
FIFO is Unstable at Arbitrarily Low Rates

(Even in Planar Networks)∗

Dimitrios Koukopoulos† Marios Mavronicolas‡ Paul Spirakis§

Abstract

We prove that the FIFO (First-In-First-Out) protocol is unstable in the standard model of Ad-
versarial Queueing Theory [7] for arbitrarily low rates of packet injection. In order to prove this, we
proceed as follows:

(1) We first consider the extension of the standard model to networks with dynamic capacities,
which was introduced in [8]. We assume that each network link may arbitrarily take on a value
in the two-valued integer set {1, C} where C > 4 is an integer parameter (the high capacity).
Here, for any r > 0, we construct a FIFO network (whose size is a small polynomial in 1

r
) which

is unstable at any rate at least r in this setting.

(2) Then, we show how to simulate the construction in (1) in order to produce a FIFO network
with all link capacities being now equal to C, which is also unstable at any rate at least r in
this setting.

(3) Finally, we provide a simple simulation of the construction in (2) in order to produce a FIFO
network (whose size is still a small polynomial in 1

r
) with all capacities being now equal to

1, which is similarly unstable. Since all capacities are equal to 1 in the standard model of
Adversarial Queueing Theory [7], this implies our main result: FIFO is unstable in the standard
model of Adversarial Queueing Theory model for arbitrarily low rates of packet injection.

We emphasize that all of our networks are planar; we allow though the paths of packets to have
cycles of edges that can be repeated a bounded number of times.

Our result closes a major open problem, that of FIFO (in)stability, in the standard model of
Adversarial Queueing Theory, which was already posed in the original pioneering work of Borodin et
al. [7].

Note: Due to lack of space, many of our proofs are only sketched in this extended abstract; full proofs are
included in a clearly marked Appendix that may be read at the discretion of the Program Committee.

∗This work has been accepted for (electronic) publication in Electronic Colloquium on Computational Complexity
(ECCC), ECCC Reports 2003, Technical Report TR03-016, accepted on March 24, 2003. This work has been par-
tially supported by the IST Program of the European Union under contract numbers IST-1999-14186 (ALCOM-FT) and
IST-2001-33116 (FLAGS), by funds from the Joint Program of Scientific and Technological Collaboration between Greece
and Cyprus, and by funds for the promotion of research at University of Cyprus.

†
Contact Author. Department of Computer Engineering and Informatics, University of Patras, Rion, 265 00 Patras,

Greece, & Computer Technology Institute, 61 Riga Feraiou, P. O. Box 1122, 261 10 Patras, Achaia, Greece. Fax: +30-
261-0-960442, Email: Dimitrios.Koukopoulos@cti.gr

‡Departemnt of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus. Email: mavronic@ucy.ac.cy
§Department of Computer Engineering and Informatics, University of Patras, Rion, 265 00 Patras, Greece, & Computer

Technology Institute, P. O. Box 1122, 261 10 Patras, Greece. Email: spirakis@cti.gr

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 16 (2003)

ISSN 1433-8092

1 Introduction

Motivation, Framework and Statement of Contribution. We are interested in the behavior
of packet-switched networks in which packets arrive dynamically at the nodes, and they are routed
across the links at discrete time steps. Earlier research work on analyzing the performance of packet-
switched networks has considered probabilistic assumptions and modeled packet injection as an oblivious
randomized process; see, e.g., [12] for a wealth of results in this direction. Nevertheless, recent years
have witnessed a vast amount of research work on the analysis of packet-switched networks under non-
probabilistic assumptions. In particular, the model of Adversarial Queueing Theory, proposed in the
pioneering work of Borodin et al. [7], has replaced probabilistic assumptions with worst-case ones; that
work assumes an adversary A that controls packet generation and path determination in an adversarial
way. In doing so, the adversary A may not exceed some specific rate r of packet injections.

The framework of our work is Adversarial Queueing Theory, henceforth abbreviated as AQT. More
specifically, we are interested in issues of stability – will the number of packets in the network remain
bounded at all times? The answer to this question may depend on the adversarial injection rate r, the
network topology, and the contention-resolution protocol used when more than one packets need to cross
a given link at the same time step. Taking these factors into account, say that a protocol P is stable
on a network N [7] against an adversary A with injection rate r if there exists a (universal) constant B
(that may depend on N , A and r) such that the number of packets in the network (starting from an
empty initial configuration) is bounded by B at all times. The major goal of our study is to establish
stability properties of the common, FIFO (First-In-First-Out) protocol within the framework of AQT.

In their very early work introducing AQT, Borodin et al. [7, Section 8] already posed the open
problem of whether FIFO may become unstable in the model of AQT when the injection rate of the
adversary is arbitrarily low: ”For packet routing, can FIFO be made unstable for arbitrarily small positive
rates of injection in the adversarial model?” The principal contribution of our work is an affirmative
answer to this fundamental open question from [7].

In our analysis, we consider a realistic extension due to Borodin et al. [8] to the standard model
of AQT originally proposed in [7]; in this extension, the adversary is able to control (in addition) the
capacity of each link, which is the rate at which the link forwards outgoing packets.1 Henceforth, call
this the dynamic capacities model of AQT (as opposed to the standard model of AQT [7]). Besides
the inherent practical interest in this extended model, we chose to adopt it in our analysis as the host
of an important immediate step in our proof that FIFO is unstable (at arbitrarily low rates of packet
injection) in the standard model of AQT.

Summary of Contribution. We prove here that FIFO can be unstable at arbitrarily low rates of
packet injections in the (standard) model of AQT. Our proof technique employs the dynamic capacities
model of AQT [8] as the host of an important immediate step in our adversarial constructions. More
specifically, our proof consists of the following steps:

1. We consider first a restriction of the dynamic capacities model where at each time step, each link
capacity may take any one of two integer values 1 and C > 4, where C is a parameter called
the high capacity. In this model, given any rate r > 0, we construct an adversary A and a
FIFO network Nr, (whose size is a small polynomial in

1
r
). We prove that Nr is unstable for the

adversary A at all rates at least r.

2. We then modify the adversary A and the network Nr via appropriate changes to the network
topology and to the paths of the injected packets. For any r > 0 this yields an adversary A′ and
a FIFO network N ′

r in a way that all link capacities in the network N
′
r are equal to C at all times.

1In the standard model of AQT [7], all link capacities are beyond the control of the adversary and are all equal to 1 at
all times.

1

k1

G (1)
k2 kM

G (M)
kM +1

e0

Figure 1: The network Nr. The edge between G(i) and G(i+1) is the output edge of G(i) and the input
edge of G(i+ 1).

We prove that N ′
r is unstable when the adversary A

′ injects packets into the network at rate at
least r.

3. Finally, we modify the adversary A′ and the network N ′
r via appropriate changes to the network

topology and to the paths of the injected packets. This yields an adversary A′′ and a FIFO network
N ′′

r in a way that all link capacities in the network N
′
r are equal to 1 at all times. (Thus, this

complies to the standard model of AQT [7].) We prove that N ′′
r is unstable when the adversary

A′′ injects packets into the network at rate at least r. Hence, this implies that FIFO is unstable
at arbitrarily low injection rates in the standard model of AQT [7], which is our main result.

We remark that our final network N ′′
r is planar (as also are the intermediate networks Nr and

N ′
r). Note that existing large-scale communication platforms for computation and coordination, such as
the Internet, are inherently planar; indeed, quantitative studies of graph-theoretic models for Internet
topology, such as the one in [23], take this planarity feature into account by modelling the Internet
using regular (planar) topologies (such as rings, trees and stars), other well-known planar topologies
such as the ARPAnet or the NSFnet backbone, and other randomly generated planar topologies. Hence,
we consider that our instability result is not only of mere mathematical interest, but it enjoys a more
natural and intuitive appeal to the contemporary technology of communication networks.

We also note that the adversary A′, and hence the adversary A′′ as well, are allowed to inject packets
along non-simple paths with repeated edges. (This is allowed in the standard model of AQT [7, Section
3].) This feature is not far from practical reality where control messages and daemons are installed to
periodically visit a particular sequence of network switches. Consider, for example, periodically sent
daemon messages that collect performance information in the context of implicit feedback schemes for
closed-loop flow control [21] from which changes in service rates are inferred. We emphasize that we take
though special care in our adversarial constructions so that all employed non-simple paths are traversed
a number of times that is bounded by a fixed function of C. (This is so as to comply to the definitions
and the rate restriction of the standard model of AQT [7, Section 3].)

Finally, we believe that the introduction of simulation techniques in our proofs is a second major
contribution to our work. They allow to prove instability in a model with a stronger adversary and
inherit via simulation the instability to a model with a weaker adversary. Simulation techniques may
be found useful in other instability proofs as well (both inside and outside AQT).

Details and Intuition for the Contribution.

The initial network Nr and adversary A. The (planar) network Nr is a chain of M gadgets G1, . . . ,GM ,
for some integer M > 0 that will be appropriately chosen later (as a function of the rate r). Roughly
speaking, each gadget has an input edge and an output edge. The output edge of each gadget is input
to the next, except for the output edge of the last gadget which connects, via a single edge e0, to the
input of the first. (See Figure 1 for an illustration.) Each gadget is a (planar) subnetwork consisting of
two consecutive long chains of edges and a few other edges shortcutting some segments of these chains.

2

The actions of the adversary are grouped into separate phases of suitable durations. We prove that
the network population (i.e., number of packets in the network) increases from one phase to the next. In
turn, each phase is split into a number of consecutive subphases. At the end of each subphase, packets
are only queued in a single gadget; thus, each subphase corresponds to the movement of packets from
one gadget to the next.

In each subphase, the adversary injects a first flow of packets into paths of edges of capacity C;
simultaneously, the adversary delays a second packet flow (conflicting with the first) over paths of edges
of capacity 1. Then, in the next consecutive time interval, the adversary does the opposite: it delays
the first flow by changing all of its path edges to capacity 1, while it amplifies and expedites the second
flow by both injecting more packets and changing all of its path edges to capacity C. This alternating
throttling phenomenon, combined with suitably delaying older flows (via single edge injections) results
to an increase of the number of packets in the network in each subphase, and this increase is inherited
to the entire phase. This technique represents the essence and the main idea upon which our adversarial
construction for the instability proof is built.

In some more detail, the instability proof (for the network Nr under the adversary A) is inductive
on the number of phases; thus, the induction step must assure that the initial conditions for one phase
(induction hypothesis) must be reproduced for the next phase. In doing so, however, the proof allows
for a small temporary decrease in the network population at the end of a phase. This decrease is
counterbalanced by suitably selecting the number of subphases within each phase, which is taken equal
to approximately the number of gadgets in the network.

The network N ′
r and the adversary A′. Overall, the instability proof for the network N ′

r is a simulation
of the instability proof of the network Nr under the adversary A. The network N

′
r is obtained from the

network Nr by replacing all edges of the network Nr that underwent changes in their capacity (from
C to 1) by appropriate (still planar) cyclic subnetworks. The role of these subnetworks is to simulate
the drop of capacity from C to 1 via some sort of ”busy-waiting” of some of the packets in the cycles.
Thus, some packets are now assigned to non-simple paths. The proof of instability for the network Nr

under the adversary A is a simulation proof; that is, we simulate the (already established) instability
of the network Nr (under the adversary A) over to the network N ′

r (under the adversary A
′).

We prove that such cyclic paths only need to have a length bounded by a function of C; thus,
packets assigned to non-simple paths only need to traverse these paths a number of times bounded by
a function of C. However, in order to guarantee that the injection rate of the adversary is r, we must
carefully account for multiple edge passings (due to the packets assigned to non-simple paths).

The network N ′′
r and the adversary A′′. Overall, the instability proof for the network N ′′

r under the
adversary A′′ is a simulation of the instability proof for the network N ′

r under the adversary A
′. Ob-

taining the network N ′′
r from the network Nr is intuitively very simple: we just replace each edge that

ever took on capacity C by C parallel edges each of capacity 1. This replacement clearly simulates all
instances where capacities were equal to C in a network where all capacities equal to 1 at all times.
Some special care is needed though to handle groups of packets accumulated in an edge of capacity
C (in the adversarial construction for the network N ′

r under the adversary A
′) whose number is not a

multiple of C. For the simulation to be “perfect” (so that none of them lack behind), we have to slightly
modify the network N ′

r by adding some small cycles of two edges each, and we also have to suitably
adjust the packet paths assigned by the adversary A′′.

Related Work and Comparison.

Adversarial Queueing Theory and FIFO Instability. AQT was developed in the pioneering work of Borodin
et al. [7] as a more robust model for packet generation and path determination in packet-switched
networks. In recent years, AQT has received a lot of flourishing interest and attention; see, e.g., [1, 3, 5,
8, 15, 18, 19, 20, 22]. Extensions and variations to AQT have appeared in [2, 8]. Specifically, Aiello et
al. [2] have considered an extension to adaptive path selection; Borodin et al. [8] introduced the dynamic

3

capacities model of AQT considered in this work, and a related model of slowdowns, where links may
temporarily “cease” without forwarding any packets. In work that predated AQT, Cruz [13, 14] designed
a similarly adversarial “leaky-bucket” model of permanent sessions to capture the burstiness of inputs
in communication networks. (Andrews [4] demonstrates instability of FIFO in the model of Cruz.)

The instability of FIFO in the standard model of AQT was first established by Andrews et al. [5,
Theorem 2.10] for injection rates at least 0.85. Improved lower bounds of 0.8357 and 0.749 on threshold
rates for FIFO instability were subsequently presented by Diaz et al. [15, Theorem 3] and by Koukopoulos
et al. [18, Theorem 5.1]. The previous record of an injection rate for FIFO instability is due to Lotker
et al. [20, Theorem 3.13]; in a breakthrough work, they presented a construction of a FIFO network
which is unstable at any injection rate r larger than 1

2 . The construction of Lotker et al. [20, Section
3] uses gadgets and has inspired the use of gadgets in our construction as well; however, dropping the
instability rate down to 0 has required the use of very different gadgets and more involved adversaries
for them, which exploit their power of dynamically changing the capacities, than the ones used in [20].
This has resulted in a far more delicate analysis in our instability proof.

Independently of our work and at around the same time, Bhattacharjee and Goel [6] claimed a
similar to (but different than) our result on the instability of FIFO in the standard model of AQT.
Specifically, they present a different network construction and an adversary that leads to instability at
any arbitrarily low injection rate. The construction of Bhattacharjee and Goel [6] applies to a slightly
different version of the standard model of AQT [7] where packets are restricted to follow paths with
no repeated edges. However, their network is highly non-planar. In comparison, our network Nr is
planar, while its adversary generates paths with no repeated edges; however, this network is unstable
(at arbitrarily low rate) in the dynamic capacities model of AQT. Moreover, our network N ′′

r is still
planar, and it becomes unstable in the standard model of AQT; however, its adversary generates paths
with repeated edges. Thus, our results are incomparable with the claimed result of Bhattacharjee and
Goel [6], and none of them implies the other.

The dynamic capacities model of AQT employed in this work was introduced in the recent work
of Borodin et al. [8]. That work introduced stability-preserving transformations to prove that some
stability results carry through from the standard model of AQT to the dynamic capacities model of
AQT. The simulation techniques we introduce in this work follow the opposite direction: they establish
that the instability properties of FIFO are unfortunately inherited down as one goes from the dynamic
capacities model of AQT to the standard model of AQT. Thus, our simulations may be viewed as
instability-preserving transformations.

Relation to Bramson’s Work [9, 10, 11]. Bramson studied FIFO stability (and instability) in two different
probabilistic models. In [11], Bramson showed that FIFO is stable on any network and for all rates
r < 1 if packets are injected by a Poisson process, and the time for a packet to traverse an edge is an
i.i.d. exponential random variable (i.e., the network is Kelly-type [17]). Bramson [9, 10] also showed
that FIFO can become unstable at arbitrarily low injection rates in a model of job-shop scheduling.

Superficially, it might seem that a minor modification to Bramson’s techniques could imply our
result (and the related claimed result of Bhattacharjee and Goel [6] as well). However, Bramson’s
constructions [9, 10, 11] as well as the open problem of the stability of FIFO in the standard model of
Adversarial Queueing Theory (originally posed in [7]) have both been known for quite some time now,
and no connection has so far been found. We will attempt to give some reasons why. In Bramson’s
constructions [9, 10], the same job can visit the same shop many times (actually, the number of times
depends on execution time!), while it may receive a different mean processing time on each visit. If one
tries to adapt Bramson’s technique to a FIFO network, she immediately faces the technical problem of
forcing different packets queued up at the same link to have different traversal times. Thus, the same link
should appear to be of different speed to different packets. If one tries to implement this via additional
injections, then the ”extra” packets needed will violate the rate threshold (r) of the adversary in AQT.

4

Hence, a network like ours that can delay packets for arbitrary long durations seems inevitable. We also
note that, unlike our construction, Bramson needs non-simple paths of unbounded length. We conclude
that Bramson’s results [9, 10, 11], although seminal for FIFO stability in Probabilistic Queueing Theory,
do not lead to resolution of the problem of FIFO stability in AQT, which we solve here.

Road Map. The rest of this paper is organized as follows. Section 2 presents our model definitions.
Section 3 shows the instability of FIFO in networks with dynamic capacities. Section 4 shows how to
simulate the previous construction in order to prove FIFO instability in networks where all links have
capacity C at all times; it also shows how to make all capacities equal to 1. We conclude, in Section 5,
with a discussion of our results and an open problem.

2 The Model

Our model definitions are patterned after those in [7]; they are appropriately adjusted to allow edge
capacities to vary arbitrarily, as put forward in the model of dynamic capacities [8, Section 2].

The communication network is modeled as a directed graph N with nodes and edges. Each node
represents a communication switch; each edge represents a link between two switches. In each node,
there is a buffer associated with each outgoing link. Buffers store packets. Packets are injected into the
system with a route, which is a (possibly non-simple) directed path from source (first node on its route)
to destination (last node on its route) in N . At the time of injection, the packet is placed in the buffer
of its source; the packet is absorbed when it reaches its destination.

The network proceeds in (global) discrete time steps. Edges can have different integer capacities,
which may or may not vary over time. Denote Ce(t) the capacity of edge e at time step t. That is,
we assume that edge e is capable of simultaneously transmitting up to Ce(t) packets at time t. The
FIFO protocol gives priority to packets that arrived in the queue at the earliest time. Any packets that
wish to travel along an edge e at a particular time step but are not sent wait in a queue for edge e. At
each step, an adversary generates a set of requests. A request is a (possibly non-simple) path specifying
the route followed by a packet. The system configuration at a given time step includes the packets (in
order) in all queues of the network.

For any edge e of the network N and for any interval T of consecutive time steps, define N(e, T)
to be the number of paths injected by the adversary A during the time interval T that traverse edge
e. Naturally, the contribution of each non-simple path traversing edge e to the number N(e, T) is the
number of times (or multiplicity in the terminology of Graph Theory) it traverses edge e.

For any constant r, where 0 < r ≤ 1, an adversary A of rate r is an adversary that injects packets
subject to the following load condition: For every edge e and interval T , N(e, T) ≤ r

∑
t∈T Ce(t). This

load condition specifies the dynamic capacities model of AQT [8]. The special case where Ce(t) = 1 at
all times t corresponds to the standard model of AQT [7].

In the adversarial constructions we present here for proving instability, we assume that there is a
sufficiently large number of packets in the initial configuration. This will imply instability for networks
with an empty initial configuration, as established by Andrews et al. [5, Lemma 2.9]. For simplicity, we
will omit floors and ceilings from our analysis.

3 Unstable FIFO Network with Dynamic Capacities

Consider any integer parameter C > 4. For our purposes, it suffices to consider FIFO networks where
for each edge e and time step t, Ce(t) ∈ {1, C}. We prove:

5

xi' yi'

yi

xi

li

fi,n
ki ki +1

fi,n-1

zi

f e

Figure 2: The gadget G(i)

Theorem 3.1 Given any r > 0, there exists a planar FIFO network Nr and an adversary A of rate r,
that uses capacities 1 and C > 2

r
, such that the network Nr is unstable under the adversary A.

The Network Nr.

The network Nr is a chain of M planar subnetworks (gadgets) G(1), . . . ,G(M), with an extra edge
e0 connecting the output edge of G(M) to the input edge of G(1). (The parameter M will be determined
later.) Thus, each gadget has a single input edge and a single output edge. The output edge of gadget
G(i) is the input edge of gadget G(i + 1). (See Figure 1 for an illustration.) The ith gadget, G(i),
1 ≤ i ≤M , is a planar directed graph that consists of:

• An input edge ki, and an output edge ki+1.

• A chain of n edges fi,j , where 1 ≤ j ≤ n, that has as source the destination of the edge ki and
destination the source of the edge xi, and an edge zi that has common source with the edge fi,n−1

and common destination with the edge fi,n.

• Three parallel edges, two of which xi, x
′

i have common source and destination and one li with
opposite source and destination to the other two edges.

• A chain of n+1 edges ei,j , where 0 ≤ j ≤ n, that has as source the destination of the edge xi and
destination the source of the edge ki+1 and two edges yi, y

′

i, where the edge yi has common source
with the edge ei,0 and common destination with the edge ei,n, while the edge y

′

i has opposite
source and destination to the edge yi.

Let f̃ be the path fi,1, . . . , fi,n−2. Let ẽ be the path ei,0, . . . , ei,n. Let f be the path fi,1, . . . , fi,n. Let
ei(j, k) be the path ei,j , . . . , ei,k (k > j). Let fi(j, k) be the path fi,j , . . . , fi,k (k > j). (See Figure 2 for
an illustration.)

Our construction will define a sequence τ̃ of time steps (τ , τ
′
, τ

′′
,. . .) such that the packets of the

system are all queued inside a single gadget at time step τ , and the number of these packets is 2s. More
specifically, let G(i) be the gadget associated with time τ . Then: (i) There are 2s packets, all queued
in the queues ẽ and xi, x

′

i, so that none of these queues is empty. (ii) No other queue in G(i) has any
packets. (iii) The packets in queues ei,j (0 ≤ j ≤ n) are required to traverse the path ei(j, n), ki+1 while
the packets in queues xi, x

′

i are required to traverse the path yi, ki+1.

The Adversary.

We divide time into phases. We will demonstrate that the number of packets at the end of each
phase is larger than at the beginning of the phase. This implies instability. Each phase consists ofM+2
subphases. During each of theM subphases (move subphases), the packets move from gadget to gadget.
The remaining two subphases (connection subphases) are used to reproduce the system configuration
for the next phase (with packets that do not have previous history and populate the same subset of
queues of the first gadget, as at the beginning of the previous phase).

6

The adversary, at the beginning of each subphase, assigns extensions of paths to the packets that
are queued into the system. The path extension covers edges of the current gadget and some edges of
the next gadget. (Call this on-line path extension2.) We make sure that packets leaving a gadget are
absorbed (finish) in the next subphase. So, the motion of packets is achieved by new injections. For the
rest of the proof, assume that s0, the number of packets in the initial configuration, satisfies s0 ≥ 4nC

3.

Lemma 3.2 Consider any rate r > 0. If a packet set L of t packets is inserted into a chain of n edges
(with unit capacities) in the first t steps of a time period of t+n steps, wanting to traverse all the edges
of the chain, then there is a sequence of adversarial injections of rate r such that: (i) The number of
packets remaining in the system is ≤ rt; (ii) all the edges have at least one packet; (iii) only the packets
from L are queued into the chain queues at time step t+ n.

Proof: Consider the path of n queues ei with 1 ≤ i ≤ n and the packet set L of t packets that require
to traverse this path during a time period of t + n steps. The adversary injects a set Ki of packets
with 1 ≤ i ≤ n in queue ei requiring to traverse only the queue ei. Ki packets are injected in queue ei

with rate r at the time steps of the time interval [i, i+ ti] where ti =
t

r+Ri
with Ri =

1−r
1−ri . Also, from

the definition of Ri, we can estimate the quantity Ri+1 recursively. Thus, Ri+1 =
Ri

Ri+r
. Therefore, the

number of injected Ki packets in queue ei is |Ki| =
t

r+Ri
. Notice that the adversary does not inject the

larger number of packets it can into each queue ei but a smaller number. No packet arrives at queue
ei at times [0, i]. At times [i + 1, t + i] packets from the set L arrive in queue ei with rate Ri where
they are mixed with Ki packets. This has as a result, at the end of this period of t+ n time steps, the
queues ei not to contain any Ki packets, but only L packets.

In order to show that indeed packets from the set L arrive in queue ei with rate Ri at time i we can
use induction. For the basis of the induction, i = 1, packets arrive in ei from set L with rate R1 = 1.
For the induction step let i > 1. The inductive hypothesis states that packets from the set L arrive in
queue e

′

i−1 at rate Ri−1 during t+ n time steps. However, the adversary injects into ei−1 a set Ki−1 of
|Ki−1| =

rt
r+Ri−1

packets at the first |t1| =
t

r+Ri−1
time steps. Therefore, during the first t1 time steps of

t a number of Ki−1 +Ri−1t1 =
rt

r+Ri−1
+Ri−1

t
r+Ri−1

= t packets in total mixed with each other, while
all the other packets that belong to the set L are queued after them. Therefore, a number of L packets
remain in ei at the end of this time period, while all the Ki−1 packets are absorbed. The number of
L packets that leave ei−1 arriving in ei has rate

Ri−1

Ri−1+r
which is exactly Ri. Hence, the number of L

packets that remain in the queues ei is t−
Rnt

Rn+r
= t−

1−r

1−rn t

r+ 1−r

1−rn

= rt 1−rn

1−rn+1 ≤ rt, as needed.

Let S be the sequence of adversarial injections of packets defined in the proof of Lemma 3.2. (These
are only the injected Ki packets; see the proof.)

The population growth during a subphase. In the sequel, we assume that n > ln 2
ln 1

r

. We also denote by 2si

the number of packets at time τ , i.e. at the beginning of a subphase. We let Ti be the time period of
the ith subphase. Let |Ti| =

2si

C
+ 2C−1

C2 si + n. Let Ni be the network of the two chained gadgets G(i)

and G(i + 1). Define ε = r − 3C2−1
2C3−2C

. Since r > 2
C
one can check that ε = r − 3C2−1

2C3−2C
> 0 whenever

C > 4. We prove:

Lemma 3.3 Let r = 3C2−1
2C3−2C

+ ε for any ε > 0. There is a suitable set of adversarial packet injections
such that the packet population of Ni at the end of Ti is larger than at its beginning, and in fact
2si+1 ≥ 2si(1 + ε).

2We adopt a technique introduced by Lotket et al. [20, Lemma 3.1] that permits the adversary to specify paths in
an on-line fashion. Thus, the adversary does not specify the complete path of the packets when they are injected, but
constructs it in a succession of refinements.

7

Sketch of proof: Assume that the initial system configuration at time τ is as follows: (i) there are
2si packets (packet set S0) in total that are queued in the queues ei,0, . . . , ei,n and xi, x

′

i, none of
which is empty. The packets in queues ei,j (0 ≤ j ≤ n), have remaining routes ei,j , . . . , ei,n, ki+1

fi+1,1, . . . , fi+1,n−2, zi+1, x
′

i+1, ei+1,0, . . . , ei+1,n, ki+2, while the packets in queues xi, x
′

i require to tra-

verse the edges yi, ki+1 fi+1,1, . . . , fi+1,n−2, zi+1, x
′

i+1, ei+1,0, . . . , ei+1,n, ki+2, and (ii) no other queue in
G(i) and no queue in G(i+ 1) has any packets.

For simplicity of notation we assume that τ = 0. The adversary makes injections in a time period
Ti with duration |Ti| =

2si

C
+ 2(C−1)si

C2 + n. During this time period all the edges of the network Ni

have capacity C except some edges that have unit capacity in specific time intervals of Ti: (i) The edge
x
′

i+1 has unit capacity in the time interval [1,
2si

C
+ n], (ii) the edge xi+1 has unit capacity in the time

interval [2si

C
+ n + 1, 2si

C
+ 2(C−1)si

C2 + n] and (iii) the edges ei+1,0, . . . , ei+1,n have unit capacity in the

time interval [1, 2si

C
+ 2(C−1)si

C2 + n].

Adversary’s behavior. During this period the adversary makes the following injections: (i) During time

interval [1, 2si

C
+ n] the adversary injects a set X of |X| = 2(C−1)rsi

C
packets in queue xi requiring to

traverse the edges xi, li, x
′

i, yi, y
′

i, ei,0, ei,1, . . . , ei,n, ki+1, fi+1,1, . . . , fi+1,n, xi+1, yi+1, ki+2. (ii) During

time interval [n + 1, 2si

C
+ 2(C−1)si

C2 + n] the adversary makes injections into the path ei+1,1, . . . , ei+1,n,

by using the set S of adversarial injections. (iii) During time interval [2si

C
+ n + 1, 2si

C
+ 2(C−1)si

C2 + n]

the adversary injects a set Y of |Y | = 2r(C−1)si

C
packets in queue x

′

i+1 requiring to traverse the edges

x
′

i+1, yi+1, ki+2 and a set Z of |Z| =
2r(C−1)si

C2 packets in queue xi+1 requiring to traverse the edge xi+1.

Using a detailed calculation, we show that

2si+1 = 2si[
(C−1)2

C2 − C−1
C2+C

+ 2rC−1
C
+ r 2C−1

C2
1−rn

1−rn+1] + n − nr 1−rn

1−rn+1 . Since r ≤ 1, 1−rn

1−rn+1 ≤ 1. So,

nr 1−rn

1−rn+1 ≤ nr. Therefore, n− nr 1−rn

1−rn+1 ≥ n− nr ≥ 0. Thus, 2si+1 ≥ 2sif(C, r), where

f(C, r) =
(C − 1)2

C2
−

C − 1

C2 + C
+ 2r

C − 1

C
+ r
2C − 1

C2

1− rn

1− rn+1

Since r 2C−1
C2

1−rn

1−rn+1 > 0, it suffices to have g(C, r) > 1 where the function g is defined as g(C, r) =
(C−1)2

C2 − C−1
C2+C

+ 2rC−1
C
because then 2si+1 > 2si. But, g(C, r) = C4−2C3+C

C4+C3 + r 2C−2
C
. So, g(C, r) > 1,

which implies that r > 3C2−1
2C3−2C

. Hence, there exists an ε > 0 such that r = 3C2−1
2C3−2C

+ ε. Then we get,

by substitution into f(C, r), that 2si+1 ≥ 2si(1 +
2(C−1)

C
+ ε) ≥ 2si(1 + ε), as needed.

The population growth in a phase. Assume now that, at the beginning of a phase, queue k1 contains 2s
packets (configuration C0). Let C1 be the initial system configuration of the network Nr. Let C1 have
2s

′
packets. We prove:

Lemma 3.4 There is a sequence of adversarial injections such that after a period of 2s
C
+ 2(C−1)

C2 s+ n

steps the configuration C0 changes to C1 with 2s
′
≥ 2s(1 + ε).

Sketch of proof: The proof is similar to the proof of Lemma 3.3, taking i = 0 and si = s. Thus, all
the edges have capacity C except from the edges x

′

1, x1 and e1,0, . . . , e1,n that change capacities from C

to 1 in corresponding time intervals as the edges x
′

i+1, xi+1 and ei+1,0, . . . , ei+1,n in Lemma 3.3. Also, the
adversary makes packet injections with similar paths in corresponding time intervals as in Lemma 3.3 in
some edges of the gadget G(1). However there is one exception concerning the first injection of packets
(set X in Lemma 3.3). Here, the path assigned to these packets consists of the edges k1, f1,1, . . . , f1,n−2,

z1, y1, k2 as they are injected in queue k1. The rest is the same.

8

e'

e1 e2 eC-1

eC

Figure 3: The network B

Through an inductive application of Lemma 3.3, we prove:

Lemma 3.5 Consider that there are 2s packets in gadget G(1) of Nr at time τ . Then, at the end of
the M move subphases there are 2s

′
> 2s(1+ε)M−1 packets in the system, all queued at the output edge

kM+1 of G(M).

Sketch of proof: The proof is split in two parts. The first part proves by induction on the number i
of move subphases (1 ≤ i ≤M) that if there are 2s packets in gadget G(1) of Nr at time τ , then at the
end of the M move subphases there are 2s

′
> 2s(1 + ε)M−1 packets in the system, all queued in G(M).

The second part proves that all 2s
′
packets in G(M) at the end of the M move subphases are queued

at the output edge kM+1 of G(M).

Lemma 3.6 Assume that at time t, 2s packets are queued in queue kM+1. There is a sequence of
adversarial injections of rate r such that at time t1 = t+ 2s

C
+ r 2s

C
+ r2 2s

C
there are r32s packets in queue

k1, all being injected after time t.

Sketch of proof: We take all edges equal to capacity C. The basic idea of the adversarial injections
is to replace the packets arriving at the output edge kM+1 of the G(M) gadget with a number of packets
in the edge k1 that are injected in k1 and they do not have previous history. This is done in three steps.
In the first step, a set of packets X are injected requiring to traverse the edges kM+1, e0, k1 that are
blocked by the s packets in edge kM+1 at the beginning of this step. In the second step, a set Y of
packets are injected requiring to traverse k1 that mix with X. In the third step, a set of new packets
are injected in k1 that are blocked there by the previously injected packets that are absorbed.

We are now ready to prove Theorem 3.1. Put 2s packets in queue k1 at the beginning of a phase.
In the first subphase, the packets move to G(1) and there are 2s1 ≥ 2s(1 + ε) remaining packets by
Lemma 3.4. At the end of the M subphases, we will have in the queue kM+1 of G(M) a total of
2s2 ≥ 2s1(1 + ε)M−1 packets, by Lemma 3.5. Finally, at the beginning of the next phase we will have
a total of 2s

′
= 2s3 ≥ 2s2r

3 packets, all new and in queue k1 again, by Lemma 3.6.

Note that s
′
≥ r3(1 + ε)Ms. For instability we need s

′
> s. It must be then that r3(1 + ε)M > 1,

i.e. M >
3 ln(1

r
)

ln(1+ε) . This completes the proof of Theorem 3.1.

4 Unstable FIFO Network with Unit Capacities

Proposition 4.1 Given any r > 0 there exists a planar FIFO network N
′

r and an adversary A of rate
r, using only capacities C > 2

r
, so that the network N

′

r is unstable.

9

Proof: For simplicity, we show how to simulate here a single packet flow passing via an edge e of
network Nr which undergoes capacity changes in our previous adversarial construction. We replace
every such edge e by the network B (See Figure 3). At intervals T for which Ce(t) = C ∀t ∈ T , the
packets paths are modified to use edge e

′
. (Note that in B all edges are of capacity C). At intervals

T for which Ce(t) = 1 ∀t ∈ T , the packets paths are modified as follows: (1) The first C packets that
traverse e, are now traversing e1, . . . , eC−1 and exiting. The next (C − 1)C packets that traverse e (i.e.
C−1 groups of C packets each) follow the path e1, . . . , eC , e1. (2) Apply (1) again to the packets queued
at e1 for the whole interval T in which Ce(t) = 1 for all time steps t ∈ T .

Note that: (i) For any period t > C2 only t packets exit B (since only C out of C2 packets are exiting).
(ii)We now show that the injection rate threshold is preserved when we count edge multiplicities in the
paths of the packets. In the original dynamic network Nr, for all time intervals T such that Ce(t) = 1
for all time steps t ∈ T , we had N(e, T) ≤ r|T |. Notice that each packet passes e1, . . . , eC at most C

times. Hence in the modified network N ′
r we have N

′
(e, T) ≤ CN(e, T) ≤ Cr|T | = r

∑
t∈T Ce(t),

since Ce(t) = C for all times t ∈ T and all edges e of N ′
r. For multiple flows entering e, the idea is quite

similar.

Combining our simulations, we now show, given any r > 0, how to construct a planar network N
′′

r

of all edge capacities equal to 1 and an adversary of rate r, so that N
′′

r is unstable.

Theorem 4.2 Given any r > 0, there exists a planar FIFO network N
′′

r and an adversary A of rate r

that uses unit capacities, such that the network N
′′

r is unstable under the adversary A.

Sketch of proof: This is a simulation proof. Each edge with capacity C is replaced by C parallel,
capacity 1, edges. The paths of every x ≤ C packets concurrently passing via such an edge e of the
network N

′

r are modified so that each packet (in x) passes via a separate edge. The resulting network
is N

′′

r , which clearly simulates N
′
r. Note that the size of N

′′

r is polynomial in C and 1
r
.

5 Conclusions and Open Problem

A recent paper [16] reminded us of the following joke that was circulated in Italy around the 1920’s:

”Mussolini claims that the ideal citizen is intelligent, honest and fascist. Unfortunately, no
one is perfect, which explains why everyone is either honest and fascist but not intelligent;
intelligent and fascist but not honest; or honest and intelligent but not fascist.”

Motivated by the original question of Borodin et al. [7] on the instability of FIFO at arbitrarily low
injection rates, we faced the challenge of constructing, for any given r > 0, an unstable at rate r FIFO
network which is planar, routes packets along simple paths, and uses only unit capacities. Theorem 3.1
finds such a network which is planar and routes packets along simple paths, but it uses though non-
unit (equal to C) capacities. Theorem 4.2 finds another such network which is planar and uses only
unit capacities, but this routes packets along non-simple paths. Finally, Bhattacharjee and Goel [6,
Theorem 5.4] have found a third such network which routes packets along simple paths and it uses only
unit capacities, but, unfortunately, it is not planar. The main question left open by our work is whether
there exists, for any given r > 0, an ideal, unstable at r, FIFO network, which is planar, routes packets
along simple paths, and uses only unit capacities.

10

References

[1] M. Adler and A. Rosén, “Tight Bounds for the Performance of Longest-in-System on DAGs,” Proceedings of the 19th
Annual Symposium on Theoretical Aspects of Computer Science, H. Alt and A. Ferreira eds., pp. 88–99, Vol. 2285,
Lecture Notes in Computer Science, Springer-Verlag, Antibes–Juan Les Pins, France, March 2002.

[2] W. Aiello, E. Kushilevitz, R. Ostrovsky and A. Rosén, “Adaptive Packet Routing for Bursty Adversarial Traffic,”
Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 359–368, May 1998.

[3] C. Alvarez, M. Blesa, and M. Serna, “Universal Stability of Undirected Graphs in the Adversarial Queueing Model,”
Proceedings of the 14th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 183–197, August 2002.

[4] M. Andrews, “Instability of FIFO in Session-Oriented Networks,” Proceedings of the 11th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 440–447, January 2000.

[5] M. Andrews, B. Awerbuch, A. Fernandez, J. Kleinberg, T. Leighton and Z. Liu, “Universal Stability Results for Greedy
Contention-Resolution Protocols,” Journal of the ACM, Vol. 48, No. 1, pp. 39–69, January 2001.

[6] R. Bhattacharjiee and A. Goel, “Instability of FIFO at Arbitrarily Low Rates in the Adversarial Queueing Model,”
Technical Report no. 02-776, Department of Computer Science, University of Southern California, November 2002.

[7] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan and D. Williamson, “Adversarial Queueing Theory,” Journal of the
ACM, Vol. 48, No. 1, pp. 13–38, January 2001.

[8] A. Borodin, R. Ostrovsky and Y. Rabani, “Stability Preserving Transformations: Packet Routing Networks with Edge
Capacities and Speeds,” Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 601–610,
January 2001.

[9] M. Bramson, “Instability of FIFO Queueing Networks,” Annals of Applied Probability, Vol. 4, No. 2, pp. 414–431, 1994.

[10] M. Bramson, “Instability of FIFO Queueing Networks with Quick Service Times,” Annals of Applied Probability,
Vol. 4, No. 3, pp. 693–718, 1994.

[11] M. Bramson, “Convergence to Equilibria for Fluid Models of FIFO Queueing Networks,” Queueing Systems: Theory
and Applications, Vol. 22, pp. 5–45, 1996.

[12] H. Chen and D. D. Yao, Fundamentals of Queueing Networks, Springer, 2000.

[13] R. L. Cruz, “A Calculus for Network Delay. Part I: Network Elements in Isolation,” IEEE Transactions on Information
Theory, Vol. 37, pp. 114–131, 1991.

[14] R. L. Cruz, “A Calculus for Network Delay. Part II: Network Analysis,” IEEE Transactions on Information Theory,
Vol. 37, pp. 132–141, 1991.

[15] J. Diaz, D. Koukopoulos, S. Nikoletseas, M. Serna, P. Spirakis and D. Thilikos, “Stability and Non-Stability of the
FIFO Protocol,” Proceedings of the 13th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 48–52,
July 2001.

[16] M. Herlihy, N. Shavit and O. Waarts, “Linearizable Counting Networks,” Distributed Computing, Vol. 9, No. 4, pp.
193–203, 1996.

[17] F. P. Kelly, Reversibility and Stochastic Networks, Wiley, 1979.

[18] D. Koukopoulos, M. Mavronicolas, S. Nikoletseas and P. Spirakis, “On the Stability of Compositions of Universally
Stable, Greedy, Contention-Resolution Protocols,” Proceedings of the 16th International Symposium on DIStributed
Computing, D. Malkhi ed., pp. 88–102, Vol. 2508, Lecture Notes in Computer Science, Springer-Verlag, Toulouse,
France, October 2002.

[19] D. Koukopoulos, M. Mavronicolas, S. Nikoletseas and P. Spirakis, “The Impact of Network Structure on the Stability
of Greedy Protocols,” 5th Italian Conference on Algorithms and Complexity, Rome, Italy, May 2003. Accepted for
publication.

[20] Z. Lotker, B. Patt-Shamir and A. Rosén, “New Stability Results for Adversarial Queueing,” Proceedings of the 15th
Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 192–199, August 2002.

[21] K. K. Ramakrishnan and R. Jain, ”A Binary Feedback Scheme for Congestion Avoidance in Computer Networks,”
ACM Transactions on Computer Systems, Vol. 8, No. 2, pp. 49–56, 1990.

[22] P. Tsaparas, Stability in Adversarial Queueing Theory, M.Sc. Thesis, Department of Computer Science, University of
Toronto, 1997.

[23] E. W. Zegura, K. L. Calvert and M. J. Donahoo, ”A Quantitative Comparison of Graph-Based Models for Internet
Topology,” IEEE/ACM Transactions on Networking, Vol. 3, No. 6, pp. 770–783, December 1997.

11

Appendix

A Proof of Lemma 3.3

Consider the network N (i) of the two chained gadgets G(i), G(i+1). Assume that the initial system con-
figuration at time τ is as follows: (i) there are 2si packets (packet set S0) in total that are queued in the
queues ei,0, . . . , ei,n and xi, x

′

i, none of which is empty. The packets in queues ei,j (0 ≤ j ≤ n), have re-
maining routes ei,j , . . . , ei,n, ki+1 fi+1,1, . . . , fi+1,n−2, zi+1, x

′

i+1, ei+1,0, . . . , ei+1,n, ki+2, while the packets

in queues xi, x
′

i require to traverse the edges yi, ki+1 fi+1,1, . . . , fi+1,n−2, zi+1, x
′

i+1, ei+1,0, . . . , ei+1,n, ki+2,
and (ii) no other queue in G(i) and no queue in G(i+ 1) has any packets.

For simplicity of notation we assume that τ = 0. The adversary makes injections in a time period
Ti with duration |Ti| =

2si

C
+ 2(C−1)si

C2 + n. During this time period all the edges of the network Ni

have capacity C except some edges that have unit capacity in specific time intervals of Ti: (i) The edge
x
′

i+1 has unit capacity in time interval [1,
2si

C
+ n], (ii) the edge xi+1 has unit capacity in time interval

[2si

C
+ n+ 1, 2si

C
+ 2(C−1)si

C2 + n] and (iii) the edges ei+1,0, . . . , ei+1,n have unit capacity in time interval

[1, 2si

C
+ 2(C−1)si

C2 + n].

Adversary’s behavior. During this period the adversary makes the following injections:

• During time interval [1, 2si

C
+ n] the adversary injects a set X of |X| = 2(C−1)rsi

C
packets in

queue xi requiring to traverse the edges xi, li, x
′

i, yi, y
′

i, ei,0, ei,1, . . . , ei,n, ki+1, fi+1,1, . . . , fi+1,n,

xi+1, yi+1, ki+2.

• During time interval [n + 1, 2si

C
+ 2(C−1)si

C2 + n] the adversary makes injections into the path
ei+1,1, . . . , ei+1,n, by using the set S of adversarial injections.

• During time interval [2si

C
+n+1, 2si

C
+ 2(C−1)si

C2 +n] the adversary injects a set Y of |Y | = 2r(C−1)si

C

packets in queue x
′

i+1 requiring to traverse the edges x
′

i+1, yi+1, ki+2 and a set Z of |Z| =
2r(C−1)si

C2

packets in queue xi+1 requiring to traverse the edge xi+1.

Evolution of the system configuration. During time interval [1, 2si

C
+ 2(C−1)si

C2 +n] the S0 packets traverse

their path. The first packets of set S0 arrive in queue x
′

i+1 after the first n steps of this time interval
as S0 packets have to traverse the chain of edges ki+1, fi+1,1, . . . , fi+1,n−2, zi+1 that have capacity C.
During time interval [n + 1, 2si

C
+ n] the S0 packets are delayed in queue x

′

i+1 due to its unit capacity.

Therefore, a number of |S1| =
2(C−1)si

C
packets remain in queue x

′

i+1 at time step
2si

C
+n, while |S2| =

2si

C

packets traverse the edge x
′

i+1 towards ei+1,0, . . . , ei+1,n, ki+2. At the rest
2(C−1)si

C2 time steps of the time

interval [1, 2si

C
+ 2(C−1)si

C2 + n] the S1 packets traversing their path arrive in the queue ei+1,0. From S1

packets, a set S3 of |S3| = 2si
(C−1)2

C2 packets remain queued in queue ei+1,0 at the end of Ti due to its

unit capacity. Therefore, |S4| =
2(C−1)si

C2 packets from S1 packets can traverse the edge ei+1,0 in
2(C−1)si

C2

time steps. Hence, during time interval [n+ 1, 2si

C
+ 2(C−1)si

C2 + n] the number of packets, which arrive
in the path ei+1,1, . . . , ei+1,n wanting to traverse it, is |S5| = |S2| + |S4| packets. From these packets
a set H of |H| = n packets arrive in queue ei+1,1 at the last n steps of period Ti. By using the set S

of adversarial injections (defined in the proof of Lemma 3.2), H packets remain queued in ei+1,1 and

a number of |S7| = [2si
2C−1

C2 − n] r−rn+1

1−rn+1 packets are preserved in queues ei+1,1, . . . , ei+1,n such that all
these queues are not empty at the end of Ti.

The X packets that are injected in queue xi during time interval [1,
2si

C
+ n] traverse their path till

queue ki+1 where they are delayed by S0 packets till time step
2si

C
because S0 packets need

2si

C
time steps

i

to traverse the edge ki+1 due to its capacity C. During the rest n time steps, all the S0 packets traverse
the path fi+1,1, . . . , fi+1,n−2, zi+1 along with nC packets from set X, the first of which are queued in
queue fi+1,n at time step

2si

C
+ n. During the rest time steps of period Ti, all X packets traverse their

path arriving in queue xi+1 due to the capacity C of the edges k1, f1,1, . . . , f1,n in its path. In queue
xi+1, X packets are mixed with Z packets. This mixing along with the unit capacity of edge xi+1 results
in the delay (in xi+1) of a portion X

′
of |X

′
| = 2si[r

C−1
C
− C−1

C2+C
] packets from the X packets. All the Y

packets that are injected in queue x
′

i+1 during time interval [
2si

C
+ n+ 1, 2si

C
+ 2(C−1)si

C2 + n] are delayed

by the S1 packets in x
′

i+1 due to the capacity C of x
′

i+1.

At the end of period Ti, the number of packets in queues ei+1,j (0 ≤ j ≤ n) that have remaining
routes ei+1,j , . . . , ei+1,n, ki+2 and in queues xi+1, x

′

i+1 requiring to traverse the edges yi+1, ki+2 are

2si+1 = |X
′
| + |Y | + |S3| + |H| + |S7|. Substituting the corresponding estimated quantities of packets

in this equation we take

2si+1 = 2si[
(C−1)2

C2 − C−1
C2+C

+ 2rC−1
C
+ r 2C−1

C2
1−rn

1−rn+1] + n− nr 1−rn

1−rn+1 .

Since r ≤ 1, we take 1−rn

1−rn+1 ≤ 1. So, nr
1−rn

1−rn+1 ≤ nr. Therefore, n− nr 1−rn

1−rn+1 ≥ n− nr ≥ 0. Thus,
2si+1 ≥ 2sif(C, r) where

f(C, r) =
(C − 1)2

C2
−

C − 1

C2 + C
+ 2r

C − 1

C
+ r
2C − 1

C2

1− rn

1− rn+1

Since r 2C−1
C2

1−rn

1−rn+1 > 0 it suffices to prove g(C, r) > 1, where the function g is defined as

g(C, r) =
(C − 1)2

C2
−

C − 1

C2 + C
+ 2r

C − 1

C

because then 2si+1 > 2si. But, g(C, r) = C4−2C3+C
C4+C3 + r 2C−2

C
. So clearly g(C, r) > 1, which implies

that r > 3C2−1
2C3−2C

. But r = 3C2−1
2C3−2C

+ ε, where ε > 0. Then we get, by substitution into f(C, r), that

2si+1 ≥ 2si(1 +
2(C − 1)

C
+ ε)

≥ 2si(1 + ε) .

B Proof of Lemma 3.4

Consider the network Nr in Figure 1. In the initial system configuration C0 there is a set S0 of |S0| = 2s
packets queued in the queue k1. We will show that there is a sequence of adversarial injections such that,
after a period of |T | = 2s

C
+ 2(C−1)

C2 s+ n steps, the configuration C0 changes to C1 with 2s
′
≥ 2s(1 + ε).

During time period T all the edges of the network Nr have capacity C except some edges that have
unit capacity in specific time intervals of T . These edges and time intervals of T where they have unit
capacity are similar to Lemma 3.3 taking i = 0, si = s and Ti = T .

Adversary’s behavior. During this period the adversary makes a suitable set of packet injections. These
injections are similar to Lemma 3.3 taking i = 0 and si = s. The only difference is in the path of
the packets of set X as they are injected in queue k1 requiring to traverse the edges k1, f1,1, . . . , f1,n−2,

z1, y1, k2.

Evolution of the system configuration. The evolution of the system configuration from C0 to C1 is similar
to Lemma 3.3 with i = 0, si = s and Ti = T . Therefore, at the end of time period T , the number of

ii

packets in queues e1,j (1 ≤ j ≤ n) that have remaining routes e1,j , . . . , e1,n, k2, and in queues x1, x
′

1

requiring to traverse the edges y1, k2 are 2s
′
= |X

′
|+ |Y |+ |S3|+ |H|+ |S7|. Similarly to Lemma 3.3,

it is proved that this number of packets is larger than the number of S0 packets for r = 3C2−1
2C3−2C

+ ε.

Therefore, after a period of 2s
C
+2 (C−1)s

C2 +n steps the configuration C0 changes to C1 with 2s
′
≥ 2s(1+ε).

C Proof of Lemma 3.5

We violate the definition of configuration to shorten the configuration of the network at time τ as
〈s,G(i)〉 in case there are 2s packets at time τ , all queued in gadget G(i) and no packets in other
gadgets of the network. This notation will be used for convenience in our proof.

The proof is split in two parts. First we prove that if 〈s,G(1)〉 is the configuration of Nr at time
τ , with 2s packets, then at the end of the M subphases there are 2s

′
> 2s(1 + ε)M−1 packets in the

system, all queued in G(M). Then we prove that all 2s
′
packets in G(M) at the end of theM subphases

are queued at the output edge kM+1 of G(M). The first part of the proof is by induction on the number
i of move subphases (1 ≤ i ≤M).

Basis case. For i = 1, the claim is trivial with t1 = τ .

Induction step. Consider that there is some time ti ≥ τ such that the system configuration is 〈si,G(i)〉
for 2si > 2s(1 + ε)i−1. Let now consider a subnetwork that consists of a chain of two gadgets G(i) and
G(i+1). Applying Lemma 3.3, there is a suitable set of adversarial packet injections and a time period
Ti such that at time ti + Ti the system configuration is 〈si+1,G(i + 1)〉 for 2si+1 > 2s(1 + ε)i and all

the packets in the system are only queued in G(i+1). Assigning ti+1 = ti+ Ti = ti+
2si

C
+2 (C−1)si

C2 +n

and concatenating the set of adversarial packet injections. The proof of the first part is now complete.

From the first part we have that at time tM the system configuration is 〈s1,G(M)〉 for 2s1 ≥
2s(1 + ε)M−1. If we do not make any injection in the time interval [tM , tM +

2s1

C
+ 1] and consider that

all the edges have capacity C except the output edge kM+1 of the gadget G(M) that has unit capacity,
then the 2s1 packets that have been queued at the queues of G(M) at time tM will arrive at the output
edge kM+1 of G(M).

Furthermore, 2s1

C
+ 1 packets depart from the output edge kM+1 during the time interval [tM , tM +

2s1

C
+ 1]. Therefore, at time tM + 2s1

C
+ 1, there are 2s

′
= 2s1 −

2s1

C
− 1 ≥ 2s0 −

2s0

C
− 1 packets at

the output edge kM+1. If we consider 1 < n < s0

4C3 , then 2s
′
≥ 2s0 −

2s0

C
− s0

4C3 =
(8C3−8C2−1)s0

4C3 . But,

2s ≥ 2s0 and 2s
′
≥ 2s(1 + ε)M−1. So, 2s

′
≥ (8C3−8C2−1)s

4C3 (1 + ε)M−1 packets exist at the output edge

kM+1 of the gadget G(M). For our specified C values, we have 2s
′
≥ 2s(1 + ε)M−1. This completes our

proof.

D Proof of Lemma 3.6

Consider the network Nr. At time t there is a set S0 of |S0| = 2s packets queued in the queue kM+1

of the gadget G(M) requiring to traverse the edge kM+1. We will show that there is a sequence of
adversarial injections of rate r such that at time t1 = t+ 2s

C
+ r 2s

C
+ r2 2s

C
there are r32s packets in queue

k1, all being injected in k1 after time t. We consider that all the edges have capacity C during time
interval (t, t1]. The sequence of adversarial injections happens in three rounds as follows:

• Round 1: This round lasts for 2s
C
time steps. During this round the edges kM+1, e0, k1 have capacity

C. The adversary injects a set X of |X| = r sC
C
= 2rs packets in kM+1 requiring to traverse the

edges kM+1, e0, k1. The X packets are blocked in queue kM+1 because of the S0 packets that are

iii

q1

qC

ch1,1
ch1,2 chC,1

chC,2

Figure 4: Subnetwork D

queued in kM+1 at the beginning of this round. The S0 packets have been absorbed at the end of
this round.

• Round 2: This round lasts for 2rs
C
time steps. During this round the edges kM+1, e0, k1 have

capacity C. The adversary injects a set Y of |Y | = r 2rsC
C
= 2r2s packets in k1. The Y packets

arrive simultaneously at k1 with the X packets and they mix in proportion equal to their sizes.
At the end of this round, there is a set Z of |Z| = 2r2s packets in the system that are queued in
k1, and no other packets exist in the system. Note that some of these packets have been injected
in kM+1 and the rest in k1.

• Round 3: This round lasts for 2r2s
C
time steps. During this round the edge k1 has capacity C.

The adversary injects a set L of |L| = r 2r2sC
C

= 2r3s packets in k1. The L packets blocked in k1

by the Z packets. At the end of this round, all the Z packets have been absorbed. Therefore, at
time t + 2s

C
+ r 2s

C
+ r2 2s

C
all the packets in the system are the |L| = r32s packets that have been

injected in k1 during this round and they are queued in k1.

E Proof of Theorem 4.2

In order to simulate the behavior of packets flows passing over an edge on the network N
′

r we replace
each edge in N

′

r with a subnetwork D whose edges have unit capacity. The network D (Figure 4) consists
of C parallel edges ql that have common source and destination (1 ≤ l ≤ C). For each edge ql there
is a small chain of two edges ch(l, k) (1 ≤ k ≤ 2) that has as source and destination the destination
of D. Also, the packet paths are modified such that the adversary instead of injecting a packet flow of
rCt packets into a queue of N

′

r during t time steps, it injects rt packets into each queue ql of D in N
′′

r .
The additional chains in D are used by the adversary when it wants to delay for one time step the first
C packets of a packet flow that are inserted each one in each queue ql of D. This happens when the
corresponding edge replaced by D in N

′

r has a packet flow Y (which size is not a multiple of C) queued
into it at some time and a new packet flow X is inserted into it which should leave this edge after all
the the packets of flow Y leave. In order to handle this case the adversary forwards the first C packets
of flow X that enter the queues ql of the analyzer to traverse the chain ch(l, k) after traversing ql.

iv

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

