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Abstract

Suppose you ran a chess tournament, everybody played everybody, and you wanted to use
the results to rank everybody. Unless you were really lucky, the results would not be acyclic, so
you could not just sort the players by who beat whom. A natural objective is to find a ranking
that minimizes the number of upsets, where an upset is a pair of players where the player ranked
lower on the ranking beats the player ranked higher. This is the NP-hard minimum feedback arc
set (FAS) problem on tournaments. Our main result is a polynomial time approximation scheme
(PTAS) for this problem. A simple weighted generalization gives a PTAS for Kemeny-Young
rank aggregation.
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1 Introduction

Suppose you ran a chess tournament, everybody played everybody, and you wanted to use the
results to rank everybody. Unless you were really lucky, the results would not be acyclic, so you
could not just sort the players by who beat whom. A natural objective is to find a ranking that
minimizes the number of upsets, where an upset is a pair of players where the player ranked lower
on the ranking beats the player ranked higher. This is the NP-hard minimum feedback arc set
(FAS) problem on tournaments.

For a general directed graph, the FAS problem consists of removing the fewest number of
edges so as to make the graph acyclic, and comes up in applications such as scheduling [24] and
graph layout [45, 16] (see also [37, 6, 30]). The problem has been much studied, both in the
mathematical programming community [46, 26, 27, 30, 34] and the approximation algorithms com-
munity [36, 41, 22]. Indeed, the problem is NP-complete [31], and the reduction, from vertex cover,
is approximation-preserving, so we know that the problem is also hard to approximate better than
1.36... [18].

The restriction of FAS to tournament inputs is an important, more tractable special case. A
tournament is a directed graph where every pair of vertices is connected by exactly one of the two
possible directed edges. The FAS problem on tournaments has a long and rich history, starting
in the early 1960s in combinatorics [40, 47] and statistics [42]. In combinatorics and discrete
probability, much early work focused on worst-case tournaments, starting with Erdös and Moon
and culminating with work by Fernandez de la Vega [21, 38, 39, 29, 43, 44, 23]. In statistics and
psychology, one motivation is ranking by paired comparisons: here, you wish to sort some set by
some objective but you do not have access to the objective, only a way to compare a pair and
see which is greater; for example, determining people or animal’s preferences for types of food.
Early interesting heuristics due to Slater and Alway can be found in [42]. Unfortunately, even on
tournaments, it was recently shown by Alon, building on work by Ailon, Charikar and Newman,
that FAS is still NP-hard [1, 3] (see also [14]). The best approximation algorithms achieve constant
factor approximations [1, 15, 48]: in the randomized setting, 2.5-approximation algorithms [1]; in the
deterministic setting, 3-approximation algorithms [1, 48, 49]. Our main result is a polynomial time
approximation scheme (PTAS) for this problem: thus the problem really is easier in tournaments
than on general graphs.

Here is a generalization to weighted tournaments. (The unweighted problem is the special case
where wij = 0 if (i, j) ∈ E and wij = 1 otherwise.) In [1], the variant where b = 1 is called weighted
FAS tournament with probability constraints. Indeed, sampling a population naturally leads to
defining wij as the probability that type i is preferred to type j.

Problem 1 (Weighted FAS Tournament). Input: A complete directed graph with n vertices V
and non-negative edge weights wij satisfying b ≤ wij + wji ≤ 1 for some fixed constant b ∈ (0, 1].
Output: A total order R(x, y) over V minimizing

∑

{x,y}⊂V wxyR(y, x).

We note that the previously known approximation algorithm results all extend to weighted
tournaments for b = 1.

The main motivating application of weighted FAS tournaments is rank aggregation. Frequently,
one has access to several rankings of objects of some sort, such as search engine outputs [19, 20],
and desires to aggregate the input rankings into a single output ranking that is similar to all of
the input rankings. This ancient problem was already studied in the context of voting by Borda

1



Min Feedback Arc Set Tournaments C. Kenyon-Mathieu & W. Schudy

[9] and Condorcet [13] in the 18th century, and has been the object of renewed interest recently
because of applications in learning [12]. By “similar to all of the input rankings”, one means that
the ranking should have minimum average distance from the input rankings, for some notion of
distance. The possibly most natural notion of distance is the number of pairs of vertices that are in
different orders: this leads to Kemeny-Young rank aggregation [32, 33].1 For rank aggregation, the
best known algorithms also achieve constant factor approximations: 4/3 for randomized algorithms
[1, 2] and 2 for deterministic algorithms [1, 48, 49].

We improve on these results by designing a polynomial-time approximation scheme.

Theorem 1 (PTAS). There is a randomized polynomial-time approximation scheme for minimum
weighted Feedback Arc Set on tournaments and for Kemeny-Young rank aggregation. Given ε > 0,

the algorithm outputs, in time Õ((1/ε)n6 +22Õ(b/ε)
n4), an ordering whose exptected cost is less than

(1 + ε)OPT . The algorithm can be derandomized at the cost of increasing the running time by a

factor of n2Õ(1/ε)
.

Our algorithm uses existing constant factor approximation algorithms. In addition, it uses
existing polynomial-time approximation schemes for the complementary maximization problem
(a.k.a. max acyclic subgraph tournaments), due to Arora, Frieze and Kaplan [5] and to Frieze
and Kannan [25]. Moreover, our central algorithm, Algorithm 2, also uses the divide-and-conquer
paradigm. Of course, this has been previously used in this setting, in partitioning algorithms in
general graphs [36] and in a Quicksort-type algorithm [1], but both of these construction are top-
down, whereas our algorithm is bottom-up, which gives it a very different flavor. Finally, it also
relies on a simple but useful technique, used already in 1961 by Slater and Alway [42]: iteratively
improve the current ordering by taking a vertex out of the ordering and moving it back at a
different position. (Such single vertex moves and variants have been studied at some length since
that time [28, 47, 19, 20].)

We can feel lucky that the FAS problem on tournaments turns out to be so easy as to have
an approximation scheme: In contrast to Theorem 1, the related problem of feedback vertex set is
hard to approximate even on tournaments (it has a 2.5-approximation algorithm [11]).

We note that Amit Agarwal has informed us that he recently obtained similar results.

2 Algorithm

Our algorithm uses that additive approximation algorithms of [5, 25] as a subroutine; these al-
gorithms are based on sampling. This extended abstract uses the derandomized additive error
algorithm for simplicity. Appendix D discusses how to extend our analysis to use the randomized
version, yielding the runtime in Theorem 1.

Theorem 2 (Small additive error). [5, 25] There is a randomized polynomial-time approximation
scheme for maximum acyclic subgraph on tournaments. Given β, η > 0, the algorithm AddApprox
outputs, in polynomial time (n2+2O(1/β2) log 1/η in [25]), an ordering whose cost is, with probability
at least 1−η, less than OPT+βn2. The algorithm can be derandomized, which replaces the log 1/η

in the runtime with nÕ(1/ε2).

1Kemeny-Young rank aggregation was invented as a voting system but has serious weaknesses as such: see [7, 8, 35]
for the strategy issues that cause this.
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Given: Fixed parameters ε > 0 and b ∈ (0, 1].
Input: A weighted tournament.

Round each weight to the nearest integer multiple of εb/n2.
π ← output of any constant factor approximation algorithm2[1, 15]. ;

While there exists a cost-decreasing move, do that move. The two types of moves are:

1. Single vertex moves. Choose a vertex x and a rank j, take x out of the ordering π
and insert it back in so that its rank is j.

2. Additive approximation. Choose two integers i < j; let U be the set of vertices
whose current ranks are in [i, j]. Execute the derandomized version of algorithm
AddApprox on U , with β = 9−rmaxε3. Let π′U
denote the result. Replace the restriction πU of π to U by π′U .

Output: π.

Algorithm 1: Polynomial time approximation scheme of Theorem 1 (PTAS)

Any total order R can equivalently be defined by an ordering π : V → {1, . . . , n} such that π(x)
is the position of vertex x: π(x) < π(y) iff R(x, y).

Definition 3. A single vertex move, given a ordering π, a vertex x and a position i, consists of
taking x out of π and putting it back in position i.

All of our algorithms use a parameter rmax ≡ log3/2(1/ε
2)/ε = O(1/ε log(1/ε)). Our determin-

istic PTAS is given in Algorithm 1. (Recall from Problem 1 that b is the lower bound on wxy +wyx
for every pair {x, y}. For ease of thinking, the reader may think of b as being equal to 1.) Our
(somewhat faster) randomized PTAS is given in Algorithm 2. Curiously, if the constant factor
approximation algorithm used is the sorting by in degree algorithms from [15], the initial order
πlocal computed in Algorithm 2 is precisely the order returned by the heuristic algorithm created
by Slater and Alway [42] in 1961! For the analysis, it is enough to study Algorithm 2, since the
result for Algorithm 1 follows as a simple corollary:

Claim 4. If Algorithm 2 outputs an ordering whose cost is ≤ (1 + ε)OPT with positive probability,
then Algorithm 1 outputs an ordering with cost ≤ (1 + ε)OPT.

Proof. Let π denote the output of Algorithm 1. Since we started with a constant factor approxima-
tion and only performed cost-improving moves, π is still a constant factor approximation, of course.
Execute Algorithm 2 starting with this ordering π. Since there are no cost-decreasing single-vertex
moves, πlocal = π. Since Algorithm AddApprox cannot improve any subinterval U of π, the Di-
videAndConquer process will always choose ρ2 rather than ρ1: in the end, we obtain πout = π for
every execution of our Algorithm 2. Therefore it must be that π has cost ≤ (1 + ε)OPT.

Actually, the recursive bottom-up nature of Algorithm 2 makes it quite difficult to analyze
directly, and so we will instead analyze a different, top-down process, Algorithm 3. This is a virtual

2This algorithm actually still works if we start with an arbitrary π, not necessarily a constant factor approximation.
The randomized algorithm, however, needs the constant-factor algorithm to work.
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Given: Fixed parameter ε > 0.
Input: A weighted tournament

Round each weight to the nearest integer multiple of εb/n2.
π ← output of any constant factor approximation algorithm [1, 15].
Apply profitable single vertex moves to π until a local optimum πlocal is reached.

Output: DivideAndConquer(1,n)

DivideAndConquer(i, j) =
begin

if i=j then return i
For any `,m, let V`,m denote the vertices x such that πlocal(x) ∈ [`,m]
Let K be the values of k such that Vik and Vk+1,j both have size ≥ |Vij |/3.
Choose k uniformly at random from K.
ρ1 ← Output of derandomized AddApprox executed on Vij with β = 9−rmaxε3

ρ2 ← DivideAndConquer(i, k) concatenated with DivideAndConquer(k+1, j)
return ρ1 or ρ2, whichever has lower cost.

end
Algorithm 2: Randomized polynomial time approximation scheme (RPTAS). Vertical lines
in left margin denote differences from Algorithm 3.

Given: Fixed parameter ε > 0.
Input: A weighted tournament; and π∗, an optimal ordering

Round each weight to the nearest integer multiple of εb/n2.
π ← output of any constant factor approximation algorithm [1, 15].
Apply profitable single vertex moves to π until a local optimum πlocal is reached.
Let α = 9−r, where r is uniformly distributed in {0, 1, . . . , rmax = log3/2(1/ε

2)/ε}.
Output: πout = DivideAndConquer(1,n)

DivideAndConquer(i, j) =
begin

if i=j then return i
For any `,m, let V`,m denote the vertices such that πlocal(x) ∈ [`,m]
Let K be the values of k such that Vik and Vk+1,j both have size ≥ |Vij |/3.
Choose k uniformly at random from K.
ρ1 ← Output of derandomized AddApprox executed on Vij with β = 9−rmaxε3

ρ2 ← DivideAndConquer(i, k) concatenated with DivideAndConquer(k+1, j)
if FVi,j ≥ αε2|Vi,j |2 then

return ρ1 (Vij is called a leaf)
else

return ρ2 (Vij is called an internal node)
end

end
Algorithm 3: The virtual algorithm. Vertical lines in left margin denote differences from
Algorithm 2.
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algorithm whose sole purpose is to guide the analysis: indeed, it takes as input parameter an
optimal ordering π∗, so it cannot be a real algorithm! The notation FVi,j , which depends on πlocal

and π∗, will be defined later, but we do not need to know what it means in order to reduce the
analysis of Algorithm 2 to Algorithm 3.

Claim 5. If πout2 denotes the output of the Algorithm 2 and πout denotes the output of the Algo-
rithm 3, then:

∀x, Pr(cost(πout2) ≤ x) ≥ Pr(cost(πout) ≤ x).

Proof. Couple the executions of the two algorithms so that they start with the same π, do the
same sequence of single-vertex moves leading to the same πlocal, and make the same choice of k
in their recursive divide-and-conquer process when they have the same value of (i, j). The two
divide-and-conquer processes have the same tree of recursive calls. By bottom-up induction on the
tree nodes, the ordering returned by the process used in Algorithm 2 has cost less than or equal to
that of the ordering returned by the process used in Algorithm 3.

We now focus on the output πout of Algorithm 3, whose analysis hinges on the following Lemma,
proven in Section 3.1. For any subset of vertices S, let CS(π) =

∑

{x,y}⊆S,π(x)>π(y) wxy. The
objective is to minimize the overall cost CV (π), which we also denote as C(π) (no subscript) for
shorthand.

Lemma 6. For the orderings defined in Algorithm 3:

E
[

C(πout)
]

− C(π∗) ≤ O(ε)(C(πlocal) + C(π∗)).

Since πlocal is an improvement over the constant factor approximation π, we still have C(πlocal) ≤
C(π) = O(C(π∗)). Thus E

[

C(πout)
]

≤ C(π∗)(1 + O(ε)), hence Algorithm 3 is an approximation
scheme. By Claim 5, so is Algorithm 2, and by Claim 4, so is Algorithm 1.

The running time analysis is deferred to Appendix E, so all we need to do is analyze the virtual
algorithm.

3 Analysis of the virtual algorithm

We first deal with the rounding. (Proof deferred to Appendix A.)

Lemma 7 (Rounding). Let C denote the cost function with the original weights and C̃ denote
the cost function with the rounded weights, and ˜OPT = minρ C̃(ρ) denote the value of the optimal
solution to the problem with rounded weights. Assume that C̃(π) ≤ (1 + ε) ˜OPT . Then C(π) ≤
(1 + 3ε)OPT .

Thanks to Lemma 7, we can analyze the rounded weights as if they were the original weights.
For the remainder of the paper we analyze the operation of the algorithm on the rounded graph as
if it were the original graph. It remains to prove Lemma 6.
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3.1 Proof of Lemma 6

For any subset S of vertices, let FS =
∑

x∈S |πlocal(x) − π∗(x)| (this is often called Spearman’s
footrule distance between the two orderings). This completes the specification of the stopping
condition used in Algorithm 3.

The footrule distance is related to the cost of the two orderings (proof in Appendix A):

Claim 8 (Tournaments). FV ≤ (2/b)(CV (π∗) + CV (πlocal)).

The following claim motivates the stopping condition of Algorithm 3.

Claim 9 (Leaf nodes). Let S be a leaf of the recursion tree. Then CS(πout)− CS(π∗) ≤ εFS.

Proof. If |S| = 1 then the claim is trivial. Otherwise, using Theorem 2, the definition of tree leaves,
and defining αmin = 9−rmax ≤ α:

CS(πout)− CS(π∗) ≤ CS(πout)−OPTS ≤ αminε3|S|2 ≤ (αminε/α)FS ≤ εFS .

We are now ready for some intuition on Algorithm 3. When the optimal cost C(π∗) is large,
the additive approximation algorithm is satisfactory. When C(π∗) is small, C(πlocal) is also small
(because it’s a constant factor approximation), and so, by Claim 8, the footrule distance will also
be small, the stopping condition will not hold, and Algorithm 3 will recurse: it will perform some
partition V = V1,k∪Vk+1,n, thereby irrevocably committing all vertices of V1,k to precede all vertices
of Vk+1,n in the output ordering: we need to show that the mistakes made in such divide steps are
not too bad.

But, since the footrule distance is small in that case, by definition of footrule, the positions
of the vertices in πlocal are typically close to their positions in π∗, and so the vertices with rank
{1, . . . , k} in πlocal will be more or less the same as the vertices with rank {1, . . . , k} in π∗, when k
is chosen randomly. Thus, we expect that only a few vertices will be misplaced during the divide
step.

How costly can it be, if, say, just one or two vertices are misplaced during the divide step?
Unfortunately, it can be quite costly, for example, if a misplaced vertex x, which has rank ` > k in
πlocal, has rank 1 in π∗. Then misplacing just a single vertex: x, may conceivably incur a cost of
Θ(n). This is where the single-vertex moves come to the rescue. By optimality, π∗ cannot improve
its cost by moving x to position `, and by local optimality, πlocal cannot improve its cost by moving
x to position 1: then, it must be that about half of the edges between x and V1,k are directed
towards x and about half are directed away from x, and so, it does not really matter whether we
place x in position 1 or in position `. This explains why the algorithm makes sense intuitively.

More generally, define the displacement graph that has nodes set [1, n], and has an arc from i
to j whenever some vertex x ∈ V has position i in πout and position j in π∗. (The displacement
graph should not be confused with the weighted tournament graph.) For example:

• {{ ##• • · · · • • •
1 2 · · · n

In this example, the first divide step will commit the vertex whose rank in π∗ is n to have rank ≤ k
in πout, and commit the vertex whose rank in π∗ is 1 to have rank > k in πout, so it may conceivably
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incur a cost of Θ(n). Again, local optimality with respect to single-vertex moves comes to the rescue
and helps estimate the difference in cost between π∗ and πout by considering the displacement of
one vertex at a time, noting the changing costs due to each individual displacement but ignoring the
interactions between several vertices displacements. This is in a sense a first order approximation
to the change in cost, and will be formally captured in a term of our analysis which we denote by
TV , defined as the negation of the sum of the costs of moving each vertex of S according to the
displacement graph from πlocal to π∗. The negation is there because we are trying to upperbound
C(πlocal)− C(π∗), but f is defined as part of the cost C(π∗) relative to C(πlocal).

What did we forget in this discussion? We forgot that when we move x between position 1
and position ` = π∗(x), the set of vertices y such that the order of {x, y} changes is not exactly
the vertices that are between 1 and ` in πlocal because some vertices may have πlocal(y) < ` but
π∗(y) > `. This is what we call a “crossing”, and we will need a corrective term, which we will
denote by ΦV , taking those into account.

More precisely, how does TS compare to CS(πlocal) − CS(π∗)? Both can be expanded as sums
over pairs of vertices {x, y} of S, so the comparison rests on which pairs are counted in each one.
Some pairs contribute the same to TS as to CS(πlocal)− CS(π∗), such as:

πlocal(x)
((

πlocal(y)
,,

π∗(y) π∗(x)

For some other pairs, there is a discrepancy, such as:

πlocal(x)
&&

πlocal(y)
%%

π∗(x) π∗(y)

Considering all of the possible permutations of {πlocal(x), πlocal(y), π∗(x), π∗(y)} shows that the
pairs for which there is a discrepancy correspond to a pair of arcs crossing in the displacement
graph; the corresponding vertices are called a crossing pair. Formalizing this reasoning leads to
Lemma 10 below (formal definition of “crossing pair” and proof in Appendix A.)

Let fπ(e) denotes the cost, for edge e = {x, y} of switching the relative order of x and y:

fπ(x, y) =

{

wxy − wyx π(x) < π(y)
wyx − wxy o.w.

.

Lemma 10 (Mistake Decomposition). We have:

CS(πlocal)− CS(π∗) = TS + ΦS ,

where ΦS =
∑

x,y∈S and crossing pair−δxyfπlocal(x, y), and

δxy =

{

+1 if πlocal(x) < π∗(y) < π∗(x) < πlocal(y)
−1 otherwise.

The following two Lemmas, proved in later subsections, analyze the increase of the first order
(T ) and second order (Φ) effects from the leaves to the root.

Recall that α ∈ [αmin, 1] with αmin = 9− log3/2(1/ε2)/ε. The choice of α and of the random k’s
determines the random choices in the execution. Let B denote the choices of k for an execution
of Algorithm 3 with α = 1. Smaller α leads to earlier termination, so B also defines the random
choices made for any choice of α. Thus, for a given πlocal, the random choices are determined by
(B,α).
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Lemma 11. Let γ =
√

5/3. For any α, for a random execution defined by a random choice of (B),
we have

ΦV −EB





∑

S leaf

ΦS



 ≤ 96
γ

1− γ εFV .

Lemma 12. For a random execution defined by a random choice of (B,α), we have

TV −EB,α





∑

S leaf

TS



 ≤ 14εFV .

Now we can prove Lemma 6: Since Lemma 11 is true for every α, it is also true in expectation
over α. Adding to Lemma 12 and substituting Lemma 10 to both sides yields:

CV (πlocal)− CV (π∗)−EB,α





∑

S leaf

(CS(πlocal)− CS(π∗))



 ≤ (14 + 96
γ

1− γ )εFV (1)

Claim 13.
CV (πlocal)−

∑

S leaf

CS(πlocal) = CV (πout)−
∑

S leaf

CS(πout)

Proof Sketch. These orderings only differ inside the leaves.

Now take the expectation of both sides of Equation (1) and apply Claim 13:

E
[

CV (πout)
]

− CV (π∗)−EB,α





∑

S leaf

(CS(πout)− CS(π∗))



 ≤ (14 + 96
γ

1 − γ )εFV

By Claim 9, the expectation on the left-hand side is bounded above by EB,α

[
∑

S leaf εFS
]

=
εEB,α [FV ], which is independent of B,α so the expectation can now be dropped. Therefore

E
[

CV (πout)
]

− CV (π∗) ≤ (14 + 96
γ

1 − γ + 1)εFV

Using Claim 8:

E
[

CV (πout)
]

− CV (π∗) ≤ (96
γ

1 − γ + 15)ε
2

b
(CV (πlocal) + CV (π∗)).

This concludes the proof of Lemma 6. It only remains to prove Lemmas 11 and 12.

3.2 Proof of Lemma 11 (bounding ΦV −
∑

ΦS)

Our proof is by induction on the nodes of the recursion tree. We will need to bound the increase
in second-order mistakes due to a single divide step. The number of vertices crossing a particular
point in an ordering is important.
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Notation 14. Let ψS(k) (resp. ψRS (k))denote the number of vertices in S that are strictly after
(resp. before) position k in the πlocal ordering but before (resp. strictly after) position k in the π∗

ordering: ψS = |{x ∈ S| (π∗(x) ≤ k < πlocal(x) }| and ψRS = |{x ∈ S| (πlocal(x) ≤ k < π∗(x) }|.

To prove the next lemma we need the following lower bound on the number of different possible
choices for k.

Claim 15. The set K from which Algorithm 3 randomly chooses k satisfies |K| ≥ |Vij |/4 whenever
i 6= j.

Proof. Asymptotically |K| ≈ |Vij |/3. Worst case for this claim is |Vij| = 4 which leads to |K| = 1.
Proof in Appendix B.

Lemma 16 (Core). Let S = {x : πlocal(x) ∈ [`, r]}, let k be a random element of K. Let L = {x ∈
S, πlocal(x) ≤ k} and R = S \ L. Then:

ΦS −Ek [ΦL + ΦR] ≤ 32

|S|
∑

x∈S

|π∗(x)− πlocal(x)|ψ∗
S .

where ψ∗
S = maxk∈S max(ψS(k), ψRS (k))

Proof. For U ∈ {S,L,R} recall that:

ΦU =
∑

x,y∈U,x,y crossing pair

−δxyfπlocal(x, y)

Since |δxy| ≤ 1 and |f
πlocal

(x, y)| ≤ 1, we can write

ΦS − ΦL − ΦR ≤ |{(x, y) ∈ Lk ×Rk ∪Rk × Lk, crossing pair}|,

where we write L = Lk and R = Rk to make the dependency in k explicit. By Claim 15, we have:

Ek [ΦS − ΦL − ΦR] ≤ 4

|S| |{(x, y, k) : (x, y) ∈ Lk ×Rk ∪Rk × Lk, crossing pair}|.

In such a triple (x, y, k), we must have that k either belongs to [min(πlocal(x), π∗(x)),max(πlocal(x), π∗(x)]
or to [min(πlocal(y), π∗(y)),max(πlocal(y), π∗(y)]. Moreover, in order for {x, y} to be a crossing pair,
it must be that y cross over either πlocal(x) or over π∗(x), so y is counted in ψS(πlocal(x)) or in
ψRS (πlocal(x)) or in ψS(π∗(x)) or in ψRS (π∗(x)). Taking the union of these cases yields the lemma.

Lemma 17. For any S and k, we have: ψS(k) ≤ F 1/2
S and ψRS (k) ≤ F 1/2

S .

Proof Sketch. i 7→ ψS(i) is a 1-Lipschitz function (it changes by at most 1 when going from i to
i + 1), and its integral is bounded by FS . It is easy to see that these observations imply that the
maximum value of this function cannot be more than

√
FS . See Appendix B for a full proof.

Corollary 18.

ΦS −Ek [ΦL + ΦR] ≤ 32

|S|F
3/2
S .
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At this point we are prepared to show that at any one level the mistakes made are bounded
by 32ε times the optimum cost. To do this, note that by the stopping condition

√
FS/|S| < ε, so

F
3/2
S /|S| < εFS . This shows that any one level of the tree does not contribute excessive mistakes.

The following lemma proves that the sum of mistakes over all of the levels is dominated by the
nodes near the leaves of the tree.

Lemma 19 (Inductive). For every α ∈ [αmin, 1], ΦV ≤ EB

[

∑

S leaf[96
γ

1−γ εFS + ΦS] given α
]

,

where γ =
√

5/3.

Proof Sketch. The factor of |S| in the denominator causes F
3/2
S /|S| to increase exponentially as the

vertices are subdivided, so by a geometric series argument the mistakes can be bounded by O(1)

time the sum of F
3/2
S /|S| over the leaves. At a leaf S, F

3/2
S /|S| ≈ εFS by the stopping condition.

Full proof in Appendix B.

Combining Lemma 19 with the simple fact that
∑

S leaf FS = FV proves Lemma 11.

3.3 Proof of Lemma 12 (bounding TV −
∑

TS)

Recall that by local optimality of the single vertex moves TV ≤ 0. Unfortunately, we need to bound
TV −

∑

S leaf TS , which is not necessarily negative because
∑

S leaf TS might be more negative
than TV is. We split TV −

∑

S leaf TS into separate terms for each vertex and bound each term by
the displacements of that vertex times ε.

In this part, we will prove that TV − EB,α(
∑

S leaf TS) ≤ 11εFV , which implies Lemma 12.
First we see that by definition of TV and {TS},

TV −EB,α





∑

S leaf

TS



 = EB,α

















∑

y

∑

x : πlocal(x) between πlocal(y) and π∗(y)
x /∈ leaf containing y

fπlocal(x, y)

















.

Let s(y) be the size of the leaf containing y. We can split the sum for each y into several parts
depending on the relative size of the leaf containing y and |π∗(y)−πlocal(y)|. The cases correspond
to big leaves (εs(y) > |π∗(y)−πlocal(y)|), small leaves (|π∗(y)−πlocal(y)| > s(y)/ε) and intermediate
leaves (εs(y) ≤ |π∗(y) − πlocal(y)| ≤ s(y)/ε). We handle the small leaves by showing that small
leaves are essentially negligible so the cost of moving y from where y leaves its leaf to π∗(y) is
approximately its cost of moving from πlocal(y) to π∗(y), which is non-positive by local optimality.
We handle the big leaves by proving that the probability of πlocal(y) and π∗(y) being in different
leaves (and hence able to contribute to the sum) is O(ε). We bound the contribution of the
intermediate leaves by using the variation in α to force a variation in the leaf size, making this
event unlikely. See Appendix C for details.

Acknowledgements

The authors wish to thank Nir Ailon and Eli Upfal for useful suggestions.

10



Min Feedback Arc Set Tournaments C. Kenyon-Mathieu & W. Schudy

References

[1] Nir Ailon, Moses Charikar, Alantha Newman: Aggregating inconsistent information: ranking
and clustering. ACM Symposium on Theory of Computing (STOC) 2005: 684-693.

[2] Nir Ailon. Aggregation of Partial Rankings, p-Ratings and Top-m Lists. ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), 2007, to appear.

[3] N. Alon, Ranking tournaments, SIAM J. Discrete Math. 20 (2006), 137-142.

[4] N. Alon, J. Spencer. The probabilistic method, second edition. Wiley-Interscience. 2000.

[5] Sanjeev Arora, Alan Frieze, and Haim Kaplan. A New Rounding Procedure for the Assignment
Problem with Applications to Dense Graph Arrangement Problems. IEEE Symposium on
Foundations of Computer Science (FOCS) 1996: 24-33.

[6] F.B.Baker and L.J.Hubert, Applications of combinatorial programming to data analysis: seri-
ation using asymmetric proximity measures, British J. Math. Statis. Psych. 30 (1977) 154-164.

[7] John J. Bartholdi, J. A. Orlin. Single transferable vote resists strategic voting. Social Choice
and Welfare 8:341-354 (1991).

[8] JJ Bartholdi, CA Tovey, MA Trick. The computational difficulty of manipulating an election.
Social Choice and Welfare, 6, 3, 1989.
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A Proofs and calculations - Section 3.1

Proof of Lemma 7

Proof. By definition of rounding, for every ρ we have:

|C̃(ρ)− C(ρ)| ≤
(

n

2

)

εb/(2n2) ≤ εb/4. (2)

By definition of ˜OPT , for every ρ we have ˜OPT ≤ C̃(ρ) ≤ C(ρ) + εb/4. Minimizing over ρ gives

˜OPT ≤ OPT + εb/4. (3)

We first analyze the case where OPT ≥ b(1/2 − ε). Using Equation 2, our assumption on the
output ordering π, and Equation 3, we get

C(π) ≤ C̃(π) + εb/4 ≤ (1 + ε) ˜OPT + εb/4 ≤ (1 + ε)OPT + (1 + ε)εb/4 + εb/4.

Since OPT ≥ b(1/2 − ε), this implies

C(π) ≤ OPT
[

1 + ε(1 +
1 + ε/2

1− 2ε
)

]

≤ OPT (1 + 3ε).

We next analyze the case where OPT < b(1/2− ε). Let π∗ be the cheapest ordering, such that
C(π∗) = OPT . By definition of b, for every pair {x, y} we have max(wxy, wyx) ≥ b/2 > OPT ,
so π∗ must be exactly the ordering such that π∗(x) < π∗(y) iff wxy < wyx, and has cost exactly
∑

x,y min(wxy, wyx), and for every pair we must have min(x, y) < b(1/2 − ε). Consider any other
ordering ρ: for every pair, ρ costs at least as much as π∗, and since ρ 6= π∗, there must exist at least
one pair {x, y} where ρ pays max(wxy, wyx) > min(wxy, wyx)+ εb, and so C(ρ) > C(π∗)+ εb. From
Equation 2, it follows that C̃(ρ) > C̃(π∗)+εb/2. Since by Equation 3 we have ˜OPT = C̃(π∗) < b/2,
this implies that C̃(ρ) > (1+ ε) ˜OPT . But by assumption, the algorithm outputs a ordering π such
that C̃(π) ≤ (1 + ε) ˜OPT . So it has no choice but to output π = π∗, the optimal ordering: the
algorithm is optimal in this case.

Proof of Claim 8

Proof. By [17] Theorem 2 relating Spearman’s footrule and Kendall-Tau, we have:

∑

j

|πlocal(j)− π∗(j)| ≤ 2
∑

i,j

11 (π∗(i) > π∗(j)) 11
(

πlocal(i) < πlocal(j)
)

≤ 2

b

∑

i,j

11 (π∗(i) > π∗(j))wij + 11
(

πlocal(i) < πlocal(j)
)

wji

= (2/b)(C(π∗) + C(πlocal)),

where the second inequality follows from the fact that 1
b (wij + wji) ≥ 1.
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Proof of Lemma 10

We need a precise definition for Φ that formalizes the notion of crossing pairs:

ΦS =
∑

x,y∈S:πlocal(x)<πlocal(y)

−f
πlocal

(x, y) ·

·







1 πlocal(x) < π∗(y) < π∗(x) < πlocal(y)
0 An even number of {π∗(x) > π∗(y), π∗(y) ≤ πlocal(x), πlocal(y) ≤ π∗(x)} are true
−1 otherwise

Proof. First note that ∆C ≡ CS(πlocal)−CS(π∗) =
∑

x,y∈S:πlocal(x)<πlocal(y) and π∗(x)>π∗(y)
−f

πlocal
(x, y).

By definition, we have TS =
∑

x∈S

∑

y∈S:πlocal(y) between πlocal(x) and π∗(x)
−f

πlocal
(x, y). To show

equality, it suffices to show that each pair (x,y) appears the same number of times in the sum
for ∆C that it does in the sums for the TS and ΦS . First rewrite TS by splitting the sum into
two parts depending on πlocal(x) is before or after π∗(x), then swap the names x and y in one
of the sums to yield TS = T1 + T2 where T1 =

∑

x,y∈S:πlocal(x)<πlocal(y)≤π∗(x)
−f

πlocal
(x, y) and

T2 =
∑

x,y∈S:π∗(y)≤πlocal(x)<πlocal(y)
−f

πlocal
(x, y). Note that every pair (x, y) in all three sums has

πlocal(x) < πlocal(y). We divide the pairs into eight cases based on the truth of the inequalities
π∗(x) > π∗(y), π∗(x) ≥ πlocal(y), and π∗(y) ≤ πlocal(x). The eight cases are shown in the following
table. T indicates that the inequality in the heading is true, integers indicate the number of times
pairs that belong in that row occur in the sum in that column, and dots indicate false or zero.

π∗(x) > π∗(y) π∗(x) ≥ πlocal(y) π∗(y) ≤ πlocal(x) ∆C T1 T2 Φ

· · · · · · ·
· · T · · 1 −1
· T · · 1 · −1
· T T · 1 1 ·
T · · 1 · · 1
T · T 1 · 1 ·
T T · 1 1 · ·
T T T 1 1 1 −1

Note that the fourth row is defined by three inequalities that combine with πlocal(x) < πlocal(y)
to form a contradiction. This explains why the fourth row need not add up.

B Proofs and calculations - Section 3.2 (bounding ΦV −
∑

ΦS)

Proof of Claim 15 (K ≥ |Vij |/4)

Proof. Let n = |Vij |. There are 2 dn/3e vertices that are forced to be in one child or the other, so

|K| = n− 2 dn/3e+ 1 =







n+3
3 n mod 3 = 0

n−1
3 n mod 3 = 1

n+1
3 n mod 3 = 2

. The nontrivial case is n mod 3 = 1. The smallest

n ≥ 2 of this form is n = 4, so |K|/n ≥ 1/3− 1/(3n) ≥ 1/4.
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Proof of Claim 17 (ψ ≤
√
F )

ψRS is the same as ψS but with the roles of πlocal and π∗ reversed, so we need only prove the claim
for ψS .

The following intermediate claim is useful:

Claim 20.
∑

0≤i≤|V | ψS(i) ≤ FS .

Proof.

ψS(i) =
∑

j∈S

11
(

πlocal(j) > i and π∗(j) ≤ i
)

∑

i

ψS(i) =
∑

j∈S

∑

i

11
(

π∗(j) ≤ i < πlocal(j)
)

=
∑

j∈S:πlocal(j)>π∗(j)

(πlocal(j)−π∗(j)) ≤
∑

j∈S

|πlocal(j)−π∗(j)| = FS

A second helper claim:

Claim 21. ∀i, |ψS(i)− ψS(i+ 1)| ≤ 1.

Proof.

ψS(i) = |{j ∈ S|π∗(j) ≤ i < πlocal(j)}|
= |{j ∈ S|πlocal(j) > i+ 1 and π∗(j) ≤ i}|+ 11

(

∃j ∈ S : πlocal(j) = i+ 1 and π∗(j) ≤ i
)

ψS(i+ 1) = |{j ∈ S|πlocal(j) > i+ 1 and π∗(j) ≤ i+ 1}|
= |{j ∈ S|πlocal(j) > i+ 1 and π∗(j) ≤ i}|

+ 11
(

∃j ∈ S : πlocal(j) > i+ 1 and π∗(j) = i+ 1
)

ψS(i+ 1)− ψS(i) = 11
(

∃j ∈ S : πlocal(j) > i+ 1 and π∗(j) = i+ 1
)

− 11
(

∃j ∈ S : πlocal(j) = i+ 1 and π∗(j) ≤ i
)

Both terms are either 0 or 1, so the difference is in [−1, 1].

Now proof of Claim 17:

Proof.

ψS(n) = |{j ∈ S|πlocal(j) > n and π∗(j) ≤ n}| = 0 and ψS(0) = |{j ∈ S|πlocal(j) > 0 and π∗(j) ≤ 0}| = 0

Suppose, for a contradiction, that there exists k such that ψS(k) >
√
FS . Using Claim 21,

∑

ψS(i) ≥ ψS(k) + 2

ψS (k)−1
∑

i=1

i =
ψS(k)(ψS(k) + 1) + (ψS(k)− 1)ψS(k)

2
= ψS(k)2 > FS .

This contradicts Claim 20.

16



Min Feedback Arc Set Tournaments C. Kenyon-Mathieu & W. Schudy

Proof of Lemma 19

Claim 22 (Algebra). Let γ =
√

5/3. If 0 ≤ F1 ≤ F , s > 0, and s1 > 0 such that s1, (s− s1) ≥ s/3,
then:

F 3/2

s
< γ

(

F
3/2
1

s1
+

(F − F1)
3/2

s− s1

)

.

Proof. Let f(F1, s1) = F
3/2
1 /s1 + (F − F1)

3/2/(s − s1). Differentiating yields a unique stationary
point of F1 = F/2, s1 = s/2, with value

√
2F 3/2/s. The minimum point along the boundary

occurs when s1 = s/3 and F1 = F/5 with value
√

9/5. This is smaller than the stationary point
in the interior, so this is the global minimum over this set. Therefore

√

9/5F 3/2/s ≤ f(F1, s1), so

F 3/2/s ≤
√

5/9
[

F
3/2
1 /s1 + (F − F1)

3/2/(s − s1)
]

.

Now the proof of Lemma 19:

Proof. Let α ∈ [αmin, 1] be fixed. If V is a leaf, then the statement is true. Else, given α, we first
prove by induction that for any l ≤ m, with U = {x| ` ≤ πlocal(x) ≤ m } and E [·|U ∈ B] meaning
expectation conditioned on U being a leaf or internal node in execution tree B:

ΦU ≤ EB





∑

S internal descendant of U

32
F

3/2
S

|S| +
∑

S leaf descendant of U

ΦS

∣

∣

∣

∣

∣

U ∈ B



 . (4)

The base case of U being a leaf is trivial.
Let k be the random variable used at U to decompose U into L and R. Let Xk = ΦU−ΦL−ΦR.

Let B1 be the random sequence used to construct the decomposition of the left child, and B2 be the
random sequence used to construct the decomposition of the right child, so that B = (k,B1, B2).
Note that given an interval U , ΦU is deterministic. Therefore:

ΦU = EB [ΦU ] = EB [Xk + ΦL + ΦR] = Ek [Xk] + Ek [ΦL + ΦR] .

Using the induction hypothesis for fixed L,R we have:

ΦL + ΦR ≤ EB1,B2





∑

S internal desc. of L or R

32
F

3/2
S

|S| +
∑

S leaf desc. of L or R

ΦS

∣

∣

∣

∣

∣

U,L,R ∈ B



 .

Take expectation over k and rewriting:

Ek [ΦL + ΦR] ≤ EB





∑

S internal strict desc. of U

32
F

3/2
S

|S| +
∑

S leaf desc. of U

ΦS

∣

∣

∣

∣

∣

U ∈ B



 .

Adding Ek [Xk] ≤ 32F
3/2
U /|U | (from Corollary 18) to this and combining 32F

3/2
U /|U | with the sum

over internal nodes completes the induction.
The rest of the proof is deterministic. We prove that for every tree decomposition B, the

argument of the expectation on the right hand side of Equation 4 with `,m = 1, n and U = V is
bounded by O(1)εFV . Therefore the expectation must also be bounded. For every internal node
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S, by Claim 22 we have: F
3/2
S /|S| ≤ γ(F

3/2
S1

/|S1| + F
3/2
S2

/|S2|). Summing over the recursion tree,
we obtain:

∑

S internal

F
3/2
S

|S| ≤
∑

S leaf

F
3/2
S

|S| (γ + γ2 + · · · ) ≤ γ

1− γ
∑

S leaf

F
3/2
S

|S| .

If S is a leaf, then let P be the parent of S.3 The parent is not a leaf, so by the stopping condition√
FP /|P | ≤ αε ≤ ε. Thus:

F
3/2
S

|S| = FS

√
FS
|S| ≤ FS

√
FP
|P |
|P |
|S| ≤ 3FS

√
FP
|P | ≤ 3εFS .

Summing yields the lemma.

C Proofs and calculations - Section 3.3 (bounding TV −
∑

TS)

Lemma 23 (Small Leaves). For any execution (determined by B and α), we have

∑

y:|π∗(y)−πlocal(y)|>s(y)/ε

∑

x : πlocal(x) between πlocal(y) and π∗(y)
x /∈ leaf containing y

−f
πlocal

(x, y) ≤ εFV . (5)

Proof. No single vertex move can improve πlocal, so
∑

x:πlocal(x) between πlocal(y) and π∗(y)
−f

πlocal
(x, y) ≤

0. Thus the left hand side of Equation 5 can be bounded by
∑

y:|π∗(y)−πout(y)|>s(y)/ε

∑

x : πlocal(x) between πlocal(y) and π∗(y)
x ∈ leaf containing y

fπlocal(x, y) ≤
∑

y:|π∗(y)−πout(y)|>s(y)/ε

s(y).

This is at most
∑

y ε|π∗(y)− πlocal(y)| = εFV .

Lemma 24 (Big Leaves). For any α and for a random B, we have:

EB

















∑

y:|π∗(y)−πlocal(y)|<εs(y)

∑

x : πlocal(x) between πlocal(y) and π∗(y)
x /∈ leaf(y)

−f
πlocal

(x, y) given α

















≤ 12εFV .

Proof. Let α be fixed. If πlocal(x) is between πlocal(y) and π∗(y), but x is not in leaf(y), then

πlocal
−1

(π∗(y)) is also not in leaf(y). Thus we can bound the expression on the left hand side by
the expectation (over the random tree construction) of

∑

y

|π∗(y)− πlocal(y)| · 11
(

|π∗(y)− πlocal(y)| < ε · s(y) and πlocal
−1

(π∗(y)) /∈ leaf(y)
)

.

3If S is the root, no parent is available but in that case the lemma is trivially true anyway.
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We will now argue that for any vertex y, the event E1 that “|π∗(y) − πlocal(y)| < s(y)ε and

πlocal
−1

(π∗(y)) /∈ leaf(y)” has probability at most 9ε over the sequence B of random choices defining
the decomposition. The intuition is that the random choice of k is unlikely to land between πlocal(y)
and π∗(y).

Indeed, fix a vertex y and let ` = |π∗(y)− πlocal(y)|. Down the branch leading to the leaf of y,
the algorithm uses a certain sequence of random variables k0, k1, . . .. Instead of stopping when the
stopping condition is reached4, we conceptually extend the construction until the first time Z that
the associated interval has size less than `/ε. This defines a sequence of nested intervals I0 = [1, n],
I1, . . ., IZ .

The probability of event E1 is bounded by the probability that the last interval does not contain
π∗(y), hence:

Pr(E1) ≤
∑

i<Z

Pr(π∗(y) /∈ Ii+1|π∗(y) ∈ Ii).

The probability in the right hand side is that the random cutting point used by the construction
falls between πlocal(y) and π∗(y). There are only ` possibilities, so the probability is at most 4`/|Ii|
by Claim 15. For i = Z − 1, by definition of Z we have |Ii| > `/ε. For i ≤ Z − 1, we can write

|Ii| =
|Ii|
|Ii+1|

|Ii+1

|Ii+2|
. . .
|IZ−2|
|IZ−1|

|IZ−1| ≥ (3/2)Z−i−1(`/ε).

So

Pr(E1) ≤
Z−1
∑

i=0

3`

(3/2)Z−i−1(`/ε)
≤ 12ε.

Summing yields the lemma.

Lemma 25 (Intermediate Leaves). For any set B and for a random α, we have

Eα

















∑

y:εs(y)≤|π∗(y)−πlocal(y)|≤s(y)/ε

∑

x : πlocal(x) between πlocal(y) and π∗(y)
x /∈ leaf(y)

−f
πlocal

(x, y))

















≤ εFV .

Proof. Let B = (kS) be fixed.
As in the beginning of the proof of Lemma 24, we can bound the expression on the left hand

side by the expectation (over the random choice of α) of

∑

y



















0 if s(y) = n
∑

x:πlocal(x) between πlocal(y) and π∗(y)−fπlocal(x, y) if s(y) = 1

|π∗(y)− πlocal(y)| · 11
(

ε · s(y) < |π∗(y)− πlocal(y)| < (1/ε) · s(y)
)

·
11
(

πlocal
−1

(π∗(y)) /∈ leaf(y)
)

otherwise.

4That would introduce some conditioning.
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We will again argue that for any y, the event E2 that “ε · s(y) < |π∗(y) − πlocal(y)| < (1/ε) · s(y)
and πlocal

−1
(π∗(y)) /∈ leaf(y) and 1 < s(y) < n” has low probability; but here for the first time,

the probabilistic space is over the random definition of α.
The intuition is that the variation in α forces a variation in the leaf size, making this event

unlikely.
Recall that α = 9−r, with r chosen uniformly at random in {0, 1, . . . , log3/2(1/ε

2)/ε}.
Fix a vertex y and let ` = |π∗(y)−πlocal(y)|. Go down the branch leading to y. Let S0, S1, S2, . . .

be the sequence of nodes on that branch, and let ai = FSi/|Si|2. Every time you go down from
one node Si to a child Si+1, since FSi+1 ≤ FSi and |Si+1| ≥ (1/3)|Si|, you have ai+1 ≤ 9ai. By
definition of the recursion tree, the leaf of y is the first node St along this branch where at ≥ αε2

or which has size 1. Thus at ≤ 9at−1 < 9αε2, and so, for any α′ ≥ 9α, t is an internal node (if it
has size greater than 1). Therefore a node t of size greater than 1 can be a leaf for only one value
of α = 9−r.

Consider the node S of size 1. Even if ` < 1/ε, then whenever α is such that S is the leaf of y,
by local optimality with respect to single vertex moves, y contributes ≤ 0 to the sum.

Consider the nodes S of size strictly between 1 and n, and such that ε` < |S| < `/ε: there are at
most log3/2(1/ε

2) such nodes, hence event E2 has probability at most log3/2(1/ε
2)/(log3/2(1/ε

2)/ε) =
ε.

Summing concludes the proof.

D Randomization

The running time of Algorithms 2 and 1 can be improved somewhat by replacing the deterministic
additive error algorithm with the randomized one. To use the randomized AddApprox algorithm
set η = δ/n for Algorithm 2 and η = δεb/n4 for Algorithm 1. Consider the event E0 stating that
“During execution of the algorithm, every call to algorithm AddApprox yields a result within the
stated bounds.” Each call fails with probability at η. As shown in Section E, there are at most n
(resp. n4bε) such calls, so event E0 has probability at least 1− δ. Modify the analysis by assuming
throughout that event E0 holds and do the analysis conditional on E0.

Using the randomized AddApprox algorithm introduces a complication because the proof of
Claim 5 implicitly assumes determinism. This is easily remedied by reusing the random numbers
used the previous time AddApprox was called on the same vertices.

E Running time

Both Algorithm 1 and 2 have a greedy local search phase. The preprocessing step ensures that the
edge weights are integer multiples of bε/n2, so the cost decreases by at least bε/n2 at each iteration.
Since the cost is always between n2 and zero, the total number of iterations is bounded by n4/(bε).

The runtime is dominated by the calls to the additive error algorithm. There are at most n calls
for the randomized version (Algorithm 2) and at most n4/bε for the deterministic one (Algorithm 1).
Thus the runtime is O(n3f(n, (1/ε)O(1/ε), δ/n4)) randomized and O(n6/(bε)f(n, (1/ε)O(1/ε), 0)) de-
terministic, where f(n, β, η) is the time required for the additive approximation algorithm to run
on the problem of size n with error parameter β and failure probability η. The best-known additive
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approximation run time f(n, β, η) is n2− log η2O(1/β2) randomized in [25], or n2 + nÕ(1/β2)2O(1/β2)

for deterministic (η = 0).
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