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Abstract

We give a simple proof for the sample complexity bound O
�

(1/ε4)
of absolute approximation of MAX-CUT. The proof depends on a
new analysis method for linear programs (LPs) underlying MAX-CUT
which could be also of independent interest.

1 Introduction

The purpose of this paper is to give a simple proof based on linear programs
of the following theorem proven in more generality in [AFKK02].

Theorem 1 (Main Theorem). For any positive ε, there exists an integer
q ∈ O(log3(1/ε)/ε4) such that for any graph G = {V, E} if Q is a random
subset of V of cardinality q and G(Q) is the restriction of G to the sample
Q, then with probability at least 9/10, we have,

∣

∣

∣

∣

n2

q2
maxcut(G(Q)) − maxcut(G)

∣

∣

∣

∣

≤ εn2.

where maxcut(G) is the maximum value of a cut of G.
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It is apt to rephrase this theorem by saying that the sample complexity
of MAX-CUT is in O(log3(1/ε)/ε4). A more general theorem was proved
in [AFKK02]. [AFKK02] uses besides integer programs also special cut-
norm and cut-array framework developed for that purpose (cf. also [AN04]).
The sample bound O

�

( 1
ε4 ) for MAX-CUT is the best known up to date (see

[AKK95], [F96], [FK99] for early approximation algorithms for that problem),
although there were several attempts to improve it. Any improvement of
that bound would be of course an important contribution to the area (given
the fact that 1/ε factors could be very large in various settings). [RV05]
improved recently estimates for the cut-norm of random submatrices used
in more generality in [AFKK02]. That however does not influence overall
sampling bound O

�

(1/ε4) for the MAX-CUT, see Errata of [RV05].

We will make essential use in our proof of the following theorem of [AFKK02].
It asserts that for a Linear Program P on n variables, each constrained to be
between 0 and 1, we can make some assertion about the optimal value based
on the optimal value of a small subprogram obtained by picking at random
a small number of variables.

Theorem 2. Suppose

Max
n
∑

j=1

cjxj < α

n
∑

j=1

Ujxj ≤ v ; 0 ≤ xj ≤ 1,

where each Uj is an m−vector. Suppose q is a positive integer and Q is a
random subset of {1, 2, . . . n} of cardinality q. Then, for any positive real
number λ, with probability at least 1 − 4e−λ2/4, we have :

Max
∑

j∈Q

cjxj ≤ q

n
α + λ

√
q||c||∞

∑

j∈Q

Ujxj ≤ q

n
v − λ

√
q||U ||∞ ; 0 ≤ xj ≤ 1, j ∈ Q.

Proof. See ([AFKK02]).
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2 Preliminaries

Let G = (V, E) be a graph. Suppose that (VL, VR), VR = V \VL is a biparti-
tion of G. We use xi = 0 (resp. xi = 1) to indicate that the vertex vi belongs
to VL (resp. that vi belongs to VR). We let eij be the indicator function of
the edges of G:

eij = 1 if vivj ∈ E, eij = 0 otherwise.

Then, clearly, for each i, the number of neighbours of vi in VR, say ρi, satisfies

ρi = |Γ(vi) ∩ VR| =

n
∑

j=1

xjeij

The value of the cut defined by (VL, VR) is clearly

e(VL, VR) =
n

∑

j=1

(1 − xj)ρj .

For each j, let ρ∗
j denote an estimate of ρj . We can obtain these estimates

by guessing a sample S ⊆ VR of a certain size m, say, and putting

ρ∗
j =

|VR|
|S| |Γ(vj) ∩ S|

Of course this will entail some error. For an appropriate size |S| we may
expect that the inequality

ρ∗
j − εn ≤ ρj ≤ ρ∗

j + εn (1)

holds simultaneously for all, or nearly all vertices vj . In [AKK95], the Set S
has size Θ(log n) and it is shown that then (1) holds with high probability
for all vi (if S ⊆ VR). The following is shown

Proposition 1 ([AKK95]). Assume that (VL, VR) is an optimum cut of
G. Assume that S is a random sample of VR with size Θ(log(1/ε)ε−3 log n).
Then, with probability at least 2/3, maxcut(G) is approximated with ad-
ditive error O(εn2) by applying randomized rounding to the solution of the LP
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Maximize e(VL, VR) =
∑n

j=1(1−xj)ρ
∗
j

Subject to
ρ∗

j − εn ≤ ρj ≤ ρ∗
j + εn

0 ≤ xj ≤ 1, 1 ≤ j ≤ n.

Proof. See ([AKK95]).

(Technically the sample S is taken in turn to be each of the subsets of a
fixed random sample T of appropriate size so that the inclusion S ⊆ VR need
occur at least for one S.) We cannot use directly this result here since our
intended sample size is only a constant (dependent on ε.) However, in this
later case, we can still assert the following.

Claim 1. Let (QL, QR) define an optimum cut of G(Q). Take m =
λ log(1/ε)ε−2 and assume that S is a random subset of QR of size m. Then,
we have that, for any fixed j, with probability at least 1 − 2ελ/2,

ρ∗
j − εn ≤ ρj ≤ ρ∗

j + εn (2)

Also, for λ ≥ 3, the inequality (2) holds with probability at least (1 − ε) for
at least q(1 − ε) vertices in Q.

If the above condition holds we shall say that S is ε-representative with
respect to QR.

Proof. Let qR = |QR|, k = |Γ(vj) ∩ QR|. Then |Γ(vj) ∩ S| has the hy-
pergeometric distribution with parameters QR, k, m which is tighter than
the Binomial distribution B(m, p) with parameters m and p = k/qR. By a
standard Hoeffding-Chernoff Bound we have

Pr(||Γ(vj) ∩ S| − mk

|QR|
| ≥ εm) ≤ 2 exp(−ε2qkm

2k
)

≤ 2 exp(−ε2m

2
)

≤ 2ελ/2

Using Markov inequality we get that the number of vertices for which (2)
holds is at least (1 − εq) with probability at least 1 − 2ελ/2−1 ≥ 1 − ε for
λ = 4.

The following proposition will be helpful
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Proposition 2. Let the ρ∗
j be any fixed constants (no relation between these

ρ∗
j and the graph G is assumed here) and consider the LP

Maximize
∑n

j=1(1 − xj)ρ
∗
j

Subject to
ρ∗

j − εn ≤ ρj ≤ ρ∗
j + εn

0 ≤ xj ≤ 1, 1 ≤ j ≤ n.

Then, if this LP is feasible, the value val(P )∗ obtained by applying randomized
rounding to the solution of this LP satisfies

val(P )∗ ≤ maxcut(G) + O(εn2)

Proof. The proof is implicit in [AKK95].

The following proposition extends Proposition 1 to the case where the ap-
proximation provided by the ρ∗

j fails on a small subset of vertices.

Proposition 3. Assume that (VL, VR) is an optimum cut of G and assume
that we have

ρ∗
j − εn ≤ ρj ≤ ρ∗

j + εn

for each j in a set J , say, where J ⊆ {1, 2, ..n} has size |J | ≥ (1−ε)n. Then
maxcut(G) is approximated within O(εn2) by applying randomized rounding
to the solution of the LP

Program LP0

Maximize
∑n

j=1(1 − xj)ρ
∗
j

Subject to
ρ∗

j − εn ≤ ρj ≤ ρ∗
j + εn, j ∈ J with |J | ≥ εq

0 ≤ xj ≤ 1, j = 1, . . . , n.

We note that we do not know precisely the set J . We only have a lower
bound on its cardinality.

Proof. Let us denote by x = (xj) an optimum solution of LP0, val∗(x) =
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∑n
j=1(1 − xj)ρ

∗
j its value. Define val(x) =

∑n
j=1(1 − xj)ρj . Then we have

|val(x) − val∗(x)| ≤
n

∑

j=1

|ρj − ρ∗
j |

≤ ε(1 − ε)n2 + εn2

≤ 2εn2.

Note that we have

maxcut(G) ≤ max

n
∑

j=1

(1 − xj)ρj

which implies
val∗(x) ≥ maxcut(G) − 2εn2. (3)

Let y be obtained from x by randomized rounding Then, val(y) is the value of
the cut defined by y. From standard results we have that |val∗(x)−val∗(y)| ∈
O(εn2) w.h.p. implies with (3)

|val(y) − maxcut(G)| ∈ O(ε2n).

3 End of the proof

Let Q be a random subset of vertices of size q = log3(1/ε)ε−4. and let T be
a random subset of Q of size t = C log(1/ε)ε−2 so that T is also a random
subset of V . We can restrict ourselves to sets S ε representative for G(Q)
(since with high probability we have cutS(G(Q)) = maxcut(G(Q)) + O(εq2)
for such a set S.) Define

Re(G(Q)) = {S ⊆ T : S is ε − representative for G(Q)}.

For each S ∈ Re(G(Q)) we introduce the following LP’s, LP1, LP2, LP3. So
in each case, the estimates ρ∗

j are with reference to S. Also, we will consider
in the sequel only the ordinary solutions to these programs (not the integer
solutions) since randomized rounding plays a rather trivial role here.

6



Program LP1

Here the ρj are evaluated in Q:

ρj =
∑

i∈Q

xieij

ρ∗
j =

|VR|
|S| |Γ(vj) ∩ S|

Maximize
n
∑

j∈Q

(1 − xj)ρ
∗
j

Subject to
q
n
ρ∗

j − εq
2
≤ ρj ≤ q

n
ρ∗

j + εq
2
, j ∈ J (Q)

say

0 ≤ xj ≤ 1, j ∈ Q

and we are assuming that |J (Q)| ≥ (1 − ε)q.

Program LP2

Here the ρ∗
j are as above and the ρj are evaluated in G:

ρj =
n
∑

i=1

xieij

Maximize n
q

n
∑

j=1

(1 − xj)ρ
∗
j

Subject to
n
q
ρ∗

j − εn ≤ ρj ≤ n
q
ρ∗

j + εn, j ∈ J

0 ≤ xj ≤ 1.

Here, J ⊆ {1, 2, ..n} is a set of indices of size |J | ≥ (1−2ε)n.
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Program LP3

With ρj and ρ∗
j as in LP1 we set here

ρj =
n
∑

i=1

xieij

Maximize n
q

n
∑

j∈Q

(1 − xj)ρ
∗
j

Subject to

ρ∗
j − εq

2
≤ ρj ≤ ρ∗

j + εq
2
, j ∈ J (Q)

say

0 ≤ xj ≤ 1, 1 ≤ j ≤ n

Clearly, the solution of LP3 is just equal to that of LP1 multiplied by n
q
.

Note that LP3 is a random subprogram of LP2. In view of a previous claim
we need only compare, for each S ∈ Re(G(Q)) the solutions of the programs
LP3 and LP2. We use Theorem 2 in contrapositive form to assert that the
value of LP2 is with sufficiently probability as big as the scaled value of LP1
and repeat this reasoning for each S ∈ Re(G(Q)) ending with the conclusion
that the assertion is true w.h.p. for all these S together and theorem (1)
follows. (We also use Proposition 2 to assert that the maxcut(G) is at least
nearly as big as the value of LP2.) We take λ = 4ε−1

√

log(1/ε) in that
theorem which implies λ

√
q ≤ εq. Thus we can use Theorem 2 with that λ

to assert that with probability at least 1 − 4e−ε−2 log(1/ε),

val(LP2) − q

n
val(LP3) ≤ eqn

and, with val(LP3) = q
n
val(LP1), we get

val(LP2) − q2

n2
val(LP3) ≤ eq2

Since there are at most 2|T | = 2log(1/ε)ε−2

distinct possible choices for S, this
will be true simultaneously for all these choices with probability at least 2/3
for each fixed sufficiently small ε. Theorem 1 follows.
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