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Abstract

Adleman, Demarrais, and Huang introduced the nondeterministic quantum polynomial-time

complexity class NQP as an analogue of NP. It is known that, with restricted amplitudes, NQP

is characterized in terms of the classical counting complexity class C=P. In this paper we prove

that, with unrestricted amplitudes, NQP indeed coincides with the complement of C=P. As an

immediate corollary, with unrestricted amplitudes BQP differs from NQP.
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1 Introduction

In recent years, the possible use of the power of quantum interference and entanglement
to perform computations much faster than classical computers has attracted attention from
computer scientists and physicists (e.g., [4, 7, 10, 13, 14, 15]).

In 1985 Deutsch [5] proposed the fundamental concept of quantum Turing machines
(see Bernstein and Vazirani [3] for further discussions). A quantum Turing machine is an
extension of a classical Turing machine so that all computation paths of the machine interfere
with each other (similar to the phenomenon in physics known as quantum interference). This
makes it potentially possible to carry out a large number of bit operations simultaneously.
Subsequent studies have founded the structural analysis of quantum complexity classes. In
particular, quantum versus classical counting computation has been a focal point in recent
studies [1, 11, 9, 19].

Adleman, DeMarrais, and Huang [1] introduced, as an analogue of NP, the nondeter-
ministic quantum polynomial-time complexity class NQPK , which is the set of decision
problems accepted with positive probability by polynomial-time quantum Turing machines
with amplitudes drawn from set K. In their paper, they argued that NQP � ∩ � lies within
PP, where � denotes the set of algebraic complex numbers.
∗This work was supported by NSERC Postdoctoral Fellowship and DIMACS Fellowship.
†This work was supported in part by National Science Foundation and DARPA under grant CCR-9627819.
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Fortnow and Rogers [11] first pointed out that the argument used in [1] actually proves
a stronger statement: NQP � ∩ � ⊆ co-C=P (which was later extended to NQP � ⊆ co-C=P
[9]). The complexity class C=P is the set of decision problems that determine whether the
number of accepting computation paths (on nondeterministic computation) equals that of re-
jecting computation paths. Fenner, Green, Homer, and Pruim [9] used the Hadamard trans-
form deftly to show its converse that any set in co-C=P can be recognized by polynomial-time
quantum Turing machines with amplitudes in {0,± 1√

2
,±1}.

Altogether, it was known hitherto that NQP � = co-C=P. Nevertheless, it is unknown
whether NQPK collapses to co-C=P for every set K with � ⊆ K ⊆ � .

In this paper we resolve this open question affirmatively (Theorem 3.5) and give a
complete characterization of “nondeterministic” quantum computation in terms of classi-
cal counting computation. Since it is widely believed that NP 6= C=P, NQP is unlikely to
coincide with NP. Thus, our result gives some more evidence that quantum computation is
more powerful than its classical counterpart.

Bernstein and Vazirani [3] introduced the bounded-error quantum complexity class BQP,
a quantum analogue of BPP. It is known in [1] that BQP � has uncountable cardinality.
Our result highlights a clear contrast between nondeterministic quantum computation and
bounded-error quantum computation: BQP � 6= NQP � .

The proof of Theorem 3.5 consists of two steps. First we show that co-C=P ⊆ NQP �
(actually co-C=P ⊆ NQP{0,± 3

5 ,±
4
5 ,±1}) by a simple modification of the argument in [9].

Then we prove the claim NQP � ⊆ co-C=P in Section 4 by a detailed algebraic analysis of
transition amplitudes of quantum Turing machines.

2 Basic Notions and Notation

Let � be the set of all integers, � the set of rational numbers, and � the set of complex
numbers. Let � denote the set of all algebraic complex numbers‡ [1], and ˜� the set of
complex numbers whose real and imaginary parts can be approximated to within 2−n in
time polynomial in n [3].

Let � ≥0 and � >0 denote the sets of all nonnegative integers and of all positive integers,
respectively. For any d ∈ � >0 and k ∈ � ≥0, define � d = {i ∈ � | 0 ≤ i ≤ d − 1} and

� [k] = {i ∈ � | −k ≤ i ≤ k}. By polynomials we mean elements in � [x1, x2, . . . , xm]
unless otherwise stated. For any finite sequence k ∈ � m, let |k|+ = max1≤i≤m{|ki|} and
|k|− = min1≤i≤m{|ki|}, and |k| = max{|k|+, |k|−} where k = (k1, k2, . . . , km). Furthermore,
let 0k = (0, 0, . . . , 0) ∈ � k for k ∈ � >0.

‡Note that � ⊆ � ⊆ � .
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Let k ∈ � >0. A subset {γi}1≤i≤k of � is linearly independent if
∑k

i=1 aiγi 6= 0 for any
k-tuple (a1, a2, . . . , ak) ∈ � k −{0k}. Similarly, {γi}1≤i≤k is algebraically independent if there
is no q in � [x1 , x2, . . . , xk] such that q is not identical to 0 but q(γ1, γ2, . . . , γk) = 0.

We assume the reader’s familiarity with classical complexity theory and here we give only
a brief description of quantum Turing machines [3]. A k-track quantum Turing machine
(QTM) M is a triplet (Σk, Q, δ), where Σ is a finite alphabet with a distinguished blank
symbol #, Q is a finite set of states with initial state q0 and final state qf , and δ is a
multi-valued quantum transition function from Q×Σk to ˜� Q×Σk×{L,R}. A QTM has two-way
infinite tracks of cells indexed by � and read/write tape heads that moves along the tracks
all in the same direction. The expression δ(p,σ, q, τ , d) denotes the (transition) amplitude
in δ(p,σ) of |q〉|τ 〉|d〉, where σ, τ ∈ Σk and d ∈ {L,R}.

A superposition of M is a finite complex linear combinations of configurations of M with
the L2-norm. The time-evolution operator of M is a map from each superposition of M to
the superposition of M that is resulted by a single application of the transition function δ.
These time-evolution operators are naturally identified with matrices.

The running time of M on input x is defined to be the minimum integer T such that, at
time T , all computation paths of M on input x have reached final configurations and at time
fewer than T there are no final configurations, where a final configuration is a configuration
with state qf . We say that M on input x halts in time T if the running time of M on input
x is T . The final superposition of M is the superposition that M reaches when it halts.

A QTM M is well-formed if its time-evolution operator preserves the L2-norm. A QTM
is stationary if it halts on all inputs in a final superposition where each configuration has the
heads in the start cells. A QTM is in normal form if, for every track symbol σ, δ(qf , σ) =
|q0〉|σ〉|R〉. For brevity, we say that a QTM is conservative if it is a well-formed, stationary
QTM in normal form. For any subset K of � , we say that a QTM has K-amplitudes if its
time-evolution matrix has entries drawn only from K.

Let M be a multitrack, well-formed QTM whose last track, called the output track, has
alphabet {0, 1,#}. We say that M accepts x with probability p and also rejects x with
probability 1− p if M halts and p is the squared magnitude of all amplitudes of final config-
urations in which the output track consists only of 1 as nonblank symbols in the start cell.
For convenience, we call such a final configuration an accepting configuration.

3 Main Result

In this section we state the main theorem of this paper. First we give the formal definitions
of the complexity classes C=P [18] and NQP [1].

Wagner [18] introduced the counting complexity class C=P. For convenience, we begin
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with the definition of GapP-functions. For a nondeterministic Turing machine M , AccM(x)
denotes the number of accepting computation paths of M on input x. Similarly, we denote
by RejM (x) the number of rejecting computation paths of M on input x.

Definition 3.1 [8] A function from Σ∗ to � is in GapP if there exists a polynomial-time
nondeterministic Turing machine M such that f(x) = AccM(x)− RejM (x) for every string
x.

Lemma 3.2 [8] Let f ∈ GapP and p a polynomial. Then, the following functions are
also GapP-functions: f 2, λx.

∑
y∈Σp(|x|) f(x, y), and λx.

∏p(|x|)
i=1 f(x, 1i), where f 2(x) means

(f(x))2.

Definition 3.3 [18] A set S is in C=P if there exists a GapP-function f such that, for
every x, x ∈ S exactly when f(x) = 0.

Adleman, DeMarrais, and Huang [1] introduced the notion of “nondeterministic” quan-
tum computation and defined the complexity class NQPK as the collection of all sets that
can be recognized by nondeterministic quantum Turing machines with K-amplitudes in
polynomial time.

Definition 3.4 [1] Let K be a subset of � . A set S is in NQPK if there exists a
polynomial-time, conservative QTM M with K-amplitudes such that, for every x, if x ∈ S
then M accepts x with positive probability and if x 6∈ S then M rejects x with probability
1. When K is ˜� , we omit the subscript K.

It follows from Definition 3.4 that NP ⊆ NQP � ⊆ NQP � ⊆ NQP ⊆ NQP � . Adle-
man, DeMarrais, and Huang [1] further showed that NQP � ∩ � is a subset of PP. Later
Fortnow and Rogers [11] and Fenner, Green, Homer, and Pruim [9] together obtained the
improvement: NQP � = co-C=P.

We expand their result and show as the main theorem that any class NQPK , � ⊆
K ⊆ � , collapses to co-C=P; hence, NQP coincides with co-C=P. This is a complete
characterization of nondeterministic quantum computation in terms of classical counting
computation.

Theorem 3.5 For any set K with � ⊆ K ⊆ � , NQPK = co-C=P. In particular, NQP =
co-C=P.

Before giving the proof of Theorem 3.5, we state its immediate corollary. We need the
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notion of bounded-error quantum polynomial-time complexity class given by Bernstein and
Vazirani [3].

Definition 3.6 [3] A set S is in BQPK if there exists a polynomial-time, conservative
QTM M with K-amplitudes such that, for every x, if x ∈ S then M accepts x with proba-
bility at least 2

3 and if x 6∈ S then M rejects x with probability at least 2
3 .

It is known from [1] that BQP � has uncountable cardinality. Theorem 3.5 thus implies
that BQP � differs from NQP � .

Corollary 3.7 BQP � 6= NQP � .

The proof of Theorem 3.5 consists of two parts: co-C=P ⊆ NQP � and NQP � ⊆
co-C=P. The first claim co-C=P ⊆ NQP � follows directly by a simple modification of the
proof in [9]. For the completeness, we include the proof of the first claim below. The second
claim needs an elaborate argument and will be proved in the next section.

Let S be any set in co-C=P. We want to show that S belongs to NQP � . Clearly, there
exists a GapP-function f such that, for every x, x ∈ S if and only if f(x) 6= 0. Without loss
of generality, we can assume that, for some polynomial p and some deterministic polynomial-
time computable predicate§ R, f(x) = |{y ∈ {0, 1}p(|x|) | R(x, y) = 1}| − |{y ∈ {0, 1}p(|x|) |
R(x, y) = 0}| for all binary strings x.

We want to design a quantum algorithm that on input x produces a particular configura-
tion with amplitude −εp(|x|)+1f(x), where ε = 12/25. At the end of computation, we observe
this configuration with positive probability if and only if x ∈ S. This implies that S is in
NQP � . To guarantee that our quantum algorithm uses only � -amplitudes, we make use of
the four letter alphabet Σ4 = {0, 1, 2, 3}.

Let I be the identity transform and let H[a, b|δ1, δ2] be the generalized Hadamard trans-
form defined as

∑
y,u∈{a,b}(−1)[y=u=b]δ

[y=u]
1 δ

[y 6=u]
2 |u〉〈y|, where a, b ∈ Σ4, δ1, δ2 ∈ � , and the

brackets mean the truth value.¶ Moreover, let H = H[0, 1| 45, 3
5 ] and H ′ = H[0, 1| 35 , 4

5 ] +∑
u,y∈{2,3} |u〉〈y| and let K = H[0, 2| 35 , 4

5 ] + H[1, 3| 45 , 3
5 ]. Notice that I, H, H ′, and K are

unitary and their amplitudes are all in {0,± 3
5 ,±4

5 ,±1}.
Let x be an input of length n. We start with the initial superposition |φ0〉 = |0p(n)〉|0〉. We

apply the operationsHp(n)⊗I to |φ0〉 and obtain the superposition
∑

y∈{0,1}p(n)(4
5)#0y(3

5)#1y|y〉|0〉,
where #iy denotes the number of i’s in y. Next we change the content of the last track
from |0〉 to R(x, y). This can be done reversibly in polynomial-time since R is computable
by a polynomial-time reversible Turing machine [2, 3]. Finally we apply the operations

§A predicate can be seen as a function from {0, 1}∗ × {0, 1}∗ to {0, 1}.
¶Conventionally we set TRUTH=1 and FALSE=0.
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H ′p(n) ⊗H ′K to this last superposition and let |φ〉 denote the consequence.
Let |φ1〉 be the observable |0p(n)〉|1〉. When we observe |φ〉, we can find state |φ1〉 with

amplitude 〈φ1|φ〉, which is εp(n)+1∑
y∈{0,1}p(n)(−1)R(x,y) since 〈1|H ′K|a〉 = (−1)aε for any

a ∈ {0, 1}. By the definition of f , this last term is equal to −εp(n)+1f(x).

4 Proof of the Main Theorem

This section completes the proof of Theorem 3.5 by proving NQP � ⊆ co-C=P. The key
ingredient of the proof is, similar to [1, Lemma 6.6], to show that, for some constant u,
every amplitude of a configuration in a superposition generated at time t, when multiplied
by the factor u2t−1, is uniquely expressed as a linear combination of O(poly(t)) linearly
independent monomials with integer coefficients. If each basic monomial is properly indexed,
any transition amplitude can be encoded as a collection of pairs of such indices and their
integer coefficients. This encoding enables us to carry out amplitude calculations on a
classical Turing machine.

Assume that S is in NQP � . We must show that S is in co-C=P. By Definition 3.4, there
exists a p ∈ � [x] and an `-track conservative quantum Turing machine M = (Σ, Q, δ) with

� -amplitudes that recognizes S in time p(n) on any input of length n. Let D be the set of all
amplitudes that appear in the time-evolution matrix for δ; that is, D = {δ(p′,σ, q′, τ , d′) |
p′, q′ ∈ Q,σ, τ ∈ Σ`, d′ ∈ {L,R}}.

We first show that any number in D can be expressed in a certain canonical way. Let
A = {αi}1≤i≤m be any maximal algebraically independent subset of D and define F = � (A),
i.e., the field generated by all elements in A over � . We further define G to be the field
generated by all the elements in D − A over F . We fix a basis of G over F and let B =
{βi}0≤i<d be such a basis. For convenience, we assume β0 = 1 so that, in the special case
A = D, B becomes the singleton {β0}. Let D′ = D ∪ {βiβj}0≤i,j<d.

For each element α in G, since B is a basis, α can be uniquely written as
∑d−1

j=0 λjβj

for some λj ∈ F . Since the elements in A are all algebraically independent, each λj can be
written as sj/uj, where each of sj and uj is a finite sum of linearly independent monomials of
the form a �

j
(
∏m

i=1 α
kij
i ) for some kj = (k1j, k2j, . . . , kmj) ∈ � m and a � ∈ � . Unfortunately,

this representation is in general not unique, since sj/uj = (sjr)/(ujr) for any non-zero
element r.

To give a standard form for all the elements in D ′, we need to “normalize” them by choos-
ing an appropriate common denominator. Let u be any common denominator of all the ele-
ments α in D′ such that uα is written as

∑
� a � (

∏m
i=1 α

ki
i )βk, where k = (k, k1, k2, . . . , km) ∈

� d× � m and a � ∈ � . Notice that such a form is uniquely determined by collections of pairs
of k and a � . We call this unique form the canonical form of uα. Fix u from now on. For a
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canonical form, we call k an index and a � a major sign of uα with respect to index k (or a
major k-sign, for short). An index k is said to be principal if the major k-sign is nonzero.
For each α ∈ D′, let ind(uα) be the maximum of |k| over all principal indices k of uα.
Moreover, let e be the maximum of d and of ind(uα) over all α ∈ D ′.

A crucial point of our proof relies on the following lemma.

Lemma 4.1 The amplitude of each configuration of M on input x in any superposition
at time t, t > 0, when multiplied by the factor u2t−1, can be written in the canonical form∑

� a � (
∏m

i=1 α
ki
i )βk, where k = (k, k1, k2, . . . , km) ranges over � d × ( � [2et])m and a � ∈ � .

Proof. Let αC,t denote the amplitude of configuration C of M on input x in a superposition
at time t. When t = 1, the lemma is trivial. Assume that t > 0. Let C ′ be any configuration
in a superposition at time t + 1. Note that u2t+1αC′,t+1 is a sum of u2(u2t−1αC,t)δC,C′ over
all configurations C, where δC,C′ is the transition amplitude of δ that corresponds to the
transition from C to C ′ in a single step. By the induction hypothesis, u2t−1αC,t has a
canonical form as in the lemma. Hence, it suffices to show that, for each configuration C

and each index k ∈ � d × ( � [2et])m, α′ = u2(
∏m

i=1 α
ki
i )βkδC,C′ has a canonical form in which

all the principle indices lie in � d × ( � [2e(t+1)])m.
Assume that δ transforms C to C ′ with transition amplitude δC,C′ . Let k = (k, k1, . . . , km)

be an index in � d × ( � [2et])m, which corresponds to monomial (
∏m

i=1 α
ki
i )βk. We first show

that α′ has a canonical form. Assume that the canonical form of uδC,C′ is
∑� b� (

∏d
i=1 α

ji
i )βj,

where j = (j, j1, . . . , jm) ranges over � d × ( � [e])m and b� ∈ � . Then, α′ is written as:

(∗) α′ =
∑� b� (∏d

i=1 α
ki+ji
i

)
uβkβj =

∑� ∑ �
j
b� c �

j

(∏m
i=1 α

ki+ji+hij
i

)
βhj ,

provided that uβkβj has a canonical form
∑ �

j
c

�
j
(
∏m

i=1 α
hij
i )βhj , where hj = (hj, h1j, . . . , hmj)

ranges over � d × ( � [e])m and c
�
j
∈ � . Since b� c �

j
∈ � , α′ must have a canonical form. For

later use, let k � be an index and h(x, C,k, C ′,k � ) the major k � -sign of α′.
We next show that ind(α′) ≤ 2e(t + 1). By (∗) it follows that ind(α′) is bounded above

by the maximum of ki + ji + hij, which is at most |k � | + |j| + |hj| ≤ 2e(t + 1); in other
words, all the principal indices of α′ must lie in � d× ( � [2e(t+1)])m. This also shows that h is
computed deterministically in time polynomial in the length of C, C ′, |k|, and |k � |. �

In what follows, we show how to simulate a quantum computation of M . First we define
a function f as follows. Let x be a string of length n, C an accepting configuration of M on
input x, and k an index. Let f(x, C,k) be the major k-sign of u2p(n)−1 times the amplitude
of |C〉 in the final superposition of M on input x. For convenience, we set f(x, C,k) = 0 for
any other set of inputs (x, C,k). The following lemma is immediate.
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Lemma 4.2 For every x, x 6∈ S if and only if, for every accepting configuration C of M
on input x and for every index k ∈ � d × ( � [2ep(n)])m, f(x, C,k) = 0.

We want to show that f is a GapP-function. Theorem 3.6 follows once this is proved.
To see this, define

g(x) =
∑

C

∑

�

f 2(x, C,k),

where C ranges over all accepting configurations of M on input x and k is drawn from
� d × ( � [2ep(n)])m. It follows from Lemma 3.2 that g is also in GapP, and by Lemma 4.2
g(x) = 0 if and only if x 6∈ S. This yields the desired conclusion that S is in co-C=P.

To show f ∈ GapP, let C = 〈C0, C1, . . . , Cp(n)〉 be any computation path of M on input
x; that is, C0 is the initial configuration of M on input x and δ transforms Ci−1 into Ci in
a single step. Also let K = 〈k0,k1, . . . ,kp(n)〉 be any sequence of indices in � d× ( � [2ep(n)])m

such that k0 = 0m+1. We define h′(x,C,K) to be the product of h(x, Ci−1,ki−1, Ci,ki) over
all i, 1 ≤ i ≤ p(n). Notice that h′ is polynomial-time computable since h is.

The following equation is straightforward and left to the reader.

f(x, C,k) =
∑

�

∑
�

h′(x,C,K),

where K = 〈k0,k1, . . . ,kp(n)〉 ranges over ( � d× ( � [2ep(n)])m)p(n) and C = 〈C0, C1, . . . , Cp(n)〉
is a computation path of M on input x such that C0 is the initial configuration of M on
input x, k0 = 0m+1, Cp(n) = C, and kp(n) = k. Lemma 3.2 guarantees that f is indeed a
GapP-function. This completes the proof of Theorem 3.5.

5 Discussion

We have proven that nondeterministic polynomial-time quantum computation can be char-
acterized by Wagner’s polynomial-time counting computation.

Our result makes it possible to restate the known results on the class C=P in terms
of NQP. For example, we obtain PPPH ⊆ NPNQP, which is based on the fact that
PPPH ⊆ PPP [16] and NPPP = NPC=P [17]. Moreover, NQP = co-NQP if and only if
PHPP = NQP, which follows from a result in [12].

At the end, we note that the proof of Theorem 3.5 relativizes to an arbitrary oracle A;
namely, NQPA

K = co-C=PA for any set K with � ⊆ K ⊆ � . As a result, for instance, we
have NQPNQP = co-C=PC=P and thus NQP ⊆ PP ⊆ NQPNQP ⊆ PPPP. This implies
that the hierarchy built over NQP, analogous to the polynomial-time hierarchy, coincides
with Wagner’s counting hierarchy [18].

8



References
[1] L. M. Adleman, J. DeMarrais, and M. A. Huang, Quantum computability, SIAM J.

Comput., 26, pp.1524–1540, 1997.

[2] C. H. Bennett, Logical reversibility of computation, IBM J. Res. Develop., 17 (1973),
525–532.

[3] E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Comput., 26 (1997),
1411–1473. A preliminary version appeared in Proc. 25th ACM Symposium on Theory
of Computing, 1993, pp.11–20.

[4] P. Benioff, Quantum mechanical Hamiltonian models of Turing machines, J. Stat. Phys.
29 (1982), 515–546.

[5] D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum
computer, Proc. Roy. Soc. London, A, 400, (1985), 97–117.

[6] D. Deutsch, Quantum computational networks, Proc. Roy. Soc. London, Ser. A, 425,
(1989), 73–90.

[7] D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proc.
Roy. Soc. London, Ser. A, 439, (1992), 553–558.

[8] S. Fenner, L. Fortnow, and S. Kurtz, Gap-definable counting classes, J. Comput. and
System Sci., 48 (1994), 116–148.

[9] S. Fenner, F. Green, S. Homer, and R. Pruim, Quantum NP is hard for PH, in Proc.
6th Italian Conference on Theoretical Computer Science, World-Scientific, Singapore,
pp.241–252, 1998.

[10] R. Feynman, Quantum mechanical computers, Found. Phys., 16 (1986), 507–531.

[11] L. Fortnow and J. Rogers, Complexity limitations on quantum computation, Proc. 13th
IEEE Conference on Computational Complexity, pp.202–209, 1998.

[12] F. Green, On the power of deterministic reductions to C=P, Math. Systems Theory, 26
(1993), 215–233.

[13] L.K. Grover, A fast quantum mechanical algorithm for database search, Proceedings of
28th ACM Symposium on Theory of Computing, pp.212-219, 1996.

[14] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer, SIAM J. Comput., 26 (1997), 1484–1509.

[15] On the power of quantum computers, SIAM J. Comput, 26 (1997), 1474–1483.

[16] S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput., 20 (1991),
865–877.

[17] J. Torán, Complexity classes defined by counting quantifiers, J. ACM, 38 (1991), 753–774.

[18] K. Wagner, The complexity of combinatorial problems with succinct input representation,
Acta Inf. 23 (1986), 325–356.

[19] T. Yamakami, Amplitude modulation on quantum computation, manuscript, November,
1998.

9

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092



