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Abstract

We prove that any constraint satisfaction problem where each variable

appears a bounded number of times admits a nontrivial polynomial time

approximation algorithm.

1 Introduction

Some NP-hard optimization problems have the property that the polynomial
time approximation algorithm with the best provable performance ratio is rather
trivial. Consider Max-E3Sat, i.e., we are given a set of m clauses, each contain-
ing exactly 3 literals and the objective is to find an assignment that satisfies
the maximal number of clauses. It is easy to see that a random assignment
satisfies 7m/8 clauses on average and it is not difficult to find an assignment
that satisfies at least this many clauses by the method of conditional expected
values. Since no assignment can satisfy more than all m clauses this gives an
approximation algorithm with performance ratio 8/7. It is a surprising fact [5]
that this is best possible in that, unless NP=P, no polynomial time approxima-
tion can guarantee a performance ratio 8/7− ε for any ε > 0. We conclude that
Max-E3Sat does not admit a nontrivial efficient approximation algorithm.

For an NP-hard optimization problem it is a basic question whether it admits
a nontrivial efficient approximation algorithm. Both positive and negative re-
sults are known along these lines. On the one hand, Max-EkSat for k ≥ 3, Max
linear equations over finite fields, and set-splitting of sets of size at least 4 do
not allow nontrivial efficient approximation algorithms [5]. On the other hand,
max cut, max-directed cut, Max-2Sat and set-splitting for sets of size at most
3 [4, 3], linear equations with two variables in each equation [1] as well as many
constraint satisfaction problems [7] do allow nontrivial efficient approximation
algorithms.

In many approximation preserving reductions it is easier to start with an
instance of a Max-3Sat where each variable appears at most a bounded number
of times. Although it is known [6, 2] that 5 occurrences of each variable is
sufficient to make Max-3Sat hard to approximate perfectly, the constant of
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inapproximability is weaker than the above mentioned 8/7. The goal of this
paper is to show that this is no accident and in fact for any constraint satisfaction
problem, any constant bound on the number of occurrences of each variable
implies the existence of a nontrivial efficient approximation algorithm.

The method of proof turns out to be rather straightforward. We write down
a polynomial over the real numbers that counts the number of constraints that
are satisfied. The structure of this polynomial is simple enough to allow us to
find an assignment of nontrivial quality.

2 Preliminaries

For notational convenience our basic domain is {−1, 1} where we think of −1
as “true” and 1 as “false”. A constraint satisfaction problem (CSP) is given by
a function f : {−1, 1}k 7→ {0, 1} for some constant k. An instance of the CSP
is given by a collection, (Ci)

m
i=1, of k-tuples of literals. An assignment satisfies

constraint Ci if f , applied to the values of the literals in Ci, returns 1. As an
example, for Max-E3Sat we have

f(x, y, z) = 1 −
(1 + x)(1 + y)(1 + z)

8
=

7 − x − y − z − xy − xz − yz − xyz

8
. (1)

Before we proceed let us give the definition of approximation ratio for an
algorithm A.

Definition 2.1 An approximation algorithm A has performance ratio c for a

CSP-problem if it, for each instance, returns an assignment that satisfies at least

O/c constraints, where O is the number of constraints satisfied by the optimal

assignment.

It is natural to think of f as a multilinear polynomial of degree k and since
we have chosen {−1, 1} as our basic domain the coefficients of this polynomial
are exactly the elements of the discrete Fourier transform of f . We write

f(x) =
∑

α⊆[k]

fαxα,

where xα =
∏

i∈α xi. We need a couple of standard facts.

Lemma 2.2 The coefficient f∅ gives the probability that a random assignment

satisfies f . Each fα is a multiple of 2−k and
∑

α

f2
α = f∅ ≤ 1.

Proof: The first two facts follow from the formula

fα = 2−k
∑

x

f(x)xα,

while the last fact is a consequence of Parseval’s identity and 2−k
∑

x f(x)2 =
2−k

∑
x f(x) = f∅.
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We derive a simple consequence of the last property.

Lemma 2.3 We have ∑

α

|fα| ≤ 2k/2.

Proof: By Cauchy-Schwartz’ inequality we have

∑

α

|fα| = (
∑

α

1)1/2(
∑

α

f2
α)1/2 ≤ 2k/2.

We say that an approximation algorithm is nontrivial if it is provably supe-
rior to picking a random assignment or, equivalently, if its performance ratio is
smaller than f−1

∅ .
For an instance I = (Ci)

m
i=1 of a CSP we define a polynomial PI . If we let

xCi
denote the restriction of an assignment x to literals Ci then

PI(x)
4
=

m∑

i=1

f(xCi
) (2)

and it is thus a polynomial of degree at most k which simply counts the number
of satisfied constraints. We turn to studying such polynomials.

3 Finding good assignments for polynomials

Let P be a polynomial containing only multilinear terms of degree at most k
with coefficients pα. In other words

P (x) =
∑

α⊆[n],|α|≤k

pαxα.

We say that P is an a-polynomial iff each pα is an integer multiple of a. Fur-
thermore, define

|P |
4
=

∑

α6=∅

|pα|,

the sum of the absolute values of all coefficients except the constant term and

Di
P

4
=

∑

i∈α

|pα|

the sum of absolute values of all coefficients of terms containing i. Finally, let

Dmax
P

4
=maxi Di(P ).

Di
P is a measure on how much P depends on variable i. Since we are inter-

ested in assigning values ±1 to the inputs, changing the value of xi can never
change the value P by more than Di(P ). Similarly Dmax

P is a measure on how
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much P depends on any single variable and we call it the maximal dependence

of P .
We want to find an assignment x ∈ {−1, 1}n such that P (x) is large. The

expected value of P (x) for a random x is p∅ and we want to do better. On the
other hand

P (x) ≤ p∅ +
∑

α6=∅

|pα| = p∅ + |P |, (3)

which only could be achieved if all terms of P can be made positive at the
same time. The key parameter on how close we can get to this upper-bound is
a(Dmax

P )−1. The role of a is to be a lower bound on the size of the absolute value
of any nonzero coefficient, not only in P but also in any polynomial obtained
from P by substituting values for some variables. The role of Dmax

P is to measure
the maximal change to all coefficients of P caused by a substitution of a single
variable.

We are now ready for our main lemma.

Lemma 3.1 Given an a-polynomial P of degree at most k then it is possible, in

polynomial time, to find x ∈ {−1, 1}n such that P (x) ≥ p∅ + a|P |(2kDmax
P )−1.

Proof: We construct x by an inductive procedure. Assume that P is non-
constant since otherwise |P | = 0 making the statement trivial. Take any set α
corresponding to a minimal nonzero term, i.e., such that pα 6= 0 but such that
pβ = 0 for ∅ 6= β ⊂ α. Now, find an assignment in {−1, 1}α to the variables in α
such that pαxα = |pα| and substitute these values into P making it a polynomial
Q of n−|α| variables. We want to prove that this is a good partial substitution
by establishing that

q∅ + a|Q|(2kDmax
Q )−1 ≥ p∅ + a|P |(2kDmax

P )−1. (4)

If we establish (4) we claim that the lemma follows since if we iterate this pro-
cedure we eventually get to an assignment which makes P reduce to a constant
which then must be at least p∅+a|P |(2kDmax

P )−1. Note also that the procedure
clearly can be implemented in polynomial time. We turn to establishing (4).

The constant term q∅ of Q is p∅ + |pα| ≥ p∅ +a and Q is of degree at most k.
Since each qβ with i ∈ β is the sum of some pβ′ with i ∈ β′ we have Di

Q ≤ Di
P

for any i which implies Dmax
Q ≤ Dmax

P .
We turn to studying |Q| which might be smaller than |P | due to cancellation

of terms. However only terms of P containing elements from α can create such
cancellation. Since α is of size at most k, the sum of the absolute values of all
coefficients of all terms affected is bounded by kDmax

P . Each such term affected
can at most cancel another term and hence we have

|Q| ≥ |P | − 2kDmax
P .

Summing up, we get

q∅ + a|Q|(2kDmax
Q )−1 ≥ p∅ + a + a|Q|(2kDmax

P )−1 ≥

p∅ + a + a(|P | − 2kDmax
P )(2kDmax

P )−1 ≥ p∅ + a|P |(2kDmax
P )−1
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and we have established (4) and the lemma follows.

4 Application to CSPs

We now present the theorem of the paper.

Theorem 4.1 Consider a CSP given by f defined on k-tuples of literals. On

the class of instances where each variable appears at most B times this problem

can be approximated within (f∅ +(1−f∅)2
−3k/2(2kB)−1)−1 in polynomial time.

In other words, we have a nontrivial efficient approximation algorithm for any

f and any constant B.

Proof: Given an instance I , consider the polynomial PI defined by (2). We
want to apply our main lemma to this polynomial. It is of degree at most k and
by Lemma 2.2 we conclude that each coefficient is a multiple of 2−k and that it
has constant term mf∅. Furthermore we have

Lemma 4.2 Dmax
PI

≤ B2k/2.

Proof: Each term pαxα where j ∈ α comes from a term f(xCi
) in (2) such

that the variable xj appears in Ci. Since xj appears in at most B constraints

and, by Lemma 2.3,
∑

|fβ| ≤ 2k/2 it follows that Dj
P ≤ B2k/2. Since j was

arbitrary, the lemma follows.

We now have all the information to apply Lemma 3.1 to PI . The result is an
assignment that satisfies at least mf∅ + |PI |2

−k(2kB2k/2)−1 of the constraints.
On the other hand, by (3), no assignment can satisfy more than mf∅ + |PI |
constraints and another upper bound is given by all constraints m. Thus the
performance ratio of the algorithm is bounded by

min(m, mf∅ + |PI |)

mf∅ + |PI |2−k(2kB2k/2)−1
.

This is maximized when the two terms in the minimum are equal in which case
|PI | = (1 − f∅)m and this gives performance ratio

(f∅ + (1 − f∅)2
−3k/2(2kB)−1)−1.

Let us apply the theorem to one of the most popular problems, Max-E3Sat-
B. Since k = 3 and f∅ = 7/8, we see that it can be approximated within
(7/8 + c/B)−1 for c = 2−17/23−1. A tighter analysis below improves the value
of c.

Remember the explicit formula for f given by (1) and let us go over the
steps of the proof. Suppose we choose the α in the proof of Lemma 3.1 to be of
minimal size among all sets corresponding to a nonzero term.
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If |α| = 1 then we note that for any occurrence of a variable x in a clause we
get a total contribution 3/8 to coefficients of terms containing x together with
other variables. Thus we get that the sum of absolute values of coefficients of
such terms is bounded by 3B/8. Since each term might cancel another term,
we conclude that |PI | decreases by at most 3B/4.

If |α| = 2 then two variables, x and y, are involved, but since PI does
not contain any linear terms we can get improved estimates of the cancellation
by a more careful analysis. Of terms containing x or y, the only degree-two
terms in PI that can get cancelled are terms cancelling each other. The sum
of absolute values of coefficients of such terms is bounded by B/2. Terms of
degree 3 involving x or y have coefficients of total absolute value at most B/4,
but since they can cancel other terms they may cause cancellation of terms of
total absolute value at most B/2. Thus, in total, we conclude that |PI | decreases
by at most B in the case |α| = 2.

If |α| = 3 we only have terms of degree 3 in PI . The total absolute value of
coefficients of terms containing one of 3 variables is 3B/8 and thus cancellation
in this case is bounded by 3B/4.

Summing up, we see that we increase the constant term by at least 1/8
and decrease |PI | by at most B. We conclude that we find an assignment that
satisfies at least 7m/8+ |PI |/(8B) clauses. Since we should compare this to the
minimum of m and 7m/8 + |PI | we get performance ratio (7/8 + 1/(64B))−1.

Thus a more careful analysis did give a substantial improvement in the con-
stant but we do not believe, however, that the inverse linear dependence of B
can be improved using the methods of this paper.

5 Discussion

Assuming familiarity with [5] let us give a brief discussion of the optimality
of these results. In that paper, to establish inapproximability 2 − ε for Max-

Lin-2, an instance is constructed where each variables appears at most 22O(v)

times. The parameter v satisfies cv < εO(1) for a constant c < 1. Thus we get

B = O(2ε−d

) for some constant d.
Since the same relationship applies to the approximability of Max-E3Sat we

see that, unless P=NP, we could not hope to get performance ratio better than

(7/8 + c(log B)−d)−1.

for some positive constants c and d by an algorithm running in polynomial time.
Of course, we are still far from getting such strong results.

Acknowledgment I am grateful to Gunnar Andersson and Madhu Sudan for
comments on the presentation of this paper.
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