
Complexity of the Exact Domatic Number Problem
and of the Exact Conveyor Flow Shop Problem

�

Tobias Riege
�

and Jörg Rothe
�

Institut für Informatik
Heinrich-Heine-Universität Düsseldorf

40225 Düsseldorf, Germany

March 23, 2004

Abstract

We prove that the exact versions of the domatic number problem are complete for
the levels of the boolean hierarchy over NP. The domatic number problem, which
arises in the area of computer networks, is the problem of partitioning a given graph
into a maximum number of disjoint dominating sets. This number is called the domatic
number of the graph. We prove that the problem of determining whether or not the
domatic number of a given graph is exactly one of � given values is complete for
BH ����� NP 	 , the
�� th level of the boolean hierarchy over NP. In particular, for ���� ,
it is DP-complete to determine whether or not the domatic number of a given graph
equals exactly a given integer. Note that DP � BH � � NP 	 . We obtain similar results
for the exact versions of generalized dominating set problems and of the conveyor flow
shop problem. Our reductions apply Wagner’s conditions sufficient to prove hardness
for the levels of the boolean hierarchy over NP.

Key words: Computational complexity; completeness; domatic number problem;
conveyor flow shop problem; boolean hierarchy

�
Supported in part by the German Science Foundation (DFG) under grant RO 1202/9-1. An extended

abstract of this paper appears in the proceedings of the First International Conference on Information &
Communication Technologies: From Theory to Applications (ICTTA’04), Damascus, Syria, April 2004.�

Email: ����������������� ��� � -!��"�"������#�!�$���%&� !�� .'
Email: �($�)+*(��������� ��� � -!��"�"������#�!�$���%&� !�� .

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 68 (2002)

ISSN 1433-8092

1 Introduction and Motivation

1.1 Two Scenarios Motivating the Domatic Number Problem

A dominating set in an undirected graph � is a subset � of the vertex set ������� such that
every vertex of ������� either belongs to � or is adjacent to some vertex in � . The domatic
number problem is the problem of partitioning the vertex set �	�
��� into a maximum number
of disjoint dominating sets. This number, denoted by ��
��� , is called the domatic number
of � . The domatic number problem arises in various areas and scenarios. In particular, this
problem is related to the task of distributing resources in a computer network, and also to
the task of locating facilities in a communication network.

Scenario 1: Suppose, for example, that resources are to be allocated in a computer network
such that expensive services are quickly accessible in the immediate neighborhood
of each vertex. If every vertex has only a limited capacity, then there is a bound on
the number of resources that can be supported. In particular, if every vertex can serve
a single resource only, then the maximum number of resources that can be supported
equals the domatic number of the network graph.

Scenario 2: In the communication network scenario, � cities are linked via communica-
tion channels. A transmitting group is a subset of those cities that are able to transmit
messages to every city in the network. Such a transmitting group is nothing else than
a dominating set in the network graph, and the domatic number of this graph is the
maximum number of disjoint transmitting groups in the network.

1.2 Some Background and Motivation from Complexity Theory

Motivated by the scenarios given above, the domatic number problem has been thoroughly
investigated. Its decision version, denoted by ����� , asks whether or not ����������� , for
a given graph � and a positive integer � . This problem is known to be NP-complete
(cf. [GJ79]), and it remains NP-complete even if the given graph belongs to certain special
classes of perfect graphs including chordal and bipartite graphs; see the references in
Section 2. Feige et al. [FHK00] established nearly optimal approximation algorithms for
the domatic number.

Expensive resources should not be wasted. Given a graph � and a positive integer � ,
how hard is it to determine whether or not ��
��� equals � exactly? Of course, a binary
search using logarithmically many questions to ����� would do the job and would prove this
problem to be contained in PNP��� , the class of problems solvable in deterministic polynomial
time via parallel (a.k.a. “nonadaptive” or “truth-table”) access to NP. Can this obvious
upper bound be improved? Can we find a better upper bound and a matching lower bound
so that this problem is classified according to its computational complexity?

1

In this paper, we provide a variety of such completeness results that pinpoint the
precise complexity of exact generalized dominating set problems, including the just-
mentioned exact domatic number problem. Motivated by such exact versions of NP-
complete optimization problems, Papadimitriou and Yannakakis introduced in their seminal
paper [PY84] the class DP, which consists of the differences of any two NP sets. They also
studied various other important classes of problems that belong to DP, including facet
problems, unique solution problems, and critical problems, and they proved many of them
complete for DP.

As an example for a DP-complete critical graph problem, we mention one specific
colorability problem on graphs. A graph � is said to be � -colorable if its vertices can be
colored with no more than � colors such that no two adjacent vertices receive the same
color. The chromatic number of � , denoted by � �
��� , is defined to be the smallest � such
that � is � -colorable. In particular, the � -colorability problem, one of the standard NP-
complete problems (cf. [GJ79]), is defined by

� - ���������
	�����
��
����� ��� � is a graph with � ���������
���
Cai and Meyer [CM87] showed that �� �!#"$	
� - � - %&�(')���&���
	���)�
��&� is DP-complete, a
critical graph problem that asks whether a given graph is not � -colorable, but deleting any
of its vertices makes it � -colorable.

As an example for a DP-complete exact graph problem, we mention one further specific
colorability problem on graphs. Wagner [Wag87] showed that for any fixed integer � �+* ,
it is DP-complete to determine whether or not � ����� equals � exactly, for a given graph � .
Recently, Rothe optimally strengthened Wagner’s result by showing that it is DP-complete
to determine whether or not � �����,�.- , yet the problem of determining whether or not
� �����/�0� is in NP and thus very unlikely to be DP-complete [Rot03].

More generally, given a graph � and a list 1 �2�3� �5476 � � 6 � � �86 � �9� of � positive integers,
how hard is it to determine whether or not ������� equals some �;: exactly? Generalizing DP,
Cai et al. [CGH < 88,CGH < 89] introduced and studied BH � NP �=� > �8?$4 BH � � NP � , the
boolean hierarchy over NP; see Definition 3 in Section 2. Note that DP is the second
level of this hierarchy. Wagner [Wag87] identified a set of conditions sufficient to prove
BH � � NP � -hardness for each � , and he applied his sufficient conditions to prove a host
of exact versions of NP-complete optimization problems complete for the levels of the
boolean hierarchy. In particular, Wagner [Wag87] proved that the problem of determining
whether or not the chromatic number of a given graph is exactly one of � given values is
complete for BH ����� NP � . Also this more general result of Wagner was improved optimally
in [Rot03]: BH ��� � NP � -completeness of these exact chromatic number problems for given
� -element sets is achieved using � -tuples whose components indicate the smallest number
of colors possible.

Wagner’s technique was also useful in proving certain natural problems complete
for PNP��� . For example, the winner problem for Carroll elections [HHR97a,HHR97b] and

2

for Young elections [RSV03] as well as the problem of determining when certain graph
heuristics work well [HR98,HRS02] each are complete for PNP��� .

1.3 Outline and Context of our Results

This paper is organized as follows. Section 2 introduces the graph-theoretical notation used
and provides the necessary background from complexity theory. In addition, we present
some results and proof techniques to be applied later on.

Section 3 introduces a uniform approach proposed by Heggernes and Telle [HT98]
that defines graph problems by partitioning the vertex set of a graph into generalized
dominating sets. These generalized dominating set problems are parameterized by two
sets of nonnegative integers, � and � , restricting the number of neighbors for each vertex
in the partition. Using this uniform approach, a great variety of standard graph problems,
including various domatic number and graph colorability problems, can be characterized
by such � �(6��!6���� -partitions for a given parameter � ; Table I in [HT98] provides an
extensive list containing ��� well-known graph problems in standard terminology and their
characterization by ����6���6���� -partitions. We adopt Heggernes and Telle’s approach and
expand it by defining the exact versions of their generalized dominating set problems. We
also show in this section some easy properties of the problems defined.

In Section 4, we study these exact generalized dominating set problems in more depth.
The main results of this paper are presented in Sections 4.2 and 4.3: We establish DP-
completeness results for a variety of such exact generalized dominating set problems. In
particular, we prove in Section 4.2.1 that for any fixed integer � ��� , it is DP-complete to
determine whether or not the domatic number of a given graph is exactly � . In contrast, the
problem of deciding whether or not �������/��� , for some given graph � , is coNP-complete.

An overview of all the results from Section 4 is given in Section 4.1. In Section 4.4, we
observe that the results of Sections 4.2 and 4.3 can be generalized to completeness results
in the higher levels of the boolean hierarchy over NP. This generalization applies Wagner’s
technique [Wag87] mentioned above. In particular, we prove that determining whether or
not the domatic number of a given graph equals exactly one of � given values is complete
for BH ����� NP � , thus expanding the list of problems known to be complete for the levels of
the boolean hierarchy over NP.

The boolean hierarchy over NP has been thoroughly investigated. For example, a
large number of definitions are known to be equivalent [CGH < 88,KSW87,HR97], see
also [Hau14]. It is known that if the boolean hierarchy collapses to some finite level, then
so does the polynomial hierarchy [Kad88,CK96,BCO93]. Hemaspaandra, Hempel, and
Wechsung studied the question of whether and to what extent the order matters in which
various oracle sets from the boolean hierarchy are accessed [HHW99]. Boolean hierarchies
over classes other than NP were intensely investigated as well: Gundermann, Nasser,
and Wechsung [GNW90] and Beigel, Chang, and Ogihara [BCO93] studied boolean

3

hierarchies over counting classes, Bertoni et al. [BBJ < 89] studied boolean hierarchies
over the class RP (“random polynomial time,” see [Adl78]), and Hemaspaandra and
Rothe [HR97] studied the boolean hierarchy over UP (“unambigous polynomial time,”
introduced by Valiant [Val76]) and over any set class closed under intersection.

Section 4.5 raises the DP- and BH ����� NP � -completeness results as yet obtained even
higher: We prove several variants of the domatic number problem complete for PNP��� ,
namely ����� - ����� , ��� � - ����� , and ����� - 	�
�� . Thus, we expand the list of problems known
to be complete for this central complexity class. ����� - ����� asks whether or not the domatic
number of a given graph is an odd number. ��� � - ����� asks whether or not the domatic
numbers of two given graphs are equal, and ����� - 	�
�� asks, given the graphs � and ,
whether or not ������� � ����� is true. While these problems may not appear to be
overly natural, they might serve as good starting points for reductions showing the PNP��� -
completeness of other, more natural problems. For example, the quite natural winner
problem for Carroll elections was shown to be PNP��� -complete via a reduction from a
problem dubbed ���$���$��
 ' ���� ��� 	����(��� in [HHR97a], which is analogous in structure
to the problem ��� � - 	�
�� . Similarly, the PNP��� -completeness of the quite natural winner
problem for Young elections was proven via a reduction from the problem ��	�� "��)"���
��
� 	 '��(��� � � "���	���
 in [RSV03]. Finally, the PNP��� -completeness of certain problems related
to heuristics for finding a minimum vertex cover [HRS02] or a maxium independent
set [HR98] in a graph are shown via reductions from the analogs of ����� - 	�
�� and ����� - �����
for the vertex cover problem and the independent set problem, respectively.

PNP��� was introduced by Papadimitriou and Zachos [PZ83] and was intensely studied
in a wide variety of contexts. For example, among many other characterizations, PNP��� is

known to be equal to PNP � �����! #"%$'& , the class of problems solvable in deterministic polynomial
time by logarithmically many Turing queries to an NP oracle; see [Hem89,Wag90,BH91,
KSW87]. Furthermore, it is known that if NP contains some PNP��� -hard problem, then the
polynomial hierarchy collapses to NP. Kadin [Kad89] proved that if NP has sparse Turing-
hard sets, then the polynomial hierarchy collapses to PNP��� . Krentel [Kre88] studied PNP���
and other levels of the polynomial hierarchy that are relevant for certain optimization
problems, see also [GRW01,GRW02]. Ogihara studied the truth-table and log-Turing
reducibilities in a general setting; his results in particular apply to PNP��� and related
classes [Ogi94]. In [Ogi96], he investigated the function analogs of PNP��� , see also [JT95,
BKT94]. Hemaspaandra and Wechsung [HW91] characterized PNP��� and related classes in
terms of Kolmogorov complexity. Finally, PNP��� is central to the study of the query and
the truth-table hierarchies over NP (see, e.g., [KSW87,Hem89,Wag90,BH91,Bei91,Ko91,
BCO93]), to the optimal placement of PP (“probabilistic polynomial time,” defined by
Gill [Gil77]) in the polynomial hierarchy [BHW91,Bei94], to the study of the low hierarchy
and the extended low hierarchies [AH92,Ko89,LS95], and to many other topics.

In Section 5, we study the exact conveyor flow shop problem that we also prove

4

complete for the levels of the boolean hierarchy over NP. The conveyor flow shop problem,
which arises in real-world applications in the wholesale business, where warehouses are
supplied with goods from a central storehouse, was introduced and intensely studied by
Espelage and Wanke [EW00]. The present paper is the first to study the exact version of
this natural problem, which we find intriguing mainly due to its applications in practice.
For further results on this problem, we refer to [EW00,Esp01,EW01,EW03].

Finally, we conclude this paper with a number of open problems in Section 6.

2 Preliminaries and Notation

We start by introducing some graph-theoretical notation. For any graph � , ���
��� denotes
the vertex set of � , and ���
��� denotes the edge set of � . All graphs in this paper are
undirected, simple graphs. That is, edges are unordered pairs of vertices, and there are
neither multiple nor reflexive edges (i.e., for any two vertices � and � , there is at most
one edge of the form ��� 6��$� , and there is no edge of the form ��� 6�� �). Also, all graphs
considered do not have isolated vertices, yet they need not be connected in general.

For any vertex ��� ���
��� , the degree of � (denoted by deg � �����) is the number of
vertices adjacent to � in � ; if � is clear from the context, we omit the subscript and simply
write deg �	��� . Let max-deg �
��� ��
��������� � � $ deg �	��� denote the maximum degree of the
vertices of graph � , and let min-deg �
��� ��
���� ����� � � $ deg �	��� denote the minimum degree
of the vertices of graph � . The neighborhood of a vertex � in � is the set of all vertices
adjacent to � , i.e., � �	���,� ��� � ���
��� �
��� 6�� ��� ������� � . A partition of ������� into
� pairwise disjoint subsets � 476 � � 6 �#� �#6 � � satisfies �	�
��� � > �!#" 4 � ! and � !%$ ��: �'& for
� � �)(�* � � . For some of the reductions presented in this paper, we need the following
operations on graphs.

Definition 1 The join operation on graphs, denoted by + , is defined as follows: Given
two disjoint graphs , and - , their join ,.+/- is the graph with vertex set ���	,0+/- �2�
����, �21 ���3- � and edge set �	�	,4+5- � �/���	, �617�	�3- �212�)��8$6�9 �2�:8;� ���	, � and 9<� �	�	- � � .

The disjoint union of any two graphs , and - is defined as the graph ,=1>- with vertex
set �	��, �?1 ���3- � und edge set �	�	, �?1@���3- � .

Note that + is an associative operation on graphs and � �	,A+.- ���+� �	, �CB � �	- � . We
now define the domatic number problem.

Definition 2 For any graph � , a dominating set of � is a subset �ED ������� such that for
each vertex �.� �	�����)F � , there exists a vertex �G� � with ��� 6��$�H�I� . The domatic
number of � , denoted by ��
��� , is the maximum number of disjoint dominating sets. Define
the decision version of the domatic number problem by

����� � �KJ � 6 ��L � � is a graph and � is a positive integer such that ������� � �(���

5

Note that ������� � min-deg �
���?B � for each graph � . For fixed � �0� , ����� is known to
be NP-complete (cf. [GJ79]), and it remains NP-complete for circular-arc graphs [Bon85],
for split graphs (thus, in particular, for chordal and co-chordal graphs) [KS94], and for
bipartite graphs (thus, in particular, for comparability graphs) [KS94]. In contrast, ����� is
known to be polynomial-time solvable for certain other graph classes, including strongly
chordal graphs (thus, in particular, for interval graphs and path graphs) [Far84] and proper
circular-arc graphs [Bon85]. For graph-theoretical notions and special graph classes not
defined in this extended abstract, we refer to the monograph by Brandst ädt et al. [BLS99],
a follow-up to the classic text by Golumbic [Gol80].

Feige et al. [FHK00] show that every graph � with � vertices has a domatic partition
with � � F � � � � � � min-deg ����� B � � ��� � � sets that can be found in polynomial time, which
implies a � � F � � � � � � � � approximation algorithm for the domatic number ������� . This is a
tight bound, since they also show that, for any fixed constant ���	� , the domatic number
cannot be approximated within a factor of � � F
� � � � � , unless NP D DTIME �
� �! #"��! #"�� � .
Finally, Feige et al. [FHK00] give a refined algorithm that yields a domatic partition of ��������� ��� � max-deg ����� � , which implies a � � � � max-deg ����� � approximation algorithm for
the domatic number ������� . For more results on the domatic number problem, see [FHK00,
KS94] and the references therein.

We assume that the reader is familiar with standard complexity-theoretic notions and
notation. For more background, we refer to any standard textbook on computational
complexity theory such as Papadimitriou’s book [Pap94]. All completeness results in this
paper are with respect to the polynomial-time many-one reducibility, denoted by ���� . For
sets , and - , define , ���� - if and only if there is a polynomial-time computable function�

such that for each � ����� , � � , if and only if
� ��� � � - . A set - is � -hard for a

complexity class � if and only if , ���� - for each , ��� . A set - is � -complete if and
only if - is � -hard and - ��� .

To define the boolean hierarchy over NP, we use the symbols � and � , respectively, to
denote the complex intersection and the complex union of set classes. That is, for classes �
and of sets, define

�!�" � ��, $ - ��, ��� and - �# �%$
�!�" � ��, 1=- ��, ��� and - �# ���

Definition 3 (Cai et al.) The boolean hierarchy over NP is inductively defined by:

BH 4 � NP � � NP 6
BH � � NP � � NP � coNP 6
BH � � NP � � BH �'& � � NP �(� BH � � NP � for � ��� , and

BH � NP �.�)
�8?$4

BH � � NP � �

6

Note that DP � BH � � NP � . In his seminal paper [Wag87], Wagner provided
a set of conditions sufficient to prove hardness results for the levels of the boolean
hierarchy over NP and for other complexity classes. His sufficient conditions were
successfully applied to classify the complexity of a variety of natural, important problems,
see, e.g., [Wag87,HHR97a,HHR97b,HR98,Rot03,HRS02,RSV03]. Below, we state one
of Wagner’s sufficient conditions that is relevant for this paper; see Theorem 5.1(3)
in [Wag87].

Lemma 4 (Wagner) Let , be some NP-complete problem, let - be an arbitrary
problem, and let � � � be fixed. If there exists a polynomial-time computable function�

such that the equivalence

� � � � � � ! � , �$� � is odd ��� � � � 476 � ��6 �#� �86 � ��� �7�H- (2.1)

is true for all strings � 476 � � 6 � �#�#6 � ��� �	� � satisfying that for each * with � � *.(� � ,
�&: < 4)� , implies �&: � , , then - is BH ��� � NP � -hard.

Let ����� � 6 ��6 �
6 �#� � � denote the set of nonnegative integers, and let � < ��� ��6 �
6 � 6#� � � �
denote the set of positive integers. We now define the exact versions of the domatic number
problem, parameterized by � -element sets 1 � D�� of noncontiguous integers.

Definition 5 Given any set 1 � D � containing � noncontiguous integers, define the
problem

��� 	 ' � - 1 � - ��� � �+� �0� � is a graph and �������7� 1 �9���
In particular, for each singleton 1 4 � ��� � , we write ���
	 ' � - � - ����� � � �0� ��
��� ��� � .

Note that if some elements of 1 � were contiguous, one might encode problems of lower
complexity. For instance, if 1 � happens to be just one interval of � contiguous integers,
���
	�' � - 1 � - ����� in fact is contained in DP, whereas ���
	 '9� - 1 � - ����� will be shown to be
BH ��� � NP � -complete in Theorem 26 if 1 � is a set of � sufficiently large noncontiguous
integers.

To apply Wagner’s sufficient condition from Lemma 4 in the proof of the main result
of this paper, Theorem 13 in Section 4.2.1, we need the following lemma due to Kaplan
and Shamir [KS94] that gives a reduction from � - � ���&���
	���)�
��&� to ����� with useful
properties. Since Kaplan and Shamir’s construction will be used explicitly in the proofs
of Theorems 13 and 26, we present it below.

Lemma 6 (Kaplan and Shamir) There exists a polynomial-time many-one reduction 	
from � - � ���&���
	���)�
��&� to ��� � with the following properties:

� � � - � ���&���
	���)�
��&� � � ��
	 ����� � � � $ (2.2)

���� � - � ���&���
	���)�
��&� � � ��
	 ����� � � �&� (2.3)

7

Proof. The reduction 	 maps any given graph � to a graph such that the
implications (2.2) and (2.3) are satisfied. Since it can be tested in polynomial time whether
or not a given graph is � -colorable, we may assume, without loss of generality, that � is
not � -colorable. Recall that we also assume that � has no isolated vertices; note that the
domatic number of any graph is always at least � if it has no isolated vertices (cf. [GJ79]).
Graph is constructed from � by creating � � ���
����� � new vertices, one on each edge
of � , and by adding new edges such that the original vertices of � form a clique. Thus,
every edge of � induces a triangle in , and every pair of nonadjacent vertices in � is
connected by an edge in . The proofs of upcoming Theorems 13 and 26 explicitly use
this construction and such triangles, see Figure 1.

Let �	����� � ����4 6 � � 6#� � �#6 � � � . Formally, define the vertex set and the edge set of by:

��� ��.� �������?1 ��� !�� : ����� ! 6��#: �4�H���
��� �%$
�	� ��.� �)��� ! 6 � !�� :#�2� ��� ! 6 �#:��4� ������� �71 �)���8:�6�� !�� :#�2����� ! 6 �#: � � ������� �

1 �)��� ! 6 �#:��2� � � � 6 *�� � and � ��A*��)���
Since, by construction, min-deg � �� � � and has no isolated vertices, the inequality

��� ���� min-deg ���� B � implies that � � ��� ������ .
Suppose � ��� - � ������� 	�����
 �&� . Let

� 4 , � � , and
���

be the three color classes of � ,
i.e.,

� � � ��� ! � �	�
��� ��� ! is colored by color ��� , for �A� � ��6 �
6 �
� . Form a partition of
������ by

�� � � � � 1 ��� !�� : ��� ! �� � � and �8: �� � �9� , for �A��� ��6 �&6 �
� . Since for each � ,�� � $ �	����� �� & and ���
��� induces a clique in , every
�� � dominates �	����� in . Also,

every triangle ��� ! 6 � !�� : 6 �#: � contains one element from each
�� � , so every

�� � also dominates
��� !�� : ����� ! 6��#: �4�H���
��� � in . Hence, ��� �� ��� , which proves the implication (2.2).

Conversely, suppose ����� � � . Given a partition of ��� �� into three dominating sets,�� 4 ,
�� � , and

����
, color the vertices in

�� � by color � . Every triangle ��� ! 6�� !�� :�6��8:�� is � -
colored, which implies that this coloring on �	����� induces a legal � -coloring of � ; so
� � � - � �&�����
	��!��
��&� . Hence, � ����� � � if and only if ����� �3� . Since � � ��� � ��� ,
the implication (2.3) follows.

We now define two well-known problems that will be used later in our reductions.

Definition 7 Let � ��� � 476 � ��6 � �#�#6 � � � be a finite set of variables.
	 � - � - ��
�� (“one-in-three satisfiability”): Let be a boolean formula consisting of a

collection �+� �� 4 6� �#6 � � �86��� � of � sets of literals over � such that each ! has
exactly three members. is in � - � - ��
�� if and only if there exists a subset � of the
literals over � with � � � $! � ��� � for each � , � � �/��� .

	 ��
�� - � - ��
�� (“not-all-equal satisfiability”): Let be a boolean formula consisting of
a collection � � ����4 6�� � 6#� � �#6���� � of � clauses over � such that each � ! contains
exactly three literals. is in ��
�� - � - ��
�� if and only if there exists a truth assignment

8

for � that satisfies all clauses in � and such that in none of the clauses, all literals
are true.

Both problems were shown to be NP-complete by Schaefer [Sch78]. Note that � - � - ��
��
remains NP-complete even if all literals are positive.

3 A General Framework for Dominating Set Problems

Heggernes and Telle [HT98] proposed a general, uniform approach to define graph
problems by partitioning the vertex set of a graph into generalized dominating sets.
Generalized dominating sets are parameterized by two sets of nonnegative integers, �
and � , which restrict the number of neighbors for each vertex in the partition. We adopt
this approach in defining the exact versions of such generalized dominating set problems.
Their computational complexity will be studied in Section 4.

We now define the notions of � �!6���� -sets and � ��6 �!6���� -partitions introduced by
Heggernes and Telle [HT98].

Definition 8 (Heggernes and Telle) Let � be a given graph, let �0D � and � D � be
given sets, and let � � � < .

1. A subset � D ������� of the vertices of � is said to be a � ��6���� -set if and only if for
each �=��� , � � � �	� � $ � � �K� � , and for each � ���� , � � � ��� � $ � � ��� � .

2. A � �(6��!6���� -partition of � is a partition of ������� into � pairwise disjoint subsets
�!4 6 � � 6 � �#�#6 � � such that � ! is a � �!6���� -set for each � , � � �/� � .

3. Define the problem

����6���6���� - ��	��)�(����� � � � �0� � is a graph that has a � �(6��!6���� -partition ���

Heggernes and Telle [HT98] examined the � �(6��!6���� -partitions of graphs for the
parameters � and � chosen among � �
� , � ��� , � � 6 ��� , � , and � < . In particular, they
determined the precise cut-off points between tractability and intractability for these
problems. That is, they determined the precise value of � for which the resulting
� �(6��!6���� - � 	��)����(�� � problem is NP-complete, yet it can be decided in polynomial time
whether or not a given graph has a ��� F ��6���6���� -partition. An overview of their (and
previously known) results is given in Table 1.

For example, � � 6 � 6 � < � - � 	����(��(��9� is nothing else than the NP-complete domatic
number problem: Given a graph � , decide whether or not � can be partitioned into
three dominating sets. In contrast, � �
6 � 6 � < � - �)�)�(��()� � is in P, and therefore the
corresponding entry in Table 1 is � for � � � and � � � < . A value of � in Table 1
means that this problem is efficiently solvable for all values of � . The value of � � � �
�

9

� � � < � ��� � �
6 ���
�
� � & � < � � &
� < � & � < � � &
� ��� � & � � � &

� � 6 ��� � & � � � &
� �
� � & � - - &

Table 1: NP-completeness for the problems � ��6���6���� - �)�)�(��()� � .

is not considered, since all graphs have a ����6���6#� �
� � -partition if and only if they have the
trivial partition into � disjoint � ��6#� �
� � -sets � 4 � �	����� and � ! � & , for each � � � �
6 � �#�86 � � .

Definition 9 Let � and � be sets that are chosen among � , � < , � �
� , � � 6 ��� , and � ��� ,
and let ��� � < . We say that ����6��!6 ��� - � 	��)�(�(�� � is a minimum problem if and only
if ����6��!6 ��� - � 	��)����(�� � D ��� B ��6���6���� - � 	��)�(�(�� � for each � � � , and we say that
� �(6��!6���� - � 	��)����(�� � is a maximum problem if and only if ���>B ��6���6���� - ��	��)�(����� ��D
� �(6��!6���� - � 	��)����(�� � for each � � � .

The problems in Table 1 that are marked by a “ B ” are maximum problems, and the
problems that are marked by a “ F ” are minimum problems in the above sense. These
properties are stated in the following fact.

Fact 10 1. For each � � � , for each � �.� � 6 � < 6#� �
��6#� �
6 ����6#� ���)� , and for each
�� � � 6#� � 6 ���)� , it holds that ����6��!6 ��� - � 	��)�(�(�� �@D ��� B ��6���6���� - �)�)�(��()� � .

2. For each � � � and for each � � � � 6 � < � , it holds that � � B ��6��!6 � < � - � 	��)�(�(�� � D
����6��!6 � < � - � 	��)����(�� � .

Proof. To see that all � ��6���6���� - �)�)�(��()� � problems with � � � are minimum problems,
note that we obtain a ��� B ��6���6 � � -partition from a � ��6���6 � � -partition by simply adding the
empty set � � < 4 �/& . The proof for the case � ��� � 6 ��� is analogous.

To prove that the � ��6 �!6���� - �)�)�(��()� � problems with � � � < are maximum problems,
note that once we have found a � � B ��6 �!6 � < � -partition into �B�� pairwise disjoint sets
�!4 6 � � 6 � � �86 � � < 4 , the sets � 4 6 � � 6#� � �#6 � �'&$4 6 �� � with

�� � � � � 1 � � < 4 are a � ��6 �!6 � < � -partition
as well.

Observe that those problems in Table 1 that are marked neither by a “ B ” nor by a
“ F ” are neither maximum nor minimum problems in the sense defined above. That is, we
have neither ��� B ��6���6���� - �)�)�(��()� ��D � ��6 �!6���� - � 	����(��(��9� nor ����6��!6 ��� - � 	��)�(�(�� �AD
� � B ��6��!6 ��� - � 	��)�(�(�� � , since for each � � � , there exist graphs � such that � is in
� �(6��!6���� - � 	��)����(�� � but � is not in � � 6���6���� - ��	��)�(����� � for any

� � � with
� �� � .

10

For example, consider ����6#� ���)68� ��� � - ��	��)�(����� � . By definition, this problem contains
all graphs � that can be partitioned into � subsets � 476 � � 6#� � �#6 � � such that, for each � ,
if � � � ! then � � � ���� $ � ! � �2� � , and if � �� � ! then � � � ����� $ � ! � � � � . It follows
that every graph in � ��68� ����6#� ��� � - � 	��)����(�� � must be � -regular; that is, every vertex has
degree � . Hence, for all � � � , ����6#� ����6#� ��� � - � 	��)����(�� � and ���>B ��6#� ���)6#� ��� � - � 	����(��(��9�
are disjoint, so neither � �(6#� ���)6#� ��� � - � 	��)�(�(�� � D � � B ��6#� ���)68� ��� � - � 	����(��(��9� nor
� � B ��6#� ���)68� ��� � - �)�)�(��()� �@D � �(6#� ����6#� ��� � - � 	��)�(�(�� � .

In the case of ����6#� �
��6 � < � - ��	��)�(����� � , the complete graph � � with � vertices is in
�
� 6#� �
�)6 � < � - � 	��)����(�� � but not in � ��68� �
�)6 � < � - � 	��)����(�� � for any � � � with � �� � .
Almost the same argument applies to the case �=� � and ��� � ��� , except that now � � is
in � �(6 � 6#� ����� - �)�)�(��()� � for � ��� ��6 � � but not in � � 6 � 68� ����� - ��	��)�(����� � for any

� � �
with

� �� � ��6 � � . Similar arguments work in the other cases.
Therefore, when defining the exact versions of generalized dominating set problems, we

confine ourselves to those ����6���6���� - ��	��)�(����� � problems that are minimum or maximum
problems in the above sense. For a maximum problem, its exact version asks whether
� � � ��6 �!6���� - � 	����(��(��9� but � �� � � B ��6��!6���� - � 	��)����(�� � , and for a minimum problem,
its exact version asks whether � � ����6��!6 ��� - � 	��)����(�� � but � �� ��� F ��6��!6 ��� - � 	��)����(�� � .

Definition 11 Let � and � be sets that are chosen among � , � < , � �
� , � � 6 ��� , and � ��� , and
let � � � < . Define the exact version of ����6���6���� - ��	��)�(����� � by

���
	 '9� - ����6���6���� - � 	��)�(�(�� � �

���������� ���������

� ��6 �!6���� - �)�)�(��()� � $ ��� F ��6��!6 ��� - � 	��)�(�(�� �
if ��� � and � ��6���6���� - �)�)�(��()� �

is a minimum problem

����6���6���� - � 	��)�(�(�� � $ � � B ��6��!6 ��� - � 	��)�(�(�� �
if ��� � and � ��6���6���� - �)�)�(��()� �

is a maximum problem.

For example, the problem � �(6#� �
��6 � � - �)�)�(��()� � is equal to the � -colorability
problem, which is a minimization problem: Given a graph � , find a partition into at most
� color classes such that any two adjacent vertices belong to distinct color classes. In
contrast, � ��6 � 6 � < � - � 	��)����(�� � is equal to ����� , the domatic number problem, which is a
maximization problem.

Clearly, since � �(6��!6���� - � 	��)����(�� � is in NP, the problems defined in Definition 11
above are contained in DP. This fact is needed for the DP-completeness results in Section 4.

Fact 12 ���
	 ' � - � ��6 �!6���� - � 	����(��(��9� is in DP.

11

4 Exact Generalized Dominating Set Problems

4.1 Overview of the Results

In this section, we prove DP-completeness for a number of problems defined in Section 3.
Our results from Sections 4.2 and 4.3 are summarized in Table 2.

� � � <
�
� � ���
� < � � �
� ��� � � F

� � 6 ��� � � F
� �
� - F

Table 2: DP-completeness for the problems ���
	 ' � - � ��6 �!6���� - �)�)�(��()� � .

The numbers in Table 2 indicate the best DP-completeness results currently known
for the exact versions of generalized dominating set problems, where the results from this
paper are marked by an asterisk.1 That is, they give the best value of � for which the
problem ��� 	 ' � - � �(6��!6���� - � 	����(��(��9� is known to be DP-complete. In some cases this
value is not yet optimal. For example, ��� 	 ' � - � �&6 � 6 � < � - � 	��)����(�� � is known to be
DP-complete and ��� 	 ' � - � �
6 � 6 � < � - � 	��)����(�� � is known to be coNP-complete. What
about ���
	 '9� - � � 6 � 6 � < � - � 	��)�(�(�� � and ���
	�' � - � - 6 � 6 � < � - � 	����(��(��9� ? Only the DP-
completeness of ���
	�' � - �;-�6#� �
�)6 � � - � 	����(��(��9� is known to be optimal [Rot03].

The results stated in Table 2 can easily be extended to more general results involving
slightly more general problems complete in the higher levels of the boolean hierarchy and
in the class PNP��� , respectively. These results are presented in Sections 4.4 and 4.5.

4.2 The Case ��� ���
For � � � < , we consider the cases ��� � and ��� � < only. The corresponding two
problems are the only maximum problems in Table 1.

Recall that since ����6 � 6 � < � - �)�)�(��()� � and � ��6 � < 6 � < � - �)�)�(��()� � are maximum
problems, their exact versions are defined as follows:

���
	�' � - ����6��!6 � < � - � 	��)����(�� � �
�
� � � ����6��!6 � < � - � 	��)����(�� � and

� �� ��� B ��6���6 � < � - � 	��)�(�(�� ��� 6

where � �=� � 6 � < � .

1Again, a value of 	 in Table 2 means that this problem is efficiently solvable for all values of
 .
12

4.2.1 The Case ��� � and ��� ���
Recall that the problem � ��6 � 6 � < � - �)�)�(��()� � is equal to ����� , the domatic number
problem. Consequently, its exact version ���
	 ' � - � ��6 � 6 � < � - � 	��)�(�(�� � is just the problem
���
	�' � - � - ����� .

Theorem 13 For each � � � , ���
	 ' � - � - ����� is DP-complete.

Proof. It is enough to prove the theorem for � � � . By Fact 12, ���
	 ' � - � - ����� is contained
in DP. The proof that ���
	 '9� - � - ����� is DP-hard draws on Lemma 4 with � ��� being fixed,
with � - ���������
	�����
��
� being the NP-complete set , , and with ���
	 ' � - � - ����� being the set
- from this lemma.

Fix any two graphs, � 4 and � � , satisfying that if � � is in � - � �&�����
	��!��
��&� , then so
is � 4 . Without loss of generality, we assume that none of these two graphs is 2-colorable,
nor does it contain isolated vertices. Moreover, we may assume that � ��� : ��� - for
each * � � ��6 ��� , without loss of generality, since the standard reduction from � - ��
�� to
� - ���������
	�����
��
� (cf. [GJ79]) maps each satisfiable formula to a graph � with � �
��� ��� ,
and it maps each unsatisfiable formula to a graph � with � �
���/��- .

We now define a polynomial-time computable function
�

that maps the graphs ��4
and � � to a graph � � �
� 4 6 � � � such that the equivalence from Lemma 4 is satisfied.
Applying the Lemma 6 reduction 	 from � - ���������
	�����
��
� to ��� � , we obtain two graphs,
�4 � 	 ��� 4 � and � � 	 �
� � � , each satisfying the implications from Lemma 6. Hence,
both ��� �4 � and ���� � is in � �
6 �
� , and ���� � � � implies ��� 4 � � � . The graph is
constructed from the graphs 4 and � such that

����� � ��� �4 �?B ��� � � 6 (4.4)

which implies that
�

satisfies Equation (2.1) from Lemma 4:

� 4)� � - � ������� 	�����
 �&� and � � �� � - ���������
	�����
��
�
��� ��� 4 � ��� and ��� � � � �
��� ����� � ��� �4 �?B ��� � � ���
��� � ��� 4 6 � � �/� ������
	 '9� - � - ��� ���

Applying Lemma 4 with � ��� , it follows that ���
	 ' � - � - ����� is DP-complete.
We now prove Equation (4.4). Note that the analogous property for the chromatic

number (i.e., � � �� �0� � 4 �?B � ��� �) is easy to achieve by simply joining the graphs 4
and � ([Wag87], see also [Rot03]). However, for the domatic number, the construction
is more complicated. Construct a gadget connecting 4 and � as follows. Recalling the
construction from Lemma 6, for each edge ��� ! 6��8: � , a new vertex � !�� : and two new edges,
��� ! 6�� !�� : � and ��� !�� : 6 �#:�� , are created. Further edges are added such that the original vertices

13

in � form a clique. Thus, every edge of � induces a triangle in ��	 ����� , and every pair of
nonadjacent vertices in � is connected by an edge in . Let � 4 with ��� � 4 � � �����86���� � � 6�� � �
be any fixed triangle in 4 , and let � � with �	� � � ��� �����76 ��� � � 6�� � � be any fixed triangle
in � . Connect � 4 and � � using the gadget shown in Figure 1, where 8 476�8 � 6 � �#�#6�8�� are new
vertices. Using pairwise disjoint copies of the gadget from Figure 1, connect each pair of
triangles from 4 and � and call the resulting graph . Note that

�
is polynomial-time

computable.

� �

�	�

� �

���

�
� � �

� �� 4

8�� 8� 8��

8 4 8 � 8 �

��� � �

Figure 1: Gadget connecting two triangles � 4 and � � .

Since deg �38 ! � � � for each gadget vertex 8 ! , we have ����� � � , regardless of whether
the domatic numbers of 4 and � are � or � . We now show that �����/� ��� 4 �CB ���� � .
Let ��4 6 � � 6 �#� �#6 ��� ����� $ be ��� �4 � pairwise disjoint sets dominating 4 , and let ��� ����� $ < 4 ,� � ����� $ < � , � � � , � � ����� $ < � ����� $ be ��� � � pairwise disjoint sets dominating � . Distinguish the
following three cases.

Case 1: ����� �"! � �����$#	! � % . Consider any fixed � : , where ��� * � � . Since
� : dominates 4 , every triangle � 4 of �4 has exactly one vertex in � : . Fix � 4 ,
and suppose ��� � 4 � � �����86���� � � 6�� � � and, say, �	� � 4 � $ � : � �����7� ; the other cases
are analogous. For each triangle � � of � , say � � with �	� � � � � �����76��
� � � 6�� � � ,
let 8'& �4 6�8'& �� 6 � � �86�8'& �� be the gadget vertices connecting � 4 and � � as in Figure 1.
Note that exactly one of these gadget vertices, 8 & �� , is not adjacent to �'� . For
each triangle � � , add the missing gadget vertex to � : , and define

�� : � � :41

14

��8 & �� � � � is a triangle of �#� . Since every vertex of � is contained in some triangle
� � of � and since 8�& �� is adjacent to each vertex in � � ,

�� : dominates � . Also,�� :�� � : dominates �4 , and since �'� is adjacent to each 8 & �! except 8 & �� for each
triangle � � of � ,

�� : dominates every gadget vertex of . Hence,
�� : dominates .

By a symmetric argument, every set � : , where - � * � � , dominating � can be
extended to a set

�� : dominating the entire graph . By construction, the sets
�� :

with � � * � � are pairwise disjoint. Hence, ��� �� � � � ��� 4 �?B ��� � � .
Case 2: ����� �"! � % and � � � #	! � � . As in Case 1, we can add appropriate gadget

vertices to the five given sets � 476 � � 6 � � �86 �� to obtain five pairwise disjoint sets���4 6
�� � 6#� � �#6

��� such that each
�� ! dominates the entire graph . It follows that

� � ����� � � . It remains to show that ��� �� �� � . For a contradiction, suppose
that ����� � � . Look at Figure 1 showing the gadget between any two triangles � 4
and � � belonging to 4 and � , respectively. Fix � 4 with ��� � 4 � � �����86���� � � 6�� � � .
The only way (except for renaming the dominating sets) to partition the graph into
six dominating sets, say � 4 6�� ��6 � �#�86�� � , is to assign to the sets � ! the vertices of � 4 ,
of � , and of the gadgets connected with � 4 as follows:

	 � 4 contains ��� and the set ��8 & �� ��� � is a triangle in �#� ,
	 � � contains �
� � � and the set ��8 & �� � � � is a triangle in �#� ,
	 � � contains � � and the set ��8 & �4 � � � is a triangle in �#� ,
	 � � contains �'�7� � � , for each triangle � � of � , and the set

��8 & �� � � � is a triangle in �#��6
	 � contains ��� � � � � � , for each triangle � � of � , and the set

��8 & � � � � is a triangle in �#��6
	 � � contains � � � � � , for each triangle � � of � , and the set

��8 & �� � � � is a triangle in �#���

Hence, all vertices from � must be assigned to the three dominating sets � � , � ,
and � � , which induces a partition of � into three dominating sets. This contradicts
the case assumption that ��� � �/��� . Hence, ��� �� � � � ��� �4 �?B ��� � � .

Case 3: ����� �"! � �����$#	! � � . As in the previous two cases, we can add appropriate
gadget vertices to the four given sets � 4 , �� , � � , and � � to obtain a partition of
��� �� into four sets

���4 ,
�� � ,

�� � , and
�� � such that each

�� ! dominates the entire
graph . It follows that - � ��� �� � � . By the same arguments as in Case 2,

15

��� �� �� � . It remains to show that ����� �� � . For a contradiction, suppose that
��� �� � � . Look at Figure 1 showing the gadget between any two triangles � 4 and � �
belonging to 4 and � , respectively. Suppose is partitioned into five dominant
sets � 476�� � 6 � �#�#6�� .
First, we show that neither � 4 nor � � can have two vertices belonging to the same
dominating set. Suppose otherwise, and let, for example, ��� and ��� � � be both in � 4 ,
and let � � be in � � ; all other cases are treated analogously. This implies that the
vertices �'� , ��� � � , and � � in � � must be assigned to the other three dominating sets,
� � , � � , and � , since otherwise one of the sets � ! would not dominate all gadget
vertices 8 : , � � * � �

. Since � 4 is connected with each triangle of � via
some gadget, the same argument shows that ��� � � can be partitioned into three
dominating sets, which contradicts the assumption that ��� � � � � .
Hence, the vertices of � 4 are assigned to three different dominating sets, say � 4 , � � ,
and � � . Then, every triangle � � of � must have one of its vertices in � � , one in � ,
and one in either one of � 4 , � � , and � � . Again, this induces a partition of � into
three dominating sets, which contradicts the assumption that ��� � �2� � . It follows
that ����� �� � , so ����� ��- � ��� �4 �?B ��� � � .

By construction, ��� � � � � implies ��� 4 � � � , and thus the case “ ��� 4 ��� � and
��� � � � � ” cannot occur. The case distinction is complete, which proves Equation (4.4)
and the theorem.

In contrast to Theorem 13, ��� 	 ' � - � - ����� is in coNP (and even coNP-complete) and thus
cannot be DP-complete unless the boolean hierarchy over NP collapses.

Theorem 14 ��� 	 ' � - � - ����� is coNP-complete.

Proof. The problem ���
	�' � - � - ��� � can be written as

���
	 '9� - � - ����� � � �0� ������� � �&� $ � �0� ������� � �&���
Since every graph without isolated vertices has a domatic number of at least � (cf. [GJ79]),
the set � �0� ��
����� �&� is in P. On the other hand, the set � �0� ������� � �&� is in coNP,
so ���
	 ' � - � - ����� is also in coNP and, thus, cannot be DP-complete unless the boolean
hierarchy over NP collapses to its first level. Note that the coNP-hardness of ���
	�' � - � - ��� �
follows immediately via the Lemma 6 reduction 	 from � - � ���&���
	���)�
��&� to ��� � .

4.2.2 The Case ��� � � and � � � �
Definition 15 For every graph � , define the maximum value � for which � has a
� �(6 � < 6 � < � -partition as follows:

� ����� �/
��� � � � � < � � � ����6 � < 6 � < � - �)�)�(��()� �!���

16

Theorem 16 For each � ��� , ���
	 ' � - �
� 6 � < 6 � < � - � 	����(��(��9� is DP-complete.

Proof. Again, it is enough to prove the theorem for the case � � � . By Fact 12,
���
	�' � - � � 6 � < 6 � < � - ��	��)�(����� � is contained in DP. We now prove that ��� 	 ' � - � - ����� is
DP-hard.

Heggernes and Telle [HT98] presented a reduction from the problem ��
�� - � - ��
�� to the
problem � �
6 � < 6 � < � - ��	��)�(����� � to prove the latter problem NP-complete. We modify
their reduction as follows. Let two boolean formulas 4 � � � 6

�� � and � � ���/6 ��	� be
given, with disjoint variable sets, � ��� � 476 � ��6#� � �76 � � � and � ������4 6��&�#6 � � �86�� � � , and with
disjoint clause sets,

�� � ����4 6 � ��6#� � �76 ��� � and
�� � ��� 4 6�� � 6 �#� �#6���� � . If the variable sets

consist of less than two variables, we put additional variables into the sets. Moreover, we
may assume, without loss of generality, that every literal appears in at least one clause, since
otherwise we can easily alter the given formulas 4 and � , without changing membership
in ��
�� - � - ��
�� , so that they are of this form.

For any clause � � ��� ��� �
	�� , define �� � � � � � � 	 � , where � , � , and 	 , respectively,
denotes the negation of the literal � , � , and 	 . Define �� � ���� 4 6���� 6 � � �86��� � � and �� �
� �� 4 6 �� � 6 �#� �#6 ���� � , and define

� �
�� 1 �� and � �

��A1 �� . Note that due to the not-all-equal
property, we have:

� � 6 � �7� ��
�� - � - ��
�� � � � � 6
�� �7� ��
�� - � - ��
��

� � � � 6 �� �7� ��
�� - � - ��
��
and

���/6 � �)� ��
�� - � - ��
�� ��� ���/6 ����7� ��
�� - � - ��
��
��� ���/6 ����7� ��
�� - � - ��
����

We apply Lemma 4 with � � � being fixed, with ��
�� - � - ��
�� being the NP-complete
problem , , and with ���
	�' � - � � 6 � < 6 � < � - � 	��)�(�(�� � being the set - from this lemma. Let
�4 and � be such that �4� ��
�� - � - ��
�� implies 4 � ��
�� - � - ��
�� . Our polynomial-time
reduction

�
transforms 4 and � into a graph �+� � �� 4 6 � � with the property:

� �4)� ��
�� - � - ��
�� �� � �� ��
�� - � - ��
�� � � � � �����/�0� � (4.5)

The reduction
�

is defined as follows. For 4 , we create an � -clique ,�� with vertices
8 4 , 8 � , � � � , 8�� . We do the same for � , creating an � -clique -�� with vertices 9 4 , 9�� , �#� � , 9�� .
For each � with � � �/� � , we create two vertices, � ! and � ! , for the variable � ! . For each *
with � �0* ��� , we create two vertices, ��: and � : , for the variable ��: . Every vertex � ! and
� ! is connected to both 8�4 and 8 � , and every vertex ��: and � : is connected to both 9�4 and 9 � .
For each pair of variables � � ! 6��#: � , we create one vertex � !�� : that is connected to the four
vertices � ! , � ! , � : , and � : . Finally, for each clause � ! � � and � :<� � with � � � ��� and

17

� � * ��� , we create the two vertices � ! and � : . Each such clause vertex is connected to the
vertices representing the literals in that clause. Additionally, every vertex � ! is connected
to both 8�4 and 8 � , and every vertex ��: is connected to both 9 4 and 9 � . This completes the
construction of the graph �+� � �� 4 6 � � .

Figure 2 shows the graph � resulting from the reduction
�

applied to the two formulas

�4.� � � 4(� � ��� � � �(� � � 4(� � � �"� � � and

 � � � �&4 �
� � ��� � � � � � 4 � � � � � � �7�

8� 9��

� 4
� 4

� �
� 4

�&�

� �

��4
� 4 � �

� � � �

���� �� � �� 4���4� �� 4 � � � 4

� � � �� �

9��
9 �8��

8��

� 4 � 4

� � � �

� �
� �

� � � �
� � � 4

� � � 4
� 4 � �

9#4

9��
9 � 9��

9
8 �8��

8� 8 �

8 4

� �� �

Figure 2: ���
	 ' � - � � 6 � < 6 � < � - �)�)�(��()� � is DP-complete: Graph ��� � �� 4 6 � � .
Note that � �
���=� - , since the degree of each � !�� : is four. We have three cases to

distinguish.

Case 1: � � � ��
�� - % - ��
�� and � # � ��
�� - % - ��
�� . Let � be a truth assignment
satisfying 4 , and let

�
� be a truth assignment satisfying � . We can partition �

into four � � < 6 � < � -sets �!4 , � � , � � , and � � as follows:

�!4.�
�� 1 �� 1 ��8��6�8��8� 1 ��9#4 6�9 � �71 � � � � is a literal over � and � � � �/� true ��6

� � � ��� !�� :/� � � � � � � F � �* � � �(� � � � � � � �G* � � � �71 ��8��#6�8�#�71 ��9 ��6�9�� �
1 � � � � is a literal over � and � ��� � � false ��6

� � �
���1 �� 1 ��8 4 6�8 � � 1 ��9 �6�9 � �71 ��� ��� is a literal over � and

�
� � � � � true ��6

� � � ��� !�� :/� � � � � �* � � � � � � � � � � F � � � � * � � � �71 ��8 ��6�8�� �71 ��9�� 6�9��#�
1 ��� � � is a literal over � and

�
� � �� � false ���

18

Thus, � ����� ��- . Since � ����� � - , it follows that � ����� �0- in this case.

Case 2: � � � ��
�� - % - ��
�� and � # �� ��
�� - % - ��
�� . Let � be a truth assignment
satisfying 4 . We can partition � into three � � < 6 � < � -sets �!4 , � � , and � � as follows:

� 4.�
�� 1 �� 1 ��8� 6�8�� � 1 ��9#476�9 � � 1 � � � � is a literal over � and � ��� �/� true ��6

� � � ��� !�� : � � � �/� � � � � * � ��� 1 ��8 �86�8�#� 1 ��9���6�9 �#�
1 � � � � is a literal over � and � � � � � false ��6

� � �
�� 1 �� 1 ��8 476�8 � 6�8 � 6�8����71 ��9 �6�9 ��6�9��#6�9 � �71 ��� � � is a literal over � ���

Thus, � � � ����� �3- . For a contradiction, suppose that � ����� � - , with a partition
of � into four � � < 6 � < � -sets, say � 4 , � � , � � , and � � . Vertex � 4 � 4 is adjacent to
exactly four vertices, namely to � 4 , � 4 , �&4 and � 4 . These four vertices must then be
in four distinct sets of the partition. Without loss of generality, suppose that � 4)���/4 ,
� 4)� � � , �&4)��� � , and � 4 � � � . For each * with � �G*�� � , the vertices ��: and � : are
connected to � 4 and � 4 via vertex � 4 � : , so it follows that either ��:<� � � and � : � � � ,
or � : ��� � and � : ��� � .
Every clause vertex �9: , � �.* � � , is connected only to the vertices representing its
literals and to the vertices 9�4 and 9 � , which therefore must be in the sets � 4 and � � ,
respectively. Thus, every clause vertex ��: is connected to at least one literal vertex
in �

�
and to at least one literal vertex in � � . This describes a valid truth assignment

for � in the not-all-equal sense. This is a contradiction to the case assumption
 � �� ��
�� - � - ��
�� .

Case 3: � ���� ��
�� - % - ��
�� and � #��� ��
�� - % - ��
�� . A valid partition of � into two
� � < 6 � < � -sets is:

�!4 � ��� !�� :/� � � �/� � � � �G*�� ��� 1 � � ! � � � �/� � �71 ���#:/� � � * � ���
1 ��8�4 6�8 � 6�8� 6�8��8�71 ��9#476�9 � 6�9 �6�9��8��6

� � �
�� 1 �� 1 �� 1 �� 1 � � ! � � � � � � � 1 � � : � � �G*�� �&�
1 ��8 �#6�8�� 6�8�� 6�8��8�71 ��9 ��6�9���6�9 ��6�9��#���

Thus, �+� � ����� � - . By the same argument as in Case 2, � ����� �� - . For a
contradiction, suppose that � �
��� �0� , with a partition of � into three � � < 6 � < � -sets,
say � 4 , � � , and �

�
. Without loss of generality, assume that � 4 and � 4 belong to

distinct � ! sets,2 say � 47� � 4 and � 47��� � .
2If ��� and ��� both belong to the same set �
	 , then each �� and � � must belong to distinct sets ��� and ��� ,
����� , since ����� � is connected with ��� , ��� , ��� , and � � . Thus, a symmetric argument works for ��� and � � in

this case.

19

It follows that for each * with � � *,� � , at least one of � : or � : has to be in �
�
. If

both vertices are in �
�
, then we have:

��� ��� � � �/� � ��� either � ! ���/4 and � ! ��� � , or � ! ��� � and � ! � �/4�� � (4.6)

Since 4 �� ��
�� - � - ��
�� , for each truth assignment � for 4 , there exists a clause
� ! � ��

such that � ! � ����� � � 	�� and the literals � , � , and 	 are either simultaneously
true or simultaneously false under � . Note that for the corresponding clause �� ! � �� ,
which contains the negations of � , � , and 	 , the truth value of its literals is flipped
under � . That is, � � � ��� �>F�� ��� � , � � �� � � F�� � � � , and � � 	 ��� �>F�� ��	�� . Since
the corresponding clause vertex � ! is adjacent to � , � , 	 , 8�4 , and 8 � , it follows that � ,
� , and 	 are in the same set of the partition, say in ��4 . Hence, either 8�45� � � and
8 � � � � , or 8�4 � � � and 8 � � � � . Similarly, since the clause vertex �� ! is adjacent to
� , � , 	 , 8�4 , and 8 � , the vertices � , � , 	 are in the same set of the partition that must be
distinct from � 4 . Let � � , say, be this set. It follows that either 8$4 � � 4 and 8 � � � � ,
or 8�4)��� � and 8 � ���/4 , which is a contradiction.

Each of the remaining subcases can be reduced to (4.6), and the above contradiction
follows. Hence, � �����/��� .

By construction, the case “ 4 �� �
�� - � - ��
�� and � � ��
�� - � - ��
�� ” cannot occur, since
it contradicts our assumption that �=� ��
�� - � - ��
�� implies 4 � ��
�� - � - ��
�� . The case
distinction is complete. Thus, we obtain:

� � � � � ! ���
�� - � - ��
�� �$� � is odd ��� 4)� ��
�� - � - ��
�� � � �� ��
�� - � - ��
��� � � ����� � � 6
which proves Equation (4.5). Thus, Equation (2.1) of Lemma 4 is fulfilled, and it follows
that ���
	 ' � - � � 6 � < 6 � < � - �)�)�(��()� � is DP-complete.

In contrast to Theorem 16, ���
	 '9� - � ��6 � < 6 � < � - � 	��)����(�� � is in coNP (and even coNP-
complete) and thus cannot be DP-complete unless the boolean hierarchy over NP collapses.

Theorem 17 ��� 	 ' � - � ��6 � < 6 � < � - �)�)�(��()� � is coNP-complete.

Proof. ���
	 ' � - � ��6 � < 6 � < � - �)�)�(��()� � is in coNP, since it can be written as

���
	 '9� - � ��6 � < 6 � < � - �)�)�(��()� � �I, $ -
with , � � ��6 � < 6 � < � - �)�)�(��()� � being in P and with - � � �
6 � < 6 � < � - � 	��)����(�� �
being in NP. Note that the coNP-hardness of ���
	 '9� - � ��6 � < 6 � < � - � 	��)�(�(�� � follows
immediately via the original reduction from �
�� - � - ��
�� to � �
6 � < 6 � < � - � 	��)����(�� �
presented in [HT98].

20

4.3 The Case ��� �
In this section, we are concerned with the minimum problems ��� 	 ' � - ����6��!6 � � - �)�)�(��()� � ,
where � is chosen from � � 6 � < 6#� �&��6#� � 6 ����68� ���)� . Depending on the value of � � � , we
ask how hard it is to decide whether a given graph � has a � �(6��!6 � � -partition but not a
� � F ��6 �!6 � � -partition.

4.3.1 The Cases � ��� ��� ����� and � � �
These cases are trivial, since ����6 � 6 � � - � 	��)����(�� � and ����6 � < 6 � � - �)�)�(��()� � are in P for
each � � � , which outright implies that the problems ��� 	 ' � - � ��6 � 6 � � - � 	����(��(��9� and
���
	�' � - ����6 � < 6 � � - � 	��)�(�(�� � are in P as well.

4.3.2 The Case ��� ��� � and � � �
Recall that the problem � ��6#� �&�)6 � � - � 	��)�(�(�� � is equal to the � -colorability problem
defined in Section 2. The question about the complexity of the exact versions of this
problem was first addressed by Wagner [Wag87] and optimally solved by Rothe [Rot03].

Theorem 18 (Rothe) ���
	 '9� - �;-�6#� �
�)6 � � - � 	��)����(�� � is DP-complete.

In contrast to Theorem 18, ��� 	 ' � - � �
6#� �
�)6 � � - �)�)�(��()� � is in NP (and even NP-
complete) and thus cannot be DP-complete unless the boolean hierarchy over NP collapses.

Theorem 19 ��� 	 ' � - � �
6#� �
�)6 � � - �)�)�(��()� � is NP-complete.

4.3.3 The Case ��� ��� �	�
� and � � �
Definition 20 For every graph � , define the minimum value of � for which � has a
� �(6#� � 6 ����6 � � -partition as follows:

� �����.�
� �(� � � � < � � � � �(6#� � 6 ����6 � � - � 	��)�(�(�� � ���
Theorem 21 For each � � � , ���
	 ' � - �
� 6#� � 6 ����6 � � - � 	��)����(�� � is DP-complete.

Proof. Again, it is enough to prove the theorem for the case � � � . By Fact 12,
���
	�' � - � �
6#� � 6 ���)6 � � - � 	��)�(�(�� � is contained in DP. So it remains to prove DP-hardness.
Again, we apply Wagner’s Lemma 4 with � � � being fixed, with � - � - ��
�� being the NP-
complete problem , , and with ��� 	 ' � - � �&6#� � 6 ����6 � � - � 	��)�(�(�� � being the set - from this
lemma.

In their paper [HT98], Heggernes and Telle presented a � �� -reduction
�

from � - � - ��
��
to � �
68� � 6 ���)6 � � - � 	��)����(�� � with the following properties:

�� � - � - ��
�� � � � � � � �� � � �
 �� � - � - ��
�� � � � � � � �� � � � �

21

In short, reduction
�

works as follows. Let be any given boolean formula
that consists of a collection � � �� 4 6� � 6 � �#�#6��� � of � sets of literals over � �
� � 476 � � 6#� � �#6 � � � . Without loss of generality, we may assume that all literals in are
positive; recall the remark right after Definition 7. Reduction

�
maps to a graph � as

follows. For each set ! �3� � 6 ��6�	&� , there is a - -clique
� ! in � induced by the vertices � ! ,

� ! , 	 ! , and 8 ! . For each literal � , there is an edge ��� in � . For each ! in which � occurs, both
endpoints of ��� are connected to the vertex � ! in � ! corresponding to �=� ! . Finally, there
is yet another - -clique induced by the vertices � , � 4 , � � , and � � . For each � with � � � ��� ,
vertex � is connected to 8 ! . This completes the reduction

�
. Figure 3 shows the graph �

resulting from the reduction
�

applied to the formula � ��� � � � 	�� � ��� � � ��� � � �	� � � � 	 � .

� �

� 4

� �

�

8 4 8 �

8 �

� 4

	�4 �&4 �"�

� �

� �

� �	 �

� �

���

������

���

� ����

Figure 3: Heggernes and Telle’s reduction
�

from � - � - ��
�� to � �
6#� � 6 ���)6 � � - �)�)�(��()� � .

In order to apply Lemma 4, we need to find a reduction 	 satisfying

���47� � - � - ��
�� � � �� � - � - ��
�� � ��� � � 	 � �4 6 � � � � � (4.7)

for any two given instances 4 and � such that � � � - � - ��
�� implies 4)� � - � - ��
�� .
Reduction 	 is constructed from

�
as follows. Let � 4 � 4 and � 4 � � be two disjoint copies

of the graph
� �� 4 � , and let � � � 4 and � � � � be two disjoint copies of the graph

� �� � � . Define
� ! to be the disjoint union of � !�� 4 and � !�� � , for � � � ��6 �&� . Define the graph ����	 �� 4 6 � �

22

to be the join of � 4 and � � ; see Definition 1. That is,

	 � �4 6 � �/� ��� � 4?+ � ��� �
� 4 � 4?1 � 4 � � �?+ ��� � � 4 1 � � � � �7�
Figure 4 shows the graph � resulting from the reduction 	 applied to the formulas

�4.� � � �
����	�� � �	� � � � � � � �	� � � � 	�� and

 � � � � ��� � � � � � � � � � 	� � �
	 � � � � � � �
� �;* � � �7�

� 4 � 4 � 4 � 4 � �
�

� � � 4 � � � � � �

Figure 4: ��� 	 ' � - � �
68� � 6 ����6 � � - � 	��)����(�� � is DP-complete: Graph �+� 	 �� 4 6 � � .
Let 8 � � ��� 4 � 4 �/� � �
� 4 � � � and 9 � � �
� � � 4 �/� � ��� � � � � . Clearly, � �
� 4 �/� 8 , � �
� � �/�

9 , and � ������� 8 B 9 . Simply partition � the same way as graphs � 4 and � � were partitioned
before. Note that we obtain � -cliques in � as a result of joining pairs of - -cliques from ��4
and � � . Thus, � �
��� �+- , since an � -clique has to be partitioned into at least four disjoint
� � �
6 ���)6 � � -sets.

To prove that � �
��� � � ��� 4 � B � ��� � � � 8 B 9 , let � � � �
��� . Thus, we know
- � � � 8>B/9 . For a contradiction, suppose that �G(8 B 9 . Distinguish the following
cases.

Case 1: � ��� � � . Then � (- is a contradiction to � � - .

Case 2: � � � and � � % . Then � �0-5(� � 8%B59 . One of the four disjoint � � � 6 ���)6 � � -
sets consists of at least one vertex � in � 4 and one vertex � in � � . (Otherwise, it
would induce a partition of less than two � � � 6 ���)6 � � -sets in � 4 or of less than three
� � � 6 ���)6 � � -sets in � � , which contradicts our assumption 8 � � and 9 � � .) Suppose

23

that this set is � 4 . Then, since � � � � 6 ��� and since � is adjacent to every vertex in � �
and � is adjacent to every vertex in � 4 , we have � 4/� ��� 6 � � . But there is no way to
assign the � -cliques, which do not contain � or � , to the remaining three � � � 6 ���)6 � � -
sets in order to obtain a �;-�6#� � 6 ����6 � � -partition for � . This is a contradiction, and our
assumption � (.8 B�9 � � does not hold. Thus, � ��� .

Case 3: � � % and � � � . This case cannot occur, since we have to prove Equation (4.7)
only for instances 4 and � such that � � � - � - ��
�� implies �47� � - � - ��
�� .

Case 4: � ��� � % . By the same argument used in Case 2, � ��- does not hold. Suppose
� ��� . As seen before, one of the sets in the partition must contain exactly one vertex
� from � 4 and exactly one vertex � from � � . Let � 4�� ��� 6��$� be this set. There are
four sets left for the partition, say � �#6 � � 6 � � , and �� . Every set � ! can have only
vertices from either � 4 or � � . This means that two of these sets cover all vertices in
� 4 except for � . Vertex � is either in � 4 � 4 or in � 4 � � , which implies that one of these
induced subgraphs (� 4 � 4 or � 4 � �) has a � �
6#� � 6 ����6 � � -partition. This is a contradiction
to 8 � � . Thus, � � � .

Thus, � ����� � � ��� 4 �5B � ��� � � , which implies Equation (4.7) and thus fulfills
Equation (2.1) of Lemma 4:

� � � � � ! � � - � - ��
��(�$� � is odd � � �47� � - � - ��
�� � � �� � - � - ��
����� � �
� 4 �/� ��� � ��� � �/�0���� � �
���/���&�
By Lemma 4, ���
	 ' � - � �
6#� �
6 ����6 � � - � 	����(��(��9� is DP-complete.

In contrast to Theorem 21, ���
	 ' � - � �
6#� �
6 ���)6 � � - � 	����(��(��9� is in NP (and even NP-
complete) and thus cannot be DP-complete unless the boolean hierarchy over NP collapses.

Theorem 22 ��� 	 ' � - � �&6#� � 6 ����6 � � - � 	��)�(�(�� � is NP-complete.

Proof. ���
	 ' � - � �
68� � 6 ���)6 � � - � 	��)����(�� � is in NP, since it can be written as

���
	 ' � - � �
6#� � 6 ����6 � � - �)�)�(��()� � �/, $ -
with , � � �
68� � 6 ����6 � � - � 	��)����(�� � being in NP and with - � � ��6#� � 6 ����6 � � - ��	��)�(����� �
being in P. NP-hardness follows immediately via the reduction

�
defined in the proof of

Theorem 21, see Figure 3:

 � � - � - ��
�� ��� � � �� � ���
	 ' � - � �
6#� �
6 ����6 � � - � 	��)����(�� � �
Thus, ���
	 ' � - � �
68� � 6 ���)6 � � - � 	����(��(��9� is NP-complete.

24

4.3.4 The Case ��� � ��� and � � �
Definition 23 For every graph � , define the minimum value � for which � has a
� �(6#� ���)6 � � -partition as follows:

� �
��� �/
���� � � � � < � � � � ��6#� ���)6 � � - � 	��)�(�(�� � ���
Theorem 24 For each � � � , ���
	 ' � - �
� 6#� ����6 � � - ��	��)�(����� � is DP-complete.

Proof. Clearly, � ������� � ����� for all graphs � . Conversely, we show that � �
��� � � ����� .
It is enough to do so for all graphs � � � � � resulting from any given instance of
� - � - ��
�� via the reduction

�
in Theorem 21. If � � - � - ��
�� , we have � ����� � � . Using

the same partition, we even get two � � ����6 � � -sets for � . Every vertex of � has exactly one
neighbor, which is in the same set of the partition as the vertex itself. If �� � - � - ��
�� , then� �
���2� � . We can then partition � into three � � ����6 � � -sets: � 4 consists of the vertices �
and � 4 plus the endpoints of each edge � � . � � consists of � � and � � , every vertex 8 ! , and one
more vertex in the - -clique

� ! , for each � with �,� � � ��� . The two remaining vertices
in each

� ! are then put into the set � � . Hence, � ����� � � ����� . The rest of the proof is
analogous to the proof of Theorem 21.

In contrast to Theorem 24, ��� 	 ' � - � �&6#� ���)6 � � - �)�)�(��()� � is in NP (and even NP-
complete) and thus cannot be DP-complete unless the boolean hierarchy over NP collapses.
The proof follows from the proofs of Theorems 22 and 24 and is omitted here.

Theorem 25 ��� 	 ' � - � �&6#� ���)6 � � - �)�)�(��()� � is NP-complete.

4.4 Completeness in the Higher Levels of the Boolean Hierarchy

In this section, we show that the results of the previous two subsections can be generalized
to higher levels of the boolean hierarchy over NP. We exemplify this observation only for
the case of Theorem 13. Using the techniques of Wagner [Wag87], it is a matter of routine
to obtain the analogous results for the other exact generalized dominating set problems.

For each fixed set 1 � containing � noncontiguous integers not smaller than - �<B � , we
show that ���
	 ' � - 1 � - ����� is complete for BH ��� � NP � , the � � th level of the boolean hierarchy
over NP. Note that the special case of ��� � in Theorem 26 yields Theorem 13. Note also
that the specific set 1 � defined in Theorem 26 gives the smallest � noncontiguous numbers
for which BH ����� NP � -completeness of ���
	 ' � - 1 � - ����� can be achieved by the proof method
of Theorem 26. However, Theorem 26 may not be optimal yet; see the open questions in
Section 6.

Theorem 26 For fixed � � � , let 1 �2��� -�� B ��6 - �CB � 6 � � �76 � � F ��� . Then, ���
	 ' � - 1 � - ��� �
is BH ����� NP � -complete.

25

Proof. To show that ���
	 ' � - 1 � - ����� is contained in BH ����� NP � , partition the problem
into � subproblems: ���
	 '9� - 1 � - ����� � > ! ����� ���
	�' � - � - ��� � . Every set ���
	 ' � - � - ����� can be
rewritten as

���
	 ' � - � - ����� ��� �0� ��
��� � � � $ � �0� ��
���)(� B �����
Clearly, the set � ��� ��
��� � � � is in NP, and the set � ��� ��
����(� B���� is in coNP. It
follows that ���
	�' � - � - ��� � is in DP, for each �>� 1 � . By definition, ���
	�' � - 1 � - ����� is in
BH ��� � NP � .

The proof that ���
	 '9� - 1 � - ����� is BH ����� NP � -hard straightforwardly generalizes the
proof of Theorem 13. Again, we draw on Lemma 4 with � - � ���&���
	���)�
��&� being the
NP-complete set , and with ���
	 ' � - 1 � - ����� being the set - from this lemma. Fix any
� � graphs � 4 6 � � 6 �#� �#6 � ��� satisfying that for each * with � � *�(� � , if � : < 4 is in
� - ���������
	�����
��
� , then so is �2: . Without loss of generality, we assume that none of
these graphs � : is 2-colorable, nor does it contain isolated vertices, and we assume that
� ��� : � �+- for each * . Applying the Lemma 6 reduction 	 from � - � ���&���
	���)�
��&� to ��� � ,
we obtain � � graphs : � 	 �
�2: � , � �E*0� � � , each satisfying the implications (2.2)
and (2.3). Hence, for each * , ��� : �7� � �
6 �
� , and ��� : < 4 � �0� implies ��� : �/�0� .

Now, generalize the construction of graph in the proof of Theorem 13 as follows. For
any fixed sequence � 476 � �#6 � � �86 � ��� of triangles, where � ! belongs to ! , add

� � new gadget
vertices 8�476�8 � 6 �#� �#6�8���� and, for each � with � � � � � � , associate the three gadget vertices
8 4 <

�
� ! &$4 $, 8 � <

�
� ! &$4 $, and 8 � ! with the triangle � ! . For each � with � � � � � � , connect � !

with every ��: , where � �I* � � � and � �� * , via the same three gadget vertices 8 4 <
�
� ! &$4 $,

8 � <
�
� ! &$4 $, and 8 � ! associated with � ! the same way � 4 and � � are connected in Figure 1 via

the vertices 8�4 , 8 � , and 8 � .
It follows that deg �	8 ! � � � �5F � for each � , so �����2� � � . An argument analogous to

the case distinction in the proof of Theorem 13 shows that ��� �� � � ���: " 4 ��� : � . Hence,

� � � � � � ! � � - � �������
	����� ��&�!�$� � is odd
� � ���� � � � �/� � � � � �
� 4 �/���������0� ��� � ! &$4 �/� � and � ��� � ! �/�	��������� �
� ��� �/��- �
� � ���� � � � �/� � � � ��� �4 � �
������� ��� � ! &$4 � � � and ��� � ! � �	������� ��� ��� � � � �
� � ���� � � � �/� � �

�
��� �� �

����
: " 4

��� : �/�0� � � �?F � �?B � � � �4F � � B � ��
� � ���� � � � �/� � � � ��� � ��- � B � �?F � �
� � ��� ��)�=� - � B ��6 -�� B � 6 �#� �#6 � �4F ���
� � � �
� 4 6 � �#6 � � �86 � ��� �/� �����
	�' � - 1 � - �����!�

Thus,
�

satisfies Equation (2.1). By Lemma 4, ���
	 ' � - 1 � - ����� is BH ��� � NP � -complete.

26

4.5 Domatic Number Problems Complete for Parallel Access to NP

In this section, we consider the problem of deciding whether or not the domatic number of
a given graph is an odd integer, and the problem of comparing the domatic numbers of two
given graphs. Applying the techniques of the previous section, we prove in Theorem 29
below that these variants of the domatic number problem are complete for PNP��� , the class of
problems that can be solved by a deterministic polynomial-time Turing machine making
parallel (a.k.a. “nonadaptive” or “truth-table”) queries to some NP oracle set. Other
characterizations of PNP��� and further results related to this important class are listed in the
introduction.

Definition 27 Define the following variants of the domatic number problem:

����� - ����� � � �0� � is a graph such that ������� is odd �%$
����� - ����� � �KJ � 6 5L � � and are graphs such that �������/� ��� �� �%$
����� - 	�
�� � �KJ � 6 5L � � and are graphs such that ������� � ����� ���

Wagner provided a sufficient condition for proving PNP��� -hardness that is analogous
to Lemma 4 except that in Lemma 28 the value of � is not fixed; see Theorem 5.2
in [Wag87]. The introduction gives a list of related PNP��� -completeness results for which
Wagner’s technique was applied.

Lemma 28 (Wagner) Let , be some NP-complete problem and - be an arbitrary
problem. If there exists a polynomial-time computable function

�
such that the equivalence

� � � � � � ! � , �$� � is odd ��� � � � 476 � ��6 �#� �86 � ��� �7�H- (4.8)

is true for each � � � and for all strings � 476 � ��6 �#� �#6 � ���@� � � satisfying that for each *
with � �G*;(� � , �
: < 47�=, implies �
: � , , then - is PNP��� -hard.

Theorem 29 ��� � - ����� , ����� - � ��� , and ����� - 	�
�� each are PNP��� -complete.

Proof. It is easy to see that each of the problems ����� - ����� , ����� - ����� , and ����� - 	�
�� belongs
to PNP��� , since the domatic number of a given graph can be determined exactly by parallel
queries to the NP oracle ����� . It remains to prove that each of these problems is PNP��� -hard.
For ����� - ����� , this follows immediately from the proof of Theorems 13 and 26, respectively,
using Lemma 28.

We now show that ��� � - ����� is PNP��� -hard by applying Lemma 28 with , being the
NP-complete problem � - � �&�����
	��!��
��&� and - being ����� - ����� . Fix any � � � , and
let � 4 6 � � 6 �#� �#6 � ��� be any given sequence of graphs satisfying that for each * with
� �.*@(� � , if � : < 4 is � -colorable, then so is � : . Since PNP��� is closed under complement,
Equation (4.8) from Lemma 28 can be replaced by

� � � � � � ! � � - � ������� 	�����
 �&�!�$� � is even � � � �
� 4 6 � � 6 � �#�#6 � ��� �7� ����� - ����� � (4.9)

27

As in the proof of Theorem 26, construct the graphs ,476 �#6 � � �76 ��� from the given
graphs � 476 � � 6 �#� �#6 � ��� according to Lemma 6, where each :�� 	 ��� : � satisfies the
implications (2.2) and (2.3). Let � denote the associative operation on graphs constructed
in the proof of Theorem 26 to sum up the domatic numbers of the given graphs, and define
the graphs:

������� � �4��
�
� ������� ��� &$4 6

�	��
��� � ��� ���� ������� �����
We now prove Equation (4.9). From left to right we have:

� � � � � � ! � � - ���������
	�����
��
���$� � is even

� � � � ��� � � � � � � � ���� ! &$4 �/� ��� � ! � �
� �

�
4�� ! � �

���� ! &$4 �/� �
4�� ! � �

��� � ! �

� � �����	����� � � ��������
��� �
� � J �	������6 ����
��� L/� � ��� 4 6 � � 6 � � �86 � ��� �7� ����� - �����!�

From right to left we have:

� � � � � � ! � � - � �&�����
	��!��
��&�!�$� � is odd

� � � �� � � � �/� � � � ��� � ! &$4 � � ��� ��� � ! � � � and ��� �;: &$4 � � ����;: � for * �� � �
� � F �)B �

4�� ! � �
��� � ! &$4 � � �

4�� ! � �
��� � ! �

� � ��
������� � F �2� ��������
��� �
� � J �	����� 6 ����
��� L � � ��� 4 6 � � 6 � �#�#6 � ��� � �� ����� - �������

Lemma 28 implies that ����� - � ��� is PNP��� -complete.
The above proof for ����� - ����� also gives PNP��� -completeness for ����� - 	�
�� .

5 The Exact Conveyor Flow Shop Problem

5.1 NP-Completeness

The conveyor flow shop problem is a minimization problem arising in real-world
applications in the wholesale business, where warehouses are supplied with goods from
a central storehouse. Suppose you are given � machines, ��4 6�� � 6 �#� �#6�� � , and � jobs,� 4 6 � � 6 � �#�#6 � � . Conveyor belt systems are used to convey jobs from machine to machine
at which they are to be processed in a “permutation flow shop” manner. That is, the jobs

28

visit the machines in the fixed order � 476�� � 6#� � �#6�� � , and the machines process the jobs in
the fixed order

� 476 � � 6 � � �76 � � . An �
� � � � task matrix
� � ���$: � � � : � � with �$: � � � � � 6 ���

provides the information which job has to be processed at which machine: �!: � � � � if job� : is to be processed at machine � � , and �$: � � � � otherwise. Every machine can process
at most one job at a time. There is one worker supervising the system. Every machine
can process a job only if the worker is present, which means that the worker occasionally
has to move from one machine to another. If the worker is currently not present at some
machine, jobs can be queued in a buffer at this machine. The objective is to minimize the
movement of the worker, where we assume the “unit distance” between any two machines,
i.e., to measure the worker’s movement, we simply count how many times he has switched
machines until the complete task matrix has been processed.3 Let � ���	� � � � denote the
minimum number of machine switches needed for the worker to completely process a given
task matrix

�
, where the minimum is taken over all possible orders in which the tasks in�

can be processed. Define the decision version of the conveyor flow shop problem by

��
�� � � �KJ � 6 ��L � � is a task matrix and � is a positive integer such that � ���	� � � � � �(���
Espelage and Wanke [EW00,Esp01,EW01,EW03] introduced the problem ��
�� �

defined above. They studied ��
�� � and variations thereof extensively; in particular, they
showed that ��
�� � is NP-complete. In our proof of Theorem 33 we apply Lemma 30 below,
that provides a reduction to ��
 � � having certain useful properties.

To show that ��
�� � is NP-complete, Espelage provided, in a rather involved 17 pages
proof (see pp. 27–44 of [Esp01]), a reduction 	 from the � - ��
�� problem to ��
�� � , via the
intermediate problem of finding a “minimum valid block cover” of a given task matrix

�
.

In particular, finding a minimum block cover of
�

directly yields a minimum number of
machine switches. Espelage’s reduction can easily be modified so as to have certain useful
properties, which we state in the following lemma. The details of this modification can be
found in pp. 37–42 of [Rie02]. In particular, prior to the Espelage reduction, a reduction
from the (unrestricted) satisfiability problem to � - ��
�� is used that has the properties stated
as Equations (5.10) and (5.11) below.

Lemma 30 (Espelage and Riege) There exists a polynomial-time many-one reduction
	 that witnesses � - ��
�� ���� ��
 � � and satisfies, for each given boolean formula , the
following properties:

1. 	 �� � � J ��� 6�	 � L , where
���

is a task matrix and 	
� � � is an odd number.

2. � ���	� � ��� � � 	 � B0� � , where � � denotes the minimum number of clauses of not
satisfied under assignment � , where the minimum is taken over all assignments � of .
Moreover, � � � � if � � - ��
�� , and � � � � if �� � - ��
�� .

3We do not consider possible generalizations of the problem ������� such as other distance functions,
variable job sequences, more than one worker, etc. We refer to Espelage’s thesis [Esp01] for results on
such more general problems.

29

In particular, � � - ��
�� if and only if � ���	� � ��� � is odd.

5.2 Completeness in the Higher Levels of the Boolean Hierarchy

We are interested in the complexity of the exact versions of ��
�� � .

Definition 31 For each � � � , define the exact version of the conveyor flow shop problem
by

���
	 '9� - � - ��
 � � �
�
J � 6 � L

�
is a task matrix and � D�� is a set of �

noncontiguous integers with � ���	� � � �)� � � �

Since ��
�� � is in NP, the upper bound of the complexity of ��� 	 ' � - � - ��
�� � stated in
Fact 32 follows immediately. Theorem 33 proves a matching lower bound.

Fact 32 For each � � � , ���
	 '9� - � - ��
 � � is in BH ��� � NP � .
Theorem 33 For each � � � , ���
	 '9� - � - ��
�� � is BH ����� NP � -complete.

Proof. By Fact 32, ���
	 ' � - � - ��
�� � is contained in BH ��� � NP � for each � . To prove
BH ��� � NP � -hardness of ���
	 ' � - � - ��
�� � , we again apply Lemma 4, with some fixed NP-
complete problem , and with ��� 	 ' � - � - ��
�� � being the problem - from this lemma. The
reduction

�
satisfying Equation (2.1) from Lemma 4 is defined by using two polynomial-

time many-one reductions, 	 and
�

.
We now define the reductions 	 and

�
. Fix the NP-complete problem , . Let

� 476 � � 6#� � �#6 � ��� be strings in � � satisfying that ��� ��� 4 � ����� � � � � � ����� ����� ��� ��� � , where ���
denotes the characteristic function of , , i.e., ��� � � � � � if � � , , and ��� � � � � � if � �� , .
Wagner [Wag87] observed that the standard reduction (cf. [GJ79]) from the (unrestricted)
satisfiability problem to � - ��
�� can be easily modified so as to yield a reduction

�
from , to

� - ��
�� (via the intermediate satisfiability problem) such that, for each � � � � , the boolean
formula � � ��� � satisfies the following properties:

� � , � � �
� � � � $ (5.10)

� �� , � � �
� � � � F ��6 (5.11)

where �
� �
;��� � � � � �

clauses of are satisfied under assignment � � , and � �
denotes the

number of clauses of . Moreover, � �
is always odd.

Let /4 6 � 6 �#� �#6 ��� be the boolean formulas after applying reduction
�

to each
given � ! � � � , i.e., ! � � ��� ! � for each � . For �=� � ��6 �
6#� � �76 � �(� , let � ! � � �

� be
the number of clauses in ! , and let � ! � �

�
� denote the maximum number of satisfiable

clauses of ! , where the maximum is taken over all assignments of ! . For each � , apply
the Lemma 30 reduction 	 from � - ��
�� to ��
�� � to obtain � � pairs J � ! 6�	 ! L�� 	 �� ! � , where

30

each
� ! � ���

� is a task matrix and each 	 ! � 	
�
� is the odd number corresponding to !

according to Lemma 30. Use these � � task matrices to form a new task matrix:

� �

�����
� 4 � ����� �
� � � . . .

...
...

. �
� ����� � � ���

������ �

Every task of some matrix
� ! , where � � � � � � , can be processed only if all tasks of

the matrices
� : with *(� have already been processed; see [Esp01,Rie02] for arguments

as to why this is true. This implies that

� ���	� � � � �
����
! " 4

� ���	� � � ! �7�
Let 	 � � ���!#" 4 	 ! ; note that 	 is even. Define the set � � ��	<B���6�	 B � 6 �#� �86�	<B � �5F ��� ,
and define the reduction

�
by
� � � 476 � � 6 � � �86 � ��� �/��J � 6 � L . Clearly,

�
is polynomial-time

computable.
Let � ! � � � � �
� � � � � � �

clauses of ! are not satisfied under assignment � � .
Equations (5.10) and (5.11) then imply that for each � :

� ! � � ! F � ! �
� � if � ! � ,
� if � ! �� , .

Recall that, by Lemma 30, we have � ���	� � � ! �/� 	 ! B � ! . Hence,

� � � � � � ! � , �$� � is odd
� � ���� � � � �/� � � � � 476#� � �76 � � ! &$4 �=, and � � ! 6#� � �76 � ��� �� , �
� � ���� � � � �/� � � � ��4 � � 476 �#� �#6���� ! &$4 � � � ! &$4 and ��� ! � � � ! F ��6 � � �86������ � � ��� F � �
� � ���� � � � �/� � � � � ���	� � � 4 � � 	�476 � � �86 � ���	� � � � ! &$4 � ��	�� ! &$4 and

� ���	� � � � ! � � 	�� ! B ��6 � �#�86 � ���	� � � ��� � ��	���� B � �
� � ���� � � � �/� � �

�
� ���	� � � � �

����
: " 4

� ���	� � � : �/��� ����
: " 4

	 :
	 B � � F � � B �
� � � ���	� � � �)� � � ��	 B ��6�	 B � 6 �#� �#6�	 B � � F ���
� � � ��� 4 6 � ��6 �#� �#6 � ��� � � J � 6� � L7�����
	 ' � - � - ��
�� ���

Thus,
�

satisfies Equation (2.1). By Lemma 4, ���
	 ' � - � - ��
�� � is BH ����� NP � -complete.

For the special case of � ��� , Theorem 33 gives the following corollary.

Corollary 34 ���
	 ' � - � - ��
�� � is DP-complete.

31

6 Conclusions and Open Questions

In this paper, we have shown that the exact versions of the domatic number problem
and of the conveyor flow shop problem are complete for the levels of the boolean
hierarchy over NP. Our main results are proven in Section 4 in which we have studied
the exact versions of generalized dominating set problems. Based on Heggernes and
Telle’s uniform approach to define graph problems by partitioning the vertex set of a
graph into generalized dominating sets [HT98], we have considered problems of the form
���
	�' � - ����6��!6 ��� - � 	��)����(�� � , where the parameters � and � specify the number of neighbors
that are allowed for each vertex in the partition. We obtained DP-completeness results for
a number of such problems. These results are summarized in Table 2 in Section 4.1.

In particular, the minimization problems ���
	 ' � - � �
68� � 6 ����6 � � - � 	��)�(�(�� � and
���
	�' � - � �
6#� ���)6 � � - � 	����(��(��9� both are DP-complete, and so are the maximization
problems ���
	 '9� - � � 6 � < 6 � < � - � 	��)�(�(�� � and ���
	 '9� - � �
6 � 6 � < � - � 	��)�(�(�� � . Since
���
	�' � - ����6 � 6 � < � - � 	��)�(�(�� � equals ���
	 ' � - � - ����� , the latter result says that, for each
given integer � � � , it is DP-complete to determine whether or not ������� � � for a given
graph � . In contrast, ���
	�' � - � - ����� is coNP-complete, and thus this problem cannot be DP-
complete unless the boolean hierarchy collapses. For � �0�9� 6 -
� , the question of whether
or not the problems ��� 	 ' � - � - ����� are DP-complete remains an interesting open problem.

The same question arises for the other problems studied: It is open whether or not the
value of � � � for � � � � � < and the value of � � � in the other cases is optimal in
the results stated above. We were only able to show these problems NP-complete or coNP-
complete for the value of � � � if � � � � � < , and for the value of � � � in the other
cases, thus leaving a gap between DP-completeness and membership in NP or coNP.

Another interesting open question is whether one can obtain similar results for the
minimization problems ��� 	 ' � - � �(6��!6#� �
6 ��� � - � 	����(��(��9� for ��� �)� �
��6#� �
6 ����6#� ���)� . It
appears that the constructions that we used in proving Theorems 13, 16, 21, and 24 do
not work here.

As mentioned in the introduction and in Section 4, the corresponding gap for the
exact chromatic number problem was recently closed [Rot03]. The reduction in [Rot03]
uses both the standard reduction from � - ��
�� to � - � �������
	����� ��&� (cf. [GJ79]) and a very
clever reduction found by Guruswami and Khanna [GK00]. The decisive property of the
Guruswami–Khanna reduction is that it maps each satisfiable formula to a graph � with
� ����� � � , and it maps each unsatisfiable formula to a graph � with � ����� � � . That
is, the graphs they construct are never - -colorable. To close the above-mentioned gap for
the exact domatic number problem, one would have to find a reduction from some NP-
complete problem to ����� with a similarly strong property: the reduction would have to
yield graphs that never have a domatic number of three.

In Sections 4.4 and 4.5, the DP-completeness results of Sections 4.2 and 4.3 are lifted
to complexity classes widely believed to be more powerful than DP. In Section 4.4,

32

Theorem 26 generalizes Theorem 13, which states that ���
	�' � - � - ����� is DP-complete, by
showing that certain exact domatic number problems are complete in the higher levels of
the boolean hierarchy over NP. The open questions raised above for, e.g, ���
	 ' � - � - ����� with
� � �9� 6 -
� apply to Theorem 26 as well, which is not optimal either. Section 4.5 proves the
variants ��� � - ����� , ����� - � ��� , and ����� - 	�
�� of the domatic number problem PNP��� -complete.

In Section 5, we studied the exact conveyor flow shop problem using similar techniques.
We proved that ���
	�' � - � - ��
 � � is DP-complete and ���
	�' � - � - ��
�� � is BH ��� � NP � -complete.
Note that in defining these problems, we do not specify a fixed set � with � fixed values
as problem parameters; see Definition 31. Rather, only the cardinality � of such sets is
given as a parameter, and � is part of the problem instance of ���
	 '9� - � - ��
�� � . The reason
is that the actual values of � depend on the input of the reduction

�
defined in the proof

of Theorem 33. In particular, the number 	
�

from Lemma 30, which is used to define the
number 	 � � ���!#" 4 	 ! in the proof of Theorem 33, has the following form (see [Esp01,
Rie02]):

	
� ��� � ��� B ��* � � B � ���B � � � � B ��� � 6

where � is the number of variables and � is the number of clauses of the given boolean
formula , and ��� , � � , and ��� denote respectively the number of “coupling, inverting
coupling, and interrupting elements” of the “minimum valid block cover” constructed in the
Espelage reduction [Esp01] from � - ��
�� to ��
�� � . It would be interesting to know whether
one can obtain BH ��� � NP � -completeness of ���
	 '9� - � - ��
 � � even if a set � of � fixed values
is specified a priori.

Acknowledgments. We are grateful to Gerd Wechsung for his interest in this paper, for
many helpful conversations and, in particular, for pointing out the coNP-completeness of
���
	�' � - � - ��� � . We also thank two anonymous referees whose comments and suggestions
much helped to improve the presentation of this paper, and we thank Mitsunori Ogihara for
his guidance during the editorial process.

References

[Adl78] L. Adleman. Two theorems on random polynomial time. In Proceedings of the 19th
IEEE Symposium on Foundations of Computer Science, pages 75–83, 1978.

[AH92] E. Allender and L. Hemachandra. Lower bounds for the low hierarchy. Journal of the
ACM, 39(1):234–251, 1992.

[BBJ < 89] A. Bertoni, D. Bruschi, D. Joseph, M. Sitharam, and P. Young. Generalized boolean
hierarchies and boolean hierarchies over RP. In Proceedings of the 7th Conference on
Fundamentals of Computation Theory, pages 35–46. Springer-Verlag Lecture Notes in
Computer Science #380, August 1989.

33

[BCO93] R. Beigel, R. Chang, and M. Ogiwara. A relationship between difference hierarchies
and relativized polynomial hierarchies. Mathematical Systems Theory, 26(3):293–310,
1993.

[Bei91] R. Beigel. Bounded queries to SAT and the boolean hierarchy. Theoretical Computer
Science, 84(2):199–223, 1991.

[Bei94] R. Beigel. Perceptrons, PP, and the polynomial hierarchy. Computational Complexity,
4(4):339–349, 1994.

[BH91] S. Buss and L. Hay. On truth-table reducibility to SAT. Information and Computation,
91(1):86–102, March 1991.

[BHW91] R. Beigel, L. Hemachandra, and G. Wechsung. Probabilistic polynomial time is closed
under parity reductions. Information Processing Letters, 37(2):91–94, 1991.

[BKT94] H. Buhrman, J. Kadin, and T. Thierauf. On functions computable with nonadaptive
queries to NP. In Proceedings of the 9th Structure in Complexity Theory Conference,
pages 43–52. IEEE Computer Society Press, 1994.

[BLS99] A. Brandst ädt, V. Le, and J. Spinrad. Graph Classes: A Survey. SIAM Monographs
on Discrete Mathematics and Applications. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1999.

[Bon85] M. Bonuccelli. Dominating sets and dominating number of circular arc graphs. Discrete
Applied Mathematics, 12:203–213, 1985.

[CGH < 88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and
G. Wechsung. The boolean hierarchy I: Structural properties. SIAM Journal on Com-
puting, 17(6):1232–1252, 1988.

[CGH < 89] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and
G. Wechsung. The boolean hierarchy II: Applications. SIAM Journal on Computing,
18(1):95–111, 1989.

[CK96] R. Chang and J. Kadin. The boolean hierarchy and the polynomial hierarchy: A closer
connection. SIAM Journal on Computing, 25(2):340–354, April 1996.

[CM87] J. Cai and G. Meyer. Graph minimal uncolorability is �
�

-complete. SIAM Journal on
Computing, 16(2):259–277, April 1987.

[Esp01] W. Espelage. Bewegungsminimierung in der Förderband-Flow-Shop-Verarbeitung.
PhD thesis, Heinrich-Heine-Universit ät D üsseldorf, D üsseldorf, Germany, 2001. In
German.

[EW00] W. Espelage and E. Wanke. Movement optimization in flow shop processing with
buffers. Mathematical Methods of Operations Research, 51(3):495–513, 2000.

34

[EW01] W. Espelage and E. Wanke. A 3-approximation algorithmus for movement
minimization in conveyor flow shop processing. In Proceedings of the 26th
International Symposium on Mathematical Foundations of Computer Science, pages
363–374. Springer-Verlag Lecture Notes in Computer Science #2136, 2001.

[EW03] W. Espelage and E. Wanke. Movement minimization for unit distances in conveyor
flow shop processing. Mathematical Methods of Operations Research, 57(2), 2003. To
appear.

[Far84] M. Farber. Domination, independent domination, and duality in strongly chordal
graphs. Discrete Applied Mathematics, 7:115–130, 1984.

[FHK00] U. Feige, M. Halldórsson, and G. Kortsarz. Approximating the domatic number. In
Proceedings of the 32nd ACM Symposium on Theory of Computing, pages 134–143.
ACM Press, May 2000.

[Gil77] J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on
Computing, 6(4):675–695, 1977.

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York, 1979.

[GK00] V. Guruswami and S. Khanna. On the hardness of 4-coloring a 3-colorable graph. In
Proceedings of the 15th Annual IEEE Conference on Computational Complexity, pages
188–197. IEEE Computer Society Press, May 2000.

[GNW90] T. Gundermann, N. Nasser, and G. Wechsung. A survey on counting classes. In
Proceedings of the 5th Structure in Complexity Theory Conference, pages 140–153.
IEEE Computer Society Press, July 1990.

[Gol80] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

[GRW01] A. Große, J. Rothe, and G. Wechsung. Relating partial and complete solutions and
the complexity of computing smallest solutions. In Proceedings of the Seventh Italian
Conference on Theoretical Computer Science, pages 339–356. Springer-Verlag Lecture
Notes in Computer Science #2202, October 2001.

[GRW02] A. Große, J. Rothe, and G. Wechsung. Computing complete graph isomorphisms and
hamiltonian cycles from partial ones. Theory of Computing Systems, 35(1):81–93,
February 2002.

[Hau14] F. Hausdorff. Grundzüge der Mengenlehre. Walter de Gruyten and Co., 1914.

[Hem89] L. Hemachandra. The strong exponential hierarchy collapses. Journal of Computer
and System Sciences, 39(3):299–322, 1989.

35

[HHR97a] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Exact analysis of Dodgson
elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP.
Journal of the ACM, 44(6):806–825, November 1997.

[HHR97b] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Raising NP lower bounds to parallel
NP lower bounds. SIGACT News, 28(2):2–13, June 1997.

[HHW99] L. Hemaspaandra, H. Hempel, and G. Wechsung. Query order. SIAM Journal on
Computing, 28(2):637–651, 1999.

[HR97] L. Hemaspaandra and J. Rothe. Unambiguous computation: Boolean hierarchies and
sparse Turing-complete sets. SIAM Journal on Computing, 26(3):634–653, June 1997.

[HR98] E. Hemaspaandra and J. Rothe. Recognizing when greed can approximate maximum
independent sets is complete for parallel access to NP. Information Processing Letters,
65(3):151–156, February 1998.

[HRS02] E. Hemaspaandra, J. Rothe, and H. Spakowski. Recognizing when heuristics can
approximate minimum vertex covers is complete for parallel access to NP. In
Proceedings of the 28th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG 2002), pages 258–269. Springer-Verlag Lecture Notes in
Computer Science #2573, June 2002.

[HT98] P. Heggernes and J. Telle. Partitioning graphs into generalized dominating sets. Nordic
Journal of Computing, 5(2):128–142, 1998.

[HW91] L. Hemachandra and G. Wechsung. Kolmogorov characterizations of complexity
classes. Theoretical Computer Science, 83:313–322, 1991.

[JT95] B. Jenner and J. Torán. Computing functions with parallel queries to NP. Theoretical
Computer Science, 141:175–193, 1995.

[Kad88] J. Kadin. The polynomial time hierarchy collapses if the boolean hierarchy collapses.
SIAM Journal on Computing, 17(6):1263–1282, 1988. Erratum appears in the same
journal, 20(2):404, 1991.

[Kad89] J. Kadin. ���
� � �! #" � & and sparse Turing-complete sets for NP. Journal of Computer and

System Sciences, 39(3):282–298, 1989.

[Ko89] K. Ko. Relativized polynomial time hierarchies having exactly � levels. SIAM Journal
on Computing, 18(2):392–408, 1989.

[Ko91] K. Ko. On adaptive versus nonadaptive bounded query machines. Theoretical
Computer Science, 82:51–69, 1991.

[Kre88] M. Krentel. The complexity of optimization problems. Journal of Computer and System
Sciences, 36:490–509, 1988.

36

[KS94] H. Kaplan and R. Shamir. The domatic number problem on some perfect graph families.
Information Processing Letters, 49(1):51–56, January 1994.

[KSW87] J. K öbler, U. Sch öning, and K. Wagner. The difference and truth-table hierarchies for
NP. R.A.I.R.O. Informatique théorique et Applications, 21:419–435, 1987.

[LS95] T. Long and M. Sheu. A refinement of the low and high hierarchies. Mathematical
Systems Theory, 28(4):299–327, July/August 1995.

[Ogi94] M. Ogiwara. Generalized theorems on relationships among reducibility notions to
certain complexity classes. Mathematical Systems Theory, 27(3):189–200, 1994.

[Ogi96] M. Ogihara. Functions computable with limited access to NP. Information Processing
Letters, 58(1):35–38, May 1996.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[PY84] C. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets of
complexity). Journal of Computer and System Sciences, 28(2):244–259, 1984.

[PZ83] C. Papadimitriou and S. Zachos. Two remarks on the power of counting. In Proceedings
of the 6th GI Conference on Theoretical Computer Science, pages 269–276. Springer-
Verlag Lecture Notes in Computer Science #145, 1983.

[Rie02] T. Riege. Vollst ändige Probleme in der Booleschen Hierarchie über NP. Diploma thesis,
Heinrich-Heine-Universit ät D üsseldorf, Institut f ür Informatik, D üsseldorf, Germany,
August 2002. In German.

[Rot03] J. Rothe. Exact complexity of Exact-Four-Colorability. Information Processing Letters,
87(1):7–12, July 2003.

[RSV03] J. Rothe, H. Spakowski, and J. Vogel. Exact complexity of the winner problem for
Young elections. Theory of Computing Systems, 36(4):375–386, June 2003.

[Sch78] T. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th ACM
Symposium on Theory of Computing, pages 216–226. ACM Press, May 1978.

[Val76] L. Valiant. The relative complexity of checking and evaluating. Information Processing
Letters, 5(1):20–23, 1976.

[Wag87] K. Wagner. More complicated questions about maxima and minima, and some closures
of NP. Theoretical Computer Science, 51:53–80, 1987.

[Wag90] K. Wagner. Bounded query classes. SIAM Journal on Computing, 19(5):833–846,
1990.

37

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

