
Symmetric Datalog and Constraint Satisfaction Problems in Logspace ∗

László Egri
McGill University, Montréal, Canada

legri1@cs.mcgill.ca

Benoit Larose
Concordia University, Montréal, Canada

larose@mathstat.concordia.ca

Pascal Tesson
Laval University, Québec, Canada

pascal.tesson@ift.ulaval.ca

Abstract

We introduce symmetric Datalog, a syn-
tactic restriction of linear Datalog and show
that its expressive power is exactly that of re-
stricted symmetric monotone Krom SNP. The
deep result of Reingold [17] on the complex-
ity of undirected connectivity suffices to show
that symmetric Datalog queries can be evalu-
ated in logarithmic space. We show that for
a number of constraint languagesΓ, the com-
plement of the constraint satisfaction problem
CSP(Γ) can be expressed in symmetric Dat-
alog. In particular, we show that ifCSP(Γ)
is first-order definable andΛ is a finite sub-
set of the relational clone generated byΓ then
¬CSP(Λ) is definable in symmetric Datalog.
Over the two-element domain and under a
standard complexity-theoretic assumption, ex-
pressibility of¬CSP(Γ) in symmetric Datalog
corresponds exactly to the class of CSPs solv-
able in logarithmic space. Finally, we describe
a fairly general subclass of implicational (or
0/1/all) constraints for which the complement
of the corresponding CSP is also definable in
symmetric Datalog. Our results provide pre-
liminary evidence that symmetric Datalog may
be a unifying explanation for families of CSPs
lying in L.

∗Research supported in part by NSERC, FQRNT and
CRM.

1 Introduction

Constraint satisfaction problems (orCSPs)
provide a unifying framework to study the
complexity of various combinatorial problems
arising naturally in optimization, graph the-
ory, artificial intelligence and database theory.
Loosely speaking an instance of aCSP con-
sists of a list of variables and a set of constraints
each specified by an ordered tuple of variables
and a constraint relation over some specified
domain. The goal is then to determine whether
variables can be assigned domain-values such
that all constraints are simultaneously satisfied.
The problem is NP-complete in general and
one thus seeks to identify restrictions of the
problem for which the problem is tractable. Re-
cent efforts have been directed at classifying
the complexity ofCSP(Γ), the restriction of
the problem in which constraints are all con-
structed from some set of finitary relationsΓ
over a finite domainD.

An important conjecture of [10] states that
for each constraint languageΓ the prob-
lem CSP(Γ) is either tractable (i.e. solvable
in polynomial time) or NP-complete. This
dichotomy conjectureis a central challenge
in theoretical computer science and steady
progress towards its establishment has been
achieved in the last ten years. It has been veri-
fied for domains of size two [18] and three [3].
However, from a complexity-theoretic point
of view, such classifications are rather coarse

1

Electronic Colloquium on Computational Complexity, Report No. 24 (2007)

ISSN 1433-8092

as they do not distinguish the relative com-
plexity of CSPs that are tractable. Over the
two-element domain, a much finer classifica-
tion can be obtained: eachCSP(Γ) is either
in CO-NLOGTIME or complete underAC0-
isomorphisms for one of the classes L (logarith-
mic space), NL (non-deterministic logspace),
⊕L (parity-counting logspace), P or NP [1].

Efforts to classify the complexity ofCSP(Γ)
have been greatly facilitated by two comple-
mentary approaches. The first relates the com-
plexity ofCSP(Γ) with the algebraic properties
of the operations which preserve relations inΓ
(see e.g. [5] for a thorough introduction). This
connection has allowed the use of sophisticated
results in universal algebra [4].

A second, descriptive complexity approach
relates the complexity ofCSP(Γ) with the so-
phistication of logical frameworks required to
describe the class of instances that arenot sat-
isfiable. In particular, it has been noticed that
a number of tractable cases can be captured
by definability of ¬CSP(Γ) in the database-
inspired query language Datalog. If, further-
more,¬CSP(Γ) is definable in linear Datalog
then the corresponding problem can be solved
in NL and some evidence was given in [7] that
this condition is in fact necessary and sufficient.

We introducesymmetric Datalog, a natu-
ral syntactic restriction of linear Datalog and
prove that its expressivity is exactly that of
a specific fragment of symmetric Krom SNP
(see [11, 7]). The evaluation of symmetric
Datalog programs boils down to a reachabil-
ity problem in a polynomial-sized symmetric
graph. A breakthrough result of Reingold [17]
recently established that undirected connectiv-
ity can be solved in logarithmic space and, con-
sequently,CSP(Γ) also lies in L if¬CSP(Γ)
can be defined in symmetric Datalog.

We conjecture that expressibility of
¬CSP(Γ) in symmetric Datalog is a necessary
and sufficient condition for membership of
CSP(Γ) in L. More precisely we provide
evidence that a CSP is either expressible
in symmetric Datalog or hard for one of a
number of complexity classes all believed to

strictly contain L. This conjecture is verified
over the two element domain. We also show
that a specific subset of implicational [13]
or 0/1/all constraints [6] can be captured by
symmetric Datalog. Finally, we briefly expose
the algebraic interpretation of these results. A
more thorough discussion appears in [15].

In the next section, we review the founda-
tions of the study ofCSP and the connection
with Datalog. In section 3 we introduce sym-
metric Datalog, investigate its relation to re-
stricted symmetric Krom monotone SNP and
establish its fundamental properties. Finally,
section 4 presents examples of the expressive
power of symmetric Datalog and the resulting
consequences for the complexity ofCSP. Due
to space restrictions, some proofs are omitted
and appear in the appendix.

2 Constraint Satisfaction Problems
and Datalog

Let D be a finite domain. Aconstraint lan-
guageover D is a finite1 set of finitary rela-
tionsΓ = {R1, . . . , Rk} overD. An instance
of theconstraint satisfaction problemCSP(Γ)
is given by a list of variablesx1, . . . , xn and a
set of constraints, where eachconstraint is of
the form (xi1 , . . . , xit) ∈ Rji

with Rji
∈ Γ.

The task is to determine whether the variables
can be assigned values inD such that all con-
straints are simultaneously satisfied.

It has been noted since the seminal work
of Feder and Vardi [10] that the problem can
conveniently be recast in terms of homomor-
phisms between relational structures. Letτ

be a finite vocabulary of relational symbols
R1, . . . , Rk of arity t1, . . . , tk. A τ -structure
B consists of a setB (called theuniverseof
B) and for eachRi ∈ τ a relationRB ⊆
Bti . A homomorphism from aτ -structureA

to a τ -structureB is a functionh : A →
B mapping the universe ofA to that of B
such that for all(a1, . . . , ati) ∈ RA

i we have

1We restrict our attention to the case whereΓ is finite
although most of the ensuing definitions can be adapted
naturally to the case whereΓ is infinite.

2

(h(a1), . . . , h(ati)) ∈ R
B

i .
In its full generality, the homomorphism

problem Hom is the task of determining
whether there exists a homomorphism between
two τ structuresA andB given as input. A
constraint languageΓ = {R1, . . . , Rk} over
D can be regarded as defining aτ -structureD
with universeD and we denote this structure
as a boldfaceΓ. An instance ofCSP(Γ) simi-
larly corresponds to aτ -structure over the uni-
versex1, . . . , xn. The problemCSP(Γ) is then
equivalent to the problemHom(Γ) of deter-
mining if a givenτ -structure is homomorphic
to Γ.

2.1 Datalog and CSP

Datalog is a database inspired query-
language whose connection to the complex-
ity of constraint satisfaction problems has been
thoroughly investigated (see e.g. [10, 9, 7]). Let
τ be some finite vocabulary of relational sym-
bols. A Datalog program overτ is specified by
a finite set of rules of the form

h← b1; . . . ; bt

where h and the bi are atomic formulas
R(x1, . . . , xk). Note that the variables occur-
ring in a given rule are not assumed to be dis-
tinct. We distinguish two types of relational
predicates occurring in the program: predicates
R that occur at least once in the head of a rule
(i.e. its left-hand side) are calledintensional
database predicates(IDBs) and are not part of
τ . The other predicates which occur only in the
body of a rule (its right-hand side) are calledex-
tensional database predicatesand must all lie
in τ .

Let Q be a Datalog program overτ and let
τ ′ denote the union ofτ with the IDBs occur-
ring in Q. The programQ defines a function
ΦQ from the set ofτ structures to the set of
τ ′ structures. Intuitively,ΦQ(A) is the small-
est τ ′ structure over the same universe asA

with the property that for each ruleP (x) ←
P1(y1); . . . ;Pk(yk) of Q, and any interpreta-
tion of the variables the implication defined by

the rule is valid.

Formally, for aτ -structureA, let AQ[0] de-
note theτ ′ structure over the same universe
and such thatRA

Q[0]
= RA if R ∈ τ and

RA
Q[0]

= ∅ if R ∈ τ ′ − τ . We now induc-
tively defineAQ[n+1] as follows. First ifR ∈ τ
thenRAQ[n+1]

= RAQ[n]
= RA.

Suppose now thatR ∈ τ ′ − τ is an IDB
of arity r. Let h ← b1; . . . ; bt be a Data-
log rule using variablesx1, . . . , xk. An inter-
pretation of the rule over the domainA is a
function f : {x1, . . . , xk} → A. We then
defineRAQ[n+1]

as the union ofRAQ[n]
with

all r-tuples (a1, . . . , ar) such that for some
rule with headR(xi1 , . . . , xir) and some in-
terpretationf such thatf(xij) = aj we have
for all T (xj1, . . . , xjq) in the body of the rule

(f(xj1), . . . , f(xjq)) ∈ T
AQ[n]

.

By definition, RA
Q[n]
⊆ RA

Q[n+1]
and so

the iterative process above is monotone and
has a minimal fixed point which we denote as
RAQ

. Accordingly, we defineΦQ(A) as the
τ ′-structure given by theRAQ

.

As defined above, the output of a Datalog
program is aτ ′-structure but we want to view
a Datalog programQ primarily as a way to de-
fine a class ofτ -structures. For this purpose,
we choose inQ an IDBG known as thegoal
predicateand say that theτ -structureA is ac-
cepted byQ if GAQ

is non-empty. A classC is
definablein Datalog if there exists a program
Q such thatA ∈ C iff Q acceptsA. Note
that any suchC is homomorphism closed, i.e. if
h : A→ B is a homomorphism ofτ -structures
andA ∈ C thenB ∈ C.

3 Symmetric Datalog

A rule of a Datalog programQ is said to be
linear if its body contains at most one IDB and
is said to benon-recursiveif its body contains
only EDBs. A linear but recursive rule is of the
form

I1(x)← I2(y);E1(z1); . . . ;Ek(zk)

3

whereI1, I2 are IDBs and theEj are EDBs.
Each such rule has asymmetric rule

I2(y)← I1(x);E1(z1); . . . ;Ek(zk).

A Datalog programQ is said to be linear if all
its rules are linear. We further say thatQ is a
symmetric Datalog programif the symmetric
of any non-recursive rule ofQ is also a rule of
Q.

Let us consider for example the constraint
satisfaction problem two-coloring. In this case,
the domain is boolean andΓ contains a single
binary relation6=. Equivalently, an undirected
graph is two-colorable if it is homomorphic to
an undirected edge. Because a graph is two col-
orable iff it contains no undirected cycle of odd
length, we can define¬CSP(Γ) using the fol-
lowing symmetric Datalog program:

O(x, y) ← E(x, y)

O(x, y) ← O(x,w);E(w, z);E(z, y)

O(x,w) ← O(x, y);E(w, z);E(z, y)

G ← O(x, x)

HereE is the binary EDB representing the
adjacency relation in the input graph,O is a bi-
nary IDB whose intended meaning is ”there ex-
ists an odd length path fromx to y andG is the
0-ary goal predicate. Note that the two middle
rules form a symmetric pair. In the above de-
scription, we have not included the symmetric
of the last rule. In fact, the fairly counterintu-
itive ruleO(x, x)← G can be added to the pro-
gram without changing the class of structures
accepted by the program since the rule only be-
comes relevant if an odd cycle has already been
detected in the graph.

Theorem 1 A symmetric Datalog queryQ can
be evaluated in logarithmic space. In other
words, there exists a logspace transducer which
on input A produces some representation of
ΦQ(A).

Proof: Suppose thatI1, . . . , Is are the IDBs in
Q. Let A be the inputτ -structure and letn
denote the size of its universeA. We define

the execution graphGA as follows: for each
Ij of arity k, we introduce for each of thenk

k-tuples ofAk a vertex labeledIj(a1, . . . , ak).
Furthermore, we add an extra vertex labeled
S. Edges are now determined by the EDBs in
A and the rules ofQ. We add an edge from
Ij(a1, . . . , ak) to Ij′(b1, . . . , b`) if Q contains
a rule of the form2

Ij′(x)← Ij(y);Es1(z1); . . . ;Esr(zr)

such that there exists an interpretationf of this
rule overA such thatf(x) = (b1, . . . , b`),
f(y) = (a1, . . . , ak) and for eachf(zt) ∈ E

A
st

.
Informally, such an edge represents the fact that
if Q places the tuple(a1, . . . , ak) in Ij then it
will also add the tuple(b1, . . . , b`) to Ij′. We
further add a bi-directional edge between our
special vertexS andIj(a1, . . . , ak) if there ex-
ists a non-recursive rule

Ij(x)← Es1(z1); . . . ;Esr(zr)

and an interpretationf such thatf(x) =
(a1, . . . , ak) and f(zt) ∈ EA

st
for each EDB

occurring in the body. SinceQ is symmetric,
the graphGA is symmetric and can thus be re-
garded as an undirected graph. Moreover, the
graph can clearly be constructed in logarith-
mic space and we have(a1, . . . , ak) ∈ I

AQ

j iff
the vertexIj(a1, . . . , ak) is reachable fromS in
GA. Since undirected connectivity can be com-
puted in logarithmic space [17], a representa-
tion of ΦQ(A) can be produced in logarithmic
space.

Corollary 2 If ¬CSP(Γ) is definable in sym-
metric Datalog thenCSP(Γ) ∈ L.

Let τ be a vocabulary consisting of relational
symbols.SNP is the class of sentences of the
form

∃S1, . . . , Sl∀v1, . . . , vmϕ(v1, . . . , vm)

where S1, . . . , Sl are second-order variables
and ϕ is a quantifier-free first-order formula

2Note again that the variables occurring inx, y, z are
not necessarily distinct.

4

over the vocabularyτ ∪{S1, . . . , Sl} with vari-
ables amongv1, . . . , vm. We assume thatϕ
is in CNF. In monotoneSNP , every occur-
rence of a relation symbol fromτ is negated.
In Krom SNP , every clause of the quantifier-
free first-order partϕ has at most two second
order variables. Inrestricted KromSNP , ev-
ery clause of the quantifier-free first-order part
ϕ has at most one positive occurrence of a
second-order variable and at most one negative
occurrence of a second-order variable.Sym-
metric restricted Krom monotoneSNP is the
subset of restricted Krom monotoneSNP for-
mulae that contain with every clause of the
formψ∨Si∨¬Sj also the clauseψ∨¬Si∨Sj

(whereψ contains no second-order variables).
We denote as symmetric Datalog(¬) the

extension of symmetric Datalog programs in
which the negation of EDB predicates is al-
lowed. In the appendix, we show how Theorem
5 of [7] can be adapted to obtain the following.

Theorem 3 Let C be a collection of τ -
structures. Then 1 is equivalent to 2, and 3 is
equivalent to 4.

1. C is definable in symmetric Datalog;

2. ¬C is definable in symmetric restricted
Krom monotoneSNP ;

3. C is definable in symmetric Datalog(¬);

4. ¬C is definable in symmetric restricted
Krom SNP .

It can be shown that the expressive power of
symmetric Datalog, or equivalently symmetric
restricted Krom monotoneSNP is quite lim-
ited. In particular, there exists no symmetric
Datalog program that computes the transitive
closure of a binary relation [8].

A finite successor structureis a structure
whose domain is{0, 1, . . . , n − 1} (for some
n ∈ N) and whose vocabulary contains the
two constant symbolsmin andmax and the bi-
nary predicateS whose interpretations are the
constants0, n − 1 and the successor relation

S = {〈x, x+1〉|x < n− 1}. O denotes the set
of all finite successor structures.

A logic capturesthe complexity classC if
for every problemP ⊆ O, P is in C if and
only if there exists a formulaψ in the logic such
thatP = {R ∈ O|R |= ψ}. Using the results
of [11], one can show:

Theorem 4 Over the set of finite successor
structures, symmetric Datalog(¬) capturesL.

We give a proof in the appendix. Similarly,
Datalog(¬) and linear Datalog(¬) capture P
and NL respectively (see [16, 7, 11] and com-
ments following the proof of Theorem 4).

4 Applications

We consider in this section a number of
specific classes of constraint languagesΓ for
which ¬CSP(Γ) is expressible in symmetric
Datalog. This includes, to the best of our
knowledge, all families ofCSP known to lie in
logspace, thus providing preliminary evidence
that symmetric Datalog is a unifying explana-
tion for logspace computableCSP.

For a constraint languageΓ, we denote as
〈Γ〉 the relational clone generated byΓ (also
known as theprimitive positive closure ofΓ)
i.e. the set of relations which can be defined
by a primitive positive formula overΓ and the
equality relation. For any finiteΛ ⊆ 〈Γ〉
there exists a polynomial time reduction from
CSP(Λ) to CSP(Γ) and this fairly straightfor-
ward observation is crucial when using alge-
braic tools to study the complexity ofCSP [5].

In some particularly simple cases¬CSP(Γ)
is in fact definable by a Datalog program with-
out any recursive rule. These FO-definable
CSP have been completely characterized [2,
14]. All such problems can be solved inCO-
NLOGTIME, a class provably strictly contained
in logarithmic space (see [1] for a thorough dis-
cussion). It has been noted that over any non-
trivial domain there exist constraint languages
Γ,Λ such that〈Γ〉 = 〈Λ〉 but CSP(Γ) is FO-
definable whileCSP(Λ) is not. Our first result

5

however guarantees that¬CSP(Λ) is still de-
finable in symmetric Datalog.

Theorem 5 If Γ is a constraint language such
that ¬CSP(Γ) is definable in symmetric Dat-
alog and Λ is a finite subset of〈Γ〉 then
¬CSP(Λ) is definable in symmetric Datalog.
In particular, if CSP(Γ) is first-order definable
then¬CSP(Λ) is definable in symmetric Dat-
alog, and furthermore,CSP(Λ) is either first-
order definable itself or L-complete.

Proof: The theorem relies on the work of two
of the authors. SinceΛ is a finite subset of
〈Γ〉 then it can be obtained from the setΓ by
a finite sequence of applications of six basic
constructions, five of which are shown in [15]
to preserve expressibility in symmetric Data-
log. It remains to show that if¬CSP(Γ) is
expressible in symmetric Datalog then so is
¬CSP(Γ ∪ {=}). We present this argument as
Lemma 11 in the appendix.

If CSP(Γ) is first-order definable then
¬CSP(Γ) is certainly expressible in symmet-
ric Datalog, hence so is¬CSP(Λ). The second
part also follows from a result of [15]: if a CSP
is not FO expressible then it is Logspace-hard
(under FO reductions).

Dalmau showed in [7] that constraint satis-
faction problems defined byimplicational con-
straints [13] (known in [6] as 0/1/all con-
straints) are definable in linear Datalog. A bi-
nary relationR ⊆ D2 is said to be implica-
tional if it is of one of three forms:

1. R = B × C for someB,C ⊆ D;

2. R = {(b, f(b)) : b ∈ B} whereB ⊆ D

andf is an injective function;

3. R = {b}×C ∪B×{c} for someB,C ⊆
D with b ∈ B andc ∈ C.

Note that the relation≤ over the two-
element domain is implicational since it is
{0} × {0, 1} ∪ {0, 1} × {1}. Furthermore
{0}×{1} is also implicational and it is easy to
see thatCSP({≤, {0}×{1}}) is NL-complete

and in fact¬CSP({≤, {0} × {1}}) is not ex-
pressible in symmetric Datalog [8]. The dif-
ficulty in fact stems from implicational con-
straints of the third form and we use the fol-
lowing lemma to show that for anyΓ consisting
solely of implicational constraints of the first
two forms,¬CSP(Γ) is definable in symmetric
Datalog.

Theorem 6 Let Γ be a constraint language
over the domainD such that for somed ∈ D,
every relationR in Γ is either

1. a unary relationS ⊆ D;

2. a binary relationRπ such thatRπ =
{(a, π(a)) : a ∈ D} for some permuta-
tion π with π(d) = d;

3. ak-ary relationRk with k ≥ 2 andRk =
{(a1, . . . , ak) : ∃i ai = d}.

Then¬CSP(Γ) is definable in symmetric Dat-
alog. The result also holds if the permutations
have no fixed pointd but Γ does not contain
any relation of the third form above.

Proof: Let us assume that the permutations
have a fixed pointd (see comment following
the proof) and thatΓ contains relations of the
form Rk = {(a1, . . . , ak) : ∃i ai = d}.
Before describing the symmetric Datalog pro-
gram, we make a few basic observations and
recast the problem in a more graph-theoretic
fashion. First note that ifj ≤ k, then the rela-
tionRj{(a1, . . . , aj) : ∃i ai = d} is simply the
set of tuples such that(a1, . . . , aj , . . . , aj) ∈
Rk. By Theorem 5, we can thus assume with-
out loss of generality thatΓ contains a single
relationRk. Next, we can also assume thatΓ
contains all unary relations overD, i.e. for any
S ⊆ D, Γ contains the unary relationUS = S.
If A is an inputτ -structure andφ : A → Γ

is a homomorphism, then for eachx ∈ A we
must haveφ(x) ∈

⋂
x∈UA

S
S. For convenience,

we denote byUx this intersection which corre-
sponds to the subset of values forx in D which
respect the unary constraints imposed onx.

6

For aτ -structureA, we construct an edge-
labeled and vertex-labeled directed graphG =
(V,E) as follows. Vertices are the elements
of the universe ofA. For anyx, y such that
(x, y) ∈ Rπ we add an edge(x, y) labeled
with π and an edge(y, x) labeled withπ−1. Fi-
nally we color the vertexx with Ux. Any path
p between verticesx andy can be thought of
as labeled by the permutationπp which is the
product of the labels of individual edges on that
path.

Let x be a vertex of the graph withUx =
{a1, . . . , at}. We say that a set oft paths
p1, . . . , pt from x to verticesy1, . . . , yt in G

is permutation-blocking for the vertexx if for
each1 ≤ i ≤ t we have eitherπpi

(ai) 6∈ Uyi
or

x = yi andπpi
(ai) 6= ai. By design, ifG con-

tains a permutation-blocking pattern then there
can be no homomorphismφ from A to Γ. In-
deed, for any suchφ, we requireφ(x) ∈ Ux.
However, ifφ(x) = ai then we must also have
φ(yi) = πpi

(ai) 6∈ Uyi
.

Similarly, for any (x1, . . . , xk) ∈ RA

k we
say that thek-tuple(y1, . . . , yk) is ak-blocking
pattern inG if for each1 ≤ i ≤ k there is a
path fromxi to yi andd 6∈ Uyi

. Again, if ak-
blocking pattern exists for some(x1, . . . , xk) ∈
RA

k , then there is no homomorphism fromA to
Γ. Since none of theyi can be mapped tod and
d is a fixed point of all permutationsπ, it fol-
lows that none of thexi can be mapped tod and
so(φ(x1), . . . , φ(xk)) 6∈ Rk.

We claim thatA ∈ CSP(Γ) if and only
if G contains no permutation-blocking ork-
blocking patterns. Note that we have already
established the left to right implication. Let us
suppose thatG contains no blocking patterns
and explicitly construct a homomorphism from
A to Γ. Consider an arbitrary elementx of A.
If d ∈ Uy for all y in the connected component
(in G) of x, then we setφ(x) = d. Otherwise,
sinceG contains no permutation-blocking pat-
tern, there exists somea ∈ Ux such that for
each pathp from x to y either x = y and
πp(a) = a or x 6= y andπp(a) ∈ Uy. We
set φ(x) = a and φ(y) = πp(a) for each
vertex y reachable fromx by a pathp. Note

that this assignment is well defined: if there
are two (or more) distinct pathsp, p′ from x

to a giveny then pp′−1 is a path fromx to
x and soπpp′−1(a) = a which means that
πp(a) = πp′(a).

This stage definesφ(y) for eachy in the con-
nected component ofx. We can repeat the ar-
gument to similarly fix the values ofφ in each
other connected component ofG. We need to
prove thatφ is indeed a homomorphism. By
construction, we haveφ(x) ∈ Ux for eachx
and(φ(x), φ(y)) ∈ Rπ for any (x, y) ∈ RA

π .
It remains to show that if(x1, . . . , xk) ∈ RA

k

then(φ(x1), . . . , φ(xk)) ∈ Rk which, by def-
inition of Rk is equivalent to the requirement
thatφ(xj) = d for somej. SinceG contains no
k-blocking pattern, there exists somexj such
that ally in the connected component ofxj sat-
isfy d ∈ Uy and soφ(xj) = d.

Our symmetric Datalog program contains
rules of one of eight types summarized in
Figure 1. The program is a simple reflec-
tion of the above graph-theoretic construction.
For each|D|-tuple (π1, . . . , π|D|) of permu-
tations ofD, we create a|D| + 1-ary IDB
Iπ1,...,π|D|

(x, y1, . . . , y|D|+1) which is intended
to represent the fact for each1 ≤ j ≤ |D|
there is a pathp labeled withπj from x to
yj. We include non-recursive initialization
rules stating that ifA includes for eachj
the constraint(x, yj) ∈ Rπj

then the tuple
(x, y1, . . . , y|D|+1) lies in the IDBIπ1,...,π|D|

.
We next include recursive rules for these

IDBs as follows. Consider two IDBs
Iπ1,...,ρπj ,...,π|D|

and Iπ1,...,πj ,...π|D|
whose in-

dex differs only in thejth permutation. If
x, y1, . . . , y|D| are such that there exist for each
i anx yi path labeled byπi and if further
A contains a constraint(yj , z) ∈ Rρ then there
is a pathx z labeledρπj. But symmetri-
cally, if there is ax z labeled byρπj, we
have a pathx yj labeled byρ−1ρπj = πj.
This observation justifies the rules of the form
(2) and (3) in our program and it is clear that
these IDBs behave as intended.

We use an IDBJ(x1, . . . , xk, y1, . . . , yk) of
arity 2k to represent the fact that for eachi

7

(1) Iπ1,...,π|D|
(x, y1, . . . , y|D|) ← Rπ1(x, y1); . . . ;Rπ|D|

(x, y|D|)

(2) Iπ1,...,ρπj ,...,π|D|
(x, y1, . . . , z, . . . , y|D|) ← Rρ(yj , z); Iπ1,...,πj,...π|D|

(x, y1, . . . , yj, . . . , y|D|)

(3) Iπ1,...,πj ,...π|D|
(x, y1, . . . , yj , . . . , y|D|) ← Rρ(yj , z); Iπ1,...,ρπj,...,π|D|

(x, y1, . . . , z, . . . , y|D|)

(4) J(x1, . . . , xk, y1, . . . , yk) ← Rπ1(x1, y1); . . . ;Rπk
(xk, yk)

(5) J(x1, . . . , xk, y1, . . . , z, . . . , yk) ← J(x1, . . . , xk, y1, . . . , yj, . . . , yk);Rπ(yj , z)
(6) J(x1, . . . , xk, y1, . . . , yj , . . . , yk) ← J(x1, . . . , xk, y1, . . . , z, . . . , yk);Rπ(yj , z)
(7) G ← Iπ1,...π|D|

(x, y1, . . . , yk);Ux;Uy1 ; . . . ;Uy|D|

(8) G ← J(x1, . . . , xk, y1, . . . yk);
Rk(x1, . . . , xk);U1(y1); . . . ;Uk(yk)

Figure 1. Types of rules for the program of Theorem 6

there is a path (regardless of labels) fromxi to
yi. Clearly, we can initialize this IDB with the
non-recursive rule (4). Note that we have one
such rule for any choice ofRπi

since we do not
care about the actual label of the paths. Sim-
ilarly, we have recursive rules of the form (5)
and (6) for each1 ≤ j ≤ k and everyRπ.

Finally our program contains a unary goal
predicateG which is hit whenever the pro-
gram has detected a permutation-blocking
or k-blocking pattern. There exists ak-
blocking pattern iff there exists a tuple
(x1, . . . , xk, y1, . . . , yk) in J and unary re-
lations U1, . . . , Uk such thatd 6∈ Uj and
(x1, . . . xk) ∈ RA

k (rules of type (8)). Note
that the program contains one such rule for any
choice of the unary relationsU1, . . . , Uk that do
not containd.

Permutation blocking patterns are identified
using rules of type (7). We consider a set of
paths from somex to somey1, . . . , yk with la-
belsπ1, . . . , π|D|. Hence the body of the rule
containsIπ1,...,π|D|

(x, y1, . . . , yk). The fact that
these form a permutation-blocking pattern now
depends solely on the set of unary relations
that bound the variablesx, y1, . . . , y|D|. Our
program creates a separate rule of type (7)
to handle each combination of unary relations
imposed onx, y1, . . . , y|D| which result in a
blocking pattern. Note that there is a fixed
bound on the number of ways in which these
|D| + 1 variables can be constrained by unary
relations. For succintness, we represented these
rules in Figure 1 by using the symbolsUx,
Uy1 , etc. to indicate that the body contains a

conjunction of unary EDBs constraining these
variables in a way that creates a blocking pat-
tern.

We assumed in our proof thatd was a fixed
point of the permutations. However, it is clear
from the argument that this requirement is only
needed in the presence of theRk relations. If
Γ consists solely of permutations and unary re-
lations,¬CSP(Γ) can be defined in symmetric
Datalog. However, ifΓ contains a relationRk

but contains a permutation of whichd is not a
fixed point expressibility in symmetric Datalog
cannot be guaranteed. Indeed, over the two-
element domain, the relationR2 is the binary
OR relation and the non-trivial permutationπ is
disequality. The problemCSP(Or2, 6=) is NL-
hard and¬CSP(Or2, 6=) does not lie in sym-
metric Datalog [8].

This theorem immediately provides the fol-
lowing result for implicational constraints.

Corollary 7 Let Γ be a finite set of implica-
tional constraints of the form 1 and 2. Then
¬CSP(Γ) is expressible in symmetric Datalog.

Proof: Obviously, a binary relation of the form
B × C can be expressed as the conjunction of
the unary relationsUB andUC . Similarly, if
B ⊆ D andf : B → D is injective thenf
can be extended to a permutationπ of D such
thatπ|B = f . The implicational relationR =
{(b, f(b)) : b ∈ B} can then be expressed as
a conjunction of the relationRπ and the unary
relationB. Thus,Γ ⊆ 〈Λ〉 for someΛ of the

8

form given in Theorem 6 and the result follows
by Theorem 5.

Over the two-element domain, there is a very
tight correspondence betweenCSP in logspace
and symmetric Datalog.

Theorem 8 Let Γ be a constraint language
over the two-element domain. Then¬CSP(Γ)
is definable in symmetric Datalog orCSP(Γ) is
hard for NL or⊕L under logspace reductions.

Proof: By [1], we know thatCSP(Γ) is hard
for one of NL or ⊕L unlessΓ is contained
in the relational clone generated by the unary
relations, the equality relation and the dise-
quality relation. By Theorem 6, we have
¬CSP({0}, {1},=, 6=}) is definable in sym-
metric Datalog and this expressibility results
extends to allΓ in the relational clone by The-
orem 5.

If one accepts the hypothesis thatNL 6= L

and⊕L 6= L, we thus have, over the two-
element domain, thatCSP(Γ) is in logarithmic
space iff¬CSP(Γ) is in symmetric Datalog.

We conclude with a brief discussion on the
relationship between our results and the alge-
braic approach toCSP mentioned earlier.

To each set of relationsΓ on a setA is
associated an algebraA(Γ) with universeA
whose basic operations are the operations that
preserve all relations inΓ, i.e. the functions
f : Ak → A such that for anyt-ary R ∈ Γ,
and anyk t-tuplesx1, . . . , xk ∈ R it holds that
f(x1, . . . , xk) ∈ R. It is known that whether
the problemCSP (Γ) is polynomially solvable
or NP-hard is determined by the equational
properties of this algebra (see e.g. [5]). In [15],
this approach is refined, and general hardness
results for CSP’s are presented for various com-
plexity classes such as L, NL, P and ModpL3

and some necessary algebraic conditions are
described for expressibility in various restric-
tions of Datalog. In particular, if¬CSP (Γ)

3ModpL is the class of problems which are logspace
reducible to solving systems of linear equations overZp.

is expressible in symmetric Datalog, then the
minimal non-trivial factors of the associated al-
gebra must be of a very specific form (in uni-
versal algebra lingo, this algebra must generate
a variety admitting only the Boolean type). As
a special case of Theorem 6, we obtain that all
CSPs whose associated algebra is one of these
so-called strictly simple algebras have their
complement expressible in symmetric Datalog.

Theorem 9 Let Γ be a finite set of relations
on the setA such that the algebraA(Γ) is an
idempotent, strictly simple algebra of Boolean
type. Then¬CSP (Γ) is expressible in symmet-
ric Datalog.

Proof: We invoke a classification of idempo-
tent, strictly simple algebras of Boolean type
(see Theorem 6.1 of [20]) to get a precise
description of the algebraA(Γ): either it is
quasiprimal, and hence it admits the discrim-
inatort as a basic operation, where

t(x, y, z) =

{
z if x = y,
x else,

or there exists somed ∈ A, andG a group
of permutations ofA such thatd is the unique
fixed point of every non-identity element inG,
and such that the set of basic operations of
A(Γ) is equal toFk for some2 ≤ k ≤ ω,
whereFk consists of all idempotent operations
that preserve the relations inG◦ = {(b, f(b)) :
π ∈ G} and the relationsRk defined in the
statement of Theorem 6.Fω in the intersection
of all theFk.

Accordingly we split the proof in two cases:
Case 1. Suppose thatA(Γ) is quasiprimal,

and thust preserves every relation inΓ. It fol-
lows from standard results in universal algebra
that since every relation inΓ is invariant un-
der the discriminatort, each is determined by
its projections on at most two factors. In other
words, we obtain thatΓ ⊆ 〈Γ′〉 whereΓ′ con-
sists of all projections on at most two factors of
all the relations inΓ. By Theorem 5, it now suf-
fices to prove that¬CSP (Γ′) is in symmetric
Datalog. By Theorem 4.2 of [19], every binary

9

relation invariant under the discriminator is ei-
ther a product of two unary relations or is the
form π◦ = {(x, π(x) : x ∈ Bπ} whereBπ

is some non-empty subset ofA andπ is some
injective map fromBπ intoA. This case is pre-
cisely covered by Corollary 7.

Case 2. Suppose now that the set of basic
operations ofA(Γ) is Fk. For anyk we have
Γ ⊆ 〈{G◦, R2, . . . , Rj , . . . }〉; however, since
Γ is finite and since each relation in it is pro-
duced from finitely many of theRj, it follows
that there exists some finitèsuch thatΓ ⊆
〈G◦R`〉 and by Theorem 6,¬CSP(G◦, R`) is
expressible in symmetric Datalog.

In light of this result and Theorem 8, it is
tempting to conjecture an analog of Theorem 8
for non-Boolean domains. By results in [15, 8],
it remains to show that if the variety gener-
ated byA(Γ) admits only the Boolean type then
¬CSP(Γ) is definable in symmetric Datalog.

Acknowledgements

We wish to thank Albert Atserias, Victor
Dalmau and Heribert Vollmer for useful discus-
sions. Some of the work presented here was
developed during the Dagstuhl Seminar on the
Complexity of Constraints.

References

[1] E. Allender, M. Bauland, N. Immerman,
H. Schnoor, and H. Vollmer. The complex-
ity of satisfiability problems: Refining Schae-
fer’s theorem. InProc. 30th Math. Found. of
Comp. Sci. (MFCS’05), pages 71–82, 2005.

[2] A. Atserias. On digraph coloring problems
and treewidth duality. InProc. 21st Conf. on
Logic in Comp. Sci. (LICS’05), pages 106–
115, 2005.

[3] A. Bulatov. A dichotomy theorem for con-
straints on a three-element set. InProc. of
43rd Foundations of Comp. Sci. (FOCS’02),
pages 649–658, 2002.

[4] A. Bulatov. Tractable conservative constraint
satisfaction problems. In18th IEEE Symp. on
Logic in Comp. Sci. (LICS 2003), pages 321–
331, 2003.

[5] D. Cohen and P. G. Jeavons.The Complexity
of Constraint Languages, chapter 8. Elsevier,
2006.

[6] M. Cooper, D. Jeavons, and P. Jeavons. Char-
acterizing tractable constraints.Artificial In-
telligence, 65:347–361, 1994.

[7] V. Dalmau. Linear Datalog and bounded path
duality of relational structures.Logical Meth-
ods in Computer Science, 1(1), 2005.

[8] V. Dalmau, L. Egri, B. Larose, and P. Tes-
son. On the limits of expressivity of linear
and symmetric Datalog. Document in prepa-
ration, 2007.

[9] V. Dalmau, P. G. Kolaitis, and M. Y. Vardi.
Constraint satisfaction, bounded treewidth,
and finite-variable logics. InPrinciples
and Practice of Constraint Programming
(CP’02), pages 310–326, 2002.

[10] T. Feder and M. Y. Vardi. The computational
structure of monotone monadic SNP and con-
straint satisfaction: A study through Datalog
and group theory. SIAM J. on Computing,
28(1):57–104, 1999.

[11] E. Grädel. Capturing complexity classes by
fragments of second-order logic.Theor. Com-
put. Sci., 101(1):35–57, 1992.

[12] N. Immerman.Descriptive Complexity. Grad-
uate Texts in Computer Science. Springer,
1999.

[13] L. Kirousis. Fast parallel constraint satis-
faction. Artificial Intelligence, 64:147–160,
1993.

[14] B. Larose, C. Loten, and C. Tardif. A charac-
terization of first-order constraint satisfaction
problems. InProc. 21st Symp. on Logic in
Comp. Sci. (LICS-06), pages 201–210, 2006.

[15] B. Larose and P. Tesson. Universal algebra
and hardness results for constraint satisfaction
problems. Submitted, 2007.

[16] L. Libkin. Elements of Finite Model Theory.
Springer Verlag, 2004.

[17] O. Reingold. Undirected st-connectivity in
log-space. InProc. 37th ACM Symp. on
Theory of Computing (STOC’05), pages 376–
385, 2005.

[18] T. J. Schaefer. The complexity of satisfiability
problems. InProc. 10th ACM STOC, pages
216–226, 1978.

[19] A. Szendrei. Clones in Universal Algebra.
Presses de l’Université de Montréal, 1986.

[20] A. Szendrei.A survey on strictly simple alge-
bras and minimal varieties, volume 19 ofRe-
search and Exposition in Mathematics, pages
209–239. Heldermann Verlag, Berlin, 1992.

10

Appendix

This appendix includes the proofs of Theo-
rems 3 and 4 as well as a lemma required in our
proof of Theorem 5.

Theorem 3 Let C be a collection of τ -
structures. Then 1 is equivalent to 2, and 3 is
equivalent to 4.

1. C is definable in symmetric Datalog;

2. ¬C is definable in symmetric restricted
Krom monotoneSNP ;

3. C is definable in symmetric Datalog(¬);

4. ¬C is definable in symmetric restricted
Krom SNP .

We use the following lemma.

Lemma 10 Let Q be a Datalog(¬) program
overτ with IDBsI1, . . . , Im. Let

ψ(I1, . . . , Im, x1, . . . , xn) =
∧

h←b1;...;bq∈Q

h← (b1 ∧ . . . ∧ bq).

LetA be aτ -structure such that there exist re-
lationsR1, . . . , Rm such that

A, R1, . . . , Rm |=

∀x1, . . . , xnψ(I1, . . . , Im, x1, . . . , xn).

ThenIA
Q

i (t) → Ri(t) for eachi, 1 ≤ i ≤ m

and eacht ∈ Ar wherer is the arity ofIi.

Notation: For convenience, we write
IA

Q[j]

i → Ri to denote that for each tuple

t ∈ Ar wherer is the arity ofIi, IA
Q[j]

i (t) →

Ri(t). We writeIA
Q[j]
→ R to denote that for

eachi, 1 ≤ i ≤ m and for each tuplet ∈ Ar

wherer is the arity ofIi, IA
Q[j]

i (t)→ Ri(t).

Proof: Consider the sequence
AQ[0],AQ[1], . . . ,AQ and for the sake of
contradiction assume that for somei and for

some tuplet′ ∈ Ar′ , IA
Q

i (t′) is true butRi(t
′)

is false. Then there exists a smallestj, an
indexk, and a tuplet ∈ Ar such thatIA

Q[j]

k (t)
is true butRk(t) is false.

Let Ik(xk1 , . . . , xkr
) ← b1; . . . ; bq be the

rule which addedt to IA
Q[j]

k using the in-
terpretation f : x1, . . . , xn → A. No-
tice that t = 〈f(xk1), . . . , f(xkr

)〉. By the

choice of j, IA
Q[j−1]

→ R. Therefore
A, R1, . . . , Rm, f(x1), . . . , f(xn) |= b1∧. . .∧
bq andb1∧ . . .∧bq → Rk(f(xk1), . . . , f(xkr

))
in ψ. This implies thatRk(t) is true which is a
contradiction.

Proof:[Proof of Theorem 3] We prove the
equivalence of 1 and 2. The equivalence of 3
and 4 is an obvious modification of the proof.

1→ 2 : LetQ be a symmetric Datalog pro-
gram with IDB predicatesI1, . . . , Im one of
which is the goal predicateIg. Letψ be a CNF
formula defined as:

ψ(I1, . . . , Im, x1, . . . , xn) =

¬Ig ∧
∧

h←b1;...;bq∈Q

h← (b1 ∧ . . . ∧ bq) ≡

¬Ig ∧
∧

h←b1;...;bq∈Q

h ∨ ¬b1 ∨ . . . ∨ ¬bq.

Let φ be the following symmetric restricted
Krom monotoneSNP sentence

φ = ∃R1, . . . , Rm∀x1, . . . , xn

ψ(I1, . . . , Im, x1, . . . , xn).

We show that φ is satisfied exactly
by those structures that are rejected
by Q. Assume that Q rejects A.
Then clearly, A, IA

Q

1 , . . . , IA
Q

m |=
∀x1, . . . , xnψ(I1, . . . , Im) soA |= φ.

Conversely, assume thatA is a structure
such thatA |= φ. Then there exist rela-
tionsR1, . . . , Rm such thatA, R1, . . . , Rm |=
∀x1, . . . , xnψ(I1, . . . , Im, x1, . . . , xn). By
Lemma 10,IA

Q

→ R and in particularIA
Q

g →

Rg. Therefore becauseRg is falseIA
Q

g is also
false, i.e.Q rejectsA.

11

2→ 1 : Let φ =
∃I1, . . . , Im∀x1, . . . xnψ(I1, . . . , Im, x1, . . . , xn)
be an arbitrary sentence in symmetric restricted
Krom monotoneSNP . We rewriteφ in an
equivalent ”implicational” form which we call
φ′ and the modifiedψ becomesψ′. Parallel
to this, we construct a symmetric Datalog
programQ as follows:

1. Add a new second order variableIm+1 to
the existential quantifier block ofφ and a
new clause toψ, (Im+1 = False). The
IDBs of Q areI1, . . . , Im+1 andIm+1 is
the goal predicate. LetC be a clause ofψ
(but not the newly added clause);

2. If C = h∨b1∨ . . .∨bq whereh, b1, . . . , bq
are literals andC contains a non-negated
second order variable which we denoted
by h then rewrite theC ash ← (¬b1 ∧
. . .∧¬bq). Add the ruleh← ¬b1; . . . ;¬bq
toQ in which the IDBs are the second or-
der variables ofC;

3. If C = b1 ∨ . . . ∨ bq whereC does not
contain a non-negated second order vari-
able then rewriteC as Im+1 ← (¬b1 ∧
. . . ∧ ¬bq). Add Im+1 ← ¬b1; . . . ;¬bq to
Q.

Observe thatQ is a symmetric. We show
that Q accepts exactly the same set of struc-
tures which falsifyφ′. Assume thatQ re-
jects A. Then clearly,A, IA

Q

1 , . . . , IA
Q

m+1 |=
∀x1, . . . xnψ

′(I1, . . . Im, x1, . . . , xn), soA |=
φ′.

Conversely, assume thatA is a structure
such thatA |= φ′. Then there exist relations
R1, . . . , Rm+1 such thatA, R1, . . . , Rm+1 |=
∀x1, . . . , xnψ

′(I1, . . . , Im+1, x1, . . . , xn). By
Lemma 10,IA

Q

i → Ri, 1 ≤ i ≤ m+1. In par-
ticular IA

Q

m+1 → Rm+1 whereRm+1 is forced

to be false. ThereforeIA
Q

m+1 is false, i.e.Q re-
jectsA.

Theorem 4 Over the set of finite successor
structures symmetric Datalog(¬) capturesL.

Proof: It follows from [12] and [17] that
over the set of finite successor structures
[STCx̄,ȳψ(x̄, ȳ)](min,max) capturesL. Here
ψ is a quantifier-free first-order formula and
[STCx̄,ȳψ(x̄, ȳ)] denotes the reflexive, sym-
metric and transitive closure of the binary re-
lation defined byψ. Now we use an idea from
Theorem 6.4 in [11].

If P is a problem inL then the com-
plement ofP can be defined by a formula
φ = ¬[STCx̄,ȳψ(x̄, ȳ)](min,max) whereψ
is quantifier-free. Let∨iψi be the disjunctive
normal form ofψ and build the formula:

∃R∀x̄, ȳ, z̄R(x̄, x̄)∧
∧

i

(ψi(ȳ, z̄)→ (R(x̄, ȳ)↔ R(x̄, z̄)))∧

¬R(min,max).

This formula is equivalent toφ and it can be
rewritten as a symmetric restricted Krom SNP
formula:

∃R∀x̄, ȳ, z̄R(x̄, x̄)∧
∧

i

(¬ψi(ȳ, z̄) ∨ ¬R(x̄, ȳ) ∨R(x̄, z̄))∧

∧

i

(¬ψi(ȳ, z̄) ∨R(x̄, ȳ) ∨ ¬R(x̄, z̄))∧

¬R(min,max).

Now we use Theorem 3 to defineP in symmet-
ric Datalog(¬).

Conversely, a symmetric Datalog(¬) can be
evaluated inL by a simple extension of Theo-
rem 1.

Comments: A similar argument can be
used using transitive closure instead of sym-
metric transitive closure to show that linear
Datalog(¬) over the set of finite successor
structures capturesNL.

Finally, the following lemma is needed to
complete the proof of Theorem 5. We state a
slighter more general result.

Lemma 11 Let Γ be a finite set of relations
such that¬CSP (Γ) is expressible in (linear,

12

symmetric) Datalog. Then¬CSP (Γ∪ {=}) is
also expressible in (linear, symmetric) Datalog
respectively.

Proof: We proceed by modifying a program for
the first problem to obtain a program for the
second. LetP be a (linear, symmetric) Datalog
program for¬CSP (Γ) with goal predicateG.
Note that we may modify the programP as fol-
lows without loss of generality: for every rule
ρ of P of the form

G← R1, . . . , Rn

where eachRi is an EDB, add the following
rules toP :

Iρ ← R1, . . . , Rn

G← Iρ

whereIρ is a new IDB whose variables are ex-
actly those appearing in theRi. For example,
if P contains the following ruleρ

G ← R1(x, y, z);

R2(x,w, t);R3(x, z, t)

then add toP the rules

Iρ(x, y, z, w, t) ← R1(x, y, z);

R2(x,w, t);R3(x, z, t)

G← Iρ(x, y, z, w, t).

Finally, remove ruleρ from P . It is clear that
the set of structures accepted by the new pro-
gram remains unchanged.

We define a programQ as follows:
(i) For every rule of P with IDB’s

I, J1, . . . , Js and EDB’sR1, . . . , Rn

I ← J1, . . . , Js, R1, . . . , Rn

Q will have the rule

Î ← Ĵ1, . . . , Ĵs, R1, . . . , Rn;

(ii) Let E denote the relational symbol (i.e.
EDB) that corresponds to the equality relation.

For every IDBI of arity k the programP ,
and every1 ≤ i ≤ k,Q has the rules

Î(x1, . . . , xk)←

Î(x1, . . . , xi−1, yi, xi+1, . . . , xk);xiEyi

and

Î(x1, . . . , xk)←

Î(x1, . . . , xi−1, yi, xi+1, . . . , xk); yiExi.

Notice that the programQ we have obtained
is indeed linear (symmetric) if the programP
is. We shall show thatQ decides¬CSP (Γ ∪
{=}) correctly. For this we use a simple reduc-
tion of ¬CSP (Γ ∪ {=}) to ¬CSP (Γ). Let T
andT ′ denote the “target” structures for these
problems, i.e. whose base set isA and whose
basic relations are those ofΓ andΓ ∪ {=} re-
spectively. Given an inputS′ for CSP (T ′),
construct an inputS for CSP (T) as follows:
let θ denote the partition of the base set ofS′

(which is also the base set ofS) into connected
components of the relationE: now for any ba-
sic relationR in Γ, let (x1, . . . , xk) be inRS

whenever there exists(x′1, . . . , x
′
k) in RS′

such
thatxi andx′i are in the sameE-block, for ev-
ery1 ≤ i ≤ k. We claim thatS admits a homo-
morphism toT if and only ifS′ admits a homo-
morphism toT ′. One direction is trivial. Now
suppose thatf : S → T is a homomorphism,
and letx andy be distinct elements of someE
block. Letf ′ be the function obtained fromf
by settingf ′(x) = f(y) andf ′(t) = f(t) for
all t 6= x. By construction ofRS, if a tuple of
the relationRS has an occurrence ofx then the
tuple obtained by replacing all occurrences of
x by y is also inRS, and hence obviouslyf ′ is
also a homomorphism. Hence if there is a ho-
momorphism fromS to T there is one which is
constant on everyE block; this is obviously a
homomorphism fromS′ to T ′.

For any IDBK (in any of the two programs),
and any input structureA to the program, re-
call that we denote asKAQ[t]

the content of this
IDB after t steps of Datalog evaluation and de-
note asKAQ

the content of this IDB at the end

13

of the run of the program, i.e. when the con-
tents stabilize. When the input structure is clear
we shall simply writeKQ[t] andKQ.

Claim. If S and S′ are the above struc-
tures, then for everyIDB I of the programP ,
ÎSQ[t]

= IS′Q
.

Proving this claim completes the proof of
our lemma: indeed, from the claim it follows
immediately thatQ acceptsS if and only if P
acceptsS′, which occurs if and only if there is
a homomorphism fromS′ to T ′ if and only if
there is a homomorphism fromS to T .

Proof of Claim. Let e denote the reflexive,
symmetric, transitive closure of the relationE
on S. We say that ak-ary relationθ on the
base set ofS is e-closedif (x1, . . . , xk) ∈ θ

whenever there exists some(y1, . . . , yk) ∈ θ

with xieyi for all 1 ≤ i ≤ k. Two tuplesx̂ and
ŷ are said to bee-equivalentif xieyi for all i.

We split the proof in two steps:
Step 1. For everyt ≥ 0, It ⊆ ÎQ, and hence

IQ ⊆ ÎQ.
We shall use the following fact that follows

directly from the construction of the program
Q:

Fact. For every IDBI the relationÎQ is e-
closed.

We prove the inclusion by induction ont.
For t = 0 there is nothing to prove. Assume
the inclusion holds for somet ≥ 0. Consider a
rule

I ← J,R1, . . . , Rn

(the case of a rule with no IDB in the head is
identical), and suppose that a tuplex ∈ I was
obtained via this rule at stept + 1. Consider
the assignment of values to the variables of the
rule that yieldsx: by definition of the relations
RS′

i and by induction hypothesis, and using the
fact above, we may find a new assignment of
variables which ise-equivalent to the previous
one and that satisfies all conditions in the head
of the rule

Î ← Ĵ , R1, . . . , Rn;

hence we’ve found a tuple in̂IQ which is e-
equivalent tox, and by the fact we are done.

Step 2. For everyt ≥ 0, ÎQ[t] ⊆ IQ, and
henceÎQ ⊆ IQ.

Fact. For everyt ≥ 0 and every IDBI of
programP the relationIQ[t] is e-closed; in par-
ticular IQ is e-closed.

We prove the fact by induction ont: for t =
0 we haveI0 = ∅ so there is nothing to prove.
Assume now it holds for somet ≥ 0. Consider
a rule

I ← J,R1, . . . , Rn

(the case of a rule with no IDB in the head is
identical), and suppose that a tuplex ∈ I was
obtained via this rule at stept + 1. Let y be a
tuple such thatxieyi for all i; then modify the
assignment of values to the variables of the rule
by replacing eachxi by yi: sinceJQ[t] and the
EDB’s on S′ are e-closed, this assignment of
values still satisfies all conditions in the head
and so forces the presence ofy in IQ[t+1].

Now we prove the inclusion by induction on
t: for t = 0 there is nothing to show. Assume
the inclusion holds for somet ≥ 0. Suppose
that a tuplex ∈ Î was obtained at stept + 1.
First consider a rule of the form

Î ← Ĵ , R1, . . . , Rn

(the case of a rule with no IDB in the head is
identical), Consider the assignment of values
to the variables of the rule that yieldsx: since
RS

i ⊆ RS′

i for all i and using the induction hy-
pothesis, this assignment also satisfies the con-
ditions in the head of the rule

I ← J,R1, . . . , Rn

and hencex is in IQ[t+1] ⊆ IQ. On the other
hand if the tuplex was obtained at stept + 1
via a rule of the form

Î(x1, . . . , xk)←

Î(x1, . . . , xi−1, yi, xi+1, . . . , xk), xiEyi

(the case for the symmetric rule is identical), it
means that there exists a tuplee-equivalent tox
which is in ÎQ[t], and hence inIQ by induction
hypothesis. By the fact, we conclude thatx ∈
IQ.

14

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

