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Abstract. A clone is a set of functions that is closed under generalized substitu-
tion. The set FP of functions being computable deterministically in polynomial
time is such a clone. It is well-known that the set of subclones of every clone
forms a lattice. We study the lattice below FP, which contains other important
function complexity classes like FL and FNCi. We show that the lattice is du-
alatomic and determine some of its dualatoms. We show that no time-complexity
class can be a dualatom in this lattice. We show that there are uncountably many
subclones of FP.

1 Introduction

Computer science is an inductive discipline. The idea of the algorithm, that stands
in the very core of computer science, is the idea of using basic primitives to
describe and analyze complex procedures. The idea is global, independently of
whether you are in functional programming, languages, or Turing machines. There-
fore, the notion of closures is natural: You are provided with a small set of primi-
tives and operations, and everything that can be build by applying the operations
on the primitives, belongs to the closure.
At first sight, complexity theory seems to define its objects the other way round.
Many important complexity classes like P or PSPACE are defined by resource
bounds. So P was not first defined as the class of sets that can be built from a small
set of primitives using a few basic operations but as a class of sets, all sharing a
certain property: Their decidability in polynomial time. One of the most difficult
problems is to seperate these complexity classes. For P and PSPACE, for exam-
ple, this could obviously be done by finding a problem that is in PSPACE \ P.
However, such problems are often very hard to find and the closest concept we
have to date, is that of complete sets.
Completeness of a set for a complexity class is always in respect to some re-
ducibility. Here we find the concept of closures once again. For every complexity
class, you can build the closure in respect to some reducibility. So, for example,
if P 6= NP then there are infinitely many classes that are closed under the ≤p

m-
reducibility (so-called degrees) between P and NP. Moreover, they form an upper
semilattice in which every countable partial order can be embedded as suborder
[Lad75,Meh76].
From a certain point of view, P is the most natural ≤p

m-degree, because the re-
ducing functions are drawn from its function-counterpart FP. Moreover, FP it-
self is closed under substitution and is thus an example for a function algebra.
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In that algebra the primitives are functions and the operations are those you need
to build polynoms or formulas over the functions, in order to create new ones.
These operations are called superposition and classes of functions being closed
under superposition are called clones. Universal algebra teaches us, that the set
of subclones to one specific clone form a complete lattice [Coh65,Grä79].
The lattice below FP is the object we want to study in this paper. It is not diffi-
cult to see that other very interesting complexity classes form subclones of FP:
For example, FL the class of functions computable in logarithmic space. Or the
classes FNCi which are the function analogons of those sets which are decidable
by Boolean circuits of polynomial size and polylogarithmic depth. These classes
are known to be in FP, but it is not clear whether this inclusion is proper. If,
for example FL = FP would hold, then the lattice of clones below FL would
have to be the same than that below FP. We show that the lattice below FP is
dualatomic, i.e. for every infinte chain C1 ⊂ C2 ⊂ · · · ⊂ FP of clones below
FP there is a proper subclone (called dualatom) B ⊂ FP that contains the chain.
So, for example, for FL there are only three possibilities: First, FL = FP. Then
FL has the same dualatoms as FP. Secondly, FL is a dualatom of FP. Then FL
is very close to FP, “just one function away”, since for all f ∈ FP \ FL is the
superposition-closure of {f} ∪ FL already equal to FP. Finally, FL could al-
ready be a proper subset of a dualatom of FP. Perhaps it is easier to show such
an inclusion?
The property of FP to be dualatomic stems from the fact, that FP can be finitely
generated. Call FNC the union of all FNCi. Then FNC is a clone, also. It is
an open question whether FNC = FP; this question is often set equal to the
question of whether all functions from FP can be efficiently parallelized. But if
FP = FNC would hold, then FNC would have to be finitely generated, too, and
as immediate consequence of that, the NC-hierarchy would collapse.
The algebraic approach to complexity classes is not new at all. Various complex-
ity classes have been characterized using a small set of functions and some basic
algebraic operators [Wag86,VW96,Clo99]. However, often these operators were
specially designed for the various complexity classes. The difference in this ap-
proach is that we analyze the algebraic structure of complexity classes that can
can be build with one very natural set of operators.
After the preliminaries, we show that the clone lattice below FP is dualatomic
in subsection 3.1. Then we identify infinitely many of the dualatoms in subsec-
tion 3.2 and show that there can be no time-complexity class that is a dualatom
that lattice. In the last subsection 3.3 we show that the lattice, although it is only
countably deep, has uncountably many elements.

2 Preliminaries

We begin by introducing the superposition operators.

Definition 1. Let I21(x, y) =df x for all x ∈ N. Let f, g, h be functions of arity
n, m, ` respectively, where n ≥ 1 and ` ≥ 2.

– ZV(h)(x1, . . . , xn) =df h(x2, . . . , xn, x1)
– LV(h)(x1, . . . , xn) =df h(x1, . . . , xn, xn−1)
– ID(h)(x1, . . . , xn) =df h(x1, . . . , xn−1, xn−1)
– SB(f, g)(x1, . . . , xn−1, y1, . . . , ym) =df f(x1, . . . , xn−1, g(y1, . . . , ym))



A set of functions that contains I21 and is closed under ZV, LV, ID, SB is closed
under superposition and is called clone. For a set of functions B, let [B] be the
superposition closure of B.

We remark, that the operations ZV and LV can be used to generate arbitrary per-
muations of the variables. More intuitively, [B] is the set of functions that can
be described with formulas over B, i.e. formulas with connectors representing
functions from B. For example, if B = {f, g}, where f is 3-ary and g is 2-ary,
then f(x, g(y, z), y) and g(x, x) and x describe functions from [B]. Since the
identity function id(x) = x can be represented by the formula ”x”, which con-
tains no function symbols at all, all clones always contain the identity functions.
A function f is an identity function if f(x1, . . . , xn) = xi for an i ∈ {1, . . . , n}.
Let I be the set of all identity functions. We include the function I21 instead of id,
because we want to make possible the introduction of fictive variables, i.e. vari-
ables which have no influence on the value of a function. To be more precisely,
x1 is a fictive variable in f(x1, . . . , xn), if for all a, b, a2, . . . , an ∈ N holds
f(a, a2, . . . , an) = f(b, a2, . . . , an). Of course, the most powerful operator of
superposition is the substitution operator. Therefore in many cases it suffices to
show that a set B is closed under substitution in order to show that it is closed
under superposition. For a clone A, the set {B : B is clone and B ⊆ A} forms
a lattice with respect to the operations ∩,t where ∩ is the normal intersection of
sets and CtD =df [C∪D]. We denote this lattice by L(A). The least element of
L(A) is always I. If B ∈ L(A), we say B is subclone of A and A is a superclone
of B.
A clone A is called finitely generated, if there is a finite set of functions B, such
that [B] = A. In this case, B is called a base of A. A subclone of B ∈ L(A) is
called dualatom of A or precomplete for A, if B 6= A and there is no C ∈ L(A)
such that B ⊂ C ⊂ A. The lattice is called dualatomic if for all C ∈ L(A) we
have C ⊆ B for a dualatom B of A. In other words, if such a lattice contains an
infinite chain of the form C1 ⊂ C2 ⊂ · · · ⊂ A then there is a dualatom B of A
such that C1 ⊂ C2 ⊂ · · · ⊂ B.

Proposition 1 ([Neu37]). If A is a finitely generated clone, then L(A) is du-
alatomic.

Proof. Suppose L(A) were not dualatomic. Then there would be subclones C1 ⊂
C2 ⊂ · · · ⊂ A. Let C =df

S

i
Ci. Obviously, [C] is a proper superclone of all

Ci’s and since L(A) is not dualatomic, [C] = A. Since A is finitely generated,
there is a finite B with [B] = A. Because of the nature of C there must be an i
such that B ⊆ Ci. But then, Ci = A.

Throughout this paper, we will need some special functions. Let bin : N →
{0, 1}∗ be the usual binary encoding of natural numbers without leading zeroes.
For an x ∈ N, let |x| be the number of digits in bin(x), i.e. |x| =df blog2 x + 1c
if x > 0 and |0| =df 1. Let dbin(x) =df a1a1a2a2 . . . anan, if bin(x) =
a1 . . . an and let pair(x, y) =df dbin(x)01dbin(y). Let succ(x) =df x + 1,

pad(x) =df 1|x|2 , and cj(x) =df j for all j ∈ N.
Let K ⊆ N

N be a set of functions. We say f ∈ FDTIME(K) if there is a t ∈ K
and a Turing machine with a fixed number of tapes that computes f(x) for all
x ∈ N using at most t(|x|) steps. Let M1, M2, . . . be an enumeration of turing
machines such that M1 calculates succ(x) in time 2|x| + 2 and g : N → N with



g(i) = Mi is in FDTIME(O(n log n)). Furthermore, we want the enumeration
such that a universal machine is able to simulate a step of Mi in time |i|.
Let

univ(i, x) =df


Mi on input x , if Mi holds after 2(|i||x|2 + |i|) steps

1|x|2 otherwise.

Note that if a function f is in DTIME(O(n2)) then there is an i such that
Mi computes f in at most 2(|i||x|2 + |i|) steps. Observe, that pair, succ, cj ∈
FDTIME(O(n)) for all j ∈ N. Let FP =df FDTIME(O(nO(1))) be the set of
functions that can be computed deterministically in polynomial time.

3 On the Nature of the Clone Lattice Below FP

It is not difficult to verify, that FP is closed under superposition and hence is a
clone. The lattice L(FP) is the object we want to study in this paper. We show
that it is dualatomic and we will determine some of its dualatoms. We show, that
no complexity class of the type DTIME(K) is a dualatom of FP, where K is an
arbitrary set of functions. Finally, we will look at the size of the lattice.

3.1 The Lattice is Dualatomic

We show that FP is finitely generated by explicitely giving a finite base for it.
This base contains mainly a universal machine, i.e. a machine that is able to in-
terpret encodings of other machines and simulate those. We have to make sure
that the running time of this universal machine does not exceed polynomial time
for one fixed polynomial. Then we use a padding argument in order to carry out
any calculation that can be done in polynomial time for an arbitrary polynomial.

Theorem 1. The set {univ, pair, c1} is a base of FP.

Proof. Obviously, univ, pair and c1 are in FP and since FP is closed under
superposition, for B =df {univ, pair, c1} we have [B] ⊆ FP. We show that
[B] ⊇ FP. Note that succ(x) = univ(c1(x), x) and therefore succ ∈ [B]. Since
we have the successor function and the constant 1 in our closure it is obvious, that
for all i > 1 the function ci is in [B]. Let i be the number of a machine that runs
for more than 2(|i||x|2 + |i|) steps for all x ∈ N. Then pad(x) = univ(ci(x), x)
because we always fall into the second option of the case distinction of the def-
inition of univ. Hence pad ∈ [B]. Now let s : N

m → N be in FP. There is
an s′ : N → N such that s′(pair(x1, pair(x2, . . . , pair(xm−1, xm) . . . ))) =
s(x1, . . . , xm) and s′ ∈ FP. Hence there are i, k ∈ N such that Mi calculates s′

in time k + knk. Let

s′′(x) =df


s′(y) , if x = 1z01dbin(y), where z ≥ k + k|y|k

0 otherwise

Then s′′ ∈ FP and there is a ` ∈ N such that M` computes s′′ in time O(n).
Hence

s′(x) = univ ( c`(x),

pair( pad(pad(. . . pad
| {z }

dlog ke

(x) . . . )) , x)

)



is in [B] and therefore s ∈ [B].

Corollary 1. The lattice of subclones of FP is dualatomic.

We have seen, that FP can be generated by only three functions, all of wich are
contained in DTIME(O(n4)). The critical point in the proof of Theorem 1 is
that we are able to pad our inputs to an arbitrary polynomial length and that we
can do that with only a constant number of substitutions of pad. In our proof, we
use a padding function that generates outputs of quadratic length. It is easy to see
that a similar argumentation holds if we can generate outputs of length n1+ε for
an ε > 0.

Proposition 2. Let K be a class of function such that for an ε > 0 a function
t(n) ≥ n1+ε is in K. Then FP ⊆ [DTIME(K)].

3.2 Dualatoms

So, since L(FP) is dualatomic, it would be very nice to know the dualatoms.
The dualatoms we identify in this section are very close to FP. It is possible, for
example, to encode P-complete problems with very little effort in such a way that
they can be decided by functions from one of these dualatoms. This gives rise to
the assumption, that the structure of L(FP) is very fine-grained.
In the following we describe Boolean functions using propositional formulas. We
use the connectors ∧,∨,⊕,↔,¬, 0, and 1 for the Boolean functions and, or, xor,
equivalence, not, constant zero, and constant one respectively. For ¬x, we also
write x and for x ∧ y we also write xy.
Let BF be the set of all Boolean functions. The lattice L(BF) of clones of
Boolean functions is well known [Pos41,JGK70,BCRV03]. This lattice is du-
alatomic and has five dualatoms, often referred to as Post’s classes. They are
defined as follows.

Definition 2. – Ra =df {f : f(a, . . . , a) = a} for a ∈ {0, 1} are the a-
repdroducing clones.

– D =df {f : f(a1, . . . , an) 6= f(a1, . . . , an) for all a1, . . . , an ∈ {0, 1}}
are the selfdual functions.

– The set of monotonic Boolean functions M is defined M =df {f : α, β ∈
{0, 1}n, α ≤ β → f(α) ≤ f(β)} where for Boolean vectors α = (a1, . . . ,
an), β = (b1, . . . , bn) holds α ≤ β, if and only if for all i ∈ {1, . . . , n}
holds ai ≤ bi.

– L is the set of Boolean functions f(x1, . . . , xn) that can be described by a
formula of the form c0 ⊕ c1x1 ⊕ · · · ⊕ cnxn, where ci ∈ {0, 1}.

We generalize the notion of a-reproducing functions.

Definition 3. For a set A ⊆ N, let f : N
n → N be called A-reproducing,

if for all a1, . . . , an ∈ A holds f(a1, . . . , an) ∈ A. Let RA be the set of A-
reproducing functions.

Theorem 2. For all finite A ⊆ N is B =df RA ∩ FP a dualatom of L(FP).



Proof. Obviously, B is a subclone of FP. We show that it is precomplete. For
that, let f ∈ FP be an m-ary function that is not A-reproducing.
If A = {a0, . . . , ak−1} and 0 ≤ i < k, let π(ai) =df ai+1(mod k). Let
π0(ai) =df π(ai) and for j ≥ 0, let πj+1(ai) =df π(πj(ai)). For all w ∈
{0, . . . , k − 1}m with w =df (d1, . . . , dm), define fw(x) = f(πd1 (x), . . . ,
πdm(x)). Observe that all these fw are in [B ∪ {f}]. Furthermore, if a ∈ A,
there is a w ∈ {0, . . . , k − 1}m such that fw(a) /∈ A, since f /∈ RA. Let

h′(x1, . . . , xkm) =df


xj , if there is a 1 ≤ j ≤ km such that xj /∈ A
x1 otherwise

Note, that h′ ∈ B. For 1 ≤ i ≤ km, let wi ∈ {0, . . . , k − 1}m such that
w1 =df (0, . . . , 0), w2 =df (0, . . . , 0, 1), . . . , wkm =df (k − 1, . . . , k − 1).
Let h(x) =df h′(fw1 (x), . . . , fwkm (x)). Then h ∈ [B ∪{f}] and for all x ∈ A
holds h(x) /∈ A.
Now, let g be an arbitrary n-ary function from FP. Certainly, the function

s(x1, . . . , xn, y) =df


x1 , if x1, . . . , xn, y ∈ A
g(x1, . . . , xn) otherwise

is in FP∩RA. Then g(x1, . . . , xn) = s(x1, . . . , xn, h(x1)) for all x1, . . . , xn ∈
N and therefore g ∈ [B ∪ {f}].

For the next dualatoms we take a common computation model for FP-functions
and lessen the power of the model slightly. The model is that of Boolean circuits
of polynomial size.

Definition 4. For a Boolean circuit C, let size(C) be the number of gates of
C, and let depth(C) be the length of the longest path between an input gate
of C and an output gate of C. For a set of Boolean functions B and classes of
functions K1,K2 on N, let FSIZE-DEPTHB(K1,K2) be the class of functions
computable by logspace-uniform families of circuits with gates from B that are
bounded in size and depth by functions from K1 and K2. We write FCPSB =df

FSIZE-DEPTHB(O(nO(1)), O(nO(1))), for the class of functions computable
by circuits of polynomial size with gates from B.

For an exact definition of Boolean circuits and logspace-uniform families of
circuits, we refer to [Vol99]. For every set of Boolean functions B, for which
[B] = BF, we have FP = FCPSB , (e.g. B = {and, or, not}). Note that the
actual base B we chose is not relevant: If [B] = [B′] then every function from B
can be computed by a circuit over B′. Therefore, if f ∈ FCPSB is calculated by
the family of circuits (Ci)i∈N over B, we can find a family of circuits (C ′

i)i∈N

over B′ by replacing every gate in Ci by the corresponding circuit over B′ of
constant size. So the circuits in the family (C ′

i)i∈N grow for a constant factor
only.
We want to study circuits of polynomial size over sets B of Boolean functions
such that [B] 6= BF.

Proposition 3. If [B] is not a dualatom in L(BF) then FCPSB cannot be a
dualatom in L(FP).



Proof. Let A be a dualatom in L(BF) with [B] ⊂ A, let A′ be a base of A, and
let f ∈ A\[B]. Then f ∈ FP\FCPSB , so if FCPSB were a dualatom in L(FP)
we would expect [FCPSB ∪ {f}] = FP. But since every g ∈ FCPSB can be
computed by a family of circuits over B, every g′ ∈ [FCPSB ∪ {f}] can be
computed by a family of circuits over B ∪ {f} and therefore [FCPSB ∪ {f}] ⊆
FCPSA′ ⊂ FP.

So for FCPSB to be a dualatom in L(FP) it is necessary that [B] is a du-
alatom in L(BF). However, this condition is not sufficient: For clones of Boolean
functions [A] and [B] with [A] ⊂ [B] = BF, suppose there exists a function
f ∈ [A] that can be computed by relatively small circuits over B, but all circuits
over A computing f are huge in comparison. Then [FCPSA ∪ {f}] could be a
proper superclone of FCPSA but would still not contain e.g. the Boolean func-
tion nand ∈ FP. We will see that this is the case with the monotonic Boolean
functions. First, we need to formalize the notion of huge and small circuits with
respect to different bases.

Definition 5. Let B1 and B2 be finite sets of Boolean functions. We say B2 is
polynomially unnecessary for B1 if for every B2-circuit C2 that describes a
Boolean function f ∈ [B1] there is a polynomial p and a B1-circuit C1 describ-
ing f with size(C1) ≤ p(size(C2)). Otherwise, we call B2 polynomial necessary
for B1.

Lemma 1. Let B1, B2 be sets of Boolean functions. If [B1]
1. is equal to L, or
2. is equal to D, or
3. is from {R1, R0}

then B2 is polynomially unnecessary for B1.

Proof. The first point is obvious, since every function from L can, by definition,
be described by a circuit over a base of L of linear size in the number of relevant
variables.
For the second point, let sd(x, y, z) =df xy ∧ xz ∧ yz. It is known that {sd}
is a base for D [Pos41]. Observe, that sd(1, x, y) = nand(x, y). Now let f be
an n-ary Boolean function from D. Let f ′(x2, . . . , xn) =df f(1, x2, . . . , xn).
Since

f ′(x2, . . . , xn) = f(nand(xn, nand(xn, xn)), x2, . . . , xn)

there is a {nand}-circuit C ′ computing f ′ with just two more gates than every
{nand}-circuit computing f . We build an {sd}-circuit C out of C ′ by replacing
every nand-gate g as follows: If y and z are the inputs of g, replace it by an
sd-gate with inputs x1, y, and z. Here, x1 is an additional input gate and we
connect every g with this same gate. Let fC be the function computed by C.
Then fC(1, x2, . . . , xn) = f ′(x2, . . . , xn) = f(1, x2, . . . , xn). On the other
hand, since fC is self-dual, we have fC(0, x2, . . . , xn) = fC(1, x2, . . . , xn) =
f ′(x2, . . . , xn) = f(1, x2, . . . , xn) = f(0, x2, . . . , xn). Hence fC = f .
We show the third point for B1 = R0. Obviously {∨,∧,⊕} ⊆ R0. Let f ∈ R0

be described by a circuit C over {∧,¬} with inputs x1, . . . , xn. We build a new
circuit C′ by replacing every occurence of a ¬ gate in C with an ⊕ gate with
the following inputs: The first input is the input of the original ¬ gate and the



second one is
Wn

i=1 xi. Since C′ describes an R0 function, fC′ (0, . . . , 0) =
f(0, . . . , 0) = 0. For every other input, the new ⊕ gates behave like ¬ gates on
their first input, since their second input evaluates to 1. The proof for B1 = R1

can be done, by switching 1 and 0, ∧ and ∨, and ⊕ and ↔.

In the following proofs, we need two special functions.
– For k ∈ N, x = x1 . . . xn ∈ {0, 1}n, and i = min{k, n} let idk(x) =df xi.
– For x, y ∈ {0, 1}∗, let conc(x, y) =df xy be the function that concats x and

y.
Note that for all sets of Boolean functions B, and all k > 0, these functions are
in FCPSB .

Theorem 3. If [B] = D then FCPSB is a precomplete subclone of FP.

Proof. Obviously FCPSB ⊂ FP. We have to show its precompleteness. For
that, let f ∈ FP \ FCPSB . Then there is a uniform family of circuits (Cf

n)n∈N

over {∨,∧,¬} that computes f . Also, there is a polynomial p, such that for
i ∈ {1, . . . , p(k)} Boolean functions fk

i are computed by the i-th output gate of
circuit Cf

k . Since {∨,∧,¬} is polynomially unnecessary for {sd}, cf. Lemma 1,
there must be a k ∈ N and an ` ∈ {1, . . . , p(k)} such that fk

` /∈ [{sd}].
That means, that there are a1, . . . , ak ∈ {0, 1} such that fk

` (a1, . . . , ak) =
fk

` (a1, . . . , ak). For a ∈ {0, 1}, let a1 =df a and a0 =df 1−a. Observe, that the
function h(x1 . . . xn) =df xa1

1 . . . xak
1 is in FCPSB , in fact, h can be calculated

by a family of small circuits over any base that can express negation. Then for all
x ∈ N holds |h(x)| = k and fk

` (h(x)) = c for some c ∈ {0, 1}. Therefore there
is a c ∈ {0, 1} such that the constant function c(x) = c = id`(f(h(x))) is in
FCPSB .
Assume that c = 1. Now let g ∈ FP be computed by a uniform family of circuits
(Dg

n)n∈N over {nand} such that each circuit has polynomial size. Regard the
family of circuits (En)n∈N where E1 computes c and En+1 is derived from Dg

n

by adding an additional input gate x0 and replacing every nand gate that has
inputs x and y by an sd gate with inputs x0, x, and y. Then for the function g′

that is computed by (En)n∈N and all x ∈ {0, 1}+ holds g′(1x) = g(x). Hence
g(x) = g′(conc(c(x), x)) is in FCPSB .
If c = 0 the proof is analogous with a family of circuits over {nor}.

Theorem 4. If [B] ∈ {R0, R1} then FCPSB is a precomplete subclone of FP.

Proof. We prove the claim for [B] = R0. Obviously FCPSB ⊂ FP. We have
to show its precompleteness. For that, let f ∈ FP \ FCPSB . Then there is a
uniform family of circuits (Cf

n)n∈N over {∨,∧,¬} that computes f . Also, there
is a polynomial p, such that for i ∈ {1, . . . , p(k)} Boolean functions fk

i are
computed by the i-th output gate of circuit Cf

k . Since {∨,∧,¬} is polynomially
unnecessary for {∨,∧,⊕}, cf. Lemma 1, there must be a k ∈ N and an ` ∈
{1, . . . , p(k)} such that fk

` /∈ [{∨,∧,⊕}]. Therefore fk
` (0, . . . , 0) = 1. Since

the constant unary Boolean function c0 is in R0, the function ck
0 that maps all

words from {0, 1}+ to 0k is in FCPSB . So the constant function c1 with c1(x) =
1, for all x ∈ N, is in FCPSB , since c1(x) = id`(f(ck

0 (x))).
Now let g ∈ FP. Then there is a uniform family of circuits (Gn)n∈N over {∧,¬}
that computes g. Let g′ ∈ FCPSB be computed by the uniform family of cir-
cuits (En)n∈N that is derived from (Gn)n∈N as follows. Let E1 map the input



constantly to 1. Construct En+1 from Gn by introducing a new input gate x0 and
replacing every ¬ gate with input y by an ⊕ gate with inputs x0 and y. Obviously,
for all x ∈ {0, 1}+, g′(1x) = g(x). Therefore g(x) = g′(conc(c1(x), x)) is in
FCPSB .
Again, the proof for [B] = R1 is as above, but ∧ is switched with ∨, ⊕ is
switched with ↔, and 0 is switched with 1.

As mentioned before, FCPSB is not precomplete for FP if [B] = M, because we
can efficiently describe monotonic functions with circuits over {and, or, not},
that cannot be efficiently described by circuits over {and, or} [Raz85].

Theorem 5. If [B] = M, the clone FCPSB is not precomplete for FP.

Proof. Razborov [Raz85] proved a superpolynomial lower bound for the size of
monotone circuits computing the perfect matching function. Since this function
is in FP, it can be computed by a family of circuits of polynomial size over
{∧,∨,¬}. That means that there is a function f in FP \ FCPSB that can be
expressed by a family of monotone circuits. Therefore [FCPSB ∪ {f}] contains
just functions computable by monotonic circuits, but not, for example, the func-
tion that flips just the first bit of the input, which is a nonmonotonic function that
is clearly in FP.

There remains just the one case were [B] = L. In this case FCPSB , is no du-
alatom in L(FP), too: Per definition, every linear Boolean function can be de-
scribed by a very short propositional formula, and therefore every f ∈ FCPSB

can be described by circuits of very small depth. Hence we can use Smolensky’s
theorem [Smo87] to show that FCPSB is not a dualatom in L(FP). We need a
few definitions for that.

Definition 6. Let y ∈ N such that bin(y) = a1 . . . am, n > 0 and x1, . . . , xn ∈
{0, 1}. We define

– modn
p (x1, . . . , xn) =df 1 if and only if Σn

i=1xi ≡ 0(mod p)
– modp(y) =df modm

p (a1, . . . , am).
– ∨n(x1, . . . , xn) =df 1 if and only if Σn

i=1xi > 0
– ∧n(x1, . . . , xn) =df 1 if and only if Σn

i=1xi = n
– MODr =df {¬} ∪

S

n∈N
{modn

p ,∨n,∧n}

Theorem 6 (Smolensky). Let p be prime and r > 1 be relatively prime to p.
Then modr /∈ FSIZE-DEPTHMODp(O(nO(1)), O(1)).

Corollary 2. If [B] = L then FCPSB is not precomplete for FP.

Proof. By definition, FCPSB ⊆ FSIZE-DEPTHMOD2(n
O(1), O(1)) ⊂ FP,

since by Theorem 6 modp /∈ FSIZE-DEPTHMOD2(n
O(1), O(1)) for all primes

p 6= 2.

Corollary 3. FCPSB is a dualatom in L(FP) if and only if [B] ∈ {R0, R1, D}.

The dualatoms we found so far contain functions that are nearly as powerful as the
most complex ones of FP are. We made slight syntactical restrictions on the func-
tions in FP or on the computation model for these to define precomplete classes.
It would be very interesting to know whether there are precomplete classes for



FP that are weaker in a stricter sense. That means whether there are precomplete
classes A such that we cannot easily encode every problem from P such that it
can be decided by functions from A. One way to do this could be to reduce the
resources of a Turing machine. In the following, we look at subclones of FP that
are defined via Turing machines with a time bound that is less than polynomial. In
particular, we show that there is no K such that [DTIME(K)] is precomplete for
FP. The technique we use is similar to the one used to show that there exist in-
ifinitely many turing degrees between P and NP if P 6= NP [Lad75,Sch82]. We
define classes of functions that on large areas of N produce very short, subpoly-
nomial outputs and on other areas produce outputs of polynomial size. We find
such classes that are in fact clones and show that every [DTIME(K)] is either
contained in one of these or already contains FP.
For a set B ⊆ N

N of unary functions, let

[B]+fict =df { f : f ∈ N
n for some n ≥ 1 and f(x1, . . . , xn) = f ′(xi)

for an f ′ ∈ B and 1 ≤ i ≤ n and all x1, . . . , xn ∈ N }.

That means, that [B]+fict contains, all functions f that have at most one non-
fictive variable and on this variable f behaves like a function from B. Clearly,
B ⊂ [B]+fict and if B is closed under substitution, [B]+fict is closed under
superposition. We use this construction in order to not have to deal with all the
operations of superposition.

Definition 7. For k ∈ N and ε > 0 say g : N → N is a (k, ε)-gap function if

and only if for all ` ≥ k holds g(` + 1) > 2abc

− 1 where a =df |g(`)| − 1,

b =df 1 + ε, and c =df ` − k + 1. Define rgbg(k, `) =df 2abc

− 1 (right gap
bound). Obviously, if g is a (k, ε)-gap function, it is also a (k′, ε)-gap function
for all k′ ≥ k.
We say a function f has (g, k)-gaps if there is an ε > 0 such that g is a (k, ε)-gap
function and for all ε′ > 0 we have

x ∈ [g(`), rgbg(k, `)] ⇒ |f(x)| ≤ |x|1+ε′ .

For a (k, ε)-gap function g, let

GAPg =df {f : there is a k′ ≥ k such that f has (g, k′)-gaps}.

Let GAPPg =df FP ∩ [GAPg]+fict.

We first show some properties of gap functions.

Lemma 2. Let g be a (k, ε)-gap function, let k′ ≥ k, and let f have (g, k′)-gaps.
1. For all ` ≥ k holds |rgbg(k, `)|1+ε ≤ |rgbg(k − 1, `)|.
2. f has (g, k′ + 1)-gaps.

Proof. 1. Observe for a =df |g(`)| and b =df 1 + ε:

|rgbg(k, `)|b = |2ab(`−k+1)

− 1|b

= (ab(`−k+1)

)b

= ab(`−k+2)

= |rgbg(k − 1, `)|



2. Obvious, since rgbg(k
′ + 1, `) < rgbg(k

′, `) for all ` ≥ k′ + 1 holds.

The next lemma shows that our classes of gap functions are closed under substi-
tution. We have already seen that this is sufficient for [GAPg]+fict to be a clone.

Lemma 3. Let g be a (k, ε)-gap function. Then GAPg is closed under substitu-
tion.

Proof. Let f1 ∈ GAPg have (g, k1)-gaps and let f2 ∈ GAPg have (g, k2)-gaps.
Without loss of generality, let k2 ≤ k1. We show, that f1◦f2 has (g, k1+1)-gaps.
Because of Lemma 2.2 f2 has (g, k1 +1)-gaps. Therefore, for all ` ≥ k1 +1 and
all x ∈ [g(`), rgbg(k1 + 1, `)] holds |f2(x)| ≤ |x|1+ε1 for all ε1 > 0. Because
of Lemma 2.1, for these x we have

|f2(x)| ≤ |rgbg(k1 + 1, `)|1+ε1

≤ |rgbg(k1, `)|

for all ε1 > 0. Therefore, since f1 has (g, k1)-gaps,

|f1(f2(x))| ≤ (|x|1+ε1 )1+ε2

= |x|1+ε1+ε2+ε1ε2

for all ε1, ε2 > 0.

Corollary 4. For all (k, ε)-gap functions g, the class GAPPg is a proper sub-
clone of FP.

Proof. Since GAPPg is closed under superposition and GAPPg ⊆ FP, it is a

subclone of FP. Since the function s(x) =df 1|x|2 ∈ FP has no (g, k)-gaps, for
any gap function g, the inclusion is proper.

We have already seen in Proposition 2 that for every class of functions K that
contains a function t with t(n) ≥ n1+ε, for some ε > 0, we have FP ⊆
[DTIME(K)]. We now want to study those [DTIME(K)] where every function
in K is smaller than n1+ε for all ε > 0. It is obvious, that all these classes are
contained in the class SUBP we define below. SUBP stands for subpolynomial
time.

Definition 8. Let SUBP =df

T

ε>0 DTIME(O(n1+ε)).

Theorem 7. SUBP is a subclone of FP and it is no dualatom in the clone lattice
below FP.

Proof. Obviously, SUBP ⊆ FP. We show that it is a clone. For that let f1, f2 ∈
SUBP. Then there is a k ∈ N such that for all x ∈ N and all ε > 0 holds
|f2(x)| ≤ k|x|1+ε. So, f1(f2(x)) can be computed in less than c(k|x|1+ε)1+ε =

k′|x|1+2ε+ε2

time, for some constants k′, c ∈ N and all ε > 0.
To show that SUBP is not a dualatom, we show that SUBP ⊂ GAPPg for a
(k, ε)-gap function g. For that, let ε =df 1, k = 2, and g(x) =df exp(4, 2x).
Here exp(0, x) =df x and exp(i + 1, x) =df 2exp(i,x) for all i ≥ 0. Observe,
that g is indeed a (2, 1)-gap function. Let s(x) =df exp(1, (|x| − 1)2) and

f(x) =df


s(x) , if x = exp(4, 2` + 1) for an ` ≥ 1
0 otherwise



Obviously, f /∈ SUBP. We show that f ∈ GAPPg . For that, let ` ≥ 2. Observe
that for c = ` − k + 1 we have

rgbg(2, `) = 2(|g(`)|−1)2
c

− 1

< 2exp(3,2`)2
c

= exp(2, 2c · exp(2, 2`))

= exp(3, ` − 1 + 22`)

< exp(4, 2` + 1)

So for all x ∈ [g(`), rgbg(2, `)] holds f(x) = 0 and since f ∈ FP, it is also in
GAPPg . Therefore SUBP ⊂ GAPPg and [SUBP ∪ {f}] ⊆ GAPPg ⊂ FP.

Corollary 5. For all classes K of functions, [DTIME(K)] is not a dualatom in
the lattice of clones below FP.

Proof. Suppose there is an ε > 0 such that for a function f ∈ DTIME(K)
holds f(n) ≥ n1+ε for all but finite n. Then FP ⊆ [DTIME(K)] because of
Proposition 2.
On the other hand, if for all ε > 0 and every f ∈ DTIME(K) we have f(n) <
n1+ε, then [DTIME(K)] ⊆ SUBP ⊂ GAPPg ⊂ FP for a proper (k, ε)-gap
function g.

We remark, that the GAPPg clones are not precomplete for FP, since for a
gap function g we can always construct a gap function g′(`) = g(2`). Then
GAPPg ⊂ GAPPg′ ⊂ FP.

3.3 The Size of the Lattice

The number of functions in FP is countable. This means that the “depth” of
L(FP), i.e. the number of clones on a path from the lowest element of L(FP) to
FP is countable: For all A, B ∈ L(FP) with A ⊂ B there is a f ∈ B \A. Since
L(BF) is a sublattice of L(FP), and since the depth of L(BF) is infinite, so is
that of L(FP). Is the number of clones in L(FP) also countable? We show that
there are uncountably many clones in L(FP), which implies that most of them
have only infinite bases.
For that we introduce transposition functions. The idea for these stems from the
self-dual Boolean functions. We replace the role of the Boolean not in their defi-
nition (see Definition 2) by transposition functions.

Definition 9. We call a function g : N → N transposition function if for all
x ∈ N holds g(g(x)) = x. For each such g we define the class of g-transposition
dual functions

TDg =df {f : ∀x1, . . . xk ∈ N(f(x1, . . . , xk) = g(f(g(x1), . . . , g(xk))))}.

Let TDPg =df TDg ∩ FP.

So unary f are in TDg if and only if f ◦ g = g ◦ f , i.e. f and g commute. For a
transposition function g, let NFg =df {x : g(x) 6= x} be the set of numbers that
are no fixpoints of g.



Proposition 4. For each transposition function g is TDg a clone.

Proof. Every TDg is obviously closed under ZV, LV, and ID. Let f1, f2 ∈ TDg ,
f1 be m-ary and f2 be n-ary, and let

h(x1, . . . , xm−1, y1, . . . , yn) =df f1(x1, . . . , xm−1, f2(y1, . . . , yn)).

Then the following equation holds:

g(h(g(x1), . . . , g(yn))) = g(f1(g(x1), . . . , g(xm−1), f2(g(y1), . . . , g(ym))))

= g(f1(g(x1), . . . , g(xm−1), g(g(f2(g(y1), . . . , g(ym))))))

= g(f1(g(x1), . . . , g(xm−1), g(f2(y1, . . . , ym))))

= f1(x1, . . . , xm−1, f2(y1, . . . , ym))

= h(x1, . . . , yn)

Proposition 5. Let g1, g2 are transposition functions with g1 6= g2 and g1, g2 /∈
{id}.

1. Then TDg1 6⊆ TDg2 and TDg2 6⊆ TDg1 .
2. If not both NFg1 = NFg2 and |NFg1 | = |N| then TDPg1 6⊆ TDPg2 and

TDPg2 6⊆ TDPg1 .

Proof. Case 1: NFg1 = NFg2 =df {a0, a1, . . . }. First, let NFg1 be infinite. Let
c0 =df a0 and d0 =df g1(a0). For i > 0, let ci be the smallest a ∈ NFg1 such
that a 6= cj and a 6= dj for all j < i and let di = g1(ci). We define

f(x) =df

8

<

:

ci+1 , if x = ci for an i ∈ N

di+1 , if x = di for an i ∈ N

x otherwise

Then for an i ∈ N and x /∈ NFg1 holds

g1(f(g1(ci))) = g1(f(di)) = g1(di+1) = ci+1 = f(ci)

g1(f(g1(di))) = g1(f(ci)) = g1(ci+1) = di+1 = f(di)

g1(f(g1(x))) = g1(f(x)) = g1(x) = x = f(x).

So f ∈ TDg1 . Let us assum that f ∈ TDg2 . Since g1 6= g2 there is a smallest
i such that g1(ci) 6= g2(ci). Hence, there is a j > 0 such that g2(ci) = ci+j or
g2(ci) = di+j .
Let g2(ci) = ci+j . Then for all k ≥ 0 holds g2(ci+k) = ci+j+k since ci+k+1 =
f(ci+k) = g2(f(g2(ci+k))) = g2(f(ci+j+k)) = g2(ci+j+k+1). For k = j this
leads to ci+2j = g2(ci+j) = ci which is a contradiction.
Now let g2(ci) = di+j . Then for all k ≥ 0 holds g2(ci+k) = di+j+k since
di+j+k+1 = f(di+j+k) = g2(f(g2(di+j+k))) = g2(f(ci+k)) = g2(ci+k+1).
So for all i ∈ N we have determined the value of g2(ci). Furthermore, we know
the value of all g2(dk) if k < i or k ≥ i+ j. Therefore, there is a 0 < ` < j such
that g2(di) = di+` and with the same argumentation as above, we obtain for all
k ≥ 0 the equation g2(di+k) = di+`+k. For k = j that means ci = g2(di+j) =
di+j+` which is a contradiction.
If NFg1 is finite, then there is a y ∈ N \ NFg1 . Let a, b ∈ NFg1 such that
g1(a) = b and g2(a) = c 6= b and define

f(x) =df


y , if x ∈ {a, b}
x otherwise



Then g1(f(g1(a))) = g1(f(b)) = g1(y) = y = f(a) and g1(f(g1(x))) =
g1(g1(x)) = x = f(x) for x /∈ {a, b}, so f ∈ TDg1 . But g2(f(g2(a))) =
g2(f(c)) = g2(c) 6= y = f(a), since g2(c) ∈ NFg1 .
Case 2: NFg1 ⊂ NFg2 or (NFg2 6⊆ NFg1 and NFg1 6⊆ NFg2 ). Then there exist
a, b ∈ NFg2 \ NFg1 such that g2(a) = b and g1(a) = a. Define f(x) =df a for
all x ∈ N. Then g1(f(g1(x))) = g1(a) = a = f(x) and therefore f ∈ TDg1 .
But g2(f(g2(x))) = g2(a) = b 6= a = f(x). Hence, TDg1 6⊆ TDg2 .
It remains to show that TDg2 6⊆ TDg1 . For that, let a′ ∈ NFg1 and define

f(x) =df

8

<

:

a′ , if x = a
g2(a

′) , if x = b
x otherwise

Then g2(f(g2(a))) = g2(f(b)) = g2(g2(a
′)) = a′ = f(a) and g2(f(g2(b))) =

g2(f(a)) = g2(a
′) = f(b) holds, and if x /∈ {a, b} then g2(f(g2(x))) =

g2(g2(x)) = x = f(x), since g2(x) /∈ {a, b}. Therefore f ∈ TDg2 . Fur-
thermore, g1(f(g1(a))) = g1(f(a)) = g1(a

′) 6= a′ = f(a), and therefore
f /∈ TDg1 .
For the third claim, note that all functions f we created above are in FP, if not
NFg1 = NFg2 and NFg1 infinite.

Corollary 6. Let g1, g2 /∈ {id} be transposition functions with g1 6= g2.
1. There is no transposition function g such that TDg1 ∩ TDg2 = TDg .
2. There is no transposition function g 6= id such that [TDg1∪TDg2] = TDg .

Corollary 7. There are uncountably many clones in L(FP).
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