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Abstract

We prove exponential separations between the sizes of particular refutations in negative,
respectively linear, resolution and general resolution. Only a superpolynomial separation be-
tween negative and general resolution was previously known. Our examples show that there is
no strong relationship between the size and width of refutations in negative and linear resolu-
tion.
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1 Introduction

Lower bounds for resolution have been greatly simplified in the past few years, due to a fundamental
relationship between proof size and proof width. That is, it has been shown recently [BSW99] that
for any 3CNF formula F in n underlying variables, F has a resolution proof of size S if and only if
there is a resolution proof of F with maximal clause size

�
n logS.

This relationship has greatly simplified most lower bounds for resolution, reducing the problem
to showing a wide-clause lemma.

In this paper, we prove exponential separations for both linear and negative resolution. That is,
we give examples of formulas that have linear size resolution proofs, but requiring exponential-size
proofs in both linear and negative resolution. Previously, Goerdt [Goe92] has obtained a quasipoly-
nomial separation for negative resolution. It appears that no separations were previously known
between linear and unrestricted resolution.

We also prove that there is no analagous size-width tradeoff for either linear or negative reso-
lution.

2 Definitions

2.1 Resolution

The resolution principle says that if C and D are clauses and x is a variable, then any assignment
that satisfies both of the clauses C � x and D ��� x also satisfies C � D. The clause C � D is said to
be a resolvent of the clauses C � x and D ��� x derived by resolving on the variable x. A resolution
derivation of a clause C from a CNF formula F consists of a sequence of clauses in which each
clause is either a clause of F, or is a resolvent of two previous clauses, and C is the last clause in
the sequence; it is a refutation of F if C is the empty clause Λ.

The size of a refutation is the number of resolvents in it. The width of a clause is the number
of literals occurring in the clause. The width of a refutation is the maximum width of all clauses
occurring in the refutation.

We can represent a resolution refutation as a directed acyclic graph (dag) where the nodes are
the clauses in the refutation, each clause of F has out-degree 0, and any other clause has two arcs
pointing to the two clauses that produced it. The arcs pointing to C � x and D ��� x are labeled with
the literals x and � x respectively. It is well known that resolution is a sound and complete propo-
sitional proof system, i.e., a formula F is unsatisfiable if and only if there is a resolution refutation
for F.

A negative resolution refutation of F is a resolution refutation with the additional restriction
that all resolutions must be negative. A resolution step C � x and D ��� x implies C � D is negative
whenever D contains only negative literals.

A linear resolution refutation of F is a resolution refutation with the additional restriction that
the underlying dag must be linear. That is, the proof consists of a sequence of clauses C1 � C2 �������	� Cm
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such that Cm is the empty clause, for every 1 � i � m, either Ci is an initial clause, or Ci is derived
from Ci � 1 and an initial clause, or Ci is derived from Ci � 1 and C j, for some j � i � 1.

Both negative and linear resolution are sound and complete.

An assignment for a formula F (sometimes called a restriction) is a Boolean assignment to some
of the variables in the formula; the assignment is total if all the variables in the formula are assigned
values. If C is a clause, and σ an assignment, then we write C � σ for the result of applying the as-
signment to C, that is, C � σ � 1 if σ � l ��� 1 for some literal l in C, otherwise, C � σ is the result of
removing all literals set to 0 by σ from C (with the convention that the empty clause is identified
with the Boolean value 0). If F is a CNF formula, then F � σ is the conjunction of all the clauses
C � σ, C a clause in F.

If R � C1 ������� � Ck is a resolution derivation from a formula F, and σ an assignment to the vari-
ables in F, then we write R � σ for the sequence C1 � σ �������	� Ck � σ.

Lemma 1: If R is a linear (negative) resolution derivation of C from a formula F, and σ an assign-
ment, then there is a subsequence of R � σ that is a linear (regular) resolution derivation of C � σ from
F � σ.

Proof: This is a straightforward induction on the length of the derivation from F. 	

2.2 Tautologies on graphs

Our hard formulas are from [BSW99]. They are a generalization of the implication graph formu-
las, first introduced by Raz and McKenzie [RM97], and also used in subsequent papers [BEGJ98,
BOCIP00]. Let G be a directed, acyclic graph, with fan-in 2, n vertices, and a single sink vertex.

The implication graph formulas encode the following contradictory statement: “All of the source
vertices are colored red, the sink is colored blue, and if both the predecessors of a vertex are red, so
is the vertex itself.”

The formula associated with G, Imp � G � has one variable, xi, for every node i in G, and the
following clauses: (1) for each source node i in G, � xi � ; (2) for the sink node s in G, � � xs � ; (3) for
every triple of nodes i, j, and k such that the edges � i � k � and � j � k � are present in G, we have the
clause � � xi ��� x j � xk � .

The natural way to refute the above formula/clauses is to begin at the source vertices, and derive
successively that each layer of vertices must be true, until finally we can conclude that each sink
vertex must be true. This gives us the desired contradiction since the sink vertex is false. For any
graph D with indegree 2, this natural refutation can be formalized as a linear-size tree-like resolution
refutation.

However, we show here that if the graph is sufficiently complicated (it has high pebbling num-
ber), then any linear or negative resolution refutation of Imp � G � must have large width.

We also define a more general formula, Imp 
�� G � , based on G as follows. Now there are two
variables xi and yi associated with a vertex i in G. The formula is the following conjunction of
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clauses: (1) for each source vertex i in G, � xi � yi � ; (2) for the sink vertex s in G, � � xs � and � � ys � ;
(3) for every i, j, and k such that � i � k � and � j � k � are edges in G, we have the following clauses stating
that if one of the variables associated with i is true, and one of the variables associated with j is true,
then one of the variables associated with k is also true: � � xi ��� x j � xk � yk � , � � xi ��� y j � xk � yk � ,
� � yi ��� x j � xk � yk � , and � � yi ��� y j � xk � yk � .

We will show that any linear or negative resolution refutation of Imp 
�� G � requires exponential
size for certain G.

2.3 Graphs with high pebbling

We will show that a negative or linear resolution proof of IMP � G � of small width can be converted
into an efficient pebbling strategy for the corresponding graph, G. Interesting connections between
pebbling and propositional proofs were made previously in [ET99, BSW99].

DEFINITION 2.1: Let D � � V � E � be a directed, acyclic graph. A configuration is a subset of V . A
legal pebbling of a vertex v in D is a sequence of configurations, the first being the empty set and
the last being

�
v � and in which each configuration C � follows from the previous configuration C by

one of the following rules:

1. v can be added to C to get C � if all immediate predecessors of v are in C.

2. Any vertex can be removed from C to obtain C � .

The complexity of a legal pebbling of v is the maximal size of any configuration in the sequence.
The pebbling number of a graph D with a single sink vertex s is the minimal number n such that
there exists a legal pebbling of s with complexity n.

Cook [Coo73] showed that the pyramid graphs, Pyramidn, with n � m � � m � 1 ���������	� 1 un-
derlying vertices have pebbling measure Ω � � n � . These are layered graphs, comsisting of m lay-
ers, with m source vertices at layer 1, labelled x1

1 � x
1
2 � ����� � x1

m, m � 1 vertices at layer 2, labelled
x2

1 � ����� x2
m � 1, and so on with one sink vertex, xm

1 at layer m. All nonsource vertices have indegree
2, and in general xi 
 1

j has parents xi
j and xi

j 
 1.

[PTC77] exhibits a sequence of graphs, Gn, based on a construction by Valiant that have n nodes
and in-degree 2, but with pebbling measure Ω � n � logn � . This is an optimal lower bound, since
[HPV75] shows that any graph has pebbling number O � n � logn �

3 Lower Bounds

The negation-width of a clause C is the number of negative literals occurring in C. The negation
width of a resolution refutation P is the maximum negation-width of all clauses in P. The lower
bounds for both linear and negative resolution will follow the same strategy. We will begin with an
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Figure 1: A Pyramid10 graph

alleged small linear (or negative) resolution refutation of IMP 
 � G � , where G is a graph with high
pebbling number. The following lemma shows that we can always find a restriction ρ such that after
applying ρ to P, what remains is a linear (or negative) refutation of IMP � G � , but now with small
negation-width. Then we will use particular properties of linear and negative resolution to argue
that that any linear (negative) refutation of IMP � G � requires large negation-width, thus reaching a
contradiction.

Lemma 2: For any graph Gn, if there is a linear (negative) resolution refutation of IMP 
 � Gn � of
size at most S, then there is a linear (negative) resolution refutation of IMP � Gn � of negation-width
at most w, where w � logS.

Proof: Let P be a linear (negative) resolution refutation of IMP 
 � Gn � of size at most S. Call
a clause of P negation-wide if its negation-width is at least w. Let C1 ������� Cm be the set of negation-
wide clauses in P, and for each C j, let s j be a set of w negative literals occurring in C j. Clearly m
(the number of negation-wide clauses in P) is at most S.

We will define a restriction ρ probabilistically as follows. For every i �
�
1 �������	� n � , choose xi

with probability 1 � 2. Choose yi if and only if xi is not chosen. The assignment associated with ρ
will set xi � 0 if and only if xi is chosen, and otherwise, sets yi � 0.

We want to upper bound the probability that ρ is bad, where a restriction ρ is bad if not all
negation-wide clauses in P are set to 1 by ρ.

A restriction ρ is good for a particular negation-wide clause C j if some element in s j was chosen
by ρ. The probability that this does not happen is at most � 1 � 2 � w. Therefore the overall probability
that ρ is bad is at most S � 1 � 2 � w. Since logS � w, this overall probability is less than 1, and therefore
there must exist at least one good ρ.

Fix a good such ρ and apply the restriction ρ to the entire proof P. What remains will be a linear
(negative) resolution refutation of IMP � Gn � , of negation width at most w. 	
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3.1 Lower bounds for negative resolution

Lemma 3: Any negative resolution refutation of IMP � Gn � has negation-width at least Ω � q � , where
q is the pebbling number of Gn.

Proof: Let P be a negative resolution refutation of IMP � Gn � of negation-width w. We will
show how to use P to pebble Gn with at most w pebbles.

Any negative resolution refutation of IMP � Gn � must begin by resolving on the clause � � xs � ,
where s is the sink of Gn, since this is the only all negative clause occurring in IMP � Gn � . Further-
more, all new clauses produced by negative resolution are all-negative clauses. This is because all
other initial clauses have exactly one positive literal, which gets resolved away. Thus, every resolu-
tion step in a negative resolution proof must involve resolving an initial clause with an all-negative
clause.

If D1 �������	� Dm is the sequence of all-negative clauses generated by the proof P, then this sequence
in reverse, Dm ������� D1 will be the sequence of configurations in our pebbling strategy for Gn. More
precisely, if � xi occurs in D j, then the configuration corresponding to D j will include vertex i of Gn.
It is clear that the pebbling number of our sequence of configurations corresponds to the negation-
width of P. Dm ����� D1 is a valid sequence of configurations since for any i, Di 
 1 must be the same as
Di except that one node in Di is replaced by its parents in Di 
 1. Therfore, we can go from pebbling
configuration Di 
 1 to Di in two moves of the pebbling game and with no extra pebbles.

Because Gn has pebbling number q, it follows that the negation-width of P must be at least q.
	

Theorem 4: For any graph Gn with pebbling measure q, any negative resolution refutation of IMP 
 � Gn �
requires size 2Ω � q � . In particular, there exists an infinite sequence of graphs Gn such that any neg-
ative resolution refutation of IMP 
 � Gn � requires size 2Ω � n � logn � .

Proof: The above theorem follows from Lemma 2 and Lemma 3. 	

3.2 Lower bounds for linear resolution

We begin by analyzing the structure of linear resolution refutations. Let P � C1 �������	� Cm be a linear
resolution refutation of IMP � G � , for some G. Let P � � C �1 ������� � C �r, for r � m, be the subsequence of
P constructed by removing all initial clauses (i.e. clauses in IMP � G � ). First note that every clause
in P must be a horn clause; that is, each clause in P involves at most one positive literal. This fol-
lows from the fact that all clauses in IMP � G � are horn and that any resolvent of two horn clauses is
horn. Let p � p1 � p2 � ����� � p � be the ordered sequence of vertices of G such that pk � j if and only
if x j is the kth distinct variable occurring positively in the sequence P � . We claim that p must be a
simple path in G: consider some C �i in P � such that C �i 
 1 adds a new vertex to pk to p. C �i 
 1 must be
the resolvent of C �i and some other clause D, since the proof is linear. If C � i � 1 adds a new vertex
to p, however, then D must be an initial clause and the resolution must be on the variable which
appears positively in C �i, since otherwise pk would already appear in p. This means that the vari-
able appearing positively in C �i must be an immediate predecessor of pk. The path is simple because
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the graph is acyclic. The path p will be called the path associated with P. Note finally that p may
originate at any vertex in G, but that it must reach the sink since we must at some point use the sole
initial clause mentioning the sink (IMP � G � without this clause would be satisfiable).

This structure gives us immediate insight into any refutation on the pyramid graph:

Lemma 5: Let Pyramidn be the pyramid graphs with n � m � � m � 1 � � ����� � 1 vertices. Then any
linear resolution refutation of IMP � Pyramidn � has negation-width at least Ω � � n � 2 � .

Lemma 6: For any path p in Pyramidn, there is a pyramid graph, Pyramidn � embedded in Pyramidn

such that no vertices of Pyramidn � intersect p, and such that n � � � m � 2 � 1 � � � m � 2 � 2 ��� ����� � 1.

Proof: If path p does not begin at a source of Pyramidn, consider any path p � from a source
of Pyramidn (say, x1

k) to the start of p. Assume without loss of generality that k
� � m � 2 � . Consider

the pyramid with sources x1
1 �������	� x

1�
m � 2 � . Clearly there is no path starting at x1

k that intersects this

pyramid, so the path p � p cannot intersect it and, in particular, p cannot intersect it.

p

p’

m/2

	

Lemma 7: Let P be a linear resolution refutation of negation-width w of IMP � Pyramidn � . Let p
be the path associated with P, and let Pyramidn � be the subgraph of Pyramidn given by the above
claim. Then Pyramidn � can be pebbled with w pebbles.

Proof: Let P � C1 � ����� Cm, P � � C �1 �������	� C �r. We want to obtain a sequence of configurations (sets
of vertices of Pyramidn � ), where the sequence in reverse will be a pebbling strategy for Pyramidn � .
The first configuration in the sequence is the configuration consisting of just the sink vertex of
Pyramidn � . Consider the first clause in P � where the variable corresponding to the sink vertex t
of Pyramidn � appears negatively. At some point, this clause is resolved with an initial clause of
IMP � Pyramidn � on the variable t, so t is replaced by its parents. This is because we must use ev-
ery clause in IMP � Pyramidn � and because our copy of Pyramidn � with sink t is independent of p.
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The next configuration in the sequence are these two parent vertices. Following through P � , we will
come to some first place where one of the vertices, v � , in the current configuration is resolved upon,
and replaced by its two parents. The next configuration in the sequence will be obtained from the
current configuration by replacing v � with its two parents.

This sequence of configurations in reverse will be a valid pebbling strategy for Pyramidn � since
each pebbling configuration follows from the previous one by two moves of the pebbling game.
	

Proof: (of Lemma 5) We will now complete the proof of Lemma 5. Since n � � Ω � n � 4 � ,
Pyramidn � requires Ω � � n � pebbles. Assume for sake of contradiction that P has negation width
o � � n � . By the above lemma, this gives us a pebbling strategy for Gn � violating the known pebbling
measure for Gn � . 	

Theorem 8: Any linear resolution refutation of IMP 
 � Pyramidn � requires size 2Ω ��� n � .

Proof: The above theorem follows by Lemma 2 and Lemma 5. 	

We will now present a better lower bound for linear resolution, by utilizing graphs with maximal
pebbling measure. Let Gn be the graphs of in-degree 2 given by [PTC77] with n underlying vertices.
We modify these graphs slightly so that the multiple sinks are identified to one using a binary tree.

Lemma 9: Any linear resolution refutation of IMP � Gn � has negation-width at least Ω � n � logn � .

Let P be a linear resolution refutation of IMP � Gn � . As before, corresponding to P is a path
p � p1 �������	� p� in Gn. The path p has an origin, and must end at the sink of Gn. Let anc � pi � be the
direct ancestors of pi that lie outside of p (if there are any), and let anc � p � ��� �

i � 1anc � pi � .

Lemma 10: Consider p as a induced subgraph of Gn. Call this graph Gp. Gp has pebbling number
O � logn � .

Proof: In the construction used by [PTC77], Gn � G � i � , for some i � logn, where G � i � is
constructed recursively from two copies of G � i � 1 � and two copies of C � i � 1 � (the basic building
block is C � 8 � � G � 8 � ). The graphs are combined in series so that the sinks of C1 � i � 1 � are connected
to the sources of G1 � i � 1 � , whose sinks are connected to the sources of G2 � i � 1 � , whose sinks are
connected to the sources of C2 � i � 1 � . Sources for G(i) are added before the sources of C1 � i � 1 � and
sinks are added after the sinks of C2 � i � 1 � . The only other edges that are added go directly from
the sources of G � i � to its sinks.

Now consider any path p in G � i � . For a vertex v on p, let Gv � i � 1 � be the subgraph (i.e. G1 � i �
1 � , G2 � i � 1 � , C1 � i � 1 � or C2 � i � 1 � ) that contains v. Let Cv � 8 � be the copy of C � 8 � that contains
v. G � i � can contribute only one edge not in Gv � i � 1 � that goes from an ancestor of v in P to a
descendent of v in P. Hence there are only i � 8 such edges in G � i � (except those contributed by
Cv � 8 � ).
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Figure 2: A G � i � 1 � graph

We now use the following pebbling strategy to pebble Gp: let c be the length of the longest path
in C � 8 � (a constant number). Starting at the beginning of p, lay down c pebbles and subsequently
always leave a trail of c pebbles behind the current node. This will take care of pebbling any ances-
tors of the next node that are contained in the same copy of C � 8 � . Whenever we reach a node that
is the parent of a future node in the path, leave a pebble on it until its descendent is pebbled. This
is guaranteed to add at most i � logn pebbles. 	

Corollary 11: The set anc � p � is not empty.

Proof: Otherwise Gn would have pebbling number O � logn � . 	
We now introduce a slight variation on the pebbling game. Consider a dag containing nodes

u1 �������	� uk and v. The pebbling number of v from u1 ������� � uk is the minimal number of pebbles needed
to pebble v where we add the rule that during any step a pebble may be placed on ui, for 1 � i � k.

Lemma 12: There exists an i, such that 1 � i ��� and some pebble in anc � pi � has pebbling number
Ω � n � logn � from the sources of Gn and

�
p1 �������	� pi � 1 � .

Proof: We first show that there must be a node in anc � p � that has pebbling number Ω � n � logn �
from the sources of Gn. If this were not the case, we could use the following strategy to pebble the
sink of Gn in o � n � logn � pebbles: use the O � logn � pebbling strategy for Gp, except that whenever
we are about to place a pebble on pi, pebble the (at most 2) pebbles in anc � pi � using o � n � logn ���
O � logn � � 1 � o � n � logn � pebbles, place the pebble on pi and remove all the pebbles used to pebble
anc � pi � .

Now, consider the smallest i such that anc � pi � contains a node with pebbling number Ω � n � logn � .
Call this node v. Note that any node in

�
p1 ������� � pi � 1 � can be pebbled from the sources of Gn using

o � n � logn � pebbles using the logn pebbling strategy for Gp and the fact that any node in anc � p j �
for j � i can be pebbled in ø � n � logn � pebbles. If v could be pebbled from the sources of Gn and�

p1 ������� � pi � 1 � using o � n � logn � pebbles, then we could pebble v from the sources of Gn using that
strategy and spending o � n � logn � pebbles whenever a pebble needs to be placed on a node in

�
p1 ������� � pi � 1 � .

Therefore we can pebble v in o � n � logn � pebbles—a contradiction. 	
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Lemma 13: Let P be a linear resolution refutation of negation-width w of IMP � Gn � . Let p be the
path associated with P. Any vertex in Gn not lying on p can be pebbled from the sources of Gn and
the vertices of p using w pebbles.

Proof: Analogously to lemma 7, start with the first clause of P � that mentions a given node v
negatively. The set

�
v � is our initial configuration. Since v is not on p, it must be resolved upon

using an initial clause and therefore replaced by its parents in the resolvent. Likewise, v is replaced
by its parents in our next configuration. If u appears in any configuration and u is either a source
of Gn or lies on p, then u remains in all the subsequent configurations and is not replaced by any of
its ancestors. Again, this sequence of configurations forms a pebbling strategy in reverse. 	

Proof: (of lemma 9) Immediate from lemmas 13 and 12. 	

Theorem 14: Any linear resolution refutation of IMP 
 � Gn � requires size 2Ω � n � logn � .

Proof: Let P be a linear resolution refutation of IMP 
 � Gn � of size S � 2o � n � logn � . Applying
Lemma 2, it follows that there is also a linear resolution refutation of IMP � Gn � of width o � n � logn � .
But this violates Lemma 9. 	

3.3 Size versus width

It is a simple corollary that there are no size-width relationships for either negative or linear reso-
lution.

Corollary 15: There is no size-width tradeoff for linear (negative) resolution. More specifically,
the formulas IMP � Gn � have polynomial-size linear (negative) resolution refutations but any linear
(negative) resolution refutation requires width Ω � n � logn � .

Proof: We will describe a resolution proof that is both negative and linear. Start from the root
of the graph, and work up towards the sources, finally deriving that one of the (variables associated
with the) sources has to be 0. Resolving this clauses with the initial clauses expressing that each
source is 1 produces the empty clause. By the above wide clause lemmas for linear and negative
resolution, any such refutation of IMP � Gn � requires large negation-width, and thus also requires
large width. 	
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