < [n/a] and assume that
each variable belongs to at most k subsets from {X;,...,Xy,}. Let ¢(i) be the number of sets X; such
that z; € Xj.

Let us fix an integer ¢ > 2 and then select randomly a function ¢ : {1,...,ka} — {1,...,t} with
uniform distribution. Let us consider the Boolean function & ;(¢) defined over all possible choices of ¢
such that & ;(¢) = 1 if for all j for which z; € X it holds ¢(j) = s, and & i(¢) = 0 otherwise. Then, for
any fixed s, we let

Bs(9) = D &sil4) -
i=1
Our first goal is study the expected behaviour of the above random variable. In particular, if E (x)

denotes the expected value of a given random variable, then using Chebichev’s inequaltiy, it is possible
to prove the following bound. For any fixed s = {1,...,¢} and for any 0 <e <1

_ _ _ 1 [th 2k
Now, let g(z1,...,z,) be a (k,a)-rectangle and assume that for some ¢t > 2

4tk+1 4t2k+1 k
+
n a
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From Eq. (13), for any fixed s, we get

IN

1 1 1 th kg
Pr (Essgtﬁk) < Pr (5555E(Es)) Pr(ES—E(Es)|z§E(Es)) < 4<—+—> .

n a

Consequently

tk n a

1 tk t2k‘k. 4tk+1 4t2k+1]€
Pr(ase{l,...,t} : Esgiﬁ) < t.4<_+ ) < n

n a

Therefore, a function ¢ exists such that

- 1n
VSE{l,...,t}Z :5(45) > Et_k

For any s, we can thus choose X such that

* n *
|Xs|=[ﬁ}, and X;C (] X;.
i o()=s
We then define

X; = {ml,,zn}\<! X:) ]

Since g is a (k, a)-rectangle, we can write g as follows

9(@1;-.-ywn) = /\( A\ gj(Xj)> :
s=1

Jj i ¢()=s

Let v be a partial input from B(X{) then, for any j = 1,...,ka, if $(j) = s then X; \ X5 = X}. It
follows that the function

(o) 1 i)
i€X; it ol)=s

depends only on the variables from X7, so there exist functions g¥(X7), s =1,...,t, such that
t
N (@i @v(@)) ] glar,...,zn) = (/\ gJ”-(XI)) :
ieXy s=1

and g can be written in the following form

9(z1,.. - zn) =\ (/\ (xi@v(wi))> (/\ 9§(X§‘)> : (14)
s=1

veB(Xy) \i€X]

Observe now that if s # v then X} N X} = () and, moreover, for any s = 1,...,¢, | X}| < [n/(2t")].
Consequently the representation in Eq. (14) of ¢ is an OR of 2/X¢! of (1,2t¥)-rectangles. The Lemma, is
proved by observing that

n n
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A.6 An efficient method to compute F*

For any n > 0, we define the Boolean function F(z1,...,7,) as the complement of the characteristic
function of the hitting set #(n, \/m) given by Theorem 2.3 where we set m = [log* n].

emma A.1 Let = , n>0p, then € P.
L ALF4{F7;1 O}hF4P

Proof. The hitting set H(n, s) can be written in the following recursive form

n—(s—1)
H(n,s)= |J Hk1) x Hn—ks—1). (15)
k=1
For any t =0,...,n—s+1, let féj;l (441, ---,zy) be the characteristic function of H(n —t,s). Consider

now the operator

Fn,s(zla s a-'L'n) = (f',},,s(zla s axn)afg,s(-TZa s axn)a RN 1"11,;5+1('Tn—s+17 T 7$n))
From Eq. (15), we have
n—k—(s—1)
:{;1 (Tt41,---,Tn) = \/ (f/%,1($k+1, e Thyt) A fylf?;t_ﬁl(xkﬂﬂ, e 7$n)) .
k=1

It thus follows that the circuit complexity (so, the time complexity) of F,, ; satisfies the following bound
L(Fn,s) < L(Fn,sfl) + n?

since f,i,l is an AND of linear functions. We thus have that L(F, ;) < n?. The lemma is then proved by

simply observing that fﬁ,s (z1,...,zy) is the characteristic function of H(n, s).
O
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