
Languages that are Recognized by Simple Counter Automata are

not necessarily Testable

Oded Lachish

University of Haifa

Haifa, Israel

loded@cs.haifa.ac.il

Ilan Newman

University of Haifa

Haifa, Israel

ilan@cs.haifa.ac.il

Abstract

Combinatorial property testing deals with the following relaxation of decision problems:
Given a fixed property and an input f , one wants to decide whether f satisfies the property
or is ‘far’ from satisfying the property. It has been shown that regular languages are testable,
and that there exist context free language which are not testable. We show that there exists a
language that is accepted by a deterministic counter automaton for which any 1/25-test requires
Ω(poly(log n)) queries. Thus, proving that even if we restrict ourselves to, perhaps the simplest
possible stack automaton model, we do not ensure testability.

Electronic Colloquium on Computational Complexity, Report No. 152 (2005)

ISSN 1433-8092

1 Introduction

Combinatorial property testing deals with the following relaxation of decision problems: Given
a fixed property and an input f , one wants to decide whether f satisfies the property or is ‘far’
from satisfying the property. This notion was first introduced in the work of Blum, Luby and
Rubinfeld [1], and was explicitly formulated for the first time by Rubinfeld and Sudan [2]. Goldreich,
Goldwasser and Ron [3] have started a rigorous study of what later became known as ‘combinatorial
property testing’. Since then much work has been done, both on designing efficient algorithms for
specific properties, and on identifying natural classes of properties that are efficiently testable (that
is, with O(1) queries). For detailed surveys on the subject see [4] and [5].

One of the most important questions in the field is to classify the classes of languages that are
testable. In [6] it has been shown that regular languages are testable, and that there exist context
free languages which are not testable (see also [7]). On the other hand some CFL languages that
are not regular are testable (with O(1)-queries). One such example is the first Dyck language, that
is, the language of balanced parentheses. Looking more carefully, this language resides in a very low
complexity level within the class of CFL languages. Hence, a natural question is whether there exists
a computational model stronger than state machines and weaker than stack machines such that
all the languages that are accepted by such model are testable (or at least testable with relatively
small number of queries). Perhaps the simplest model inside the class of CFL languages is that of
a deterministic counter-automaton (also known as one-symbol push down automaton). The first
Dyck language can indeed be accepted by such an automaton. We show that there exists a language
that is accepted by a counter automaton but is not testable. Thus even this slight generalization
of regularity does not ensure testability. On the other hand, we prove that the language that
we construct is ε-testable with poly(log n) queries, even for ε as small as 1/poly(log n). We leave
open the question of whether this upper bound applies to all the languages that are accepted by
deterministic counter automata.

2 Preliminaries

2.1 Simple Counter Automaton

A simple counter automaton also known as a deterministic one symbol push down automaton (1-
symbol-PDA) is a finite state automaton equipped with a counter. The possible counter operations
are increment, decrement and do nothing, and the only feedback from the counter is whether it is
currently 0 or positive (larger than 0). Thus such an automaton, running on a string ω reads an
input character at a time, and based on its current state and whether the counter is 0, it jumps
to the next state and increments/decrements the counter or leaves it unchanged (decrementing the
counter is allowed only if the counter is not 0). Such an automaton accepts a string ω if starting
with counter configuration at 0 it reads all the input characters and ends with the counter at 0.

It is quite obvious that such an automaton is equivalent to a deterministic pushdown automaton
with one symbol stack (and a read-only bottom symbol to indicate empty stack). This model of
computation can recognize a very restricted subset of context free languages. Still, some interesting
languages are recognized by such an automaton, e.g. D1, the language of balanced parentheses.
Formal definition and discussion on variants of counter automatons can be found in [8].

1

2.2 Notations

For a string α ∈ Σn and an integer i ∈ [n], ([n] = {1, . . . , n}) we denote by αi the i-th symbol of α,
that is α = α1 . . . αn. Given a set S ⊆ [n] such that S = {i1, i2, . . . , im} and i1 < i2 < · · · < im we
define αS = αi1αi2 . . . αim . For two integers j > i we denote by [i, j] = {`| i ≤ ` ≤ j}.

For a given string α ∈ {0, 1}n, an interval [i, j] ⊆ [n] is said to be homogeneous if all the letters
in α[i,j] are the same.

For two strings α, β we denote by dist(α, β) the Hamming distance between α and β. Namely,
dist(α, β) = |{i| αi 6= βi}|. For a property P ⊆ Σn and a string α ∈ Σn, dist(α, P) =
min{dist(α, β)| β ∈ P} denotes the distance from α to P. We say that α is ε-far from P if
dist(α,P) ≥ εn, otherwise we say that α is ε-close to P.

2.3 The Language L

We construct here a language L which is accepted by a simple counter automaton but is not testable.
L is the language of all possible concatenations of strings of the sort 0t1t. Formally:

Definition 2.1. L is the minimal language of all strings such that:

1. The empty string belongs to L.

2. For every positive integer t we have 0t1t ∈ L.

3. If α1, α2 ∈ L then α1α2 ∈ L.

Where α1α2 denotes the concatenation of α1,α2.

We remark that the language L is isomorphic to a subset of D1, the first Dyck language, which
is the language of properly balanced parentheses of one type.

Let Ln be the property Ln = L ∩ {0, 1}n.

3 Lower Bound for Testing Ln

Theorem 3.1. Any non adaptive, two sided error, 1/48-testing algorithm for Ln, uses Ω(log n/ log log n)
queries.

3.1 Proof Outline

We prove the theorem by using Yao’s principle. That is, we construct a distribution D over
legitimate instances (strings that are either in Ln, or strings that are 1/48-far from Ln) and prove
that any non adaptive deterministic tester, that uses o(log n/ log log n) queries, gives an incorrect
answer with probability strictly greater than 1/3.

The construction of distribution D is based on the following sets:

BAD` =
{

0`1`0`1`0`13`03`1`, 02`12`03`1`0`13`
}

,

GOOD` =

{

(

02`12`
)3

,
(

0`1`
)6

}

.

2

where ` is an integer. Note that each one of the 4 strings is of length 12`. We refer to strings selected
from these sets as ’phrase strings’. We view the phrase strings as being composed of 12 disjoint
intervals of length `, which we refer to as ‘phrase segments’. By the definition of the ’phrase strings’
each ‘phrase segment’ is an homogeneous substring. It is easily verified that for every integer `,
every string in BAD` is at least 1/48-far from L12`.

The idea behind the construction of D and the intuition of the lower bound is illustrated here.
Assume that Alg is an algorithm for ε testing Ln. Then in particular Alg should distinguish with
high probability between a string uniformly selected from BAD` and a string uniformly selected
from GOOD`. Note however that any single fixed query can’t distinguish between the two cases.
In order to distinguish between the two cases Alg must query more than one query. Moreover, at
least two of the queries must be in two different ’phrase segments’ excluding the first and last.

In the construction of distribution D we select with probability 1/2 whether the string we choose
will be a positive instance or a negative instance. We select a positive instance by concatenating a
set of strings uniformly and independently selected from GOOD` with strings from L. We construct
negative instance in the same manner except that we replace the selection of strings from GOOD`,
by selecting strings from BAD`. Thus the only way to distinguish between a positive instance
and a negative instance is if at least two queries are located in the same phrase string, but in
different phrase segments (excluding the first and last). D will be such that if the number of
queries that is used is o(log n/ log log n), then with high probability there will be no two queries
in two different phrase segments that belong to the same phrase string. Since each phrase string
is selected independently this ensures that the tester will have no chance of knowing whether the
string is a positive instance or a negative one.

3.2 The Distribution D

Let DN be a distribution over {0, 1}n that is defined by the following process of generating a string
α ∈ {0, 1}n:

1. Uniformly select a constant s ∈ [(log n)/1000, (log n)/10] and set ` = 2s.

2. Independently and uniformly select integers b ∈ [6`], until the first time that the integers
b1, . . . , br selected satisfy

∑r
i=1(2bi + 12`) ≥ n − 24`.

3. Independently uniformly select r strings β1, . . . , βr ∈ BAD`.

4. For each i ∈ [r] set Bi = 0bi1biβi. We refer to Bi as the i’th ‘block string‘. We refer to the
substring 0bi1bi as the ‘buffer string‘ and βi as the ’phrase’.

5. Set α = B1 · · ·Br0
t1t, where t = (n −

∑r
i=1 |Bi|)/2.

Let DP be a distribution over {0, 1}n that is defined in the same manner as DN with the exception
that in the third stage we select independently and uniformly r strings β1, . . . , βr ∈ GOOD`.

Observe that DP assigns strictly positive probability only to strings in Ln.

Lemma 3.2. The Distribution DN is supported on strings in {0, 1}n that are 1/48-far from Ln.

Proof: Recall that when a string α is selected according to DN it contains r disjoint substrings
βi ∈ BAD`, i = 1, . . . , r. In addition as bi ≤ 6` it follows that the total accumulated length of the
phrase strings in α is at least n/4.

Since each β ∈ BAD` contains the substring 1`0`13` it is easy to verify that the closest word
α′ ∈ Ln to α must be different from α, in every phrase, in at least ` places. Thus α′ must differ
from α in a 1/48-fraction of the places in the whole word.

3

3.3 Proof of Main Theorem

Let Alg be any fixed deterministic algorithm that uses d = o(log n/ log log n) queries. We will show
that the error Alg has when trying to distinguish between the case that the input is drawn from
DP and the case it is drawn from the distribution DN is at least 1/3.

As the lower bound is proved for the non adaptive case, we may assume that the queries
Q = {qi, i = 1, . . . , d} are fixed in advance and renumbered such that q1 < q2 · · · < qd. Let
∆i = qi+1 − qi, i = 1, . . . d − 1 be the distances between consecutive queries.

We first show that conditioned on a certain ‘good’ event B, the error of Alg is indeed 1/2. We
will then show that the event B happens with very high probability.

Let B be the event that the integers `,b1, . . . , br (that are selected in steps 1 and 2 in the
definition of DN and DP) are such that for every i < j ≤ d, if qi, qj are in the same phrase of α
then they are also in the same phrase segment. Let ERR be the event that Alg errs on α chosen
according to D.

Claim 3.3. Prob(ERR |B) = 1/2.

Proof: Note that when an instance is selected according to D the values `, b1, · · · , bN determine
whether event B is satisfied (regardless of the values of the block strings).

Let β ∈ {0, 1}d be any vector of answers to the d queries. It is enough to show that for every
β ∈ {0, 1}d, ProbDP

(αQ = β |B) = ProbDN
(αQ = β |B).

Indeed assume that B is satisfied. We may assume w.l.o.g that all queries are in phrases of α
as the distribution that is induced on queries that are outside phrases is identical for DP and DN .
We can partition Q = {q1, . . . , qd} into disjoint sequences Q1 = {q1, . . . , qi1}, Q2 = {qi1+1, . . . , qi2},
. . . , Qu = {qiu+1, . . . , qd} such that, for every j, all queries in Qj lie in the same phrase of α while
for j 6= j′ Qj , Qj′ are in different phrases.

As B is satisfied, all queries in every Qj lie in the same phrase segment of α. According to
the way α is constructed (in both DP ,DN) this implies that αQj

= 1|Qj | with probability 1/2 and

0|Qj | with probability 1/2, unless Qj is in the first or last phrase segment in which case αQj
is

deterministically set in the same way for DP and DN .

The proof of the theorem now follows from Lemma 3.4 below.

Lemma 3.4.
Prob(B) ≥ 1 − o(1).

Proof:
Let A be the event that the integer `, chosen according to the distribution D, satisfies (∆i ≤

`/ log n) or (∆i ≥ 24`) for every i = 1, . . . d − 1. We think of A as asserting that either the queries
are extremely close, or they are extremely far (lie in different phrases in the word α).

Claim 3.5.
Prob(A) ≥ 1 − o(1).

Proof. Recall that ` = 2s and ∆i = qi+1 − qi for every i ∈ [d]. Let qi, qi+1 be two consecutive

queries and set pi = ProbD

(

`
log n

≤ ∆i ≤ 24`
)

then

pi = ProbD

(

2s

log n
≤ ∆i ≤ 24 · 2s

)

.

4

By a simple manipulation we get

pi = ProbD (log ∆i − log 24 ≤ s ≤ log ∆i + log log n) .

Since s is distributed uniformly in
[

b 1
1000 log nc, b 1

10 log nc
]

pi ≤
log log n + log 24

log n
·
1000

99

By the union bound we have for d = o(log n/ log log n):

ProbD(A) ≥ 1 − d · pi = 1 − o(1).

Claim 3.6.
Prob (B | A) > 1 − o(1).

Proof. Assume that `,b1, . . . , br is such that for some i < j, qi, qj are in the same phrase of α.
Assume also that A happens, then |qj − qi| < 12` (as those two queries lie in the same phrase) and
∆k < `/ log n for every k ∈ [i, j] (as A holds).

According to the definition of D the block sizes are at most 24`. Therefore, qi and qj, are in

a block substring B which starts in location b ∈ [max(0, qi − 24`), qi]. Since d = o(log n
log log n

) by

assumption, then |qj − qi| ≤ ∆k · d = o(`
log log n

). Recall that every phrase segment is of size `
and hence qi and qj could either be in the same phrase segment or in two consecutive segments.
Which one of the cases happens is entirely determined by the sizes of the buffers (b1, . . . , br). The
probability that [qi, qj] intersects two specific consecutive phrase segments is at most (qj − qi)/(6`).
In the worst case there are 11 pairs of consecutive phrase segments in a phrase, thus, by the union
bound, the probability that [qj, qi] is not in the same phrase segment is at most 11(qj − qi)/(6`).

This analysis is true for any i < j for which qi, qj are in the same phrase. Given ` and b1, . . . , bN

we can partition Q = {q1, . . . , qd} into subsets Q1 = {q1, . . . , qi1}, Q2 = {qi1+1, . . . , qi2}, . . . ,
Qu = {qiu−1+1, . . . , qd}, where for any j all queries in Qj are in the same phrase. Assuming that A
holds the analysis above holds for every pair of indices ij−1 + 1, ij . Hence, by the union bound we
have that:

ProbD (B | A) > 1 −
11(qi1 − q1)

6`
−

11(qi2 − qi1+1)

6`
− · · · −

11(qd − qiu−1+1)

6`
= 1 −

11

6`
·

d · `

log n

Since d = o(log n/ log log n) the claim is proved and so is the Lemma.

We note that for 1-sided error algorithms the lower bound is Ω(n) since there is no witness of

length o(n) that the string 0
n
4 1

3n
4 is not in Ln.

4 Upper Bound for testing Ln

We construct here a non-adaptive 2-sided error ε-test for Ln, for every ε ≥ 20
log n

and query com-
plexity poly(log n). The idea behind the algorithm is the following: Suppose that by querying a
string α ∈ {0, 1}n we find a substring uvwx where |x|, |u| << |v| << |w| and such that u contains a

5

′1′, x contains a ′0′, v contains mostly 0’s and w contains mostly 1’s. This, then provides a witness
that the string α is not in Ln. We show that if a string α is ε-far from Ln, then it contains many
such substrings. In order to ’find’ such substrings we look for them in different length scales. This
motivates the following definitions.

Definition 4.1. [Basic Substring]: A substring α[x,y] of α ∈ {0, 1}n is called “Basic” if x is odd
and one of the following is satisfied.

1. α[x,y] is a maximal substring of the sort 0s1t, s ≥ 0, t ≥ 0 and s + t is even.

2. α[x,y] = 10.

A basic substring α[x,y] is called a “good” substring if α[x,y] = 0s1s and a “bad” substring otherwise.

Definition 4.2. [Short Substring]: A substring α[x,y] of α ∈ {0, 1}n is called “short” if y − x ≤

log3(n).

Fact 4.3. Every string in {0, 1}n is a concatenation of basic substrings. A string α ∈ {0, 1}n is
in Ln if and only if each one of its basic substrings are good substrings.

The goal of the tester is to find a ‘witness’ that a string is not in Ln. Bad substrings would
have been a natural choice if it was true that every string that is far from Ln has many ’short’ bad
substrings. However bad substrings alone are not sufficient as witnesses since a string can be far
from Ln and have only long bad substrings. The main part of the test will be to ’catch’ such cases
by finding a suitable “probabilistic” witness. This will result in a 2-sided test.

In order to deal with bad substrings of different scales we introduce the following collection of
partitions of a string into substrings.

For each k ∈ [2, log n
log log n

−2] let Pk be the partition of [n] into contiguous intervals each of length

n/ logk n. We assume for simplicity here, that n/ logk n is even for each k ∈ [2, log n
log log n

− 2]. Note
that by this definition each such interval begins in an odd location and ends in an even location. We
denote the i’th interval in Pk by partk(i) and we set pk = |Pk| = logkn. We also use the notation
partk([x, y]) to denote the interval that contains all intervals partk(i) for i ∈ [x, y] and denote by
|partk([x, y])| the length of partk([x, y]), that is |partk([x, y])| = (y − x + 1) · n/pk.

For every string in β ∈ {0, 1}∗ we set N1(β) = |{i|βi=1}|
|β| and N0(β) = |{i|βi=0}|

|β| . That is

N1(β) is the fraction of 1’s in β and N1(β) is the fraction of 0’s in β. A color of a string
β, denoted Col(β) is ′0′ if N1(β) < 1

2 log n
, ′1′ if N0(β) < 1

2 log n
and ′G′ (for gray) otherwise.

Namely, if Col(β) ∈ {0, 1} then β contains almost only Col(β) letters, while if Col(G) = G then
β contains a significant amount of both 0’s and 1’s. Obviously a coloring of a string roughly
approximates it. For a α ∈ {0, 1}n every partition Pk naturally defines an approximation by
Colk(α) = Col(αpartk(1))Col(αpartk(2)) . . . Col(αpartk(pk)).

Definition 4.4. [Basic Subcoloring]: A substring β[x,y] of a string β ∈ {0, G, 1}m is called a
basic subcoloring if β[x,y] is a maximal substring of the sort 0sGz1t, where z ∈ {0, 1} ,s ≥ 0, t ≥ 0.
We call a basic subcoloring “bad subcoloring” if |s − t| ≥ 7 and “good subcoloring” otherwise.

Fact 4.5. Given a string α ∈ {0, 1}n if there exists k ∈ [2, log n
log log n

− 2] such that Colk(α) has a
bad subcoloring then α 6∈ Ln.

6

We note that there exist strings α 6∈ Ln, such that for every k ∈ [2, log n
log log n

−2], Colk(α) doesn’t
have a bad subcoloring. An immediate result of Theorem 4.9 which we state and prove further on
is that such strings are not far from Ln.

We continue this section as follows. In subsection 4.1 we introduce an algorithm and prove that
it is the claimed tester. The main part of the proof is the completeness of the algorithm which is
presented in subsection 4.2.

4.1 Algorithm A for testing Ln

The algorithm consists of two phases. The goal of the first phase is to find a “short” bad
substring. The goal of the second phase is to find an evidence of a “long” bad substring. Given
a string of length n the first is done by uniformly and independently selecting a number of short
subintervals of [n] and querying each location in a selected subinterval. The algorithm rejects if it
finds a bad substring in this phase. In the second phase; for every k ∈ [2, log n

log log n
−2], the algorithm

uniformly and independently selects a number of short subintervals of [pk] and then for every
location i in each one of the selected subintervals it approximates the color of the corresponding
part. The approximated color will be a letter in {0, 0̃, G, 1̃, 1}. The 0̃ should be interpreted as almost
all zeros and 1̃ should be in the same manner. All other letters retain their original meaning. The
reason two new letters are added is that we want the probability that ′G′ is mistaken to be ′0′ or
′1′ and the probability a ′0′ or ′1′ is mistaken to be ′G′ to be very low. The algorithm then rejects
if a bad subcoloring is found. The approximation is done as follows;

Approximator
Input: a string α ∈ {0, 1}n, an interval I ⊆ [n];

1. Independently and uniformly select r = log3 n entries in I. Let n1 be the number of entries i
thus selected, for which αi = 1.

2. • If n1
r

= 0 return 0.

• If 0 < n1
r

< 1
log n

return 0̃.

• If 1
log n

≤ n1
r

≤ 1 − 1
log n

return G.

• If 1 − 1
log n

< n1
r

< 1 return 1̃.

• If n1
r

= 1 return 1.

Algorithm A
Input: a string α ∈ {0, 1}n and the string length n;

1. Repeat the following log3 n independent times:

• Select an integer s uniformly from [n − (2 log3 n + 1)] and query α for each location
q ∈ [s, s + 2 log3 n + 1].

• If α[s,s+2 log3 n] has a bad substring then reject.

7

2. For each k ∈ [2, log n
log log n

− 2]} repeat the following independently log3 n · log log n times:

• Select an integer s uniformly from [pk − (2 log2 n + 1)] (if k = 2 set s = 1) and for
each i ∈ [2 log2 n + 1] set βi = Approximator(partk(s + i)) and β = β1β2 . . . βr, where
r = 2 log2 n + 1.

• If β contains a substring of the form {`, 0̃, G, 1̃, 1}{0, 0̃}xGy{1̃, 1}z{0, 0̃, G, 1̃,a}, where
`,a are the beginning and end of the string respectively, y ∈ {0, 1} and |x− z| > 6 then
reject.

3. If not rejected then accept.

Theorem 4.6. Algorithm A is a 2-sided error, non-adaptive, (20
log n

, poly(log n))-tester for Ln.

Note that algorithm A can be run by first asking all the queries and then deciding to reject or
accept. Thus the algorithm is non-adaptive.

We first bound the query complexity of algorithm A. In phase 1 an order of log3 n queries are
used in each one of the log3 n iterations. In phase 2 an order of log2 n calls to the approximator
are used in O(log n/ log log n) iterations. In each call to the approximator log3 n queries are used.
Thus the algorithm uses O(log6 n) queries. It remains to prove the completeness and soundness of
the algorithm. In order to achieve this goal we first show that with high probability every called
to the Approximator “behaves well”.

We say that algorithm A “approximates well” if on every call to the Approximator with a string
α ∈ {0, 1}n and an interval I ⊆ [n] the following happens. If Col(αI) = 0 the Approximator returns
0. If Col(αI) = 1 the Approximator returns 1. If Col(αI) = G the Approximator returns an answer
from {0̃, G, 1̃}.

Claim 4.7. Algorithm A “approximates well” with probability at least 8/9.

Proof. The proof is immediate from the Chernoff bound and the union bound.

Definition 4.8. [Adequate subcoloring]: A basic subcoloring Colk(α)[x,y] (bad or good) is called

adequate if (log n)/2 ≤ y − x ≤ log2 n.

Given α ∈ {0, 1}n we denote by Bad(α) the sum over the lengths of every short bad substring
of α, whose length is at most log3 n. For each k ∈ [2, log n

log log n
− 2] we denote by Badk(α) the sum

of the lengths of every adequate bad subcolorings of Colk(α).

Theorem 4.9. If α is 20/ log n-far from Ln then Bad(α) ≥ n/ log2 n or there exists k ∈
[2, log n

log log n
− 2] such that Badk(α) ≥ pk/ log2 n.

We prove this theorem in subsection 4.2, next we will show how it implies the completeness of
algorithm A.

Lemma 4.10. If α is 20/ log n-far from Ln then algorithm A rejects α with probability at least
2/3.

Proof. Let α ∈ {0, 1}n be 20/ log n-far from Ln. By Theorem 4.9 either Bad(α) ≥ n/ log2 n or there
exists a k ∈ [log n

log log n
− 2] such that Badk(α) ≥ pk/ log2 n. We first prove that if Bad(α) ≥ n/ log2 n

then algorithm A rejects with probability at least 2/3.

8

Assume that Bad(α) ≥ n/ log2 n. By phase 1 if an integer s is selected in the interval
[x − log3n, y − log3n] such that α[x,y] is a short bad substring then there is a bad substring in
α[s,s+2log3n+1]. Since the algorithm queries each location in [s, s + 2log3n + 1] it rejects. Set W1 to
be the set of all locations that are in an interval [x− log3n, y− log3n] for which α[x,y] is a short bad
substring. Note that, by definition, every two bad substrings of α are pairwise disjoint. Thus since

Bad(α) ≥ n/ log2 n we get that |W1| ≥
n−2log3n

log2 n
. The probability that algorithm A rejects is at

least the probability that s ∈ W1 for one of the integers s selected in phase 1. Since the algorithm
selects uniformly and independently log3 n such integers from [n − 2 log3 n], the probability that

the algorithm rejects is at least 1 − (1 − |W1|

n−(2 log3 n−1)
)log

3 n ≥ 8
9 .

Assume that α is such that Badk(α) ≥ pk/ log2 n for some k ∈ [2, log n
log log n

− 2]. Let Catch be the

event that in phase 2 algorithm A selects an integer s in an interval [x− log2n, y− log2n] such that
Colk(α)[x,y] is an adequate bad subcoloring. Note that if Catch occurs then algorithm A calls the
Approximator for every interval partk(i) such that i ∈ [x− 1, y +1] and Colk(α)[x,y] is an adequate
bad subcoloring. Set Wk to be the set of all locations that are in an interval [x − log3n, y − log3n]
such that Colk(α)[x,y] is an adequate bad subcoloring. By definition every two bad subcolorings

of Colk(α) are disjoint. Hence since Badk(α) ≥ pk/ log2 n we get that |Wk| = pk−2log3n
2 log n

. The
probability that event Catch occurs is the probability that s ∈ Wk for one of the integers s selected
in phase 2. Since in phase 2 algorithm A selects uniformly and independently 5(log2 n) locations

from [n − 2 log3 n] the probability that Catch Occurs is at least 1 − (1 − |Wk|

n−(2 log2 n
+ 1))log

3 n ≥ 8
9 .

Observe that if event Catch occurs and the algorithm approximates well then it rejects. Ac-
cording to Claim 4.7 and the union bound the probability that this happens is at least 2/3.

Lemma 4.11. If α ∈ Ln then algorithm A accepts α with probability at least 2/3.

Proof. Let α be a string in Ln. It is immediate that algorithm A does not reject in phase 1, since
by Fact 4.3, α does not have bad substrings. Thus it remains to prove that algorithm A does not
reject in phase 2.

We show that if algorithm A approximates well then it does not reject α in phase 2. Assume
for contradiction that algorithm A approximates well and rejects. Then according to the rejection
condition in phase 2 the algorithm found for some k ≥ 2, a substring β of Colk(α) of the form
{`, 0̃, G, 1̃, 1}{0, 0̃}xGy{1̃, 1}z{0, 0̃, G, 1̃,a} such that y ∈ {0, 1} and |y − z| > 6. Since algorithm A
approximated well it is easy to see that α has a bad substring in the substring that corresponds to
the parts of β, in contradiction to the assumption that α ∈ Ln.

4.2 Proof of Theorem 4.9

In order to prove that Theorem 4.9 we introduce an algorithm that on a string α ∈ {0, 1}n it
finds a new string β ∈ Ln by changing the letters in specific locations of α. We show that if
Bad(α) < n/ log2 n and Badk(α) < pk/ log2 n for every k ∈ [2, log n

log log n
− 2], this algorithm changes

less than 20/ log n fraction of the locations of α. This implies the theorem.
An informal description of this algorithm is presented here before its formal statement. The

algorithm uses two strings the input string α and the output string β which is initially set to M n,
where M is a special symbol. The algorithm has 4 major phases. In each one of these phases
the algorithm selects some intervals and changes β in the corresponding intervals to words in L.
These changes are done so that each location is β is changed exactly once. More specifically, in

9

the first phase, for every partition starting with the coarsest one (P2), and ending with the most
refined (Pm for m = log n

log log n
− 2), the algorithm takes each subinterval [w, x] for which Colk(α)[w,x]

is an adequate good subcoloring and changes βpartm([w,x]), or the part of it that does not intersects
previously changed locations, into a string in L. In the second phase for every [w, x] for which
α[w,x] is a short good substring the algorithm changes β[w,x] into part of a string in L. The third
stage of the algorithm is the same as the first except that is it done for [w, x] for which Colk(α)[w,x]

is an adequate bad subcoloring. In the last stage every interval [w, x] that is a maximal unchanged
interval in β is changed into a string in L. Follows is a formal description of the algorithm, denoted
as Algorithm Fix.

Algorithm Fix

1. Set β = Mn.

2. For k = 2 to k = log n/ log log n − 2 do,

• For each interval [w, x] such that Colk(α)[w,x] is an adequate good subcoloring of Colk(α)
and for each [y, z] ⊆ partk([w, x]) such that β[y,z] is a maximal substring of the form M ∗,
set βpartk([y,z]) = 0t1t, where t = |partk([y, z])|/2.

3. For each interval [w, x] for which α[w,x] is a short good substring and each [y, z] ⊆ partk([w, x])
such that β[y,z] is a maximal substring of the form M ∗, set β[y,z] = 0t1t, where t = (z − y)/2.

4. For k = 2 to k = log n/ log log n − 2 do,

• For each interval [w, x] such that Colk(α)[w,x] is an adequate bad subcoloring of Colk(α)
and for each [y, z] ⊆ partk([w, x]) such that β[y,z] is a maximal substring of the form M ∗

set βpartk([y,z]) = 0t1t, where t = |partk([y, z])|/2.

5. For each interval [x, y] such that β[x,y] is a maximal substring of the form M ∗ set β[x,y] = 0t1t,
where t = (y − x)/2.

6. Return β.

Claim 4.12. Given a string α ∈ {0, 1}n algorithm Fix returns a string β ∈ Ln.

Proof. Let α and β be as in the claim. Every substring of β that is changed at any step during
phases 2 to 4 is 0t1t for some t and starts at an odd place. Hence at the end of phase 4, β is a
concatenation of strings from L and strings of the form M ∗. Thus after phase 4 the substrings
containing only M ’s start in odd locations and have even length. Hence after phase 5, β is a
concatenation of strings in L.

Lemma 4.13. If Bad(α) < n/ log2 n and Badk(α) < pk/ log2 n for every k ∈ [log n
log log n

− 2],

Algorithm Fix returns a string β ∈ Ln such that dist(α, β) < 20n
log n

.

In order to prove Lemma 4.13 we need some observations.

Fact 4.14. For every s, t, u, k such that partk+1([s, t]) ⊆ partk(u) the following is satisfied.

10

• If Colk(α)u = 1 and Colk+1(α)[s,t] = 0t−s+1 then t − s ≤ 5.

• If Colk(α)u = 0 and Colk+1(α)[s,t] = 1t−s+1 then t − s ≤ 5.

• If partk+1([s, t]) = partk(u) and Colk+1(α)[s,t] = 1t−s+1 then Colk(α)u = 1.

• If partk+1([s, t]) = partk(u) and Colk+1(α)[s,t] = 0t−s+1 then Colk(α)u = 0.

Claim 4.15. If for k < m, Colk(α)[w,x] and Colm(α)[y,z] are adequate good subcolorings and
partk([w, x]) ∩ partm([y, z]) 6= φ then exactly one of the following is true.

1. partm([y, z]) ⊆ partk([w − 1, x + 1]).

2. partm([y, z − 4] ∩ partk([w − 1, x + 1]) = φ.

3. partm([y + 4, z] ∩ partk([w − 1, x + 1]) = φ.

Proof. Let α ∈ {0, 1}n be such that there exists adequate good subcolorings Colm(α)[w,x] and
Colk(α)[y,z] such that k < m and partk([w, x]) ∩ partm([y, z]) 6= φ.

If m > k + 1 then case 1 is satisfied due to the upper bound on |partk([y, z])| as an adequate
good subcoloring. Hence we may assume that m = k + 1.

According to corollary 4.14 if |partm([w, x]) ∩ partk([y, z])| > 4n/pm, that is the intersection
contains more than 4 parts of Pk+1, then there exist u1, u2 ∈ [w, x] and v1, v2 ∈ [y, z] such that:
Colk(α)u1 = 1, Colk(α)u2 = 0, Colm(α)v1 ∈ {G, 1}, Colm(α)v2 ∈ {0, G}, partm(u1) ⊆ partk(v1)
and partm(u2) ⊆ partk(v2). Hence in this case it can’t be that partk(y − 1) ∈ partm([w, x]) or
partk(z + 1) ∈ partm([w, x]), since this would imply that either Colk(α)y−1 = 0 or Colk(α)z+1 = 1
in contradiction to Colk(α)[y,z] being a good subcoloring.

Claim 4.16. If Colk(α)[w,x] is an adequate good subcoloring, α[y,z] is a good substring and partk([w, x])∩
[y, z] 6= φ then exactly one of the following is true.

1. [y, z] ⊆ partk([w − 1, x + 1]).

2. [y, z − log n] ∩ partk([w − 1, x + 1]) = φ.

3. [y + log n, z] ∩ partk([w − 1, x + 1]) = φ.

Proof. The proof is similar to the proof of claim 4.15.

Proof of Lemma 4.13 Let α ∈ {0, 1}n be such that Bad(α) < n/ log2 n and Badk(α) <
pk/ log2 n for every k ∈ [2, log n

log log n
− 2]. Let β be the string used by algorithm Fix on α.

According to definition, algorithm Fix selects intervals [x, y] ⊆ [n] such that x is odd and y−x is

even and sets β[x,y] = 0t1t, where t = (y−x)/2. We say this change is light if
dist(β[x,y],α[x,y])

y−x
< 10

log n

and heavy otherwise. We next show that the sum over all the lengths of intervals that required a
heavy change is at most 10n

log n
.

We first consider phase 2 of the algorithm. In this phase the algorithm selects adequate good
subcolorings and changes the corresponding substrings in β that is still in M ∗ to strings in L. Note
that for each k the corresponding intervals in the k’th partition are pairwise disjoint.

In the first iteration of phase 2 of the algorithm, (k = 2), by definition all the changes are light.
In a certain step k = j ≥ 3, an adequate good subcoloring of the j partition may be disjoint of any

11

previously changed interval, or may intersect previous intervals in one of the three cases of Claim
4.15. In the case that the interval in step j is disjoint of previously changed intervals, as well as
in the 2nd and 3rd cases of Claim 4.15, the changes due to the corresponding interval are light
(as the subcoloring is good and there is small or none intersection with previous changes). If the
first case of Claim 4.15, occurs, an interval of the j’th partition, Ij has significant intersection with
an interval of a previous partition I∗. The changes due to Ij are made only in the parts that are
disjoint of this intersection, and hence may be heavy. However, the corresponding length (of the
parts that are changed, that is, the parts that are disjoint of the previously changed interval) is
at most 2

log n
-fraction of the length of I∗ if I∗ belongs to the j − 1 partition, or 2

log2 n
-fraction if I∗

belongs to the j−2 partition, and in general 2
logs n

-fraction of I∗ if I∗ belongs to the j−s partition.
Thus, if we let Ai denote the sum of all the lengths of heavy changes made during the i’th step of
phase 2, Bi denote the sum of all the lengths of light changes in the ithe step of phase 2, we get
that Ai ≤

2
log n

(Ai−1 + Bi−1) + 2
log2 n

(Ai−2 + Bi−2) + . . . which implies that the amount of heavy

changes during phase 2 of the algorithm is bounded by
∑

Ai ≤ 4n/ log n.
By claim 4.16 and reasoning similar to the above the sum of heavy changes in phase 3 is at

most 2n
log n

.
In phase 4 of the algorithm, every substring that is changed is contained in an interval [x, y]

such that Colk(α)[x,y] is a bad subcoloring for some k ∈ [2, log n
log log n

− 2]. By the assumption on the
lengths of such subcolorings, the sum of the intervals changed in this phase is less than n

2 log n
.

In phase 5, for every substring in β that is still untouched, we change it to be in L. Note that
every such string must be part of a bad substring. All those strings that are part of short bad
substrings contribute at most n/ log2 n changes (in particular the heavy changes).

For each bad substring α[x,y] such that y − x > log3 n (that is, a bad but not a short bad
substring), there is an adequate subcoloring Colk(α)[w,z] such that [x, y] ⊆ partk(w − 1, z + 1).

Thus, the changes in the substring α[x,y] in phase 5, contributes at most 2
log n

of the length of

|partk(k − 1, z + 1)|. In particular, the heavy changes in this phase are bounded by 2n
log n

.

Thus the sum over all heavy changes is less than 10n
log n

. By definition, light changes contribute

a total of at most 10n
log n

.

12

References

[1] M. Luby M. Blum and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. Journal of Computer and System Sciences, (47):549–595, 1993.

[2] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to pro-
gram testing. SIAM Journal of Computing, (25):252–271, 1996.

[3] O. Goldreich S. Goldwasser and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, (45):653–750, 1998.

[4] D. Ron. Property testing (a tutorial). Kluwer Press, 2001.

[5] E. Fischer. The art of uninformed decisions: A primer to property testing. The computa-
tional complexity column of The Bulletin of the European Association for Theoretical Computer
Science, (75):97–126, 2001.

[6] N. Alon M. Krivelevich I. Newman and M. Szegedy. Regular languages are testable with a
constant number of queries. SIAM Journal on Computing, (30):1842–1862, 2001.

[7] M. Parnas D. Ron and R. Rubinfeld. Testing Parenthesis Languages, volume 2129. Springer-
Verlag Heidelberg, 2001.

[8] M. Paterson L.G. Valiant. Deterministic one-counter automata. Jornal of Computer and System
Science, (10):340–350, 1975.

13

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

