
Constant-Round Concurrent NMWI and its relation to NMZK

Rafail Ostrovsky∗ Giuseppe Persiano† Ivan Visconti†

March 1, 2007

Abstract

One of the central questions in Cryptography is to design round-efficient protocols that are
secure under man-in-the-middle attacks. In this paper we introduce and study the notion of
non-malleable witness indistinguishability (NMWI) and examine its relation with the classic
notion of non-malleable zero knowledge (NMZK). Indeed, despite tremendous applicability
of witness indistinguishability, while a lot of attention has been given to NMZK, very little
attention has been given to witness indistinguishability in case of man-in-the-middle attacks.
We initiate this study, with several (perhaps somewhat surprising) results:

• We give the first definition of NMWI proof systems. Just like every NMZK proof is a
zero-knowledge proof which aims to attain a very strong proof independence property,
we require (and formalize) the notion that every NMWI proof is a witness indistinguish-
able proof system which enjoys a very strong witness independence property against
any man-in-the-middle attack.

• We show the existence of a constant-round NMWI argument system for NP in the
standard model (i.e. without any trusted or any other setup assumptions).

• It is known that every zero-knowledge (ZK) argument is also a witness indistinguishable
(WI) argument, but not vice-versa, i.e. ZK (WI. Rather surprisingly, we show that
NMWI and NMZK argument systems are incomparable. That is, we show that there
exists a NMZK argument system that is not a NMWI argument system and we also
show that there is a NMWI argument system that is not a NMZK argument system.

• We show that our constant-round NMWI argument system is also secure under a con-
current man-in-the-middle attack, i.e., it is a concurrent constant-round NMWI ar-
gument system. This is somewhat surprising since the question of a constant-round
concurrent NMZK argument system is still open.

• We then turn our attention to Bare Public-Key (BPK) model. We show how to ex-
pand upon our concurrent NMWI result in the plain model to obtain a constant-round
concurrent NMZK argument system for any NP language in the BPK model.

Keywords: zero knowledge, witness indistinguishability, non-malleability, concurrent com-
position.

The work of the authors has been supported in part by the European Commission through
the IST program under Contract IST-2002-507932 ECRYPT. The work of the first author has
also been supported in part by Intel equipment grant, NSF Cybertrust grant No. 0430254,
Xerox Innovation group Award and IBM Faculty Award. The work of the last two authors
has also been supported in part by the European Commission through the FP6 program
under contract FP6-1596 AEOLUS.

∗UCLA, Los Angeles, CA 90095, USA. rafail@cs.ucla.edu
†Dipartimento di Informatica ed Applicazioni, Università di Salerno, 84084 Fisciano (SA), Italy.

{giuper,visconti}@dia.unisa.it

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 95 (2006)

ISSN 1433-8092

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Related Work . 3

2 Preliminaries 4
2.1 Non-Malleable Argument Systems . 6
2.2 Concurrent Non-Malleable Zero-Knowledge Arguments of Knowledge 8

3 Non-Malleable Witness Indistinguishability 9
3.1 Witness Indistinguishability . 9
3.2 Witness Indistinguishability under Man-In-The-Middle Attacks 10
3.3 Concurrent Non-Malleable Witness Indistinguishability 12
3.4 Simulation-Based cNMWI arguments . 13

4 Constant-Round cNMWI Arguments of Knowledge 14
4.1 Constructing a One-Left Many-Right Tag-Based SBcNMWI 15
4.2 Constant-Round cNMWI Arguments for all NP 19

5 Separations 19
5.1 NMZK Argument Systems 6⇒ NMWI Argument Systems 20
5.2 NMWI Argument Systems 6⇒ NMZK Argument Systems 22

6 cNMZK in the BPK Model 24
6.1 The BPK Model . 24
6.2 Concurrent Non-Malleable Zero Knowledge in the BPK Model 25
6.3 The protocol in details . 27

1 Introduction

Interactive proof systems play a central role in cryptography. Starting with the seminal paper of
Goldwasser, Micali and Rackoff [23], the notion of zero knowledge and the simulation paradigm
have been adopted in order to prove security of interactive proof systems. Indeed, Goldreich,
Micali and Wigderson have shown that computational zero-knowledge proof systems exist for
all of NP [21].

A related security notion for interactive proof systems is witness indistinguishability intro-
duced by Feige and Shamir [18]. This notion is weaker than zero knowledge as it only requires
that the adversarial verifier does not distinguish which of two given witnesses has been used
by the prover. Witness indistinguishability is easily implied by zero knowledge, while not ev-
ery witness indistinguishable proof is zero-knowledge one. Indeed, under plausible complexity
assumptions, it is known how to construct two-round witness indistinguishable proof systems
(i.e., “zaps” of Dwork and Naor [14]) for all non-trivial NP languages that are not zero knowl-
edge, as implied by the works of Goldreich and Krawczyk [20] and Goldreich and Krawczyk [22].
The impact of the witness-indistinguishability notion has been proved central to many subse-
quent investigations on zero-knowledge proofs, including non-interactive zero knowledge [17, 9]
non-black-box zero knowledge [1] and concurrent zero knowledge [15, 35, 27].

Security against man-in-the-middle attacks. Dolev, Dwork and Naor [12] proposed the
notion of a non-malleable zero knowledge proof systems where security must be preserved even
in case the adversary can play the role of a man-in-the-middle. This stronger attack allows the
adversary to act as a prover in a proof and as a verifier in another proof with full control over the
scheduling of the messages. Very informally, NMZK proofs defined in [12] are ZK proofs with an
additional requirement: NMZK proofs are required to be resilient against “man-in-the-middle”
attacks where the adversary tries to prove to a verifier a “related” theorem that he is getting
from the prover. The notion of NMZK is proved to be extremely important in cryptography,
since it captures the notion of proof independence, and led to multiple applications. Feasibility
results for NMZK have been shown by using either black-box techniques and a super-constant
number of rounds by Dolev, Dwork and Naor [13] or by using non-black-box techniques and
obtaining computational soundness in a constant number of rounds by Barak [2] and Pass and
Rosen [31].

Another aspect of Zero-Knowledge is that of Concurrent Zero-Knowledge introduced by
Dwork, Naor and Sahai [15]. In this paper we consider a concurrent and non-malleable setting
as well. In particular, we consider an adversary A mounting a concurrent man-in-the-middle
attack in which A acts as a verifier interacting with a honest prover in polynomially many left
proofs and acts as a prover interacting with honest verifiers in polynomially many right proofs.
The issue of achieving protocols that combine concurrency and non-malleability has received
a lot of attention, however many questions still remain open. In particular, constant-round
concurrent NMZK proof systems have been shown by assuming the existence of trusted third
parties or trusted common reference string [9, 3] or by using relaxed security notions [33, 6] or
relaxed concurrency [25]. A construction for concurrent NMZK in the plain model has been
given by Barak, Prabhakaran, and Sahai [5] with poly-logarithmic round complexity. The goal
of constructing a constant round (necessarily non-black-box) concurrent non-malleable zero-
knowledge proof system is open.

1

1.1 Our Results

Our work starts with the study of witness indistinguishability under a concurrent man-in-the-
middle attack. Indeed, despite tremendous applicability of witness indistinguishable proofs, the
notion of a concurrent non-malleable witness-indistinguishable (or NMWI) proof system was not
addressed in the literature.

Concurrent non-malleable witness indistinguishability. We focus on a specific class of
argument systems referred to as commit-and-prove1 introduced in [26] and also considered
in [8]. Informally, the transcript of a commit-and-prove argument system encodes through a
commitment the witness used by the prover. We consider an adversary A mounting a concurrent
man-in-the-middle attack. Our notion of non-malleable witness indistinguishability requires the
witnesses encoded in the right proofs (in which A acts as a prover) to be independent from the
witnesses used (by honest provers) in the left proofs.

We present two different definitions of concurrent non-malleable witness indistinguishability.
The first definition (see Def. 3.5) follows the original definition for stand-alone witness indistin-
guishability of [18] and requires that the distribution of the witnesses (and not simply the views
as in [18]) encoded in the right proofs is independent of the witnesses used by the honest provers
in the left proofs. We also present (see Def. 3.7) a simulation-based notion of witness indistin-
guishability which requires that, for each successful man-in-the-middle adversary A, there exists
a stand-alone prover S (i.e., S does not have access to the honest provers) that has access to
A and succeeds in proving to honest verifiers the same statements proved by A during the con-
current man-in-the-middle attack. Moreover, the arguments proved by S to the honest verifiers
encode the same witnesses encoded in the proofs given by A. This notion actually combines the
security requirements of both zero knowledge and witness indistinguishability under concurrent
man-in-the-middle attacks and deserves further studies.

We construct a constant-round concurrent non-malleable witness indistinguishable (cNMWI,
for short) argument of knowledge for all NP in the plain model. This construction relies upon
the recent work by Pass and Rosen [30] where constant-round concurrent non-malleable com-
mitments have been achieved. Thus we will formally state and prove the following result (see
Theorem 4.4).

THEOREM I. (Informal): Under standard complexity-theoretic assumptions, there exists
a constant-round concurrent non-malleable witness indistinguishable argument of knowledge for
all languages in NP.

It is well known that, if non-malleability is not an issue, zero knowledge implies witness
indistinguishability, that is every zero-knowledge proof is also a witness-indistinguishable proof.
In this paper we show that, quite surprisingly, there exists a non-malleable zero-knowledge
argument that is not non-malleable witness indistinguishable. We also show that there exists
a non-malleable witness indistinguishable argument that is not non-malleable zero-knowledge
thus making the two security notions incomparable. Thus we will formally state and prove the
following result (see Theorem 5.1 and Theorem 5.3). We also stress that this result holds even
if we ignore all issues of concurrency and focus on non-malleability alone.

1This turns out to be the cleanest notion of the “witness used”, namely the one defined in the commitment.
Thus, we restrict our study to this class of commit-and-prove argument systems since: 1) they allow us to
uniquely define what is the witness encoded in a proof; 2) they suffice for the constructions and separations that
we give. There are generalizations of the notion, but these more general definitions make the presentation far
more cumbersome.

2

THEOREM II. (Informal): Under standard complexity-theoretic assumptions, non-malleable
zero knowledge and non-malleable witness indistinguishability are incomparable.

Concurrent non-malleable zero knowledge in the Bare Public Key Model. The Bare
Public Key model (BPK model, in short) was introduced by Canetti, Goldreich, Goldwasser
and Micali [7]). It is the model where each verifier registers some public information (called the
public key) in a public file during a preprocessing stage. Each public key is associated with some
secret information (called the secret key) that is known only to the owner of the public key.
After the non-interactive preprocessing is completed, parties engage in the proof stage in which
the actual arguments will be executed. We consider concurrent man-in-the-middle attacks in
the BPK model that has the full power of a concurrent man-in-the-middle adversary during the
proof stage and, in addition, complete control over the public file; that is, the adversary can
remove entries from it and add new entries related to the ones owned by the honest parties.

The well known FLS paradigm of using witness-indistinguishable proofs allows one to obtain
ZK from witness indistinguishability and has been used in several models. We show how to apply
this paradigm using our Theorem I to construct in BPK model constant-round NMZK proof
systems for all NP. Thus we will formally state and prove the following result (see Theorem 6.4).

THEOREM III. (Informal): Under standard complexity-theoretic assumptions in the BPK

model there exists a constant-round concurrent non-malleable zero-knowledge argument of knowl-
edge for all languages in NP.

Corruption model and adaptive inputs. In all our results we consider the static corrup-
tion model where the adversary has to choose the corrupted parties before the protocols start.
Following the previous work in the area, we assume that the inputs (i.e., statements) for honest
parties are fixed according to some predetermined distribution while the adversary can choose
its inputs adaptively.

1.2 Related Work

Work related to witness indistinguishability. Very recently and independently from our
work Micali, Pass and Rosen [28] presented an extension of the notion of witness indistin-
guishability for achieving a relaxed notion of secure computation that does not resort to the
simulation paradigm. Their techniques are similar to ours but in this work, in contrast to [28],
we achieve arguments of knowledge and focus on the use of these stronger notions of witness in-
distinguishability for achieving a notion of security based on simulation (i.e., concurrent NMZK).
Moreover we show that the notions of non-malleable witness indistinguishability and NMZK are
incomparable.

Work related to concurrent non-malleable zero knowledge in the plain model. We
observe that in the plain model constant-round (non-concurrent) non-malleable zero knowledge
has been recently obtained [2, 31] whereas obtaining constant-round concurrent zero knowledge
in the plain model has been open for quite some time. The only constant-round concurrent zero-
knowledge arguments known in the plain model impose a bound on the number of concurrent
executions that the adversary can perform [1]. If we do not insist on constant-round protocols,
non-malleability and security in a concurrent setting have been achieved by [5] which present
protocol with poly-logarithmic round complexity.

Work related to concurrent non-malleable zero knowledge in the BPK model. On
the other hand, constant-round concurrent zero knowledge has been obtained in the BPK model

3

in [7] (and in [10, 11] with a concurrent soundness guarantee). Given our results, the BPK model
is, at the best of our knowledge, the weakest model in which constant-round concurrent non-
malleable zero knowledge has been achieved. Previous results (some of which achieved stronger
notions of security) required either the existence of trusted third parties (trusted key-registration
functionalities [3], common reference strings [9, 8]), or achieved only quasi-security (simulation
in super-polynomial time [33, 6]) or quasi-concurrency (timing assumptions [25]).

2 Preliminaries

A polynomial-time relation R is a relation for which it is possible to verify in time polynomial in
|x| whether R(x,w) = 1. We will consider NP-languages L and denote by RL the corresponding
polynomial-time relation such that x ∈ L if and only if there exists w such that RL(x,w) = 1.
We will call such a w a valid witness for x ∈ L and denote by WL(x) the set of valid witnesses for
x ∈ L. We will slightly abuse notation and, whenever L is clear from the context, we will simply
write W (x) instead of WL(x). Also for sequences X = (x1, · · · , xm) and W = (w1, · · · , wm), by
the writing “W ∈W (X)” we mean that wi ∈W (xi) for i = 1, · · · ,m.

For a language L we will denote by Lm
n the set of sequences of m elements of L each of length

at most n. A negligible function ν(k) is a function such that for any constant c < 0 and for all
sufficiently large k, ν(k) < kc.

Indistinguishability. Let S be a set of strings. An ensemble of random variables X =
{Xs}s∈S is a sequence of random variables indexed by elements of S.

Definition 2.1 Two ensembles of random variables X = {Xs}s∈S and Y = {Yi}s∈S are com-
putationally indistinguishable if for every probabilistic polynomial-time algorithm D there exists
a negligible function ν such that for any s ∈ S

|Prob[α← Xs : D(s, α) = 1]− Prob[α← Ys : D(s, α) = 1]| < ν(|s|).

Definition 2.2 Two ensembles of random variables X = {Xs}s∈S and Y = {Ys}s∈S are statis-
tically indistinguishable if there exists a negligible function ν such that for all s ∈ S

∑

α

|Prob[Xs = α]− Prob[Ys = α]| < ν(|s|).

Definition 2.3 Two ensembles of random variables X = {Xs}s∈S and Y = {Ys}s∈S are per-
fectly indistinguishable if for all s ∈ S

∑

α

|Prob[Xs = α]− Prob[Ys = α]| = 0.

One-way functions. Before describing our construction we review the classical notion of a
one-way function.

Definition 2.4 A polynomial-time computable function f : {0, 1}? → {0, 1}? is called one-way
if for every probabilistic polynomial time algorithm A there exists a negligible function ν such
that

Prob[x← {0, 1}n; y ← A(f(x), 1n) : f(y) = f(x)] < ν(n).

4

Interactive argument/proof systems. An interactive proof (resp., argument) system [23]
for a language L is a pair of interactive Turing machines 〈P, V 〉, satisfying the requirements of
completeness and soundness. Informally, completeness requires that for any x ∈ L, at the end
of the interaction between P and V , where P has on input a valid witness for x ∈ L, V rejects
with negligible probability. Soundness requires that for any x 6∈ L, for any computationally
unbounded (resp., probabilistic polynomial-time for arguments) P ?, at the end of the interaction
between P ? and V , V accepts with negligible probability. We denote by 〈P, V 〉(x) the output
of the verifier V when interacting on common input x with prover P . Also, sometimes we will
use the notation 〈P (w), V 〉(x) to stress that prover P receives as additional input witness w for
x ∈ L.

Formally, we have the following definition.

Definition 2.5 A pair of interactive Turing machines 〈P, V 〉 is an interactive proof system for
the language L, if V is probabilistic polynomial-time and

1. Completeness: There exists a negligible function ν(·) such that for every x ∈ L and for
every w ∈W (x)

Prob[〈P (w), V 〉(x) = 1] ≥ 1− ν(|x|).

2. Soundness: For every x 6∈ L and for every interactive Turing machines P ? there exists
a negligible function ν(·) such that

Prob[〈P ?, V 〉(x) = 1] < ν(|x|).

If the soundness condition holds only with respect to probabilistic polynomial-time interactive
Turing machines P ? then 〈P, V 〉 is called an argument.

Since all protocols we give are actually argument (rather than proof) systems, we will now
focus on argument systems only. Also from now on we assume that all interactive Turing
machines are probabilistic polynomial-time.

Zero knowledge. The classical notion of zero knowledge has been introduced in [23]. In a
zero-knowledge argument system a prover can prove the validity of a statement to a verifier with-
out releasing any additional information. This concept is formalized by requiring the existence of
an expected polynomial-time algorithm, called the simulator, whose output is indistinguishable
from the view of the verifier.

We start by defining the concept of a view of an interactive Turing machine. Let A and
B be two interactive Turing machines that run on common input x and assume that A and B

have additional information zA and zB . We denote by ViewA
B(x, zA, zB) the random variable

describing the view of B; that is, B’s random coin tosses, internal state sequence, and messages
received by B during its interaction with A.

We are now ready to present the notion of a zero-knowledge argument.

Definition 2.6 An interactive argument system 〈P, V 〉 for a language L is zero-knowledge if for
all polynomial-time verifiers V ?, there exists an expected polynomial-time algorithm S running
in expected polynomial time such that the ensembles

{ViewP
V ?(x,w, z)}x∈L,w∈W (x),z∈{0,1}? and {S(x, z)}x∈L,z∈{0,1}?

are computationally indistinguishable.
If the two ensembles are statistically/perfectly indistinguishable then 〈P, V 〉 is statistical/perfect

zero-knowledge.

5

2.1 Non-Malleable Argument Systems

The notion of non-malleability has been first considered in [12]. Non-malleability is concerned
with an adversary A that mounts a so-called man-in-the-middle attack on two concurrent ex-
ecutions of a protocol Π. Even though in this paper we will consider non-malleability only in
relation to argument systems, non-malleability can be considered with respect to any protocol.

Let Π = 〈P, V 〉 be an argument system for the language L. A man-in-the-middle adversary
A for Π acts as a verifier in one proof (called the left proof) and verifies the validity of a
statement “x ∈ L” being proved by a honest party running P ; and acts as a prover in another
proof (called the right proof) in which A tries to convince a honest party running V of the
validity of a statement x̃ ∈ L of his choice. It is assumed that A has complete control of the
communication channel and therefore decides the scheduling of the messages. Very informally,
Π is non-malleable if, whenever x 6= x̃, the left proof does not help A in the right proof.

Let us proceed more formally. For a man-in-the-middle adversary A, we consider two exe-
cutions: the man-in-the-middle execution and the stand-alone execution.

In the man-in-the-middle execution we have three parties: a honest prover P , a honest
verifier V and man-in-the-middle adversary A. In the left proof P and A (acting as a verifier)
interact on common input x ∈ L; P receives w ∈W (x) as private input and A receives auxiliary
information z ∈ {0, 1}?. In the right proof A (acting as a prover) and V interact on common
input x̃ chosen by A. We denote by mimA

V (x,w, z) the random variable describing the output
of V in this scenario which is V ’s decision and the right input x̃ chosen by A. If x = x̃ then
mimA

V (x,w, z) is the random variable that assigns positive probability only to ⊥.
In the stand-alone execution we have only two parties: a machine S (the simulator) and

a verifier V . S with access to A and auxiliary information z ∈ {0, 1}?, interacts with V on
common input x. We denote by staS

V (x, z) the random variable describing the output of V in
this interaction.

Definition 2.7 (non-malleable argument system) An argument system Π = 〈P, V 〉 for a
language L is non-malleable if for every probabilistic polynomial-time man-in-the-middle ad-
versary A, there exists a probabilistic algorithm S running in expected polynomial time and a
negligible function ν such that, for every x ∈ L, w ∈W (x), and for every z ∈ {0, 1}?

|Prob[mimA
V (x,w, z) = 1]− Prob[staS

V (x, z) = 1]| < ν(|x|).

Tag-based non-malleability. The above definition does not say anything about the case in
which A proves in the right proof the same theorem P proved in the left proof (that is, x̃ = x).
Actually, there is no way of preventing A from relaying messages from the left proof to the
right proof and vice versa. The next definition requires that if, x = x̃, then A’s proof must be
somehow different from P ’s.

Consider a family {〈Ptag, Vtag〉}tag of argument systems indexed by a string tag. As
before, we will consider the man-in-the-middle execution and the stand-alone execution. More
specifically, in the man-in-the-middle execution we consider A that, on input x and auxiliary
information z, interacts in the left proof with the prover Ptag on input (x,w) and in the right
proof with verifier V ˜tag on input x̃. The tag ˜tag of the right proof as well the input x̃ of the

right proof are chosen adaptively by A. We denote by mimA
V (tag, x, w, z) the random variable

describing the output of V in this scenario (it is V ’s decision, the tag ˜tag and the statement
x̃ ∈ L). Similarly staS

V (tag, x, z) is defined as the output of the verifier while interacting with

6

S. Similarly to the previous case, if the right proof contains the same tag used in the left proof,
then mimA

V (tag, x, w, z) gives positive probability only to the string ⊥.

Definition 2.8 (tag-based non-malleable argument) A family of argument systems
Π = {〈Ptag, Vtag〉}tag for a language L is a tag-based non-malleable argument with tags of
length ` if for every probabilistic polynomial-time man-in-the-middle adversary A, a probabilistic
algorithm S running in expected polynomial time and a negligible function ν such that for every
x ∈ L, w ∈W (x), for every tag ∈ {0, 1}`, and for every z ∈ {0, 1}?

|Prob[mimA
V (tag, x, w, z) = 1]− Prob[staS

V (tag, x, z) = 1]| < ν(|x|).

Non-malleable zero knowledge. Consider an argument system Π = 〈P, V 〉 for an NP-
language L. Let A be a man-in-the-middle adversary attacking Π. Then, with a slight abuse of
notation, by ViewP

A(x,w, z) we denote the random variable describing the view obtained by A
in the left and the right proof (including the sequence of its internal states and messages sent
and received by A) when given auxiliary information z. In the left proof A is interacting with
a honest prover P on common input “x ∈ L” and P receives a valid witness w for x as private
input. In the right proof A interacts with the honest verifier on input x̃ chosen by A.

Definition 2.9 (NMZK argument system) A non-malleable argument system Π = 〈P, V 〉
for a language L is non-malleable zero-knowledge (in short NMZK) if for any probabilistic
polynomial-time man-in-the-middle adversary A, there exists a probabilistic algorithm S running
in expected polynomial time such that, the ensembles

{ViewP
A(x,w, z)}x∈L,w∈W (x),z∈{0,1}? and {S(x, z)}x∈L,z∈{0,1}?

are computationally indistinguishable.
If the two ensembles are statistically/perfectly indistinguishable then Π is said to be non-

malleable statistical/perfect zero-knowledge.

NMZK arguments of knowledge. The notion of non-malleable zero knowledge argument
of knowledge is obtained by requiring that the simulator also outputs the witness encoded in the
right proof (in which the man-in-the-middle adversary A plays as a prover). This notion was
introduced by [9] for non-interactive NMZK and clearly implies non-malleability.

Definition 2.10 (NMZK arguments of knowledge) An argument system Π = 〈P, V 〉 for
a language L is a non-malleable zero-knowledge argument of knowledge if for every probabilistic
polynomial-time man-in-the-middle adversary A, there exists a probabilistic algorithm S (called
the simulator-extractor) running in expected polynomial time such that by denoting as S(x, z) =
(S0(x, z), S1(x, z)), the output of S(x, z), we have that:

1. {S0(x, z)}x∈L,z∈{0,1}? is computationally indistinguishable from {ViewP
A(x,w, z)}x∈L,w∈W (x),z∈{0,1}? ;

2. S1(x, z) = w̃ and if the right proof is accepting with common input x̃ 6= x we have that,
except with negligible probability, w̃ ∈W (x̃).

The notion of tag-based NMZK argument of knowledge is obtained by requiring that the
extraction procedure is successful if the right proof has a tag different from the one of the left
proof. We also stress that we allow the adversary A to pick the theorem and the tag to be used
in the right proof.

7

2.2 Concurrent Non-Malleable Zero-Knowledge Arguments of Knowledge

In a more powerful man-in-the-middle attack, the adversary A is not restricted to one proof on
the left and one proof on the right but instead A is allowed to concurrently play polynomially
many left and right proofs. We call such an adversary a concurrent man-in-the-middle adversary.
Specifically, let k be the security parameter. Consider a vector X = (x1, . . . , xm) of m =
poly(k) inputs each of length n = poly(k) and a vector W = (w1, . . . , wm), such that w1 ∈
W (x1), . . . , wm ∈W (xm). In the man-in-the-middle execution, the i-th left proof, for 1 ≤ i ≤ m,
is played by (an instance of) the honest prover P on input (xi, wi) and by the adversary A on
input (xi, z), for some auxiliary information z; the j-th right proof, for 1 ≤ j ≤ l, is played by
A on input x̃j chosen by A and auxiliary information z and by (an instance of) the verifier V

on input x̃j . We assume that A has complete control over the network and thus decides when
each message of each proof is delivered.

cNMZK arguments of knowledge. The next definition extends the notion of a NMZK
Argument of Knowledge (as defined in Definition 2.10) to the concurrent scenario.

Definition 2.11 (cNMZK arguments of knowledge) An argument system Π = 〈P, V 〉 for
the language L is a concurrent non-malleable zero-knowledge argument of knowledge (a cNMZK
argument of knowledge) if for every probabilistic polynomial-time concurrent man-in-the-middle
adversary A there exists a probabilistic algorithm S (called the simulator-extractor) running
in expected polynomial time such that for all m = poly(k) and n = poly(k), by denoting with
S(X, z) = (S0(X, z), S1(X, z)) the output of S on input (X, z) , we have that:

1. {S0(X, z)}X∈Lm
n ,z∈{0,1}? and {ViewP

A(X,W, z)}X∈Lm
n ,W∈W (X),z∈{0,1}? are computation-

ally indistinguishable;
2. S1(X, z) = (w̃1, . . . , w̃m) where, except with negligible probability, w̃j ∈ W (x̃j) for 1 ≤
j ≤ m and x̃j 6∈ X is the common input of the j-th accepting right proof.

To define the notion of tag-based cNMZK argument of knowledge we define the view ViewP
A(T,X,W, z)

of a tag-based man-in-the-middle adversary A when T is the sequence of tags, X is the sequence
of inputs and W is the sequence of witnesses used in the left proofs as all messages receives by
A in left and right proofs along with A’s internal coin tosses.

Definition 2.12 (tag-based cNMZK arguments of knowledge) A family Π = {〈Ptag, Vtag〉}tag
of argument systems for the language L is a tag-based concurrent non-malleable zero-knowledge
argument of knowledge with tags of length ` (a cNMZK argument of knowledge) if for every
probabilistic polynomial-time tag-based concurrent man-in-the-middle adversary A there exists
a probabilistic algorithm S (called the simulator-extractor) running in expected polynomial time
such that for all m = poly(k) and n = poly(k), and for all sequences T of m tags of length ` by
denoting with S(T,X, z) = (S0(T,X, z), S1(T,X, z)) the output of S on input (T,X, z), we have
that:

1. {S0(T,X, z)}T∈{0,1}ml ,X∈Lm
n ,z∈{0,1}? and {ViewP

A(T,X,W, z)}T∈{0,1}ml ,X∈Lm
n ,W∈W (X),z∈{0,1}?

are computationally indistinguishable;
2. S1(T,X, z) = (w̃1, . . . , w̃m) and for all accepting right proofs j with tag ˜tagj 6∈ T we
have that, except with negligible probability, w̃j ∈W (x̃j).

One-left many-right cNMZK arguments of knowledge. Weaker notions of cNMZK can
be obtained by restricting the power of the concurrent man-in-the-middle adversary A. If we

8

allow the adversary to be active in only one left proof, then we obtain the notion of a one-left
many-right cNMZK argument of knowledge. The following theorem is from [31, 30, 32]2.

Theorem 2.13 ([31, 30, 32]) Assume that there exists a family of claw-free permutations.
Then for any NP language L there exists a constant-round tag-based one-left many-right cNMZK
arguments of knowledge Π = {〈Ptag, Vtag〉}tag that is perfect zero-knowledge for all NP.

According to the above definition, Theorem 2.13 above says that for any efficient concurrent
man-in-the-middle adversary A there exists an efficient simulator S that guarantees:

1. the view of both the left proofs and the right proofs given in output by S are perfectly
indistinguishable from the interaction of A with honest provers and honest verifiers;

2. the extraction succeeds for all accepting right proofs in which concurrent man-in-the-
middle adversary has used a tag not appearing in any left proof;

3. S also outputs the witnesses for the accepting right proofs given by A; this means that the
capability of any man-in-the-middle adversary A in proving statements in right proofs is
owned by S (that is stand-alone) for computationally indistinguishable statements.

The last property is based on a technique referred to as simulation-extraction that combines
non-black-box simulation with black-box extraction. Indeed, while the simulator is simulating a
proof to the adversary, the extractor rewinds the adversary (and thus the simulation itself) and
still extracts a valid witness from the proof given by the adversary.

3 Non-Malleable Witness Indistinguishability

In this section we discuss the notion of a witness indistinguishable argument and introduce the
notion of a non-malleable witness indistinguishable argument system.

3.1 Witness Indistinguishability

The notion of a witness indistinguishable argument was introduced in [18] and requires the
view of the (adversarial) verifier when interacting with a honest prover to be independent of
the witness used by the prover. This notion therefore concerns NP statements for which there
exists more than one witness. Even though witness indistinguishability yields weaker security
guarantees than zero knowledge, in several cases witness indistinguishability is sufficient for the
specific task at hand and it gives very efficient protocols. Furthermore, the celebrated FLS
technique [17] can be used for obtaining zero knowledge from witness indistinguishability.

Let us now proceed more formally. Let Π = 〈P, V 〉 be an argument system for language L.
A witness indistinguishability adversary V ′ for Π receives as input x ∈ L, w0, w1 ∈ W (x) and
auxiliary information z. V ′ interacts with machine P ? that has a bit b ∈ {0, 1} wired-in. P ?

receives as input (x,w0, w1) and executes the code of the honest prover P on input (x,wb). For
b ∈ {0, 1}, we denote by WIExptbP,V ′(x,w0, w1, z) the random variable describing the output of

V ′ when interacting on input (x,w0, w1, z) with prover P ? running on input (x,w0, w1) and b is
the wired-in bit of P ?.

Definition 3.1 Argument system Π = 〈P, V 〉 for the language L is witness indistinguishable
if for all probabilistic polynomial-time witness indistinguishability adversaries V ′ there exists a

2The use of claw-free permutations and the perfect zero-knowledge property are in particular discussed in [32].

9

negligible function ν such that for all x ∈ L, all witnesses w0, w1 ∈W (x) and all z ∈ {0, 1}?

|Prob[WIExpt0P,V ′(x,w0, w1, z) = 1]− Prob[WIExpt1P,V ′(x,w0, w1, z) = 1]| < ν(|x|).

We stress that witness indistinguishability holds with respect to adversaries that know both
witnesses.

A stronger notion can be obtained if we consider adversaries that can concurrently execute
several proofs. More precisely, a concurrent witness indistinguishability adversary V ′ for ar-
gument system Π = 〈P, V 〉 for language L receives as input security parameter 1k, sequence
X = (x1, . . . , xm) of m = poly(k) elements of L each of length n = poly(k), two sequences
W 0 = (w0

1, · · · , w
0
m) and W 1 = (w1

1 , · · · , w
1
m) such that w0

i , w
1
i ∈ W (xi) and auxiliary informa-

tion z. V ′ interacts with m copies of machine P ? (one copy for each xi). All copies of machine
P ? have the same random bit b ∈ {0, 1} wired-in and the i-th copy of P ? receives as input
(xi, w

0
i , w

1
i) and executes the code of the honest prover P on input (xi, w

b
i). V ′ has control of

the network and decides in which order messages from different executions are delivered. For
b ∈ {0, 1}, we define the random variable WIExptbP,V ′(X,W 0,W 1, z) as the output of V ′ when
interacting with m copies of machine P ? with bit b wired-in. We have the following definition.

Definition 3.2 An argument system Π = 〈P, V 〉 for the language L is concurrent witness in-
distinguishable (cWI argument system) if for all efficient non-uniform adversaries V ′, for all
k, for all m = poly(k) and n = poly(k), there exists a negligible function ν such that for all
sequences X of m elements of L of length n, for all sequences W 0,W 1 ∈ W (X) and for all
z ∈ {0, 1}∗ it holds that

|Prob[WIExpt0P,V ′(X,W 0,W 1, z) = 1]− Prob[WIExpt1P,V ′(X,W 0,W 1, z) = 1]| < ν(k).

It is known (see [18]) that witness indistinguishability is closed under concurrent composition.
Moreover the constructions of zaps [14, 24] imply that, under additional complexity/number-
theoretic assumptions, there exists witness indistinguishable arguments for any non-trivial NP

language that is not zero-knowledge. Finally we stress that the FLS paradigm [17] that allows
one to obtain zero knowledge from witness indistinguishability is the most used technique for
designing zero knowledge protocols.

3.2 Witness Indistinguishability under Man-In-The-Middle Attacks

In this section we present the notion of a non-malleable witness indistinguishable argument.

Motivation. The naive approach would be to define non-malleable witness indistinguishability
by extending Definition 3.1 of witness indistinguishability to a man-in-the-middle adversary in
much the same way in which Definition 3.1 was extended to handle concurrent adversaries in
Definition 3.2. We call this notion naive non-malleable witness indistinguishability. (Indeed, such
notion is not sufficient for our purposes). In fact, if we follow this approach then we could prove
that any witness indistinguishable argument system is also a naive NMWI argument system.
Notice, though that this notion does not capture a stated goal of non-malleability as it only
puts restrictions on the output of the adversary (that is, on its own view). In our definition of
non-malleable witness indistinguishability instead we shall require that the witness encoded in
the proof 3 given by the man-in-the-middle adversary A is independent from the witness used

3Indeed, our restriction of commit-and-proof functionality aims at streamlining this definition. More general
definitions are also possible, but do not seem to be necessary for our purposes.

10

by the honest prover in the left proof. Notice that A might be unaware of the witness it has
used in the right proof and thus this possibility is not ruled-out by naive non-malleable witness
indistinguishability.

More specifically, we focus on a specific class of argument systems referred to as commit-
and-prove argument systems (previously considered in [8, 26]). Informally, the transcript of a
commit-and-prove argument encodes in an unambiguous way the witness used by the prover
(even though it might not be efficiently extracted from the transcript). In a non-malleable
witness indistinguishable commit-and-prove argument we require the witness encoded in the
proof produced by the man-in-the-middle adversary to be independent of the witness used (by
the honest prover) in the proof in which the adversary acts as a verifier.

For general argument systems it is not clear whether the notion of witness encoded is well
defined as there could be more than one. Therefore, we focus on commit-and-prove argument
systems for which the notion of the witness encoded is well defined and commit-and-prove
arguments actually suffice for proving our main result.

Commit-and-prove argument systems. A commit-and-prove argument system Π = 〈P, V 〉
for a language L is a two-stage protocol. On input x, in the first stage the prover and the verifier
execute a commitment protocol by which the prover commits to a string w. In the second stage,
the prover proves to the verifier that the committed string w is a valid witness for “x ∈ L”. We
study commit-and-prove argument systems in which the commitment scheme used in the first
stage is non-interactive and statistically binding, therefore the notion of witness encoded in the
proof is well defined and it corresponds to the string committed to by the first prover-to-verifier
message. If the proof is not accepted by the verifier, we consider the witness to be encoded in
the proof to be the string ⊥.

We shall require that in a non-malleable witness indistinguishable commit-and-prove ar-
gument system the man-in-the-middle adversary encodes in the right proof a witness that is
independent from the one that the honest prover has used in the left proof.

NMWI commit-and-prove arguments. Let A be a man-in-the-middle adversary interacting
in the left proof with the honest prover P that is running on input x and witness w. In the right
proofA is interacting with the honest verifier V on common input x̃ chosen byA. We denote by z

the auxiliary information available toA. The notion of non-malleable witness indistinguishability
is defined in terms of the random variable wmimA(x,w, z) that is the distribution of the output
of the following process: a transcript trans of an interaction of A, including the left and the
right proof, is picked according to distribution ViewP

A(x,w, z) of the view of A and the output
of procedure wit applied to trans is returned. If the right proof of trans is not accepting or
it has x has common input then wit returns the string ⊥; otherwise a (possibly non-efficient)
extraction procedure is applied on trans and the string w committed to by the first message
of A in the right proof is returned. In other words, wmimA(x,w, z) is the distribution of the
witness encoded in the right proof unless the proof is non-accepting or has the same common
input as the left proof. We are now ready to define non-malleable witness indistinguishability.

Definition 3.3 (NMWI) A commit-and-prove argument system Π = 〈P, V 〉 for an NP-language
L is non-malleable witness indistinguishable (in short, NMWI) if, for all probabilistic polynomial-
time man-in-the-middle adversaries A, for all probabilistic polynomial-time algorithms D, there
exists a negligible function ν such that for all x ∈ L and all w,w′ ∈ W (x), for all auxiliary
information z it holds that

|Prob[D(x,w,w′,wmimA(x,w, z), z) = 1]−Prob[D(x,w,w′,wmimA(x,w′, z), z) = 1]| < ν(|x|).

11

Similarly to NMZK, we can obtain a tag-based definition on non-malleable witness indistin-
guishability. We consider a man-in-the-middle adversary A interacting in the left proof with
tag tag with the honest prover P that is running on input instance x and witness w. In the
right proof, A is interacting with the honest prover V on common input x̃ and tag ˜tag of its
choice. We denote by z the auxiliary information available to A. With a slight abuse of notation,
we define the random variable wmimA(tag, x, w, z) similarly to wmimA(x,w, z) with the only
difference that a modified procedure wit is used. The modified wit procedure returns ⊥ if the
right proof is not accepting or tag is the tag of the right proof. Otherwise it returns the witness
encoded in the right proof.

Definition 3.4 (tag-based NMWI) A family of commit-and-prove argument systems Π =
{〈Ptag, Vtag〉}tag for an NP-language L is a tag-based non-malleable witness indistinguishable
argument with tags of length ` (in short, a tag-based NMWI) if, for all probabilistic polynomial-
time man-in-the-middle adversaries A, for all probabilistic polynomial-time algorithms D, there
exists a negligible function ν such that for all x ∈ L, for all tags tag ∈ {0, 1}`, for all pairs
(w,w′) of witnesses for x, and for all auxiliary information z it holds that

|Prob[D(x,w,w′,wmimA(tag, x, w, z), z) = 1]−Prob[D(x,w,w′,wmimA(tag, x, w′, z), z) = 1]| < ν(|x|).

3.3 Concurrent Non-Malleable Witness Indistinguishability

In this section we extend the notion of non-malleable witness indistinguishability to the concur-
rent setting by considering a concurrent man-in-the-middle adversary A that opens m = poly(k)
left and right proofs each with a common input of length n = poly(k). Here k refers to the
security parameter. A interacts in the i-th left proof with an instance of the honest prover P

on common input “xi ∈ L” and private prover’s input wi ∈W (xi). In the j-th right proof A is
interacting with the honest verifier V on common input x̃j of its choice.

To define concurrent non-malleable witness indistinguishability, we extend wmimA(X,W, z)
to sequences of inputs and witnesses in the following way. The distribution wmimA(X,W, z) is
the distribution of the output of the following procedure. First a transcript trans is sampled
according to the view ViewA

P (X,W, z) of A. Then the output of the following extension of the
procedure wit applied to trans is returned. Procedure wit returns a sequence (w̃1, · · · , w̃m)
where m is the number of right proofs and it holds that: if the j-th right proof is non-accepting
or has the same common input as one of the left proofs then w̃j =⊥; otherwise, w̃j is the witness
encoded in the j-th right proof.

Definition 3.5 (cNMWI) A commit-and-prove argument system Π = 〈P, V 〉 for an NP-
language L is concurrent non-malleable witness indistinguishable (in short, cNMWI) if, for all
probabilistic polynomial-time concurrent man-in-the-middle adversaries A, for all m = poly(k),
for all n = poly(k), for all probabilistic polynomial-time algorithms D, there exists a negligi-
ble function ν such that for all k, for all sequences X of m elements of L of length n, for all
sequences W and W ′ of witnesses for X, and for all auxiliary information z it holds that

|Prob[D(X,W,W ′,wmimA(X,W, z), z) = 1]−Prob[D(X,W,W ′,wmimA(X,W ′, z), z) = 1]| < ν(k).

As done for non-malleable witness indistinguishability, we can obtain a tag-based definition
of concurrent non-malleable witness indistinguishability and we define wmimA(T,X,W, z) so to
take into account the tags and not the inputs of the right proofs. We stress again that A is
allowed to choose the inputs and the tags for the right proofs.

12

Definition 3.6 (tag-based cNMWI) A family Π = {〈Ptag, Vtag〉}tag of commit-and-prove
argument systems for the language L is a tag-based concurrent non-malleable witness indis-
tinguishable argument (a tag-based cNMWI) with tags of length ` if, for all probabilistic
polynomial-time concurrent man-in-the-middle adversaries A, for all m = poly(k), for all
n = poly(k) and for all probabilistic polynomial-time algorithms D, there exists a negligible
function ν such that for all k, for all sequences X of m elements of L of length n, for all
sequences T of tags of length `, for all sequences W and W ′ of witnesses for X, and for all
auxiliary information z it holds that

|Prob[D(X,W,W ′,wmimA(T,X,W, z), z) = 1]−Prob[D(X,W,W ′,wmimA(T,X,W ′, z), z) = 1]| < ν(k).

We will also consider a relaxed notion of concurrent non-malleable witness indistinguishabil-
ity where the adversary is allowed to open only one left proof. We denote this restricted notion
of concurrent non-malleable witness indistinguishability as one-left many-right concurrent non-
malleable witness indistinguishability.

Comparison with NMZK. We stress here that NMZK requires the existence of a simula-
tor while NM witness indistinguishability does not. Instead, NM witness indistinguishability
crucially considers the possible witnesses that are encoded in the proofs given by the man-in-
the-middle while NMZK requirements are satisfied when a valid witness is given in output by
the simulator.

Comparison with non-malleable commitments. The notion of non-malleable witness in-
distinguishability is similar to the notion of non-malleable commitment with respect to commit-
ment [12, 31]. Indeed, both notions concern the security of a primitive against man-in-the-middle
attacks by considering a string that is encoded in the output of the adversary. This string is a
committed message in case of non-malleable commitments while it is an encoded witness in case
of non-malleable witness indistinguishability.

3.4 Simulation-Based cNMWI arguments

In this section we give a simulation-based definition of non-malleable witness indistinguishability.
We consider only the tag-based case. Let A be a concurrent man-in-the-middle adversary and
consider the following two executions. The first execution is the man-in-the-middle execution
where the concurrent man-in-the-middle adversary A interacts with several copies of the honest
prover in the left proofs and with several copies of the honest verifier in the right proofs. For
this execution we define distribution wmimA(T,X,W, z) as done in the previous section. Also,
we stress that A can choose the inputs for the right proofs as well as the tags. In the second
execution, called the stand-alone execution, we consider a simulator S that, without receiving
any witness for the inputs X of the left instances and without interacting with a honest prover,
manages to output the transcripts of the left and the right proofs. We denote by wstaS(T,X, z)
the random variable that describes output of the following procedure. First a transcript trans
is sampled according to the distribution of the output of S(T,X, z). Then the procedure wit is
applied to trans and the output is returned.

Definition 3.7 (tag-based SBcNMWI) A family of commit-and-prove argument system Π =
{〈Ptag, Vtag〉}tag is tag-based simulation-based concurrent non-malleable witness indistin-
guishable (in short, tag-based SBcNMWI) for the language L, if for all polynomials m = poly(k)
and n = poly(k), for all probabilistic polynomial-time concurrent man-in-the-middle adversaries

13

A, there exists a simulator S running in expected polynomial time, such that

{wmimA(T,X,W, z)}T∈{0,1}ml ,X∈Lm
n ,W∈W (X),z∈{0,1}? and {wstaS(T,X, z)}T∈{0,1}ml ,X∈Lm

n ,z∈{0,1}?

are computationally indistinguishable.

The notion of a simulation-based non-malleable witness indistinguishable commit-and-prove
argument of knowledge can be obtained by further requiring that S is able to extract witnesses
from the right proofs whenever they use tags different from the left proofs.

As done with cNMZK arguments, the notion of one-left many-right SBcNMWI argument
can be obtained by restricting the adversary to be involved only in one left proof. The next
theorem proves that any one-left many-right SBcNMWI argument of knowledge is also a one-left
many right cNMWI argument of knowledge.

Theorem 3.8 Any one-left many-right tag-based SBcNMWI commit-and-prove argument of
knowledge for an NP-language L is a one-left many-right tag-based cNMWI commit-and-prove
argument of knowledge for L.

Proof. Let {〈Ptag, Vtag〉} be a one-left many-right tag-based SBcNMWI commit-and-prove
argument of knowledge for the NP language L. Assume by contradiction that the claim does not
hold. Therefore, there exists a one-left many-right concurrent man-in-the-middle adversary A
that violates Definition 3.6. Now, let x ∈ L and let w and w′ be two witnesses for x and consider
distributions wmimA(t, x, w, z) and wmimA(t, x, w′, z). Then each of them is computationally
indistinguishable from wstaS(t, x, z), where S is the simulator associated with A (which exists
since 〈P, V 〉 is a one-left many-right tag-based SBcNMWI commit-and-prove argument of knowl-
edge for L). Therefore, usingA it will be possible to distinguish either between wmimA(t, x, w, z)
and wstaS(t, x, z) or between wmimA(t, x, w′, z) and wstaS(t, x, z) either one of which contradicts
the hypothesis. 2

4 Constant-Round cNMWI Arguments of Knowledge

In this section we present a tag-based constant-round cNMWI commit-and-prove argument of
knowledge for all languages in NP. For our construction we need the following tools.

Statistically binding commitments. A commitment scheme is a pair of probabilistic polynomial-
time algorithms: the commitment algorithm Com and the verification algorithm Open. The
committer obtains a pair (com, dec) of commitment and decommitment keys by running Com

on input message m and randomness r. The commitment com is published by the committer.
It is useful to think of com as a sealed envelop containing the message m. To reveal the com-
mitment, the committer publishes the triple (com, dec,m). The verification algorithm Open is
then run on input the triple to verify that com was properly opened as m. The hiding property
requires that the commitment com does not reveal any information on the committed message
m to an adversary that has access to com. The binding property requires that an adversary
can not produce a commitment com for which there exists two messages m0 and m1 and two
decommitment keys (dec0, dec1) such that com can be opened as m0 using dec0 and as m1 using
dec1 (that is, Open(com, dec0,m0) = 1 and Open(com, dec1,m1) = 1).

We will consider non-interactive statistically binding commitment schemes where the binding
property holds regardless of the computational power of the adversarial senders, the hiding

14

property holds only with respect to polynomial-time adversarial receivers and the commitment
stage is a non-interactive message played from the sender to the receiver. Such commitment
schemes can be constructed using 1-1 one way functions (see [19]).

Secure signature schemes. A secure signature scheme SS = (SG, Sig, SVer) is a triple of
efficient algorithms. The key generation algorithm SG on input a security parameter 1k returns
a pair (pk, sk) that are respectively a public and a secret key. The secret key sk is used to sign a
message m by running the signature algorithm Sig on input sk and the message m and obtains
the signature s. The public key pk instead is used to verify signatures by means of the SVer

algorithm that runs on input the public key pk, the message m and the signature s and outputs a
bit. The security requirement guarantees that no polynomial-time adversary that is given access
to a signature oracle is able to produce a signature of a message for which it has not queried the
oracle, or to produce a new signature of a message for which it has queried the oracle (this last
requirement defines a strong secure signature scheme). See [36] for a construction of a secure
signature scheme based on one-way functions.

4.1 Constructing a One-Left Many-Right Tag-Based SBcNMWI

In this section we construct a one-left many-right tag-based SBcNMWI commit-and-prove ar-
gument of knowledge for any NP-language.

Fix a language L ∈ NP and non-interactive statistically binding commitment (Com,Open)
and define language L1 as consisting of the pairs (x, com) such that there exist (dec, w) for
which Open(com, dec, w) = 1 and w ∈ W (x). Let Π = {〈Ptag,Vtag〉}tag be a tag-based one-
left many-right concurrent non-malleable perfect zero-knowledge argument of knowledge for L1

and let SΠ be the associated simulator extractor. Theorem 2.13 gives sufficient conditions for
the existence of Π.

In Figure 1, we present a family Γ = {〈Pt, Vt〉}t of constant-round commit-and-prove argu-
ments of knowledge for the language L ∈ NP. We shall prove that Γ is a one-left many-right
SBcNMWI argument. The argument 〈Pt, Vt〉 is similar to the protocol for non-malleable com-
mitments of [31], the only difference being that in [31] the statement used in the underlying
tag-based non-malleable perfect zero-knowledge argument of knowledge is about knowledge of
the decommitment while we also require that the committed message satisfies relation R with
respect to input x.

Lemma 4.1 Let L ∈ NP. If Π = {〈Ptag,Vtag〉}tag is a constant-round tag-based one-left
many-right concurrent non-malleable perfect zero-knowledge argument of knowledge for L1, SS is
a secure signature scheme and (Com,Open) is a non-interactive statistically binding commitment
scheme, then Γ = {〈Pt, Vt〉}t, depicted in Fig. 1, is a constant-round tag-based one-left many-
right SBcNMWI commit-and-prove argument of knowledge for L.

Proof. It is straightforward to see that, for all tags t, 〈Pt, Vt〉 is a constant-round commit-
and-prove argument for L.

Let us now prove that Γ = {〈Pt, Vt〉}t is a tag-based one-left many-right SBcNMWI commit-
and-prove argument for L. Let A be a one-left many-right concurrent man-in-the-middle adver-
sary.

In this proof (and in the proofs of Section 5) we use the fact that an adversary A for the
protocol is actually an adversary for Π since the commitment stage consists of just one message
that actually corresponds to the statement for Π (for more details, see [32]).

15

Tag: t.
Common input: x.
Private input to Pt: w ∈W (x).

1. Pt: Compute (com, dec)← Com(w).

Set (sk, pk)← SG(1k).

Send the pair (com, pk) to Vt.

2. Pt → Vt: Pt and Vt engage in an execution of Π with tag pk, where Pt runs Ppk to
prove to Vt (running Vpk) knowledge of witness (w, dec) that (x, com) ∈ L1. Let trans
be transcript of the protocol so far.

3. Pt: Compute a signature σ of tag t concatenated with transcript trans by setting
σ ← Sig(t ◦ trans, sk). Send σ to Vt.

4. Vt: Accept if and only if SVer(t ◦ trans, σ, pk) = 1 and the interaction with Ppk was
accepted by Vpk.

Figure 1: A constant-round tag-based one-left many-right SBcNMWI argument of knowledge
Γ = {〈Pt, Vt〉}t for L ∈ NP.

Consider the simulator S defined as follows. S, on input tag t and common input x for the
left proof and auxiliary information z, interacts with A and then outputs the transcript of the
interaction. In the left proof S commits to string of 0s and uses the simulator SΠ for Π to obtain
a transcript of the proof that the commitment is the commitment of a valid witness. In the
right proofs, S uses SΠ to extract witnesses for the right proofs.

Suppose, for sake of contradiction, that there exists a probabilistic polynomial-time algorithm
D such that for a positive constant c, z ∈ {0, 1}? and for infinitely many tags t, x ∈ L and
w ∈W (x) it holds that

|Prob[trans← ViewA(t, x, w, z);W ← wit(trans) : D(t, x,W, z) = 1]−
Prob[trans← S(t, x, z);W ← wit(trans) : D(t, x,W, z) = 1]| > 1

|x|c .

We denote by E(trans) the predicate that is false if and only if the one-left many-right transcript
trans contains an accepting right proof that uses the same signature public key of the left proof
but a different tag. We can then write

Prob[trans← ViewA(t, x, w, z);W ← wit(trans) : D(t, x,W, z) = 1] =

Prob[trans← ViewA(t, x, w, z) : E(trans)]·

Prob[trans← ViewA(t, x, w, z);W ← wit(trans) : D(t, x,W, z) = 1|E(trans)]+

Prob[trans← ViewA(t, x, w, z) : ¬E(trans)]·

Prob[trans← ViewA(t, x, w, z);W ← wit(trans) : D(t, x,W, z) = 1|¬E(trans)].

Now observe that Prob[trans← ViewA(t, x, w, z) : ¬E(trans)] is negligible. Suppose it is not.
Then A has succeeded in producing a signature for a new message (since tags are different) which
is valid with respect to the public key chosen by the honest prover. ThereforeA can easily be used

16

to forge signatures. A similar argument shows that Prob[trans← S(t, x, w, z) : ¬E(trans)] is
negligible.

By the above reasoning, we can assume that D distinguishes on transcripts trans in which
E(trans) is true. That is, we can assume that for some positive constant c′,

|Prob[trans← ViewA(t, x, w, z);W ← wit(trans) : D(t, x,W, z) = 1|E(trans)]−
Prob[trans← S(t, x, z);W ← wit(trans) : D(t, x,W, z) = 1|E(trans)]| > 1

|x|c′
.

We denote by Expt
A,D
0 (t, x, w, z) the following experiment and by p

A,D
0 (t, x, w, z) the proba-

bility that it outputs 1.

Expt
A,D
0 (t, x, w, z)

Interaction. Adversary A interacts on the left with the honest prover Pt(x,w) and on the
right with honest verifiers.

Output. If in one of the right proofs A uses the same signature public key used by Pt in
the left proof but a different tag then return 0.

Else, let W be the sequence of witnesses encoded by A in the right proofs. return
D(t, x,W, z).

Clearly, we have

p
A,D
0 (t, x, w, z) = Prob[trans← ViewA(t, x, w, z);W ← wit(trans) : D(t, x,W, z) = 1|E(trans)].

We next consider the following experiment Expt
A,D
1 (t, x, w, z) and denote by p

A,D
1 (t, x, w, z)

the probability that it outputs 1.

Expt
A,D
1 (t, x, w, z)

Interaction. Adversary A interacts on the left with the a prover that follows algorithm
Pt with the only exception that the simulator SΠ is used in the proof at Step 2.
Adversary A interacts on the right with honest verifiers.

Output. If in one of the right proofs A uses the same signature public key used by Pt in
the left proof but a different tag then return 0.

Else, let W be the sequence of witnesses encoded by A in the right proofs. return
D(t, x,W, z).

Obviously, |pD,A
0 (t, x, w, z)−p

D,A
1 (t, x, w, z)| = 0 as the left proof produced by the simulator has

the same distribution as the view of A.
We next consider the following experiment Expt

A,D
2 (t, x, w, z) and denote by p

A,D
2 (t, x, w, z)

the probability that it outputs 1.

17

Expt
A,D
2 (t, x, w, z)

Interaction. Adversary A interacts on the left with the prover that follows algorithm Pt

with the following two exceptions: at Step 1, com is computed as a commitment of
0|w| and the simulator SΠ is used instead of Pt in the interaction at Step 2. Adversary
A interacts on the right with simulator SΠ.

Output. If in one of the right proofs A uses the same signature public key used by Pt in
the left proof but a different tag then return 0.

Else, let W be the sequence of witnesses as extracted by the simulator SΠ from the
right proofs. return D(t, x,W, z).

Suppose now that the difference |pD,A
2 (t, x, w, z) − p

D,A
1 (t, x, w, z)| is non-negligible. Then we

can break the security of the commitment scheme in the following way. Consider an algorithm
B that receives a commitment com′ and has to decide whether com′ is the commitment of w

or of 0|w|. Algorithm B will perform Expt
A,D
2 (notice that this experiment can be executed in

polynomial time) with the only exception that com is set equal to com′. Then, depending on
whether com is a commitment of w or a commitment of 0|w|, D will be fed the witnesses used
by A in the right proofs of Expt

A,D
1 and Expt

A,D
2 , respectively. We can therefore conclude that

|pD,A
2 (t, x, w, z)−p

D,A
1 (t, x, w, z)| is negligible. This implies that |pD,A

2 (t, x, w, z)−p
D,A
0 (t, x, w, z)|

is negligible and the observation that

p
D,A
2 (t, x, w, z) = Prob[trans← S(t, x, z);W ← wit(trans) : D(t, x,W, z) = 1|E(trans)]

concludes the proof that {〈Pt, Vt〉}t is a tag-based one-left many-right SBcNMWI commit-and-
prove argument for L.

All that it is left to prove is that for each accepting proof given by the adversary, the simu-
lator outputs the corresponding witnesses. This, as in [31, 30, 32] follows from the simulation-
extraction property of Π. 2

There is a subtle point in the proof on which we would like to draw the reader’s attention.
The security properties of Π are guaranteed to hold only if Π is concurrently composed with itself.
Specifically, simulator SΠ is only guaranteed to extract and simulate when Π is concurrently
composed with itself. Instead in our proof of security of Γ, we consider Π composed with
commitments and signatures. However, this is easily seen not to constitute a problem since
the commitment consists of just one message that actually corresponds to the statement for Π
(see [32] where the same issue is discussed).

By combining Lemma 4.1 and Theorem 2.13 we obtain the following result.

Theorem 4.2 Assume that there exists a family of claw-free permutations. Then there ex-
ists a constant-round tag-based one-left many-right SBcNMWI commit-and-prove argument of
knowledge for all NP.

Proof. If claw-free permutations exist then we can construct secure signature schemes
(see [36]), constant-round tag-based one-left many-right concurrent non-malleable perfect zero-
knowledge arguments of knowledge for NP (see Theorem 2.13) and statistically binding commit-
ment schemes. The result then follows by Lemma 4.1. 2

18

4.2 Constant-Round cNMWI Arguments for all NP

In this section we give a tag-based constant-round cNMWI argument of knowledge for all NP. We
start by proving that any one-left many-right tag-based cNMWI commit-and-prove argument of
knowledge for an NP-language L is actually a (many-left many-right) cNMWI commit-and-prove
argument of knowledge for L.

Lemma 4.3 Let Π = {〈Pt, Vt〉}t be a one-left many-right tag-based cNMWI commit-and-prove
argument of knowledge for a language L. Then Π is a cNMWI commit-and-prove argument of
knowledge for L.

Proof. Assume by contradiction that there exists a successful legal tag-based concurrent
man-in-the-middle adversary A for Π and consider any input sequence X for the left proofs and
any two witness sequences for the left proofs W and W ′ for which A is successful. That is, the
distribution of the witnesses encoded in the proofs given by A in the right proofs when witnesses
W are used in the left proofs is distinguishable from the distribution of the witnesses encoded in
the proofs given by A in the right proofs when witnesses W ′ are used in the left proofs. Using
standard hybrid arguments we can reduce to the case in which W and W ′ only differ in one
component which we call the special component and we let x and w and w′ be the input and
the witnesses of the special components of X, W and W ′, respectively.

We use A to construct a legal tag-based one-left many-right concurrent man-in-the-middle
adversary M for Π thus contradicting the hypothesis. M has as auxiliary information the
sequence W of witnesses and interacts with A. Specifically, for all left proofs except the special
one, M runs the prover’s algorithm using the witnesses of W . For all the right proofs M interacts
with A by executing the code of the honest verifier. For the special left proof, M performs a
relay of messages with an external honest prover P ′ which is given (x,w,w′) and can use either
w or w′ as witness. We then consider the distribution of the witnesses encoded in the right
proofs.

Two cases are possible. If P ′ uses w then the view of A is exactly the same as in the game
in which A interacts in the left proofs with a prover P that uses witnesses W . Therefore, the
distribution of the witnesses encoded in the right proofs output by M is exactly the same as the
distribution of the witnesses encoded in the right proofs output by A. Similarly, if P ′ uses w′.
Therefore, the distributions in the witnesses encoded in the right proofs by M when w and w′

are used in the left proof can be distinguished, thus contradicting the hypothesis. 2

We are now ready for the main result of this section.

Theorem 4.4 Assume that there exists a family of claw-free permutations. Then there exists a
constant-round tag-based cNMWI commit-and-prove argument of knowledge for all NP.

Proof. If claw-free permutations exist then by Lemma 4.1 there exists a one-left many-right
SBcNMWI commit-and-prove argument of knowledge Π for all NP. By Theorem 3.8, Π is a
one-left many-right cNMWI commit-and-prove argument of knowledge for all NP. Finally, by
Lemma 4.3, Π is a (many-left many-right) cNMWI commit-and-prove argument of knowledge
for all NP. 2

5 Separations

In this section we show the surprising separation between witness indistinguishability and zero
knowledge with respect to man-in-the-middle attacks. In all previously known notions, zero

19

knowledge implies witness indistinguishability.
Since the protocol of Section 3 for non-malleable witness indistinguishability and the one

by Pass and Rosen [31] for non-malleable zero knowledge have a similar structure, we show the
separation between the two notions by constructing ad-hoc protocols that are variations of the
above two protocols.

5.1 NMZK Argument Systems 6⇒ NMWI Argument Systems

We now show that when non-malleability is considered, zero knowledge does not imply witness
indistinguishability. Specifically, we exhibit an argument system that is NMZK and for which
there exists a man-in-the-middle adversary that breaks the non-malleable witness indistinguisha-
bility property.

Fix a non-interactive statistically binding commitment scheme (Com,Open) and an NP lan-
guage L. Let L1 be the language consisting of pairs (x, com) for which there exist (w, dec) such
that Open(com, dec, w) = 1 and w ∈W (x). Let Π = {〈Ptag,Vtag〉}tag be a tag-based perfect
NMZK argument of knowledge for L1. By Theorem 2.13, Π exists under the assumption of
existence of claw-free permutations. In our construction we also need a secure signature scheme
SS = (SG, Sig, SVer).

Consider the following family of commit-and-prove argument systems Γ = {〈Pt0,t1 , Vt0,t1〉}t0,t1 .

Tag: (t0, t1);
Common input: x;
Private input to prover: witness w for x ∈ L.

1. Pt0,t1 computes (com0, dec0)← Com(w) and sends com0 to V ;

2. Pt0,t1 computes (sk0, pk0)← SG(1k) and sends pk0 to V ;

3. Pt0,t1 computes (com1, dec1)← Com(w) and sends com1 to V ;

4. Pt0,t1 computes (sk1, pk1)← SG(1k) and sends pk1 to V ;

5. Pt0,t1 ⇔ Vt0,t1 run NMZK argument of knowledge Πpk0◦0 on common input (x, com0)
in which Pt0,t1 runs algorithm Ppk0◦0 with private input (w, dec0) and Vt0,t1 runs
algorithm Vpk0◦0. Let trans0 be the transcript of this interaction.

6. Pt0,t1 ⇔ Vt0,t1 run NMZK argument of knowledge Πpk1◦1 on common input (x, com1)
in which Pt0,t1 runs algorithm Ppk1◦1 with private input (w, dec1) and Vt0,t1 runs
algorithm Vpk1◦1. Let trans1 be the transcript of this interaction.

7. P sets σ0 ← Sig(t0 ◦ com0 ◦ trans0 ◦ 0, sk0), σ1 ← Sig(t1 ◦ com1 ◦ trans1 ◦ 1, sk1) and
send (σ0, σ1) to V ;

8. V accepts if and only if SVer(t0 ◦ com0 ◦ trans0 ◦ 0, σ0, pk0) = 1, SVer(t1 ◦ com1 ◦
trans1 ◦ 1, σ1, pk1) = 1 and executions of Γpk0◦0 and Γpk1◦1 were accepted by Vpk0◦0

and Vpk1◦1.

Γ is a commit-and-prove argument system. The transcript of Γ on input x consists of
a commitment com0 of a witness w for x ∈ L (this is the first line in the description of Γ)

20

and of a subprotocol Γ′ that corresponds to the remaining lines of the description of Γ. Γ′

is an argument system for proving that com0 is indeed the commitment of a valid witness.
Completeness of Γ′ follows by inspection. Soundness of Γ′ follows by observing that Πpk0◦0 is
an argument of knowledge for L1 and for each accepting statement, a corresponding witness is
extracted. Therefore, Γ is a commit-and-prove argument system.

Γ is NMZK. Now we prove that Γ is a tag-based NMZK argument of knowledge (see Defini-
tion 2.12) by exhibiting, for each man-in-the-middle adversary A, a simulator-extractor S. In
the description of S we denote by SΠ the perfect simulator-extractor for Π. We assume wlog
that witnesses have the same length of the instance.

Simulator S interacts with A both in the left proof and in the right proof. On input tag
(t0, t1) and x ∈ L for the left proof and auxiliary information z, S computes commitments com0

and com1 of 0|x|, picks pairs of public and secret keys (sk0, pk0) and (sk1, pk1) for the signature
scheme and sends com0, com1, pk0, pk1 to A. Then it uses twice simulator SΠ of Π on input
auxiliary information z and the first time on input (x, com0) and tag pk0 ◦ 0 and the second
time on input (x, com1) with tag pk1 ◦ 1 to complete the two subprotocols of the left proof and
to extract a witness w̃ for the the two executions of Π run by A in the right proof. Finally,
S signs the transcripts of the two subprotocols of the left proofs using sk0 and sk1 and sends
the signatures to A. S outputs the transcripts of the left and the right proof and the witness
extracted by SΠ in the right proof.

Suppose for sake of contradiction that there exists a distinguisher D that for infinitely many
x ∈ L, w ∈ W (x) and z distinguishes the output of S from the view of A. Let us consider the
following three experiments. Expt0(x,w, z) is exactly the experiment of S interacting with A.
In Expt1(x,w, z) we execute the code of S with the following exception: com0 is computed as
a commitment of w. Finally, in Expt2(x,w, z) both com0 and com1 are commitments of w. We
observe that, since SΠ is a perfect simulator, the output of Expt2(x,w, z) is perfectly identical
to the view of A when interacting with the real prover. Therefore, D distinguishes Expt0 from
Expt1 or Expt1 from Expt2. In both case we can use D to break the hiding property of the
commitment scheme.

We now show that S actually outputs a witness for an accepting right proof whenever A uses
for the right proof tag (t̃0, t̃1) different from the tag (t0, t1) used by S in the left proof. Indeed,
simulator SΠ fails only in case the tag used by A for the subprotocol of the right proof is equal
to one of the tags used by S in the left proof. Observe that tags used for the first subprotocol
end in 0 and tags used for the second subprotocol end in 1 and therefore SΠ fails in extracting
the witness only if A picks the same signature public key used by S in the left proof. In this
case though, since we are assuming that (t̃0, t̃1) 6= (t0, t1), and since the right proof is accepting
A has succeeded in producing a signature of a new message for a public key chosen by S. This
contradicts the security of the underlying signature scheme.

Γ is not non-malleable witness indistinguishable. Now we prove that Γ is not tag-based
NMWI. Consider the following man-in-the-middle adversary A that manages to produce an
accepting right proof that encodes the same witness encoded in the left proof and uses a tag
different from the one used in the left proof.
A acts as a verifier in a left proof on input x with tag (t0, t1) and starts a right proof

(in which A acts as a prover) on input x and tags (t0, t̃1), for t̃1 6= t1. We also assume that
A has a witness w for x ∈ L. When the left proof starts A receives as a verifier of the left
proof messages com0, pk0, com1 and pk1. A then sets c̃om0 = com0, p̃k0 = pk0, (c̃om1, d̃ec1) ←

Com(w) and (p̃k1, s̃k1) ← SG(1k). A then sends to the verifier of the right proof messages

21

c̃om0, p̃k0, c̃om1, p̃k1. Then for the first subprotocol of the right proof (this is the argument that
proves that (x, c̃om0) = (x, com0) ∈ L), A acts as a message relayer between the verifier of the
right proof and the prover of the left proof. Instead for the second NMZK argument (this is the
argument that proves that (x, c̃om1) ∈ L), A executes the algorithm of the honest prover (since

A has witness (w, d̃ec1) for (x, c̃om1) ∈ L). Finally, A receives signatures σ0 and σ1 in the left
proof. Then A sets σ̃0 = σ0 and computes σ̃1 by running algorithm Sig with the secret key sk1

on the transcript of the second subprotocol. It is clear that A has managed to produce a right
proof with respect to tag (t̃0, t̃1) different from the tag (t0, t1) of the left proof and the witness
encoded in the right proof is the same as the witness encoded in the left proof. We stress that,
even though A knew a witness w and used it for computing the right proof, the witness encoded
in the right proof is not necessarily w but it is precisely same witness encoded by the prover in
the left proof. This implies that Γ is not NMWI.

We have thus proved the following theorem.

Theorem 5.1 Assume that there exists a family of claw-free permutations. Then for any non-
trivial NP language there exists a NMZK argument system that is not non-malleable witness
indistinguishable.

5.2 NMWI Argument Systems 6⇒ NMZK Argument Systems

In this section we show that, even when non-malleability is considered, witness indistinguisha-
bility does not imply zero knowledge. Specifically, we exhibit a commit-and-prove argument
that is NMWI but not NMZK unless NP ⊆ BPP. This second separation is expected as witness
indistinguishability is in general weaker than zero knowledge. Indeed, we exploit this by plug-
ging a zap, i.e., a witness indistinguishable proof system that is not zero knowledge, in a NMWI
argument system.

Again, as done for the proof of Lemma 4.1 in the proofs of the previous separations we
use the simulator of the one-left many-right perfect non-malleable zero-knowledge argument of
knowledge of [31, 30, 32] even though the protocol is composed with other primitives. Still, as
in [32], the proof of security works even though it requires additional analysis.

We will use the following lower bound on the round-complexity of black-box zero-knowledge.

Theorem 5.2 ([20]) If a language L has a three-round black-box zero knowledge argument
system then L ∈ BPP.

Fix language L ∈ NP \ BPP and consider the auxiliary language L1 defined in the previous
section. Also denote by Γ = {〈Pt,Vt〉}t a NMZK argument of knowledge for L1. Moreover we
use a zap (that is, a 2-round witness indistinguishable argument) for L (see [24, 14]). Consider
the following tag-based commit-and-prove argument system Π = {〈Pt, Vt〉}t.

22

Common input: x;
Tag: t;
Private input to prover: witness w for x ∈ L.

1. Pt sets (com, dec)← Com(w) and sends com to V ;

2. Vt sends the first message Σ for the zap to P ;

3. Pt computes and send to Vt message π obtained by running the prover’s algorithm
for the zap on input x, witness w and message Σ received from Vt;

4. Pt ⇔ Vt run NMZK argument of knowledge Γ for L1 on common input (x, com) in
which Pt runs algorithm Pt with private input (w, dec) and Vt runs algorithm Vt;

Π is a commit-and-prove argument system. Π has the correct form since the first round
is a commitment to a message and the remaining rounds form an argument system Π′ for
proving that the committed message is a witness for the given statement. Indeed, completeness
follows by inspection while soundness follows by the argument of knowledge property of the last
subprotocol that allows one to obtain a witness for any accepting proof given by the adversary.

Π is non-malleable witness indistinguishable. Let x ∈ L and consider w1, w2 ∈ W (x).
Fix a man-in-the-middle adversary A that violates the non-malleable witness indistinguishability
of Π. We consider a sequence of experiments ExptA1 (x,w1, w2), · · · ,ExptA6 (x,w1, w2) in which
ExptA1 (x,w1, w2) is the experiment of A interacting in the left proof with a honest prover that
uses w1 as a witness and Expt6(x,w1, w2) is the experiment of A interacting in the left proof with
a honest prover that uses w2 as witness. We will show that for i = 2, · · · , 6, the distribution of
the witness encoded in the right proof of ExptAi (x,w1.w2) (which we denote by WA

i (x,w1, w2))
is indistinguishable from WA

i−1(x,w1, w2).

ExptA2 (x,w1, w2) is the experiment in which A interact on the left with the simulator SΓ of
Γ. Being the simulator perfect, WA

1 (x,w1, w2) and WA
2 (x,w1, w2) are indistinguishable.

ExptA3 (x,w1, w2) is the experiment in which A interacts on the left and on the right with the
simulator SΓ and the commitment com is computed as com← Com(0|w1|). Standard arguments
prove that, if Com is secure, then WA

2 (x,w1, w2) and WA
3 (x,w1, w2) are indistinguishable. Notice

that in this experiment SΓ manages to extract the witness of the right proof (unless A uses the
same tag in the right proof in which case NMWI is not violated). This powerful technique
is referred to as simulation-extraction and has been shown in [31, 32] for proving the non-
malleability of their commitment scheme. The obtained message can therefore be given as input
to D and its output can therefore be used to guess the committed message.

ExptA4 (x,w1, w2) is similar to the previous experiment with the only exception that the zap
uses w2 as witness. Again, the witness indistinguishability of the zap proves that WA

3 (x,w1, w2)
and WA

4 (x,w1, w2) are indistinguishable. As before, notice that in this experiment SΓ manages
to extract the witness of the right proof (unless A uses the same tag in the right proof in which
case NMWI is not violated). The extraction involves rewinding and thus the prover of the zap
will be subject to rewind. This is however admissible as zap can be made resettably-sound
resettable witness indistinguishable [14, 4]4.

4Another possible approach to overcome the problems introduced by these rewinds is to use two executions

23

ExptA5 (x,w1, w2) is similar to the previous experiment with the only exception that com is
computed as a commitment of w2 (and not of 0|w2|). Again we use security of the commitment
scheme as we did for ExptA3 (x,w1, w2)

Finally, WA
5 (x,w1, w2) and WA

6 (x,w1, w2) are indistinguishable as SΓ is perfect zero-knowledge.

Π is not non-malleable zero knowledge. Assume by contradiction that Π is NMZK, we
show how to compute a simulator M for the zap. We would thus have a black-box 2-round
zero-knowledge argument which does not exist for L ∈ NP \ BPP. M receives the first message
Σ of a zap and constructs an adversary A for NMZK that runs against the honest prover P ,
the honest verifier algorithm with the only exception that Σ is played as first round of the zap,
independently of the random tape. For this adversary there must be a simulator S of NMZK
that therefore will compute a transcript that includes an accepting zap for x ∈ L with first
round Σ, otherwise a distinguisher that will detect the difference between the transcript of the
real game (that contains Σ as first round of the zap in all proofs given by P to A) and the
transcript of S (that instead never contains left proofs where Σ is in the first round of the zap).
From the transcript of the simulation computed by S, M can pick the computed zap π that
can be used for the original purpose of completing the simulation of the zap without using any
witness. Notice that M only accesses to the verifier of the zap as a black-box for obtaining
message Σ. Therefore, if Π is non-malleable zero knowledge then the we have a 2-round black-
box zero-knowledge proof system for a language L not in BPP which contradicts Theorem 5.2.
We thus have the following theorem.

Theorem 5.3 Assume that there exists a family of claw-free permutations and zaps for all NP.
Then there exists a NMWI argument system for L that is not NMZK.

Proof. We observe that claw-free permutations are sufficient for the existence of zap for all
NP. The theorem then follows from the above discussion. 2

6 cNMZK in the BPK Model

We start by reviewing the BPK model [7] and then we define the notion of cNMZK in the BPK

model.

6.1 The BPK Model

In the BPK model, each verifier registers some public information (called the public key) in
a public file during a preprocessing stage. Each public key is associated with some secret
information (called the secret key) that is known only to the owner of the public key. After the
preprocessing is completed, parties engage in the proof stage in which the actual argument will
be executed.

We will define and construct in the BPK model constant-round arguments for any NP-
language that are secure with respect to a BPK concurrent man-in-the-middle adversary A
which during the preprocessing stage has complete control over the public file where keys are
registered (that is, A can modify, omit and, add new adaptively chosen keys to the public

of Γt in Π. In this case, the zap computed in the left proof can be affected by at most one of the two possible
extraction procedures of the right proofs. The extraction therefore will be run on the right execution of Γt that
is “safe” for the zap. Finally, we stress that at the cost of using number-theoretic assumptions, it is possible to
use a one-round zap [24].

24

file) and, once the preprocessing stage is completed, A acts as a concurrent man-in-the-middle
adversary. We stress that no form of key-authentication is required thus making the BPK model
a very weak model.

The BPK model for interactive argument systems. We now review the definition of
an interactive argument system in the BPK model that were previously given in [29] and the
extension to the concurrent man-in-the-middle case.

Formally, a BPK pair is a pair 〈P, V 〉 where P is a probabilistic polynomial-time algorithm
and V is a pair V = (V0, V1) of probabilistic polynomial-time algorithms. The interaction
between provers and verifiers takes place in two stages. In the first stage, called the set-up stage,
verifiers run algorithm V0, on input a security parameter 1k, to obtain a pair (pk, sk) consisting
of a public and a secret key. Each verifier publishes his public key pk in a public file F . The
second stage, called the proof stage, consists of polynomially (in the security parameter) many
proofs. In each of them a prover interacts with a verifier; specifically, the prover runs algorithm
P on input x (of length polynomial in the security parameter), some auxiliary information w

(typically w is a witness for x to be member of some fixed language L) and the public key pk

chosen by the verifier. The verifier instead runs algorithm V1 on input x and sk.

Definition 6.1 A BPK pair 〈P, V 〉 is complete for the language L if in any interaction on
common input x ∈ L and pk constructed by V0, where P receives as additional input w ∈W (x),
and V1 secret key sk associated with pk, V1 accepts with probability negligible close to 1.

The definitions of argument systems in the BPK model can be found in [7], in particular in [29,
34] the notions of concurrent zero-knowledge and concurrent soundness have been defined. We
will focus on concurrent non-malleable zero-knowledge argument of knowledge in the BPK model
that implies both concurrent zero knowledge and concurrent soundness. Indeed, concurrent zero-
knowledge corresponds to a special case where the man-in-the-middle does not run any right
proof. Instead, concurrent soundness corresponds to the special case where the man-in-the-
middle does not run any left proof and is implied by the fact that we require that a legal NP

witness is obtained for any accepting proof given by the adversary.

6.2 Concurrent Non-Malleable Zero Knowledge in the BPK Model

We next define the concept of concurrent non-malleable zero-knowledge argument of knowledge
in the BPK model.

A BPK concurrent man-in-the-middle adversary A = (A0,A1) is a pair of probabilistic
algorithms. A0 on input an auxiliary information z receives the public file F containing the
public keys as computed by the honest verifiers and outputs a modified public file F ′. In
computing F ′, A0 is allowed to add new adaptively chosen keys and to remove some of the keys
of the honest verifiers. A0 also outputs some secret auxiliary information Z relative to F ′. Once
F ′ is made public by A0, it cannot be changed and the control passes to A1 that runs on input F ′

and Z. In the proof stage, A1 behaves like a concurrent man-in-the-middle adversary with the
only restriction that he can start right proofs in which he plays as a prover with honest verifiers
only with respect to entries of F ′ that were chosen by the honest verifiers and not modified by
A0.

We define the view BViewA(X,W, z) of a BPK concurrent man-in-the-middle adversary A =
(A0,A1) with respect to the vector X of left inputs with witnesses W as consisting of the initial
public file received by A0, of all messages received by A1 in the proof stage both in the left

25

proofs run on input X and right proofs run on inputs adaptively chosen by A1, along with the
sequence of internal states of A0 and A1 and coin tosses.

Definition 6.2 (cNMZK arguments of knowledge in the BPK) A BPK pair Π = 〈P, V 〉
complete for the language L is a BPK concurrent non-malleable zero-knowledge argument of
knowledge (a BPK cNMZK argument of knowledge) if for every probabilistic polynomial-time
BPK concurrent man-in-the-middle adversary A, there exists a probabilistic algorithm S running
in expected polynomial time such that, for all m = poly(k) and n = poly(k), by denoting with
S(X, z) = (S0(X, z), S1(X, z)) the output of S on input (X, z), we have

1. {S0(X, z)}X∈Lm
n ,z∈{0,1}? and {BViewA(X,W, z)}X∈Lm

n ,W∈W (X),z∈{0,1}? are computationally
indistinguishable.

2. Writing the second component of S’s output as S1(X, z) = (w̃1, . . . , w̃m), we have that, for
all accepting right proofs j of S0(X, z) with common input x̃j 6∈ X, w̃j ∈ W (x̃j) except
with negligible probability.

As a concurrent verifier and a concurrent prover are both special cases of a concurrent man-
in-the-middle adversary, then it is obvious that a cNMZK argument of knowledge in the BPK

model is both concurrent zero-knowledge and concurrently sound.

High-level idea. In next section we present our construction for a constant-round cNMZK
argument of knowledge in the BPK model. We start with an informal discussion.

The main idea is that we want to use the FLS paradigm so that a prover actually proves
knowledge of either a legal witness or of the secret key of the adversary. In order to give to
the simulator such a secret key, we need a proof of knowledge of the secret key given by the
verifier. However malleability attacks here are dangerous even when concurrent soundness only
is considered [11]. When man-in-the-middle attacks are considered the implementation of the
FLS paradigm is even more complex and requires new ideas. The concurrent NMWI argument
of knowledge however can play a central role to solve this problem, and we use it along with a
known technique by [18, 16] that suggests to use pairs of public keys.

More in details, in the preprocessing stage, each verifier computes a pair of public keys
along with the corresponding secret keys. He randomly chooses one of the two secret keys
and discards the other one. This step can be implement by using a one-way function f in the
following way: randomly pick two messages sk0, sk1 in the domain of f ; compute public keys
pk0 = f(sk0), pk1 = f(sk1); randomly select b← {0, 1}; set sk = (b, skb).

The protocol for the relation R and common input x is a sequential composition of two
instances of the tag-based constant-round cNMWI commit-and-prove argument of knowledge
presented in Appendix 4. In the first execution the verifier proves knowledge of one of the
two secret keys associated to his entry in the public file (this is obviously done by NP-reducing
this instance to the NP-complete language used by the subprotocol). This subprotocol is run
using x ◦ 0 as tag. Obviously the honest verifier uses his knowledge of one of two secret keys to
successfully complete this subprotocol. In the second execution the prover proves knowledge of
either w such that R(x,w) = 1 or of one of the two secret keys associated with the two public
keys of the verifier. The tag used in this subprotocol is x ◦ 1. Obviously the honest prover uses
knowledge of a witness w for R(x, ·) to complete the protocol.

Let us explain how we plan to perform simulation of the protocol. Simulation is easy for right
proofs where the simulator plays the role of the honest verifier. Indeed right proofs are executed

26

relatively to entry of the public file that have been constructed by the simulator itself and thus
it knows one of the secret keys to perform the first subprotocol of a right proof. Simulating the
second subprotocol of right proofs and the first subprotocol of the left proofs is trivial as the
simulator can simply play the honest verifier algorithm of the subprotocol. In order to simulate
the second subprotocol of left proofs instead the simulator needs to know either a witness for
“x ∈ L” or one of the secret keys associated with the corresponding entries of the public file
that are used by the adversary. However, the adversary has just proved knowledge of at least
one of the two keys in the first subprotocol of the same proof. Therefore we plan on extracting
one of these keys from the adversary and then use it to perform the second subprotocol. The
use of rewinds is dangerous in concurrent setting but not in the BPK model as shown in [7].
Indeed the number of extraction procedures that have to be successfully run is independent of
the number of concurrent proofs, since it is bounded by the size of the public file. Once the
simulator knows at least one secret key for each of the entries of the public file used by the
adversary, the simulation is straight-line.

6.3 The protocol in details

Let L be an NP-language with polynomial-time relation R and let f be a one-way function.
Associated with L and f , we consider two auxiliary NP-languages L1 and L2 with polynomial-
time relations R1 and R2 defined as follows.

• (pk0, pk1) ∈ L1 iff there exist b and sk such that pkb = f(sk).

• (x, pk0, pk1) ∈ L2 iff x ∈ L or (pk0, pk1) ∈ L1.

In the description of our BPK cNMZK argument of knowledge (P, V) for any NP-language L

we will use a tag-based cNMWI argument of knowledge Π = {〈Ptag,Vtag〉}tag for an NP-
complete language Λ. When we say that we execute Π for proving that τ ∈ L1 (or σ ∈ L2) we
actually mean that τ (or σ) is reduced to an instance of Λ and Ptag and Vtag are executed on
input this instance. We also remark that known reductions have the property that, if a witness
for τ ∈ L1 (or for σ ∈ L2) is known then a witness for the new instance can be constructed in
polynomial time.

The protocol is formally described in Figure 2. We have the following lemma.

Lemma 6.3 If f is a one-way function and Π is a cNMWI argument of knowledge then the
protocol (P,V) of Figure 2 is a cNMZK argument of knowledge in the BPK model for any NP

language.

Proof. Completeness is straightforward. We describe the simulator S as required by Defini-
tion 6.2 of cNMZK argument of knowledge.

S receives in input the vector X of left inputs and auxiliary information z and interacts
with the BPK concurrent man-in-the-middle adversary A = (A0,A1) running on input z. We
let k denote the security parameter and denote by n = poly(k) the length of the inputs of X,
by m = poly(k) the number of left sessions (that is the length of vector X), and by m̃ = poly(k)
the number of right sessions. The simulator S performs the preprocessing stage by running the
preprocessing stage of the honest verifier on input 1k. S then receives the modified public file
from A0 and it knows all secret keys associated to the public key that have not been removed
by A0. Some of the entries of the public file output by A0 are actually entries computed by
S (we call these entries S-controlled) and some have been added by A0 (we call these entries

27

Preprocessing stage:
Entry l of the public file is constructed by V0 as follows:

Input: security parameter 1k.

pick skl
0, sk

l
1 ← {0, 1}

k , compute pkl
0 = f(skl

0) and pkl
1 = f(skl

1), randomly pick bl ←
{0, 1}, set pkl = (pkl

0, pkl
1) and skl = (bl, sk

l
bl
).

output: (pk, sk).

Proof stage:
Sub-protocol: a tag-based cNMWI argument of knowledge Π = {〈Ptag,Vtag〉}tag for a

NP-complete language Λ.

Common input: the public file F , entry pkl = (pkl
0, pkl

1) of F , security parameter 1k,
n = poly(k)-bit string x ∈ L.

P ’s private input: a witness w for x ∈ L.

V1’s private input: secret key skl = (bl, sk
l
bl
);

V1 −→ P : V1 and P engage in an execution of Π with tag x◦0 where V1 runs Px◦0 to prove
to P (running Vx◦0) knowledge of a witness (bl, sk

l) for σ = (pkl
0, pkl

1) ∈ L1.

P −→ V1: P and V1 engage in an execution of Π with tag x ◦ 1 where P runs Px◦1 to prove
to V1 (running Vx◦1) knowledge of a witness for τ = (x, pkl

0, pkl
1) ∈ L2.

Figure 2: The constant-round BPK cNMZK argument of knowledge 〈P, V 〉 for any NP-language
L.

A-controlled). We denote by ` = poly(k) the total number of entries in the public file output
by A. S then interacts with A1 in the proof stage on input the public file output by Ao, the
security parameter 1k and the vector X of the left inputs.

We adopt the following notation. We denote by xi the input of the i-th left proof and by
σi and τi the inputs to the two subprotocols of the i-th left proof. We denote by li the entry
(pk

li
0 , pk

li
1) of the public file of the verifier that is active in the i-th left proof. We use x̃j , σ̃j , τ̃j to

denote the corresponding entities for j-th right proofs and rj to denote the entry of the public
file of the verifier that is active in the j-th right proof. Notice that x̃j is adaptively chosen by
A whereas xi is given as input to S. Also, if l-th entry of the public file is S-controlled, we
denote by skl

bl
the secret key that is known to S. Actually, S could know both secret keys but,

as prescribed by the honest verifier algorithm, S only retains a randomly chosen one.

Simulating the view of A. The right proofs involving A-controlled entries of the public file
(and thus associated with corrupted verifiers) need not to be simulated; i.e., they are internal
to A. Similarly, we concentrate on left proofs where the verifier is corrupted and do not show
simulation of left proofs relative to honest verifiers as they are internal to S. The interaction in
the proof stage between S and A involves four different types of protocols.

1. protl1(i), first subprotocol of i-th left proof where A acts as a prover and S as a verifier. The
common input to this protocol is σi = (pk

li
0 , pk

li
1) and entry li of public file is A-controlled.

2. protl2(i), second subprotocol of i-th left proof where A acts as a verifier and S as a prover.

28

The common input to this protocol is τi = (xi, pk
li
0 , pkl1

1) and entry li of public file is
A-controlled.

3. protr1(j), first subprotocol of j-th right proof where A acts as a verifier and S as a prover.
The common input to this protocol is σ̃j = (pk

rj

0 , pk
rj

1) and entry rj of public file is S-
controlled.

4. protr2(j), second subprotocol of j-th right proof whereA acts as a prover and S as a verifier.
The common input to this protocol is τ̃j = (x̃j , pk

rj

0 , pk
rj

1) and entry rj of public file is
S-controlled.

Simulating right proofs does not pose a problem to S. Indeed in protr1(j), S executes the code
of the honest prover P of Π for proving that σ̃j ∈ L1 using sk

rj

brj
as a witness. In protr2(j), S

executes the code of the honest verifier V of Π to verify the proof given by A that τ̃j ∈ L2.
Simulating left proofs instead is more problematic. S uses protl1(i), whereA proves knowledge

of one of the two secret keys associates with the li-th entry of the public file, to extract one
of the two secret keys to be used by S to run the code of the honest prover in protl2(i). More
formally, for the i-th left proof, two cases are possible.

1. S knows skli
A, one of the secret keys corresponding to the li-th entry of the public file. In

this case, S uses sk
li
A as a witness and carries out the first subprotocol as a honest verifier

and the second subprotocol as a prover.

2. S does not know any secret key corresponding to the li-th entry of public file. In this case
S, after the first subprotocol of the i-th proof is completed, stores the current transcript
trans and starts the extraction procedure of the first subprotocol to obtain one of the two
secret keys of that entry. Then S goes back to transcript trans and continues as described
in item 1 above.

At the end of the simulation S then outputs the transcript trans.
The extraction procedure involves rewinding A. We stress though that, since entries of the

public file can not be changed once the proof stage has started, each time S obtains a secret key,
it can be used for all proofs relative to the same entry of the public file and that the number of
entries is polynomially bounded.

Before describing how S extracts the witnesses for the right proofs, we show that the tran-
script output by S is indistinguishable from the view of A.

S is a good simulator. We observe that the difference between the view of A during a
concurrent man-in-the-middle attack and the transcript output by S is in the witnesses encoded
in protl2(i), i = 1, . . . ,m. Indeed there the simulator uses as witness a secret key of A that has
been previously extracted. However, if the output of S and the view of A can be distinguished
then it is possible to break the adaptive concurrent witness indistinguishability of the subprotocol
(here we do not need to break the non-malleable witness indistinguishability of Π).

More precisely, suppose that for a concurrent man-in-the-middle adversary A there exists
a distinguisher D that distinguishes the transcript output by S(X, z) from BViewA(X,W, z).
That is, there exists a constant c > 0 and m = poly(k) and n = poly(k) such that for infinitely
many k there exists a vector X = (x1, · · · , xm) of m elements of L of length n and a vector
W = (w1, · · · , wm) of witnesses for X such that

|Prob[α← BViewA(X,W, z) : D(α) = 1]− Prob[α← S(X, z) : D(α) = 1]| > k−c. (1)

29

Then we can construct the following adaptive concurrent witness indistinguishability adver-
sary M for Π. M uses D and A as subroutine and, on input 1k, M has as auxiliary information
a triplet (X,W, z) for which Equation 1 holds. In addition M has access to a prover P? that
can be invoked on adaptively selected input τ along with two witnesses (ω0, ω1) for τ ∈ L2.
Prover P? has random bit b ∈ {0, 1} wired-in and, for each invocation on input τ and witnesses
(ω0, ω1), it executes the algorithm of the honest prover P on input τ and ωb. M ’s goal is to
guess b. M works in three phases. In the first phase M executes S’s algorithm so to construct
a public file that is then given as input to A0. A0 outputs a modified public file which will be
used for the two following phases. In the second phase, M interacts with A1 (still following S’s
algorithm) and obtains, by using rewinding, a secret key for each entry of the public file used by
A in a left interaction. In the third phase, M starts a new interaction with A1 (using the same
public file) by executing S’s algorithm with the following exception: for left proof i, instead of
executing protl2(i), M invokes P? on input τi = (xi, pk

li
0 , pk

li
1) and (wi, sk

li
A) and has A interact

with P?. Here wi is a witness for xi ∈ L and skli
A is a secret key associated with the public keys

(pk
li
0 , pk

li
1) of the li-th entry of the public file. Also, notice that A picks the pair (pk

li
0 , pk

li
1) and

thus τi is adaptively chosen by A. For the right proofs instead M just relays messages between
A and honest external verifiers. Notice that M does not need any rewind in the third phase. At
the end of the third phase, M returns the output of D on input the transcript of the interaction
(including left and right proofs and the public file produced by A0).

Observe that if b = 0 then P? uses the first witness provided (that is wi) in each invocation
and thus the obtained transcript is perfectly distributed according to BViewA(X,W, z). If instead
b = 1 then P? always uses the second witness provided (that is skli

A) and thus the obtained
transcript is perfectly distributed according to the output of S(X, z). Therefore M breaks the
concurrent witness indistinguishability of (P,V).

Extracting the witnesses. We now show how S extracts witnesses from the right proofs, thus
concluding the description of simulator S. S obtains the witnesses for the right proofs of trans by
executing the algorithm of the honest prover in the left proofs (using as witnesses the extracted
secret keys of the adversary) and by running the extractor for the adaptive cNMWI argument
of knowledge one-by-one for each right proof, sequentially. Note that a rewind procedure could
fail since new left proofs could be opened by the adversary with respect to an entry of the public
file that has not been used previously (and thus the simulator does not know any secret key for
it). However, the extraction procedure can be simply repeated a polynomial number of times
and there will be an execution that will not suffer this problem. This follows from the fact that
in the first execution the adversary chose only some entries of the public file, and thus we can
assume that a subset of those entries will be chosen again with non-negligible probability. Let
now wj be the the witness extracted by S for the j-th right proof. We now show that if A
convinces V in the j-th right proof on input x̃j that does not appear as an input in any left
proof then, except with negligible probability, wj is a witness for x̃j ∈ L. Suppose that there
are infinitely many (X, z, k) such that, with some non-negligible probability, there exists some
j for which wj is not a witness for x̃j ∈ L and x̃j is not an input in any left proof. We call such
a triplet (X, z, k) a problematic triplets. We distinguish the following two cases.

Case 1. There exist infinitely many problematic triplets (X, z, k) for which S outputs (w1, . . . , wm)
and, with non-negligible probability, for at least one j we have wj = sk

rj

1−brj
. We call such a

triplet (X, z, k) an inverting triplet. Then, it is easy to see that A can be used to invert the
one-way function f used to compute the public keys. More precisely, consider the following in-

30

verting algorithm I for a one-way function f . I, for inputs of length k, has wired-in (X, z) such
that (X, z, k) is an inverting triplet (if no such inverting triplet exists then I fails for length k).
I receives as a challenge y and has to compute x ∈ {0, 1}k such that y = f(x). I constructs the
public file in the following way: I picks r at random and computes the r-th entry of the public file
by picking br ← {0, 1} at random and skr

br
at random and setting pkr

br
= f(skr

br
) and pkr

1−br
= y.

All remaining entries of the public file are computed following the code of honest verifier. Then
I has S interact with A on input (X, z). By assumption, with some non-negligible probability,
entry r is used in a right proof from which S extracts sk1−br such that f(sk1−br) = pkr

1−br
= y.

This violates the one-wayness of f as I succeeds with non-negligible probability for infinitely
many k.

Case 2. Suppose now that there exist only finitely many inverting triplets and thus, for infinitely
many problematic triplets (X, z, k), S outputs (w1, . . . , wm) and, with some non-negligible prob-
ability, for all j for which wj is not a witness for x̃j ∈ L we have wj = sk

rj

brj
. We call such a

triplet (X, z, k) a copying triplet. Clearly a problematic triplet that is not inverting must be
copying.

For a vector B = (b1, · · · , b`) we define by SB the algorithm S where we fix the secret key
ski

bi
associated with the i-th S-controlled entry known to S. Then, for a random vector B and

a copying triplet (X, z, k), SB , on input (X, z, k), extracts (w1, . . . , wm) and the following event
occurs with some non-negligible probability: there exists at least a j such that wj is not a witness
for x̃j and for all such j’s we have wj = sk

rj

brj
. We next show how to turn A into an adversary

M that breaks the concurrent non-malleable witness indistinguishability of the subprotocol Π.
The interaction between SB and A involves four types of subprotocols:

1. protl1(i), first subprotocol of i-th left proof where A acts as a prover and SB behaves like
a honest verifier;

2. protl2(i), second subprotocol of i-th left proof where A acts as a verifier and SB uses
knowledge of a secret key sk

li
A(B) extracted from A in order to execute the code of a

honest prover;

3. protr1(j), first subprotocol of j-th right proof whereA acts as a verifier and S uses knowledge
of sk

rj

brj
to execute the code of the honest verifier;

4. protr2(j), second subprotocol of j-th right proof where A acts as a prover and SB as a
honest verifier.

By assumption we know that, for a copying triplet, the witness encoded in protr2(j) by A is
related to skri

bri
and we will exploit this dependency to break the concurrent non-malleable witness

indistinguishability of the subprotocol Π. To do so, we show an adaptive concurrent man-in-the-
middle adversary M that receives in input security parameter 1k, has wired in a copying triplet
(X, z, k), and has oracle access to prover P ′ that has a randomly chosen b ∈ {0, 1} wired-in. P ′,
when invoked on input x and witnesses (ω0, ω1) for x, executes the code of the honest prover
P on input x and ωb

5. We pick two vectors B0 and B1 and show that when M interacts with
P? the witness encoded in the right proofs produced by M are distributed like the witnesses

5 We stress that Π is an argument system for an NP-complete language Λ and in the description of M we
will invoke P ′ to prove membership in an NP-language L. What we actually mean is that the input (and the
witnesses for membership to L) are first reduced to an instance of Λ (and to witnesses for membership to Λ) and
P ′ is invoked for using witness ωb.

31

encoded in the proofs produced by A when interacting with SBb (b is the hidden bit of P?). This
contradicts the concurrent non-malleable witness indistinguishability of Π. Let us now describe
M .

M starts interacting with A on input 1k by constructing a public file and submitting it to
A0. For each entry constructed by M , M retains both associated secret keys. Once M receives
the modified public file from A0, M starts interacting with A1 on input (X, z). Specifically, M

picks two vectors B0 = (b0
1, · · · , b

0
`) and B1 = (b1

1, · · · , b
1
`) and has A1 interact with SB0 . At

the end of the interaction M obtains a secret key for each A-controlled entry of the public file
used by A1 in the interaction; we denote by skl

A(B0) the obtained secret key relative to the l-th
A-controlled entry of the public file. Then M starts again (with the same public file) and has
A1 interact with SB1 . As before we obtain secret keys associated to A-controlled entries of the
public file that have been used in the interaction and we denote by skr

A(B1) the obtained secret
key relative to the r-th entry of the public file.

Finally M starts the actual attack. More precisely, M interacts with P? (on the left), with
honest verifiers (on the right) and internally with A1 in the following way.

1. protl1(i). Here A1 acts as a prover and M behaves like a honest verifier;

2. protl2(i). M acts as intermediary between P? and A1. P
? is run on input τi and is provided

with witnesses (skli
A(B0), sk

li
A(B1)).

3. protr1(j). M acts as intermediary between P? and A1. P
? is run on input σ̃j and witnesses

(sk
rj

B0
rj

, sk
rj

B1
rj

).

4. protr2(j). Here M acts as intermediary between A1 and the honest verifier.

We notice that, while interacting with P ′, M does not perform any rewind. In the attack
of M we consider executions of protr1 as left proofs (which are provided by P ′) and executions
of protr2(j) as right proofs. Therefore all right proofs are actually produced by A1. Moreover
observe that all instances of protr1 are executions of Π with tag ending in 0 and all instances
of protr2 are executions of Π with tag ending in 1. Therefore all right proofs will have tags
different from those used in the left proofs and thus M is a legal tag-based concurrent man-
in-the-middle adversary. Let us now look at the distributions of the witnesses encoded in the
right proofs when b = 0 and when b = 1. If b = 0 then the view of A1 is exactly the same
as the view of A1 when interacting with SB0 . Therefore the witnesses encoded in the proofs
produced by M are the same as the witnesses encoded in the proofs produced by A1 when
interacting with SB0 . By our hypothesis, with some non-negligible probability, these witnesses
are either witnesses for membership in L or the keys used by SB0 . Similarly if b = 1 then the
view of A1 is exactly the same as the view of A1 when interacting with SB1 . Therefore by
our hypothesis, with some non-negligible probability, the witnesses encoded in the proofs given
in output by A1 are either witnesses for membership in L or the keys used by SB1 . The two
distribution are clearly distinguishable thus breaking the tag-based concurrent non-malleable
witness indistinguishability of Π. 2

Theorem 6.4 Assume that there exists a family of claw-free permutations. Then there exists a
constant-round cNMZK BPK argument of knowledge for all NP.

Proof. The proof follows by Lemma 6.3, and by the observation that claw-free permutations
imply the existence of one-way functions. 2

32

Acknowledgments

We thank Rafael Pass and Alon Rosen for interesting and fruitful discussions.

References

[1] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd Annual Symposium
on Foundations of Computer Science, pages 106–115, Las Vegas, Nevada, USA, October 14–
17, 2001. IEEE Computer Society Press.

[2] Boaz Barak. Constant-round coin-tossing with a man in the middle or realizing the shared
random string model. In 43rd Annual Symposium on Foundations of Computer Science,
pages 345–355, Vancouver, British Columbia, Canada, November 16–19, 2002. IEEE Com-
puter Society Press.

[3] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable
protocols with relaxed set-up assumptions. In 45th Annual Symposium on Foundations of
Computer Science, pages 186–195. IEEE Computer Society Press, 2004.

[4] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell. Resettably-sound zero-
knowledge and its applications. In 42nd Annual Symposium on Foundations of Computer
Science, pages 116–125, Las Vegas, Nevada, USA, October 14–17, 2001. IEEE Computer
Society Press.

[5] Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Concurrent non-malleable zero knowl-
edge. In 47th Annual Symposium on Foundations of Computer Science. IEEE Computer
Society Press, 2006.

[6] Boaz Barak and Amit Sahai. How to play almost any mental game over the net - concurrent
composition via super-polynomial simulation. In 46th Annual Symposium on Foundations
of Computer Science, pages 543–552. IEEE Computer Society Press, 2005.

[7] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge. In 32nd Annual ACM Symposium on Theory of Computing, pages 235–244,
Portland, Oregon, USA, May 21–23, 2000. ACM Press.

[8] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In 34th Annual ACM Symposium on Theory
of Computing, pages 494–503, Montreal, Québec, Canada, May 19–21, 2002. ACM Press.

[9] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit
Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor, Advances in Cryptology
– CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 566–598, Santa
Barbara, CA, USA, August 19–23, 2001. Springer-Verlag, Berlin, Germany.

[10] Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti. Constant-round resettable
zero knowledge with concurrent soundness in the bare public-key model. In Matthew
Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in
Computer Science, pages 237–253, Santa Barbara, CA, USA, August 15–19, 2004. Springer-
Verlag, Berlin, Germany.

33

[11] Giovanni Di Crescenzo and Ivan Visconti. Concurrent zero knowledge in the public-key
model. In Lus Caires, Giuseppe F. Italiano, Lus Monteiro, Catuscia Palamidessi, and
Moti Yung, editors, Automata, Languages and Programming: 32nd International Collo-
quium, volume 3580 of Lecture Notes in Computer Science, pages 816–827, Lisbon, Portu-
gal, July 11–15, 2005. Springer-Verlag, Berlin, Germany.

[12] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In 23rd Annual
ACM Symposium on Theory of Computing, pages 542–552, New Orleans, Louisiana, USA,
May 6–8, 1991. ACM Press.

[13] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM Journal
on Computing, 30(2):391–437, 2000.

[14] Cynthia Dwork and Moni Naor. ZAPs and their applications. In 41st Annual Symposium
on Foundations of Computer Science, pages 283–293, Redondo Beach, California, USA,
November 12–14, 2000. IEEE Computer Society Press.

[15] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In 30th Annual
ACM Symposium on Theory of Computing, pages 409–418, Dallas, Texas, USA, May 23–26,
1998. ACM Press.

[16] Uriel Feige. Alternative Models for Zero Knowledge Interactive Proofs. Weizmann Institute
of Science, 19990.

[17] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple NonInteractive Zero Knowledge Proofs
under General Assumptions. SIAM Journal on Computing, 29:1–28, 1999.

[18] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In 22nd
Annual ACM Symposium on Theory of Computing, pages 416–426, Baltimore, Maryland,
USA, May 14–16, 1990. ACM Press.

[19] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge Univer-
sity Press, Cambridge, UK, 2001.

[20] Oded Goldreich and Hugo Krawczyk. On the composition of Zero-Knowledge Proof systems.
SIAM Journal on Computing, 25(1):169–192, 1996.

[21] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in np have zero-knowledge proof systems. Journal of the ACM,
38(1):691–729, 1991.

[22] Oded Goldreich and Oren. Bit Commitment using Pseudorandomness. Journal of Cryptol-
ogy, 4:151–158, 1994.

[23] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of inter-
active proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[24] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive ZAPs and New Techniques
for NIZK. In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume 4117
of Lecture Notes in Computer Science, pages 97–11, Santa Barbara, CA, USA, August 20–
24, 2006. Springer-Verlag, Berlin, Germany.

34

[25] Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent general compo-
sition of secure protocols in the timing model. In 37th Annual ACM Symposium on Theory
of Computing, pages 644–653. ACM Press, 2005.

[26] Joe Kilian. Uses of randomness in Algorithms and Protocols. MIT Press, Cambridge, MA,
1990.

[27] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in poly-loalgorithm
rounds. In 33rd Annual ACM Symposium on Theory of Computing, pages 560–569, Crete,
Greece, July 6–8, 2001. ACM Press.

[28] Silvio Micali, Rafael Pass, and Alon Rosen. Input-indistinguishable computation. In 47th
Annual Symposium on Foundations of Computer Science, pages 136–145. IEEE Computer
Society Press, 2006.

[29] Silvio Micali and Leonid Reyzin. Soundness in the public-key model. In Joe Kilian, edi-
tor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 542–565, Santa Barbara, CA, USA, August 19–23, 2001. Springer-Verlag,
Berlin, Germany.

[30] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In 46th Annual
Symposium on Foundations of Computer Science, pages 563–572. IEEE Computer Society
Press, 2005.

[31] Rafael Pass and Alon Rosen. New and Improved Constructions of Non-Malleable Cryp-
tographic Protocols. In 37th Annual ACM Symposium on Theory of Computing, pages
533–542. ACM Press, 2005.

[32] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments (full version).
http://www.eecs.harvard.edu/∼alon/PAPERS/conc-nmc/conc-nmc.ps, 2006.

[33] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal compos-
ability without trusted setup. In 36th Annual ACM Symposium on Theory of Computing,
pages 242–251. ACM Press, 2004.

[34] Leonid Reyzin. Zero-Knowledge with Public Keys, Ph.D. Thesis. MIT Press, Cambridge,
MA, 2001.

[35] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-knowledge
proofs. In Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume 1592
of Lecture Notes in Computer Science, pages 415–431, Prague, Czech Republic, May 2–6,
1999. Springer-Verlag, Berlin, Germany.

[36] John Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd
Annual ACM Symposium on Theory of Computing, pages 387–394, Baltimore, Maryland,
USA, May 14–16, 1990. ACM Press.

35

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

	Introduction
	Our Results
	Related Work

	Preliminaries
	Non-Malleable Argument Systems
	Concurrent Non-Malleable Zero-Knowledge Arguments of Knowledge

	Non-Malleable Witness Indistinguishability
	Witness Indistinguishability
	Witness Indistinguishability under Man-In-The-Middle Attacks
	Concurrent Non-Malleable Witness Indistinguishability
	Simulation-Based cNMWI arguments

	Constant-Round cNMWI Arguments of Knowledge
	Constructing a One-Left Many-Right Tag-Based SBcNMWI
	Constant-Round cNMWI Arguments for all NP

	Separations
	NMZK Argument Systems NMWI Argument Systems
	NMWI Argument Systems NMZK Argument Systems

	cNMZK in the BPK Model
	The BPK Model
	Concurrent Non-Malleable Zero Knowledge in the BPK Model
	The protocol in details

