
Elusive Functions and Lower Bounds for Arithmetic

Circuits

Ran Raz∗

Weizmann Institute

Abstract

A basic fact in linear algebra is that the image of the curve f(x) = (x1, x2, x3, . . . , xm),
say over C, is not contained in any m − 1 dimensional affine subspace of C

m. In
other words, the image of f is not contained in the image of any polynomial-mapping1

Γ : C
m−1 → C

m of degree 1 (that is, an affine mapping). Can one give an explicit
example for a polynomial curve f : C → C

m, such that, the image of f is not contained
in the image of any polynomial-mapping Γ : C

m−1 → C
m of degree 2 ?

In this paper, we show that problems of this type are closely related to proving lower
bounds for the size of general arithmetic circuits. For example, any explicit f as above
(with the right notion of explicitness2), of degree up to 2mo(1)

, implies super-polynomial
lower bounds for computing the permanent over C.

More generally, we say that a polynomial-mapping f : F
n → F

m is (s, r)-elusive,
if for every polynomial-mapping Γ : F

s → F
m of degree r, Image(f) 6⊂ Image(Γ).

We show that for many settings of the parameters n, m, s, r, explicit constructions of
elusive polynomial-mappings imply strong (up to exponential) lower bounds for general
arithmetic circuits.

Finally, for every r < log n, we give an explicit example for a polynomial-mapping
f : F

n → F
n2

, of degree O(r), that is (s, r)-elusive for s = n1+Ω(1/r). We use this to
construct for any r, an explicit example for an n-variate polynomial of total-degree
O(r), with coefficients in {0, 1}, such that, any depth r arithmetic circuit for this
polynomial (over any field) is of size ≥ n1+Ω(1/r).

In particular, for any constant r, this gives a constant degree polynomial, such that,
any depth r arithmetic circuit for this polynomial is of size ≥ n1+Ω(1). Previously,
only lower bounds of the type Ω(n · λr(n)), where λr(n) are extremely slowly growing
functions (e.g., λ5(n) = log∗ n, and λ7(n) = log∗ log∗ n), were known for constant-depth
arithmetic circuits for polynomials of constant degree.

∗
ran.raz@weizmann.ac.il, Research supported by the Israel Science Foundation (ISF), the Binational

Science Foundation (BSF) and the Minerva Foundation.
1A polynomial-mapping of degree r is a mapping such that each of its coordinates is a polynomial of

total-degree at most r in the input variables.
2Roughly speaking, f is considered to be explicit if given a monomial q and an index i, the coefficient of

the monomial q in the polynomial fi can be computed in polynomial time. Since we allow here the degree

of f to be up to 2m
o(1)

, (and hence each monomial is described by mo(1) bits), this means that we allow a
running time of mo(1) for computing each coefficient.

1

Electronic Colloquium on Computational Complexity, Report No. 1 (2008)

ISSN 1433-8092

1 Introduction

We present a family of problems that are very simple to describe, and that seem natural-to-
study from several different points of view (such as, geometric, algebraic and combinatorial),
and that are seemingly unrelated to arithmetic circuit complexity; and whose solution would
give strong (up to exponential) lower bounds for the size of general arithmetic circuits. We
then prove lower bounds of n1+Ω(1/d) for the size of arithmetic circuits of depth d for explicit
polynomials of degree O(d).

Let F be a field. A polynomial-mapping f : F
n → F

m of degree r is a function, such that,
each of its coordinates can be presented as a polynomial of total-degree at most r in the
input variables. We say that a polynomial-mapping f : F

n → F
m is (s, r)-elusive, if for every

polynomial-mapping Γ : F
s → F

m of degree r, Image(f) 6⊂ Image(Γ). (For more details
about polynomial-mappings and elusive polynomial-mappings, see Subsection 1.4). Can one
give explicit examples for elusive polynomial-mappings ?

We show that for many settings of the parameters, explicit constructions of elusive
polynomial-mappings imply strong (up to exponential) lower bounds for general arithmetic
circuits. (Here, and below, explicit means poly(n)-definable, as defined in Definition 1.3.
Roughly speaking, f : F

n → F
m is poly(n)-definable if given a monomial q and an index i,

the coefficient of the monomial q in the polynomial fi can be computed in time poly(n). For
more details, see Subsection 1.5). For example, we show the following results: Let F be a
field of characteristic different than 2.

1. Let s = s(n),m = m(n) be such that, nω(1) ≤ m (i.e., m is super-polynomial in n),
and s ≥ m0.9. (Think of m as relatively small, say m = nlog log n).

If there exists an explicit (s, 2)-elusive polynomial-mapping, f : F
n → F

m (of degree
at most poly(n)), then any arithmetic circuit for the permanent, over F, is of super-
polynomial size.

2. Let s = s(n),m = m(n), r = r(n) be such that, nω(1) ≤ s < m = nr. (Think of
r as relatively small, say r = log log n, and hence m = nlog log n; and think of s as
significantly smaller than m, say s = nlog log log n).

If there exists an explicit (s, r)-elusive polynomial-mapping, f : F
n → F

m (of degree
at most poly(n)), then any arithmetic circuit for the permanent, over F, is of super-
polynomial size.

In other words, one can prove super-polynomial lower bounds for the permanent, simply
by constructing elusive polynomial-mappings.

We note that in the above two examples (as well as in all other cases discussed in this
paper), an elusive polynomial-mapping f : F

n → F
m of degree up to 2n, (rather than

poly(n)), is also sufficient, since we can easily construct from it a multilinear polynomial-
mapping f̂ : F

n2 → F
m, such that, the image of f is contained in the image of f̂ . We

prefer to state our results with the seemingly weaker upper bound of poly(n) on the degree,
because there is no standard notion for explicitness of polynomials of degree larger than

2

poly(n), while there is a standard and well established notion for explicitness of polynomials
of degree up to poly(n). For more details, see Subsections 1.4, 1.5.

In both of the above two examples, as well as in all other cases discussed in this paper, it
is not hard to show the existence of (non-explicit) polynomial-mappings f : F

n → F
m, with

the required properties. The hard problem is to construct f explicitly.

We note also that polynomial-mappings f : F
n → F

m, as above, can easily be constructed
from a set H of 2n points in F

m, such that, for every mapping Γ : F
s → F

m, as above, H is
not contained in the image of Γ. Once again, it is not hard to prove the existence of such a
set H, and the hard problem is to construct H explicitly.

When one is interested in proving polynomial lower bounds (rather than super-polynomial
lower bounds), one can even assume that the mapping Γ is given as an input. For example,
we can prove the following result: Let F be any field. Let s = n90, and let m = n100. Let
Γ : F

s → F
m be a polynomial-mapping of degree 2, with coefficients in {0, 1}. Note that Γ

can be described by poly(n) bits. We show that if one can give a polynomial time Turing
machine that on input Γ, as above, outputs an explicit polynomial-mapping f : F

n → F
m of

degree at most poly(n), such that, Image(f) 6⊂ Image(Γ), then one obtains an explicit lower
bound of Ω(n10) for the size of arithmetic circuits.

Note also, that in order to obtain the above mentioned explicit lower bound of Ω(n10)
for the size of arithmetic circuits, it is enough to give a polynomial time Turing machine
that on input Γ, as above, outputs one point outside the image of Γ. Thus, one can also
obtain “win-win” results, such as: either the problem of finding a point outside the image
of a polynomial mapping Γ is hard (when Γ is given as an input), in which case we have an
example for a hard problem, or, otherwise, there exists an explicit lower bound of Ω(n10) for
the size of arithmetic circuits, (or both).

Finally, for every r < log n, we give an explicit example for a polynomial-mapping f :
F

n → F
n2

, of degree O(r), that is (s, r)-elusive for s = n1+Ω(1/r). We use this to prove
lower bounds for bounded-depth arithmetic circuits, for polynomials of bounded degree. For
any r = r(n), we give an explicit example for an n-variate polynomial of degree O(r), with
coefficients in {0, 1}, such that, any (unbounded fanin) depth r arithmetic circuit for this
polynomial, over any field, is of size ≥ n1+Ω(1/r). In particular, for any constant r, this gives
a constant degree polynomial, such that, any depth r arithmetic circuit for this polynomial
is of size ≥ n1+Ω(1). Previously, only slightly super-linear lower bounds were known for
constant-depth arithmetic circuits, for polynomials of constant degree.

1.1 Arithmetic Circuits

Let F be a field, and let {x1, . . . , xn} be a set of input variables. An arithmetic circuit is
a directed acyclic graph, as follows: Every leaf of the graph (i.e., a node of in-degree 0) is
labelled with either an input variable or the field element 1. Every other node of the graph
is labelled with either + or × (in the first case the node is a sum-gate and in the second case
a product-gate). Every edge in the graph is labelled with an arbitrary field element. A node
of out-degree 0 is called an output-gate of the circuit.

3

Every node and every edge in an arithmetic circuit compute a polynomial in the ring
F[x1, . . . , xn] in the following way. A leaf just computes the input variable or field element
that labels it. An edge (u, v), labelled by α ∈ F, computes the product of α and the
polynomial computed by u. A sum-gate computes the sum of the polynomials computed by
all edges that reach it. A product-gate computes the product of the polynomials computed
by all edges that reach it. We say that a polynomial g ∈ F[x1, . . . , xn] is computed by the
circuit if it is computed by one of the circuit’s output-gates.

The size of a circuit Φ is defined to be the number of edges in Φ, and is denoted by
Size(Φ). (We assume w.l.o.g. that the size of a circuit is larger than the number of its input
variables and the number of its output-gates). The depth of a circuit Φ is defined to be the
length of the longest directed path in Φ, and is denoted by Depth(Φ). If (u, v) is an edge
in the circuit, we say that u is a child of v and v is a parent of u. The fanin of a circuit is
defined to be the maximal in-degree of a node in the circuit, that is, the maximal number
of children that a node has. Note that we do not restrict the fanin of a circuit to be 2.

1.2 Background

Arithmetic circuits is the standard computational model for computing polynomials (e.g., for
computing the determinant or the permanent of a matrix, or the product of two matrices).
If one considers polynomials of very high degree, it is not hard to prove high lower bounds
for the size and depth of arithmetic circuits. For example, any arithmetic circuit for the
polynomial x2n

is obviously of depth at least n. However, interesting polynomials that we
would like to study are usually of degree bounded by poly(n) (where n is the number of
input variables). Hence, the discussion is usually restricted to polynomials of degree at
most poly(n), and a special attention is given for proving lower bounds for polynomials of a
relatively low degree (e.g., constant degree).

The landmark results of Strassen [Str75] and Baur and Strassen [BS83] give lower bounds
of Ω(n log r) for the size of arithmetic circuits for explicit n-variate polynomials of degree r.
In particular, when the degree r is poly(n), this gives explicit lower bounds of Ω(n log n).
For polynomials of constant degree, there are no lower bounds better than Ω(n).

Proving super polynomial lower bounds for arithmetic circuits (for explicit polynomials)
is one of the most challenging open problems in computational complexity. Such lower
bounds are only known for some restricted classes of arithmetic circuits. For example, super
polynomial lower bounds were proved for non-commutative formulas [Nis91], for multilinear
formulas [R04a, R04b], and for circuits of depth 3 over finite fields [GK98, GR98].

For additional background on arithmetic circuit complexity, see [Gat88, BCS97].

1.3 Constant-Depth Arithmetic Circuits

Exponential lower bounds for the size of constant-depth Boolean circuits (for explicit func-
tions) are well known [FSS81, Ajt83, Yao85, Has86, Razb87, Smo87]. In particular, exponen-
tial lower bounds for constant-depth Boolean circuits over the basis {∧,∨,¬,⊕} were given

4

by Razborov [Razb87]. This gives exponential lower bounds for constant-depth arithmetic
circuits over the field GF(2), since a product over GF(2) is just the ∧ operation, and a sum
over GF(2) is just the ⊕ operation.

However, for constant-depth arithmetic circuits over other fields, much less is known. In
particular, super-polynomial lower bounds are not known, even for circuits of depth 4. For
circuits of depth 3 over finite fields, exponential lower bounds were proved by Grigoriev and
Karpinski [GK98] and Grigoriev and Razborov [GR98]. For circuits of depth 3 over infinite
fields, only quadratic lower bounds are known, (proved by Shpilka and Wigderson [SW99]).

In this paper, we are interested in proving lower bounds for constant-depth arithmetic
circuits, for polynomials of constant degree. Recall that Baur and Strassen proved a lower
bound of Ω(n log r) for the size of arithmetic circuits of any depth, where r is the degree
of the polynomial computed. Note, however, that if one considers polynomials of constant
degree, this only gives a linear lower bound. Super-linear lower bounds for constant-degree
polynomials, for arithmetic circuits of constant-depth, are well known, (proved by Pud-
lak [Pud94] and by [RS01]). These bounds, however, are extremely weak. For circuits of
depth d, these bounds are of the type Ω(n ·λd(n)), where λd(n) are extremely slowly growing
functions (e.g., λ5(n) = log∗ n, and λ7(n) = log∗ log∗ n). These bounds are based on the fact
that very small graphs of very small depth cannot be super-concentrators, and the proofs
use complicated combinatorial arguments, first used to prove lower bounds for the size of
super-concentrators [DDPW83, Pud94].

As mentioned above, in this work we give for any d, an explicit example for a polynomial of
degree O(d), such that any depth d arithmetic circuit for this polynomial is of size ≥ n1+Ω(1/d).
In particular, for any constant d, this gives a constant degree polynomial, such that, any
depth d arithmetic circuit for this polynomial is of size ≥ n1+Ω(1).

Previous to our work, a very related approach was used by Shoup and Smolensky to show
the existence of points p1, . . . , pn ∈ C, such that, any arithmetic circuit of depth d, over C, for
polynomial evaluation (or interpolation) at these points, is of size Ω(dn1+1/d) [SS91]. This
gives a lower bound of Ω(dn1+1/d) for depth d arithmetic circuits, for non-explicit linear-
forms, over C. We note also, that one can view the points p1, . . . , pn as a part of the input to
the circuit and hence view the lower bound of [SS91] as a lower bound for explicit polynomials
of degree O(n), (rather than a lower bound for non-explicit linear-forms).

The techniques used by Shoup and Smolensky are very related to ours. In particular,
implicit in their work is an explicit example for a polynomial-mapping f : F

n → F
n2

, of
degree O(n), that is (s, r)-elusive for s = n1+Ω(1/r); and that function is used there to prove
their lower bound. This compares to an explicit construction of a polynomial-mapping
f : F

n → F
n2

, of degree O(r), that is (s, r)-elusive for s = n1+Ω(1/r), that we present here,
(for every r < log n); and that we use here to prove our lower bound. The construction of
the function, and the proof that it is elusive is the main technical difference between the two
proofs.

Thus, our lower bounds for bounded-depth arithmetic circuits can be viewed as a gener-
alization and improvement of the techniques and results of Shoup and Smolensky. The main
technical difference between the results is that our lower bound is for polynomials of degree
O(d) while their lower bound (when viewed as a lower bound for explicit polynomials) is for

5

polynomials of degree O(n). There are several other differences, as follows:

1. In [SS91], the points p1, . . . , pn were not viewed as a part of the input to the circuit.
Hence, Shoup and Smolensky do not view their result as a lower bound for explicit
polynomials, and rather state their lower bound as a lower bound for non-explicit
linear-forms. Here, we view (the equivalent of) the points p1, . . . , pn as a part of the
input to the circuit, and hence we obtain lower bounds for explicit polynomials.

Technically, this is just an observation.

2. Shoup and Smolensky only prove their lower bounds over C, while here we prove lower
bounds over any field F.

Technically, this improvement is not hard. It is obtained by working over a large
enough field extension G ⊃ F.

3. Shoup and Smolensky’s lower bound (when viewed as a lower bound for explicit poly-
nomials) is for polynomials of degree O(n), while here we prove lower bounds for
polynomials of degree O(d).

This is the main advantage of our lower bounds over the ones of Shoup and Smolensky.
Technically, this is the main difference between the proofs, and the hard part of our
argument.

We will now try to explain the importance of proving lower bounds for polynomials of
constant degree (rather than for polynomials of degree, say, O(n)). One reason is that strong
enough lower bounds for constant-depth arithmetic circuits, for polynomials of constant
degree, would imply lower bounds for general arithmetic circuits !

Consider for example the following trivial but striking fact: Any (unbounded-depth)
arithmetic circuit of size s, for a polynomial of a constant degree r, can be translated into an
arithmetic circuit of size O(s2) and depth O(r), for the same polynomial.3 Thus, surprisingly,
a lower bound of Ω(n2+ε) for constant-depth arithmetic circuits, for an explicit polynomial
of constant degree, would imply a lower bound of Ω(n1+ε/2) for the size of general arithmetic
circuits.

Or consider the following fact: Any fanin-2 arithmetic circuit of depth O(log n) and
size O(n1+ε), for a polynomial of a constant degree, can be translated into an (unbounded-
fanin) arithmetic circuit of size O(n1+ε′) and constant-depth, for the same polynomial, (for
any ε′ > ε)4. Thus, a lower bound of Ω(n1+ε′) for constant-depth arithmetic circuits, for
polynomials of constant degree, would imply a lower bound of Ω(n1+ε) for fanin-2 arithmetic
circuits of depth O(log n), that is, a strong size-depth tradeoff for general arithmetic circuits.

Thus, our lower bounds are close to the best possible, without implying strong size-depth
tradeoffs for general arithmetic circuits.

3Moreover, any arithmetic circuit of size s, for a polynomial of degree r, can be translated into an
arithmetic circuit of size poly(s, r) and depth O(log r), for the same polynomial [VSBR83].

4One can start from any fanin-2 arithmetic circuit of depth d = O(log n) and size s, (for a polynomial of a
constant degree, say, 10), and translate it into an unbounded-fanin arithmetic circuit of depth d/(δ log n) =
O(1) and size s · nO(δ), (for any constant δ > 0).

6

Finally, we note that our lower bounds match size-depth tradeoffs (of n1+Ω(1/d)) that were
previously known for, so called, bounded coefficient circuits, a restricted class of arithmetic
circuits over the field C [NW95, Lok95, Pud98, R02].

1.4 Polynomial-Mappings

Let F be a field. A polynomial-mapping f : F
n → F

m of degree r is a tuple f = (f1, . . . , fm),
where for every i ∈ {1, . . . ,m}, fi(x1, . . . , xn) ∈ F[x1, . . . , xn] is a polynomial of total-degree
at most r.5 The mapping f is multilinear, if f1, . . . , fm are multilinear polynomials (i.e.,
the degree of every input variable in every fi is at most 1). The mapping f is homogenous,
if f1, . . . , fm are homogenous polynomials of the same total-degree (i.e., the total-degree of
every monomial in every fi is the same). We denote the image of a polynomial-mapping f
by Image(f).

Note that given polynomials f1, . . . , fm ∈ F[x1, . . . , xn], for any field extension G ⊃ F, we
can think of f = (f1, . . . , fm) as a polynomial-mapping f : G

n → G
m (since F[x1, . . . , xn] ⊂

G[x1, . . . , xn]).
Definition 1.1. (Eludes, Elusive) We say that a polynomial-mapping f : F

n → F
m eludes

a polynomial-mapping Γ : F
s → F

m if Image(f) 6⊂ Image(Γ). We say that f : F
n → F

m is
(s, r)-elusive, if it eludes every polynomial-mapping Γ : F

s → F
m of degree at most r.

For every r and every polynomial-mapping f : F
n → F

m of degree less than 2r in each
variable, we can construct a multilinear polynomial-mapping f̂ : F

n·r → F
m, such that, the

image of f is contained in the image of f̂ . This is done as follows. For every input variable
xi, we introduce r new input variables xi,1, . . . , xi,r. We replace every occurrence of xk

i (in

each of the polynomials f1, . . . , fm) by the product
∏r

j=1 x
kj

i,j, where (kr, . . . , k1) is the binary
representation of k.
Proposition 1.2. Let f : F

n → F
m be a polynomial-mapping of degree less than 2r in

each variable, and let f̂ : F
n·r → F

m be the multilinear polynomial-mapping as above. Then
Image(f) ⊂ Image(f̂).

Proof. For any a1, . . . , an ∈ F,

f(a1, . . . , an) = f̂(a1
1, a

2
1, . . . , a

2r−1

1 , · · · , a1
n, a2

n, . . . , a2r−1

n).

By proposition 1.2, if f eludes a mapping Γ, then so does f̂ . In particular, if f is (s, r)-
elusive, then so is f̂ . For that reason, it is enough for us to limit the discussion to polynomial-
mappings f that are multilinear, and in particular, are of degree at most poly(n). (Note,
however, that the polynomial-mappings Γ that we consider are not necessarily multilinear).

5Note that given a function f : F
n → F

m, the representation of f1, . . . , fm as polynomials in F[x1, . . . , xn],
if exists, is not necessarily unique (if F is finite). Hence, we assume that a polynomial-mapping f : F

n → F
m,

is already given as a tuple (f1, . . . , fm) of polynomials in F[x1, . . . , xn].

7

1.5 Explicit Polynomial-Mappings

The standard notion of explicitness of a polynomial f ∈ F[x1, . . . , xn] is that f is explicit if
it is (uniformly) poly(n)-definable, that is, it belongs to the (uniform version of the) class
V NP , Valiant’s algebraic version of the class NP [Val79] (see also [Gat87, Bur00]).

Formally, f ∈ F[x1, . . . , xn] is poly(n)-definable, iff for some l = poly(n), there exists
a polynomial g ∈ F[x1, . . . , xn, e1, . . . , el] of degree poly(n), that can be computed by an
arithmetic circuit of size poly(n), and such that

f(x1, . . . , xn) =
∑

e1,...,el∈{0,1}

g(x1, . . . , xn, e1, . . . , el)

(see [Bur00], Definition 2.5, or [Gat87], Theorem 4.2). Many equivalent definitions of poly(n)-
definability can be found in [Gat87, Bur00].

Note, for example, that if f is multilinear with coefficients in {0, 1}, and there exists
a deterministic polynomial time Turing machine that on inputs e1, . . . , en ∈ {0, 1} outputs
the coefficient of the monomial xe1

1 · · ·xen
n in f , then f is poly(n)-definable (see [Gat87],

Proposition 4.4)

Here, we extend the notion of poly(n)-definability to polynomial-mappings f : F
n → F

m,
by the following definition.
Definition 1.3. (poly(n)-Definable) A polynomial-mapping f : F

n → F
m is poly(n)-

definable if for some l = poly(n), and for k
.
= dlog2 me, there exists a polynomial g ∈

F[x1, . . . , xn, e1, . . . , el, w1, . . . , wk] of degree poly(n), that can be computed by an arithmetic
circuit of size poly(n), and such that, for every i ∈ {1, . . . ,m},

fi(x1, . . . , xn) =
∑

e1,...,el∈{0,1}

g(x1, . . . , xn, e1, . . . , el, i1, . . . , ik),

(where (ik, . . . , i1) is the binary representation of i − 1).

Note that we allow the size of the arithmetic circuit for g to depend polynomially on n, but
we do not allow it to depend polynomially on m. This is important because we will consider
cases where m is super-polynomial in n. Intuitively, this means that it is not enough that for
every i the function fi can be defined by a different polynomial-size arithmetic circuit gi. We
require that f1, . . . , fm can all be defined by the same polynomial-size arithmetic circuit g.

Finally, we note, for example, that if f : F
n → F

m is a multilinear polynomial-mapping,
and the coefficient of every monomial in every fi is in {0, 1}, and there exists a deterministic
polynomial time Turing machine that on inputs i and e1, . . . , en ∈ {0, 1} outputs the coeffi-
cient of the monomial xe1

1 · · · xen
n in fi, then, the polynomial-mapping f is poly(n)-definable.

1.6 Techniques

Denote by m =
(

n+r−1
r

)

the number of monomials of total-degree r in n variables. Consider
polynomials g ∈ F[z1, . . . , zn] of total-degree r. Every such polynomial g can be viewed as a
vector of m coefficients, that is, a vector in F

m.

8

We take a universal arithmetic circuit, with s edges, and consider the polynomial g ∈ F
m

computed by the circuit, as a function of the s labels of the edges of the circuit. This defines
a polynomial-mapping Γ : F

s → F
m. We show that if one takes an arithmetic circuit in the

right form, the mapping Γ is of a relatively small degree.

Roughly speaking, we can show, for example, that for every n, r, s′, there is s = poly(s′, n, r),
and a polynomial-mapping Γ : F

s → F
m, of degree O(r), such that, if g is computable by an

arithmetic circuit of size s′, then g is in the image of Γ, (and if g is in the image of Γ then g
is computable by an arithmetic circuit of size s). Moreover, the mapping Γ can be efficiently
constructed in time poly(sr).

Thus, the image of the polynomial-mapping Γ captures the set of polynomials of low
complexity. A polynomial is of low complexity only if it is in the image of Γ. Thus, our goal
in proving lower bounds is just to find polynomials that are not in the image of Γ.

There are several possible ways to approach this problem. First, one can try to take the
explicit description of Γ and find (say, in polynomial time) a point outside its image. Since
the explicit description of Γ is of size poly(sr), this approach is limited to s, r, such that,
sr = poly(n), and hence is limited to proving polynomial lower bounds. Note, however, that
one can also try to use this approach for finding polynomials of super-polynomial complexity,
in super-polynomial time.

A more promising approach, (at least if one is interested in proving unconditional super-
polynomial lower bounds), is to try to find a set of points that is not contained in the image
of Γ, for any polynomial-mapping Γ : F

s → F
m of degree O(r).

Consider for example a polynomial f ∈ F[x1, . . . , xn, z1, . . . , zn], of total-degree r in the set
of variables {z1, . . . , zn}. For every a1, . . . , an ∈ F, we can substitute x1 = a1, . . . , xn = an

and obtain a polynomial fa1,...,an
∈ F[z1, . . . , zn] of total-degree r, that is, a point in F

m.
Thus, we obtain a polynomial-mapping f ′ : F

n → F
m. If Image(f ′) 6⊂ Image(Γ) then one

of the polynomials fa1,...,an
cannot be computed by a circuit of size s′, and hence f cannot

be computed by a circuit of size s′. If, in addition, f is explicit, we obtain an explicit lower
bound for arithmetic circuits.

Finally, we note that many variants of these ideas can also be considered. For example,
if the model of computation is restricted, one can capture the polynomials of low complexity
by a mapping Γ that may have some additional helpful properties. Another idea that comes
to mind is to try to prove the existence of a polynomial g ∈ F

m, such that, there is a short
proof for the statement g 6∈ Image(Γ).

1.7 Related Works

The idea to consider a polynomial computed by a circuit, as a function of the labels of the
edges of the circuit, goes back to the works of Strassen [Str74] and Lipton [Lip75], in the
context of arithmetic circuits with a single input variable. Strassen and Lipton used this
idea to prove non-explicit lower bounds for arithmetic circuits with a single input variable.
Years after, the same idea was used by Shoup and Smolensky [SS91], in the context of
bounded-depth linear arithmetic circuits (i.e., bounded-depth arithmetic circuits without

9

product-gates). To the best of our knowledge, previous to our work, the idea was not used
for general arithmetic circuits. As mentioned above, the work of Shoup and Smolensky [SS91]
is very related to ours also in the way in which we prove lower bounds for bounded-depth
arithmetic circuits. Moreover, an explicit example for an elusive function (with certain
parameters) is implicit in their work, and is used there to prove their lower bound. (For
more details, see the detailed discussion in Subsection 1.3). As far as we know, [SS91] is the
first and only previous work that uses elusive functions to prove lower bounds. Our results
suggest that these ideas can possibly be extended to the more general setting of general
arithmetic circuits.

Another related paper is the work of Impagliazzo and Kabanets [IK03]. Impagliazzo
and Kabanets proved that if one can test in deterministic polynomial time (or even in
nondeterministic subexponential time), whether a given arithmetic circuit over the integers
computes the identically-zero polynomial, then, either NEXP 6⊂ P/poly, or the permanent
is not computable by polynomial-size arithmetic circuits. This result is related to ours, since
constructing an elusive function can also be viewed as a derandomization problem.

Another idea, related to ours, in the area of propositional proof complexity, was to study
the length of propositional proofs for tautologies of the form b 6∈ Image(G), for pseudorandom
generators G : {0, 1}n → {0, 1}m [ABRW00]. It was proved in [ABRW00], (as well as in
subsequent works, e.g., [AR01]), that for some functions G : {0, 1}n → {0, 1}m, tautologies
of this form are hard to prove in several well-studied propositional proof systems. We refer
the reader to [ABRW00] for the many motivations (given there) for studying such tautologies.
We note only that one of the original motivations for studying these tautologies was that
one can consider a function G that maps a description of a Boolean circuit to the truth-table
of the function computed by it (see also [Razb95]). For this particular function G, proving
that tautologies of the form b 6∈ Image(G) are hard for a propositional proof system P , can
be interpreted as: proving circuit complexity lower bounds are hard in the proof system P .
We find these ideas very related to ours.

1.8 Our Results

We partition our results about the connections between polynomial-mappings and lower
bounds for arithmetic circuits into two groups: Results for polynomial-mappings f that
elude polynomial-mappings Γ of degree 2, and results for polynomial-mappings f that elude
polynomial-mappings Γ of degree larger than 2.

We will first prove our results for polynomial-mappings f that elude polynomial-mappings
Γ of degree larger than 2. Then, using these results, we will prove our lower bounds
for bounded-depth arithmetic circuits. Finally, we will prove our results for polynomial-
mappings f that elude polynomial-mappings Γ of degree 2.

Recall that given a polynomial-mapping f : F
n → F

m, and given a field extension G ⊃ F,
we can think of f as a polynomial-mapping f : G

n → G
m. This is because we assume

that a polynomial mapping f : F
n → F

m is given as a tuple (f1, . . . , fm) of polynomials in
F[x1, . . . , xn] ⊂ G[x1, . . . , xn] (see the discussion in Subsection 1.4).

10

1.8.1 Arithmetic Circuits and Polynomial-Mappings: Part I

We can now present our main results for polynomial-mappings f that elude polynomial-
mappings Γ of degree larger than 2. The results are given by five propositions and corollaries.
The full results are restated and proved in Subsection 3.4. For more details, see Section 3.

Let F be a field, and let n be an integer. By r, s, s′,m, we denote integers, and we think
of all these parameters as functions of the basic parameter n.
Proposition 1.4. For every integers 2 ≤ r ≤ n ≤ s′, and m = n ·

(

n+r−1
r

)

, there exists a
polynomial-mapping (described in Proposition 3.3), Γ : F

s → F
m, (where s = O((s′)2 · r8)),

of degree 2r − 1, such that: Let f : F
n → F

m be a polynomial-mapping. If over some field
extension G ⊇ F, (e.g., G = F),

Image(f : G
n → G

m) 6⊂ Image(Γ : G
s → G

m),

then any arithmetic circuit (over F) for a polynomial f̃ : F
3n → F (explicitly defined from f

in Subsection 3.3), is of size > s′/5.

Moreover, one can construct Γ in time poly(sr) in the following sense. There exists
a poly(sr)-time Turing machine, that on input n, r, s′, outputs (all the coefficients of) the
m polynomials (ΓG)1, . . . , (ΓG)m ∈ F[y1, . . . , ys], and such that, all the coefficients in these
polynomials are integers6 in {0, . . . , (3r)!}.
Corollary 1.5. Let 2 ≤ r ≤ n ≤ s, and m = n ·

(

n+r−1
r

)

be integers. Let f : F
n → F

m be a
polynomial-mapping. If over some field extension G ⊇ F, (e.g., G = F), f is (s, (2r − 1))-
elusive (see Definition 1.1), then any arithmetic circuit (over F) for a polynomial f̃ : F

3n → F

(explicitly defined from f in Subsection 3.3), is of size ≥ Ω(
√

s/r4).

Corollary 1.6. Let F be a field of characteristic different than 2. Let 2 ≤ r ≤ n ≤ s,
and m = n ·

(

n+r−1
r

)

be integers, such that, s = nω(1). If there exists a poly(n)-definable
polynomial-mapping, f : F

n → F
m, such that, over some field extension G ⊇ F, (e.g.,

G = F), f is (s, (2r−1))-elusive (see Definition 1.3 and Definition 1.1), then any arithmetic
circuit for the permanent over F is of size ≥ sΩ(1).

Corollary 1.7. Let 2 ≤ r ≤ n ≤ s, and m = n ·
(

n+r−1
r

)

be integers (and recall that we think
of r, s,m as functions of n). Assume that there exists a poly(sr)-time Turing machine T ,
such that:

• The inputs for T are r, n, s,m and a polynomial-mapping Γ : F
s → F

m of degree 2r−1,
given by all coefficients of the polynomials Γ1, . . . , Γm (that are assumed to be integers
in, say, {0, . . . , (3r)!}).

• The output of T is a poly(n)-definable polynomial-mapping f : F
n → F

m (described,
e.g., by an arithmetic circuit for the polynomial g that defines it in Definition 1.3),
s.t., over some field extension G ⊇ F, (e.g., G = F),

Image(f : G
n → G

m) 6⊂ Image(Γ : G
s → G

m).

6We think of the integers as members of every field, by the inductive definition n = (n − 1) + 1.

11

Then, there exists a poly(sr)-time Turing machine that on input n outputs a 3n-variables,
poly(n)-definable, polynomial f̃ (explicitly defined from f in Subsection 3.3, and described,
e.g., by an arithmetic circuit for the polynomial g that defines it in Definition 1.3), such
that, any arithmetic circuit for f̃ is of size ≥ Ω(

√
s/r4).

Proposition 1.8 gives the connection for arithmetic circuits of depth d, and is the one
used to prove our lower bounds for bounded-depth arithmetic circuits.
Proposition 1.8. Let n, d ≤ s, and m = n2 be integers. Let f : F

n → F
m be a polynomial-

mapping. If over some field extension G ⊇ F, (e.g., G = F), f is (s, d)-elusive (see Defi-
nition 1.1), then any depth-d arithmetic circuit (over F) for the n polynomials f̃1, . . . , f̃n :
F

2n → F (explicitly defined from f in Subsection 3.3), is of size > s. (Moreover, the degree
of each f̃i is at most the degree of f plus 1).

1.8.2 Lower Bounds for Bounded-Depth Circuits

We can now state our lower bounds for bounded-depth arithmetic circuits. We give an
explicit construction for an (s, d)-elusive polynomial-mapping, with certain parameters s, d.
We then use Proposition 1.8 to obtain lower bounds for the size of arithmetic circuits of
depth d. The full results are restated and proved in Section 4.

For an integer k, denote by [k] the set {1, . . . , k}. Let n be a prime. Let m = n2. Let
1 ≤ d ≤ (log2 n)/100 be an integer. Let d′ = 5d. Let {xi,j}i∈[d′],j∈[n] be a set of n · d′ input
variables. For every (a, b) ∈ [n] × [n], define,

f(a,b)(x1,1, . . . , xd′,n) =
∏

i∈[d′]

xi,a+i·b

(where the sum a + i · b is taken modulo n).

Let f = (f(1,1), f(1,2), . . . , f(n,n)). Note that for every field G, we can view f as a polynomial
mapping f : G

n·d′ → G
m.

Lemma 1.9. Let n be a prime, and let m = n2. Let d be an integer, s.t., 1 ≤ d ≤
(log2 n)/100. Let d′ = 5d. Let G be a field of size larger than m (e.g., an infinite field).
Then, the polynomial mapping f : G

n·d′ → G
m (as defined above) is (s, d)-elusive (see

Definition 1.1), where s = bn1+1/(2d)c.
Let {z1, . . . , zn}, {w1, . . . , wn}, be two sets of input variables. Define, for every a ∈ [n],

f̃a =
∑

b∈[n]

zb · f(a,b)

Define,

f̃ =
∑

a∈[n]

wa · f̃a

Note that every f̃a is a polynomial in n · (d′ + 1) variables, and is of total-degree d′ + 1,
and f̃ is a polynomial in n · (d′ + 2) variables, and is of total-degree d′ + 2.

12

Corollary 1.10. Let n be a prime, and let 1 ≤ d ≤ (log2 n)/100 be an integer. Any depth-
d arithmetic circuit, over any field F, for the n polynomials (of total-degree 5d + 1 each)
f̃1, . . . , f̃n : F

n·(5d+1) → F, (as defined above), is of size ≥ n1+1/(2d).

Corollary 1.11. Let n be a prime, and let 1 ≤ d ≤ (log2 n)/100 be an integer. Any
depth-bd/3c arithmetic circuit, over any field F, for the polynomial (of total-degree 5d + 2)
f̃ : F

n·(5d+2) → F, (as defined above), is of size ≥ n1+1/(2d)/5.

1.8.3 Arithmetic Circuits and Polynomial-Mappings: Part II

We can now present our main results for polynomial-mappings f that elude polynomial-
mappings Γ of degree 2. The results are given by four propositions and corollaries. The full
results are restated and proved in Subsection 5.4. For more details, see Section 5.

Let F be a field, and let n be an integer. By r, s, s′,m, we denote integers, and we think
of all these parameters as functions of the basic parameter n.
Proposition 1.12. For every integers 3 ≤ r ≤ n ≤ s′, and m =

(

n+r−1
r

)

, and r′ = b2r/3c,
there exists a polynomial-mapping (described in Proposition 5.3), Γ : F

s → F
m, (where

s = O(s′ ·
(

n+r′−1
r′

)

· r3)), of degree 2, such that: Let f : F
n → F

m be a polynomial-mapping.
If over some field extension G ⊇ F, (e.g., G = F),

Image(f : G
n → G

m) 6⊂ Image(Γ : G
s → G

m),

then any arithmetic circuit (over F) for the polynomial f̃ : F
2n → F (explicitly defined from

f in Subsection 5.3), is of size > s′.

Moreover, one can construct Γ in time poly(s,m) in the following sense. There exists
a poly(s,m)-time Turing machine, that on input n, r, s′, outputs (all the coefficients of) the
m polynomials (ΓG)1, . . . , (ΓG)m ∈ F[y1, . . . , ys], and such that, all the coefficients in these
polynomials are in {0, 1}.
Corollary 1.13. Let 3 ≤ r ≤ n ≤ s, and m =

(

n+r−1
r

)

be integers. Let r′ = b2r/3c. Let
f : F

n → F
m be a polynomial-mapping. If over some field extension G ⊇ F, (e.g., G = F), f

is (s, 2)-elusive (see Definition 1.1), then any arithmetic circuit (over F) for the polynomial
f̃ : F

2n → F (explicitly defined from f in Subsection 5.3), is of size ≥

Ω

(

s
(

n+r′−1
r′

)

· r3

)

Corollary 1.14. Let F be a field of characteristic different than 2. Let 3 ≤ r ≤ n ≤ s, and
m =

(

n+r−1
r

)

be integers. Let r′ = b2r/3c. Assume that s/
(

n+r′−1
r′

)

≥ nω(1). If there exists
a poly(n)-definable polynomial-mapping, f : F

n → F
m, such that, over some field extension

G ⊇ F, (e.g., G = F), f is (s, 2)-elusive (see Definition 1.3 and Definition 1.1), then any
arithmetic circuit for the permanent over F is of size ≥

(

s
(

n+r′−1
r′

)

· r3

)Ω(1)

13

Corollary 1.15. Let 3 ≤ r ≤ n ≤ s, and m =
(

n+r−1
r

)

be integers (and recall that we think
of r, s,m as functions of n). Let r′ = b2r/3c. Assume that there exists a poly(s,m)-time
Turing machine T , such that:

• The inputs for T are r, n, s,m and a polynomial-mapping Γ : F
s → F

m of degree 2,
given by all coefficients of the polynomials Γ1, . . . , Γm (that are assumed to be in {0, 1}).

• The output of T is a poly(n)-definable polynomial-mapping f : F
n → F

m (described,
e.g., by an arithmetic circuit for the polynomial g that defines it in Definition 1.3),
s.t., over some field extension G ⊇ F, (e.g., G = F),

Image(f : G
n → G

m) 6⊂ Image(Γ : G
s → G

m).

Then, there exists a poly(s,m)-time Turing machine that on input n outputs a 2n-variables,
poly(n)-definable, polynomial f̃ (explicitly defined from f in Subsection 5.3, and described,
e.g., by an arithmetic circuit for the polynomial g that defines it in Definition 1.3), such
that, any arithmetic circuit for f̃ is of size ≥

Ω

(

s
(

n+r′−1
r′

)

· r3

)

2 Arithmetic Circuits in Normal Forms

Definition 2.1. (Circuit-Graph) Let Φ be an arithmetic circuit. We denote by GΦ the
underlying graph of Φ, together with the labels of all nodes. That is, the entire circuit, except
for the labels of the edges. We call GΦ, the circuit-graph of Φ.

We use for a circuit-graph G the same terminology as we use for circuits. For example,
the size of G is the number of edges in G, and is denoted by Size(G), and the depth of G is
the length of the longest directed path in G, and is denoted by Depth(G).

Note that different arithmetic circuits, over different fields, can have the same circuit-
graph.

For a circuit-graph G, we define the syntactic-degree of a node in G, inductively, as
follows. The syntactic-degree of a leaf is 0 if the leaf is labelled by the field element 1,
and 1 if the leaf is labelled by an input variable. The syntactic-degree of a sum-gate is the
maximum of the syntactic-degrees of its children. The syntactic-degree of a product-gate is
the sum of the syntactic-degrees of its children.

For an arithmetic circuit Φ and a node v in Φ, we define the syntactic-degree of v to
be its syntactic-degree in the circuit-graph GΦ. The degree of a circuit is the maximal
syntactic-degree of a node in the circuit.

2.1 Homogenization

A polynomial g is called homogeneous, if all the monomials that occur in g (with coefficients
different than 0) have the same total-degree.

14

We say that a circuit-graph G is homogenous if for every sum-gate v in G, the syntactic-
degree of every child of v is the same. We say that G is homogenous of degree r if it is
homogenous, and all output-gates in G are of syntactic-degree exactly r. We say that an
arithmetic circuit Φ is homogenous if the circuit-graph GΦ is homogeneous.

Note that a circuit-graph G is homogenous iff for every arithmetic circuit Φ (over any
field), such that G = GΦ, and every gate v in Φ, the polynomial computed by the gate v is
homogeneous.
Definition 2.2. (Normal-Homogenous-Form) Let G be a homogenous circuit-graph. We
say that G is in a normal-homogenous-form if it satisfies:

1. All leaves are labelled by input variables (i.e., no leaf is labelled by 1).

2. All edges from the leaves are to sum-gates.

3. All output-gates are sum-gates.

4. The gates of G are alternating. That is, if v is a product-gate and (u, v) is an edge
then u is a sum-gate, and if v is a sum-gate and (u, v) is an edge then u is either a
leaf or a product-gate.

5. The in-degree of every product-gate is exactly 2.

6. The out-degree of every sum-gate is at most 1.

We say that an arithmetic circuit Φ is in a normal-homogenous-form if the circuit-graph GΦ

is in a normal-homogeneous-form.
Proposition 2.3. Let F be a field. Let Φ be an arithmetic circuit of size s, for n homogenous
polynomials g1, . . . , gn ∈ F[x1, . . . , xn] of total-degree r ≥ 1 each. Then, there exists an
arithmetic circuit Ψ, for the polynomials g1, . . . , gn, such that Ψ is in a normal-homogenous-
form, and the number of nodes in Ψ is O(s · r2). Moreover, given Φ (as an input), Ψ can be
efficiently constructed.

Proof. Note that the number of nodes in Φ is O(s). We assume without loss of generality that
n < s. We will describe an algorithm that changes Φ into the required Ψ. For simplicity,
we describe all steps of the algorithm without dealing with the labels of the edges. It is
straightforward to verify that in all steps the labels of the edges can be fixed so that the
functionality of the circuit is preserved.

We can assume without loss of generality that no (sum or product) gate in Φ is of in-
degree 1 (otherwise, we just remove such a gate and connect its only child directly to all
its parents). For convenience, we make sure that the in-degree of every (sum or product)
gate is exactly 2. This is done by replacing any product-gate of in-degree larger than 2 by
a tree of product-gates of in-degree 2, and any sum-gate of in-degree larger than 2 by a tree
of sum-gates of in-degree 2. This increases the number of nodes in the circuit by at most s.

Next, we homogenize the circuit. For a polynomial g ∈ F[x1, . . . , xn] and an integer i, we
define the homogeneous part of degree i of g to be the restriction of g to the set of monomials
of total-degree exactly i. For every node v and every i ∈ {0, . . . , r}, we “split” the node v

15

into r + 1 nodes v0, . . . , vr, where the node vi computes the homogeneous part of degree i
of the polynomial computed by the node v. (Note that we just ignore monomials of degree
larger than r everywhere in the circuit, as they do not contribute to the functionality of the
circuit). Formally, this is done inductively on the circuit. For every node v with children
u,w, we add a (homogenous) arithmetic circuit with at most O(r2) nodes, that computes
v0, . . . , vr from u0, . . . , ur and w0, . . . , wr. We make sure that the in-degree of every product-
gate is still exactly 2. More precisely, if v is a sum-gate, for every i ∈ {0, . . . , r} the circuit
that we add computes vi = ui + wi, and if v is a product-gate, for every i ∈ {0, . . . , r} the
circuit that we add computes vi =

∑i
j=0 uj × wi−j.

Altogether, by the end of this step, we obtained a homogenous arithmetic circuit, with
product-gates of in-degree exactly 2, with at most O(s · r2) nodes.

Next, we remove every node of syntactic-degree 0. This is done as follows. Let u be
a node of syntactic-degree 0. If u is of out-degree 0, we can just remove it as it cannot
contribute to the functionality of the circuit. Otherwise, there is an edge (u, v). If v is a
sum-gate then, since the circuit is now homogenous, v is of syntactic-degree 0. Thus v just
computes a field element α. So we can just replace v by a leaf labelled by 1 and multiply
the labels of all the edges from v by α. If v is a product-gate, with other child w, we can
remove the gate v and connect w directly to all parents of v. By repeating this process as
many times as needed, we remove all nodes of syntactic-degree 0, and in particular, all leaves
labelled by 1.

Altogether, by the end of this step, we obtained a homogenous arithmetic circuit, with
product-gates of in-degree exactly 2, with no leaves labelled by 1, and with at most O(s · r2)
nodes.

Next, we ensure that the gates are alternating. This is done as follows. For any edge
(u, v) such that u, v are both product-gates, we add a dummy sum-gate in between them.
Note that since the in-degree of every product-gate is 2, this at most triples the number of
nodes in the circuit. For any edge (u, v) such that u, v are both sum-gates, we connect all
children of u directly to v and remove the edge (u, v). This doesn’t increase the number
of nodes. By repeating this as many times as needed, we obtain a circuit with alternating
gates.

Altogether, by the end of this step, we obtained a homogenous arithmetic circuit, with
product-gates of in-degree exactly 2, with no leaves labelled by 1, with alternating gates,
and with at most O(s · r2) nodes.

Next, we connect any product output-gate to a (different) dummy sum-gate. This at
most doubles the number of nodes in the circuit.

Next, for any edge from a leaf to a product-gate, we add a dummy sum-gate in between
them. Note that since the in-degree of every product-gate is 2, this at most triples the
number of nodes in the circuit.

Next, we ensure that the out-degree of every sum-gate is at most 1. This is done by
duplicating q times any sum-gate of out-degree q > 1. Note that since every edge from a
sum-gate reaches a product-gate, and since the in-degree of every product-gate is 2, this at
most triples the number of nodes in the circuit.

16

Finally, we can remove all nodes of out-degree 0 that do not output one of the polynomials
g1, . . . , gn. We repeat this as many times as needed.

Altogether, we obtain a circuit in a normal-homogenous-form, with at most O(s · r2)
nodes.

2.2 Linearization

A polynomial g is called linear, if it is homogenous of degree 1, that is, if all the monomials
that occur in g (with coefficients different than 0) are of total-degree exactly 1.
Definition 2.4. (Normal-Linear-Form) Let G be a homogenous circuit-graph. We say
that G is in a normal-linear-form if it satisfies:

1. All nodes in G are either leaves or sum-gates (i.e., there are no product-gates).

2. All leaves are labelled by input variables (i.e., no leaf is labelled by 1).

Note that this implies that the syntactic-degree of every node v in G is exactly 1. We say that
an arithmetic circuit Φ is in a normal-linear-form if the circuit-graph GΦ is in a normal-
linear-form.
Proposition 2.5. Let F be a field. Let Φ be an arithmetic circuit of size s and depth d, for
n linear polynomials g1, . . . , gn ∈ F[x1, . . . , xn]. Then, there exists an arithmetic circuit Ψ,
of size s and depth d, for the polynomials g1, . . . , gn, such that Ψ is in a normal-linear-form.
Moreover, given Φ (as an input), Ψ can be efficiently constructed.

Proof. We will describe an algorithm that changes Φ into the required Ψ.

For a polynomial g ∈ F[x1, . . . , xn], we define the linear part of g to be the restriction of
g to the set of monomials of total-degree exactly 1. For every node v in Φ, we define a node
v′ in Ψ that computes the linear part of the polynomial computed by the node v.

Formally, this is done inductively on the circuit. For a sum-gate v with children v1, . . . , vk,
we define v′ to be a sum-gate with children v′

1, . . . , v
′
k, and label an edge (v′

i, v
′) with the same

field element that labels (vi, v). For a product-gate v with children v1, . . . , vk, note that if
the linear parts of the polynomials computed by v1, . . . , vk are h1, . . . , hk (respectively), then
the linear part of the polynomial computed by v can be written as

∑k
i=1 cihi, for some field

elements c1, . . . , ck. Thus, once again, we define v′ to be a sum-gate with children v′
1, . . . , v

′
k,

and we label an edge (v′
i, v

′) by ci.

2.3 Reduction to Depth 4

We will now define circuit-graphs and arithmetic circuits in a normal-depth-4-form. Roughly
speaking, the computation of an arithmetic circuit in a normal-depth-4-form can be presented
as a homogenous sum7,

∑

i PiQi, where Pi, Qi are homogenous polynomials of degree at most
2r/3, where r is the syntactic-degree of the output-gate.

7A homogenous sum is a sum of homogenous polynomials, where all the non-zero polynomials in the sum
are of the exact same degree.

17

Definition 2.6. (Normal-Depth-4-Form) Let G be a homogenous circuit-graph. We say
that G is in a normal-depth-4-form if it satisfies:

1. The out-degree of every gate in G is at most 1 (i.e., G is a tree).

2. There is a single output-gate. The output-gate is a sum-gate.

3. Every directed path from a leaf to the output-gate is of length exactly 4.

4. All edges from the leaves are to product-gates. These product-gates (in the level above
the leaves) are of syntactic-degree at most 2r/3, where r is the syntactic-degree of the
output-gate.

5. The gates of G are alternating. That is, if v is a sum-gate and (u, v) is an edge then
u is a product-gate, and if v is a product-gate and (u, v) is an edge then u is either a
leaf or a sum-gate.

6. The in-degree of every product-gate, which is a child of the output-gate, is exactly 2.

We say that an arithmetic circuit Φ is in a normal-depth-4-form if the circuit-graph GΦ is
in a normal-depth-4-form.

The following proposition is based on a lemma from [RY07]. (Other forms of it follow
from several previous works).
Proposition 2.7. Let F be a field. Let Φ be an arithmetic circuit of size s, for a homogenous
polynomial g ∈ F[x1, . . . , xn] of total-degree r ≥ 3. Let r′ = b2r/3c. Then, there exists an
arithmetic circuit Ψ, for the polynomial g, such that Ψ is in a normal-depth-4-form, and is
of size O(s ·

(

n+r′−1
r′

)

· r3) (and has O(s ·
(

n+r′−1
r′

)

· r2) product-gates). Moreover, given Φ (as
an input), Ψ can be efficiently constructed (in time polynomial in the size of Ψ).

Proof. We will describe an algorithm that constructs Ψ from Φ.

First, we make sure that the in-degree of every gate in Φ is at most 2. This is done by
replacing any gate of in-degree larger than 2 by a tree of gates of in-degree 2. This doesn’t
increase the number of edges in the circuit.

Next, we homogenize the circuit (as in the proof of Proposition 2.3). For a polynomial
h ∈ F[x1, . . . , xn] and an integer i, we define the homogeneous part of degree i of h to be the
restriction of h to the set of monomials of total-degree exactly i. For every node v and every
i ∈ {0, . . . , r}, we “split” the node v into r + 1 nodes v0, . . . , vr, where the node vi computes
the homogeneous part of degree i of the polynomial computed by the node v. (Note that
we just ignore monomials of degree larger than r everywhere in the circuit, as they do not
contribute to the functionality of the circuit). Formally, this is done inductively on the
circuit. For every node v with children u,w, we add a (homogenous) arithmetic circuit with
at most O(r2) edges, that computes v0, . . . , vr from u0, . . . , ur and w0, . . . , wr. We make sure
that the in-degree of every gate is still at most 2. More precisely, if v is a sum-gate, for every
i ∈ {0, . . . , r} the circuit that we add computes vi = ui + wi, and if v is a product-gate, for
every i ∈ {0, . . . , r} the circuit that we add computes vi =

∑i
j=0 uj × wi−j.

18

Altogether, by the end of this step, we obtained a homogenous arithmetic circuit, with
gates of in-degree at most 2, and with at most O(s · r2) edges. Denote this circuit by
Φ′, and its size by s′ = O(s · r2). Note that since the circuit is homogenous, and its
output-gate computes the polynomial g of degree r, the syntactic-degree of the output-gate
is r. (Formally, we can prove by induction on the nodes of a circuit, that any node u in a
homogenous circuit computes either the 0 polynomial or a homogenous polynomial of degree
exactly equal to the syntactic-degree of u).

We will now show how to present the polynomial g as a homogenous sum, g =
∑

i PiQi,
where Pi, Qi are homogenous polynomials of degree at most 2r/3, and the sum is over at
most s′ elements. This is done by induction on s′.

First note that in the circuit Φ′ there is at least one node u of syntactic-degree larger than
r/3 and smaller or equal to 2r/3. This is true because one can start from the output-gate
(which is of syntactic-degree r) and move in each step from a node v to its child u of highest
syntactic-degree. Since the in-degree of every gate v is at most 2, the syntactic-degree of u
is at least a half of the syntactic-degree of v. Hence, at some point along the way, we reach
a node u of syntactic-degree larger than r/3 and smaller or equal to 2r/3. Let u be such a
node.

Denote by P ∈ F[x1, . . . , xn] the polynomial computed by the node u of Φ′. Assume
without loss of generality that P is not the 0 polynomial (otherwise, we can remove the node u
and obtain a smaller circuit, with the same properties, that still computes the polynomial g,
and we can continue by induction). Thus, P is a homogenous polynomial of degree larger
than r/3 and smaller or equal to 2r/3. (Formally, we can prove by induction on the nodes
of a circuit, that any node u in a homogenous circuit computes either the 0 polynomial or a
homogenous polynomial of degree exactly equal to the syntactic-degree of u).

Let y be an additional input variable. Denote by Φ′
u=y, the circuit Φ′, after replacing

the node u by the input variable y, (i.e., we change the label of u to be y and we remove
every edge from a child of u to u). Denote by Φ′

u=0, the circuit Φ′, after fixing the node u
to 0, (i.e., we remove u and all edges connected to it, and we fix to 0, inductively, all the
product-gate parents of u and all the sum-gates that are left without children).

Note that Φ′
u=0 is a homogenous arithmetic circuit (formally, this is proved by induction

on the nodes of the circuit, by showing, inductively, that every node in Φ′
u=0 is of the same

syntactic-degree as the corresponding node in Φ′), with gates of in-degree at most 2, and
with less than s′ edges.

The circuit Φ′
u=y computes a polynomial g′ ∈ F[x1, . . . , xn, y]. Since the syntactic-degree

of u in Φ′ is larger than r/3, and since the output of Φ′ is of syntactic-degree r, the degree
of y in the polynomial g′ is at most 2. Hence, we can present g′ as a sum,

g′ = g0 + g1 · y + g2 · y2,

where g0, g1, g2 ∈ F[x1, . . . , xn].

By the definition of Φ′
u=0, the polynomial computed by Φ′

u=0 is g0. Hence, g0 is either
the 0 polynomial or a homogenous polynomial of degree r. (Formally, we can show by
induction on the nodes of Φ′

u=0 that every node in Φ′
u=0 computes either the 0 polynomial

19

or a homogenous polynomial of degree equals to the syntactic-degree of the corresponding
node in Φ′).

By the definition of Φ′
u=y and by the definition of P , we know that

g = g0 + g1 · P + g2 · P 2 = g0 + P · Q,

where Q = g1 + g2 ·P . Note that since both g, g0 are either the 0 polynomial or homogenous
polynomials of degree r, the polynomial P · Q = g − g0 is also either the 0 polynomial or a
homogenous polynomial of degree r. Thus, the sum g = g0 + P · Q is a homogenous sum.
Also, since P and P · Q are both homogenous, Q is also homogenous, and since P · Q is of
degree r (unless it is the 0 polynomial), and P is of degree larger than r/3 and smaller or
equal to 2r/3, we conclude that Q is either the 0 polynomial or is of degree larger or equal
to r/3 and smaller than 2r/3. Thus, both P,Q are homogenous polynomials of degree at
most 2r/3.

Since g0 is the polynomial computed by the circuit Φ′
u=0, by induction, g0 can be presented

as a homogenous sum, g0 =
∑

i PiQi, where Pi, Qi are homogenous polynomials of degree
at most 2r/3, and the sum is over at most s′ − 1 elements. Hence, g can be presented as a
homogenous sum, g =

∑

i PiQi, where Pi, Qi are homogenous polynomials of degree at most
2r/3, and the sum is over at most s′ elements.

The presentation of g as a homogenous sum, g =
∑

i PiQi, where Pi, Qi are homogenous
polynomials of degree at most 2r/3, and the sum is over at most s′ elements, gives a ho-
mogenous circuit Ψ, for the polynomial g, such that, Ψ is in a normal-depth-4-form, and
is of size O(s ·

(

n+r′−1
r′

)

· r3) (and has O(s ·
(

n+r′−1
r′

)

· r2) product-gates). To obtain Ψ, we
just have to present every polynomial Pi, Qi, as a sum of monomials. (Note that since the
degree of the polynomials Pi, Qi is at most r′, their presentations as sums of monomials are
by arithmetic circuits of size O(

(

n+r′−1
r′

)

· r′), and recall that s′ = O(s · r2)).

2.4 Universal Circuit-Graphs

Proposition 2.8. For any integers n, s, r ≥ 1, s.t., s ≥ n, there is a circuit-graph G, in
a normal-homogenous-form and with at most O(s · r4) nodes, that is universal for n-inputs
and n-outputs circuits of size s that compute homogenous polynomials of degree r, in the
following sense:

Let F be a field. Let Φ be an arithmetic circuit of size s, for n homogenous polynomials
g1, . . . , gn ∈ F[x1, . . . , xn] of total-degree r each. Then, there exists an arithmetic circuit Ψ,
for the polynomials g1, . . . , gn, such that GΨ = G.

Moreover, given n, s, r, the circuit-graph G can be constructed in time poly(s, r).

Proof. Let F be a field. Let Φ be an arithmetic circuit of size s, for n homogenous polynomials
g1, . . . , gn ∈ F[x1, . . . , xn] of total-degree r. By Proposition 2.3, there exists an arithmetic
circuit Ψ′, for the polynomials g1, . . . , gn, such that Ψ′ is in a normal-homogenous-form, and
the number of nodes in Ψ′ is O(s · r2).

20

Since Ψ′ is in a normal-homogenous-form, the nodes of Ψ′ are partitioned into 2r levels,
according to the type of node (i.e., a leaf, a sum-gate, or a product-gate) and its syntactic-
degree, as follows:

• Level-1 contains the leaves, and recall that all the leaves are labelled by variables.
Without loss of generality, we can assume that every variable labels exactly one leaf.

• Level-2 contains the sum-gates of syntactic-degree 1.

• For every i ∈ {2, . . . , r}, Level-(2i−1) contains the product-gates of syntactic-degree i.

• For every i ∈ {2, . . . , r}, Level-(2i) contains the sum-gates of syntactic-degree i.

• The nodes in Level-(2r) are the output-gates.

The children of every sum-gate in Level-(2i) are nodes from Level-(2i− 1). Without loss
of generality, we can assume that the children of every sum-gate in Level-(2i) are all the
nodes in Level-(2i − 1). That is, there is an edge between every node in Level-(2i − 1) and
every node in Level-(2i). Note that this doesn’t increase the number of nodes.

Recall also that the out-degree of every sum-gate is at most 1, and the only sum-gates
of out-degree 0 are the gates in Level-(2r).

Every product-gate in Level-(2i − 1) has exactly two children, one is a sum-gate in
Level-(2j) (for some 0 < j < i) and the other is a sum-gate in Level-(2i − 2j). Thus, we
further partition the product-gates in Level-(2i−1) into i−1 types (Type-1,...,Type-(i−1)),
according to the identity of that j.

If we knew the number of sum-gates in each (even) level, and the number of product-gates
of each type in each (odd) level, we could have constructed the circuit-graph GΨ′ , as follows:

• Level-1 contains n leaves, labelled by the n input variables.

• The children of a sum-gate in Level-(2i) are all the nodes in Level-(2i − 1).

• The two children of a product-gate of Type-j in Level-(2i−1) are a sum-gate in Level-
(2j) and a sum-gate in Level-(2i − 2j). The exact identity of these two sum-gates is
not important. Just pick arbitrary gates (in the right levels) that were still not used.
They are all the same because they all have the exact same children and they are all
of out-degree 1.

Thus, in the circuit-graph G, we just have to make sure that we have enough nodes of
each type in each level. We can ensure that by having O(s · r2) nodes of each type in each
level, a total number of O(s · r4) nodes. Since we have enough nodes of each type in each
level, we can embed the circuit graph GΨ′ in G.

To construct the circuit Ψ, we use the circuit-graph G, and we just label by 0 every edge
to or from a node that is not in GΨ′ , and we label all other edges by their label in GΨ′ .

21

Proposition 2.9. For any integers n, s, r ≥ 3, s.t., s ≥ n, there is a circuit-graph G, in
a normal-depth-4-form and of size at most O(s ·

(

n+r′−1
r′

)

· r4) (and with O(s ·
(

n+r′−1
r′

)

· r3)
product-gates), where r′ = b2r/3c, that is universal for n-inputs and one-output circuits of
size s that compute homogenous polynomials of degree r, in the following sense:

Let F be a field. Let Φ be an arithmetic circuit of size s, for a homogenous polyno-
mial g ∈ F[x1, . . . , xn] of total-degree r. Then, there exists an arithmetic circuit Ψ, for the
polynomial g, such that GΨ = G.

Moreover, given n, s, r, the circuit-graph G can be constructed in time poly(s,
(

n+r′−1
r′

)

).

Proof. Let F be a field. Let Φ be an arithmetic circuit of size s, for a homogenous polynomial
g ∈ F[x1, . . . , xn] of total-degree r. By Proposition 2.7, there exists an arithmetic circuit Ψ′,
for the polynomial g, such that Ψ′ is in a normal-depth-4-form, and is of size O(s·

(

n+r′−1
r′

)

·r3)

(and has O(s ·
(

n+r′−1
r′

)

· r2) product-gates).

The circuit Ψ′ gives a presentation of g as a homogenous sum, g =
∑

i PiQi, where Pi, Qi

are homogenous polynomials of degree at most r′, and the sum is over at most O(s · r2)
elements (see the proof of Proposition 2.7).

Note that for every i, the sum of the degree of Pi (denoted, deg(Pi)) and the degree of Qi

(denoted, deg(Qi)) is exactly r. We can hence partition the pairs (Pi, Qi) into O(r) types,
acording to the degree of Pi. As in the proof of Proposition 2.8, if we knew the number of
pairs (Pi, Qi) of each type, we could have constructed the circuit-graph GΨ′ . This is true
because in Ψ′ the polynomials Pi, Qi are computed by a sum of all their monomials, and
given deg(Pi), deg(Qi) this can be done by the same circuit-graph.

Thus, in the circuit-graph G, we just have to make sure that we have enough nodes that
compute PiQi of each of the O(r) types. We can ensure that by having O(s · r2) nodes of
each type. Since we have enough nodes of each type, we can embed the circuit graph GΨ′ in
the circuit-graph G.

To construct the circuit Ψ, we use the circuit-graph G, and we just label by 0 every edge
to or from a node that is not in GΨ′ , and we label all other edges by their label in GΨ′ .

Note that the size of G is at most O(r) · O(s ·
(

n+r′−1
r′

)

· r3) = O(s ·
(

n+r′−1
r′

)

· r4) (and it

has O(s ·
(

n+r′−1
r′

)

· r3) product-gates).

3 Arithmetic Circuits and Polynomial-Mappings: Part I

In this section, we describe and prove our main results for polynomial-mappings f that elude
polynomial-mappings Γ of degree larger than 2. The main results appear in Subsection 3.4.

3.1 Notation

Let F be a field. Let n, r be integers. We fix m′ to be the number of monomials of total-degree
exactly r in n variables, that is, m′ =

(

n+r−1
r

)

, and we fix m = m′ · n. Note that r is not
necessarily a constant, and may be a function of n. In general, we think of all parameters as

22

functions of the basic parameter n. We assume that 1 ≤ r ≤ n, and we assume for simplicity
that n is a power of 2.

For an integer k, denote by [k] the set {1, . . . , k}, and denote by k̄ the binary represen-
tation of k − 1.

Let Z = {z1, . . . , zn} be a set of n input variables. Let M be the set of all monomials of
total-degree exactly r in the variables {z1, . . . , zn}. Note that |M | = m′. We can identify the
set M with the set [m′], by the lexicographic order of monomials. Formally, let h : M → [m′]
be the lexicographic order of monomials. We can now identify the set M × [n] with the
set [m′ · n] = [m], by the bijection (q, i) → (h(q), i), where (here and later on) we think of
(h(q), i) ∈ [m′] × [n] as an element of [m′ · n] = [m] (by the lexicographic order).

We denote by M the set of all homogenous polynomials in F[Z] of total-degree exactly r.
We identify the vector space M = F

M with the vector space F
[m′] (by the bijection h between

the bases). We will consider tuples (g1, . . . , gn) ∈ Mn of n homogenous polynomials of total-
degree exactly r. We identify the vector space Mn = F

M×[n] with the vector space F
m (by

the bijection (q, i) → (h(q), i) between the bases). Formally, we denote this homomorphism
by H : Mn → F

m. Intuitively, this means that we think of a vector in F
m as a tuple of n

polynomials in M, and vice versa. Each coordinate of the vector in F
m corresponds to the

coefficient of one monomial in one of the n polynomials.8

Denote by Gn,r, the set of homogenous circuit-graphs G (see Section 2), of syntactic-
degree r, over the set of input variables Z = {z1, . . . , zn}, such that G has exactly n output-
gates, and all output-gates in G are sum-gates. For a circuit-graph G, denote by S(G), the
number of edges in G that reach sum-gates.

3.2 The Polynomial-Mapping ΓG : F
s → F

m

Let G ∈ Gn,r. That is, G is a homogenous circuit-graph, of syntactic-degree r, over the set
of input variables Z = {z1, . . . , zn}, such that G has exactly n output-gates, and all output-
gates in G are sum-gates. Denote, s = S(G), that is, the number of edges in G that reach
sum-gates. (Note that s ≥ n).

Let Φ be an arithmetic circuit over F, with circuit-graph GΦ = G. Without loss of
generality, we assume that in the circuit Φ, all edges that reach product-gates are labelled
by 1 (otherwise, if an edge that reaches a product-gate is labelled by α 6= 1, we just change
its label to 1 and multiply the labels of all edges that leave that product-gate by α). Denote
the labels of the s edges that reach sum-gates by y1, . . . , ys.

The circuit Φ computes n homogenous polynomials in F[Z] of total-degree exactly r,
(that is, a tuple of n polynomials in M), where the coefficients in these polynomials depend
on the labels y1, . . . , ys. Since we think of a tuple of n polynomials in M as a point in F

m,
we obtain for every point (y1, . . . , ys) ∈ F

s, a point in F
m.

Formally, we define a mapping ΓG : F
s → F

m, as follows. Given y1, . . . , ys ∈ F, let Φ be

8We consider a tuple of polynomials in M, rather than a single polynomial, because it improves the
parameters in some of our results. In Section 5, we work with a single polynomial, (which is somewhat
simpler).

23

an arithmetic circuit over F, with circuit-graph GΦ = G, such that, the labels of all edges
that reach product-gates in Φ are 1, and the labels of the s edges that reach sum-gates in Φ
are y1, . . . , ys. Denote the n polynomials computed by Φ by g1, . . . , gn ∈ M (note that these
polynomials depend on the labels y1, . . . , ys). Define,

ΓG(y1, . . . , ys) = H((g1, . . . , gn)).

Note that the n outputs of the circuit Φ can be viewed as polynomials in both z1, . . . , zn

and y1, . . . , ys. That is, we can think of g1, . . . , gn as polynomials in the input variables
z1, . . . , zn, with coefficients that are polynomials in the input variables y1, . . . , ys. Therefore,
the functions (ΓG)1, . . . , (ΓG)m are polynomials in F[y1, . . . , ys]. That is, ΓG is a polynomial
mapping. Moreover, it is straightforward to prove (formally, by induction on the circuit) that
the polynomials (ΓG)1, . . . , (ΓG)m do not depend on the field F, but only on its characteristic
(intuitively, this is obvious because all the coefficients in these polynomials are derived by
a sequence of sum and product operations on the constants 0,1, and are hence members of
the minimal subfield of F that contains 0,1).
Proposition 3.1. Let G ∈ Gn,r. For every g = (g1, . . . , gn) ∈ Mn, we have: H(g) ∈
Image(ΓG) iff there exists an arithmetic circuit Φ, (over F), with GΦ = G, for the n polyno-
mials g1, . . . , gn.

Proof. If H(g) ∈ Image(ΓG) then obviously, by the definition of ΓG, there exists an arithmetic
circuit Φ, (over F), with GΦ = G, for the n polynomials g1, . . . , gn.

If there exists an arithmetic circuit Φ, (over F), with GΦ = G, for the n polynomials
g1, . . . , gn, without loss of generality, we assume that in the circuit Φ, all edges that reach
product-gates are labelled by 1 (otherwise, if an edge that reaches a product-gate is labelled
by α 6= 1, we just change its label to 1 and multiply the labels of all edges that leave that
product-gate by α). Denote the labels of the s edges in Φ that reach sum-gates by α1, . . . , αs.
Then, by the definition of ΓG, we have ΓG(α1, . . . , αs) = H(g).

Proposition 3.2. If G ∈ Gn,r is in a normal-homogenous-form (see Definition 2.2), then
the mapping ΓG : F

s → F
m (where s = S(G) and m =

(

n+r−1
r

)

· n) is a (homogenous)
polynomial-mapping of degree 2r − 1.

Moreover, given G, one can construct ΓG in time poly(sr) in the following sense. There
exists a poly(sr)-time Turing machine, that on input G outputs (all the coefficients of) the
m polynomials (ΓG)1, . . . , (ΓG)m ∈ F[y1, . . . , ys], and such that, all the coefficients in these
polynomials are integers9 in {0, . . . , (3r)!}.

Proof. Let Φ be an arithmetic circuit over F, with circuit-graph GΦ = G, such that, the
labels of all edges that reach product-gates are 1, and the labels of the s edges that reach
sum-gates are y1, . . . , ys.

For a node v in Φ, denote the polynomial (in the input variables Z), computed by the
node v, by gv ∈ F[Z], and denote by rv the syntactic-degree of v. Note that if v is a leaf, all
the coefficients in gv are in {0, 1}, and hence they do not depend on y1, . . . , ys. By induction,

9Recall that, we think of the integers as members of every field F, by the inductive definition n = (n−1)+1.

24

we show that if v is a sum-gate of syntactic-degree rv, then every coefficient in the polynomial
gv ∈ F[Z] is a (homogenous) polynomial of degree 2rv − 1 in the labels y1, . . . , ys, and if v is
a product-gate of syntactic-degree rv, then every coefficient in the polynomial gv ∈ F[Z] is a
(homogenous) polynomial of degree 2rv − 2 in the labels y1, . . . , ys.

The proof is straightforward. If v is a product-gate, with children v1, v2 (that are sum-
gates), then, by induction, the coefficients in the polynomials gv1 , gv2 are (homogenous)
polynomials of degree 2rv1−1, 2rv2−1, respectively, (in the labels y1, . . . , ys). Since the edges
(v1, v) and (v2, v) are labelled by 1, the coefficients in the polynomial gv are (homogenous)
polynomials of degree 2rv1 − 1 + 2rv2 − 1 = 2rv − 2 (in the labels y1, . . . , ys).

If v is a sum-gate, then, by induction, the coefficients in the polynomial gu, for every
child u of v, are (homogenous) polynomials of degree 2ru − 2 = 2rv − 2 (in the labels
y1, . . . , ys). Since the edge (u, v) is labelled by an element of {y1, . . . , ys}, the coefficients in
the polynomial gv are (homogenous) polynomials of degree 2rv − 1 (in the labels y1, . . . , ys).

As for the moreover part, denote Y = {y1, . . . , ys} and think of Y, Z as two sets of input
variables. For a node v in Φ, denote the polynomial (in the input variables Y, Z), computed
by the node v, by g̃v ∈ F[Y, Z], and note that g̃v is a homogenous polynomial of degree
r̃v

.
= rv + (2rv − 1) = 3rv − 1, if v is a sum-gate, and r̃v

.
= rv + (2rv − 2) = 3rv − 2, if v is

a product-gate, where rv is the syntactic-degree of v in the circuit-graph G. Thus, each g̃v

contains poly(sr) monomials. Thus, we can work our way up the circuit and compute all the
coefficients in all the polynomials g̃v, in time poly(sr). By induction, all these coefficients
are (positive) integers. By induction, we can show that the coefficients in each polynomial
g̃v are bounded by (r̃v)!. The induction is straightforward: When we have a sum-gate,
we always sum polynomials with disjoint sets of monomials, because the edges that reach
the sum-gate are labelled by different variables in Y , that were not used before. Thus, a
sum-gate doesn’t increase the coefficients. When we have a product-gate v, it multiplies v1

and v2. By induction, the coefficients in the polynomials g̃v1 , g̃v2 are bounded by (r̃v1)!, (r̃v2)!,
respectively. Since each monomial in g̃v can be obtained in at most (r̃v)!/((r̃v1)! · (r̃v2)!)
different ways, from monomials in g̃v1 , g̃v2 , we obtain a bound of (r̃v)! on its coefficient.

Proposition 3.3. For every n, r,m, s′, s.t., 1 ≤ r ≤ n ≤ s′ and m = n ·
(

n+r−1
r

)

, there exists
a circuit-graph G ∈ Gn,r, with S(G) ≤ Size(G) = O((s′)2 · r8), such that:

1. G is in a normal-homogenous-form. Hence, ΓG : F
s → F

m (where s = S(G)) is a
(homogenous) polynomial-mapping of degree 2r − 1.

2. For every g = (g1, . . . , gn) ∈ Mn, if there exists an arithmetic circuit of size s′ (over F)
for the n polynomials g1, . . . , gn, then H(g) ∈ Image(ΓG).

3. For every g = (g1, . . . , gn) ∈ Mn, if H(g) ∈ Image(ΓG), then there exists an arithmetic
circuit Φ, (over F), with GΦ = G, for the n polynomials g1, . . . , gn.

Moreover, one can construct G, ΓG in time poly(sr) in the following sense. There exists a
poly(sr)-time Turing machine, that on input n, r, s′, outputs G and (all the coefficients of)
the m polynomials (ΓG)1, . . . , (ΓG)m ∈ F[y1, . . . , ys], and such that, all the coefficients in
these polynomials are integers in {0, . . . , (3r)!}.

25

Proof. Let G be the circuit-graph from Proposition 2.8, with parameters n, s′, r, that is, a
universal circuit-graph for n-inputs and n-outputs circuits of size s′ that compute homoge-
nous polynomials of degree r. Denote s = S(G), and note that s ≤ Size(G) ≤ O((s′)2 · r8).
By Proposition 2.8, G is in a normal-homogenous-form, and note that G is of syntactic-
degree r. Hence, by Proposition 3.2, ΓG : F

s → F
m is a (homogenous) polynomial-mapping

of degree 2r − 1.

Let g = (g1, . . . , gn) ∈ Mn. Assume that there exists an arithmetic circuit of size s′

(over F) for the n polynomials g1, . . . , gn. Then, by Proposition 2.8, there exists an arithmetic
circuit Φ, for the polynomials g1, . . . , gn, such that GΦ = G. Thus, by Proposition 3.1,
H(g) ∈ Image(ΓG).

The third claim is a special case of Proposition 3.1 (and is restated here for completeness).
The moreover part follows immediately from the moreover parts of Proposition 2.8 and
Proposition 3.2.

Proposition 3.4. Let r = 1 and m = n2. If G ∈ Gn,r is in a normal-linear-form (see
Definition 2.4), then the mapping ΓG : F

s → F
m, (where s = S(G) = Size(G)), is a

polynomial-mapping of degree Depth(G).

Proof. Let Φ be an arithmetic circuit over F, with circuit-graph GΦ = G, such that the
labels of the s edges in G are y1, . . . , ys.

For a node v in Φ, denote the linear polynomial (in the input variables Z), computed by
the node v, by gv ∈ F[Z]. Note that if v is a leaf, all the coefficients in gv are in {0, 1}, and
hence they do not depend on y1, . . . , ys. By induction we show that if v is a gate of depth
dv (i.e., the length of the longest directed path that reaches v is dv), then every coefficient
in the polynomial gv ∈ F[Z] is a polynomial of degree at most dv in the labels y1, . . . , ys.

The proof is straightforward. If v is a gate of depth dv, then all children of v are of depth
at most dv −1. Then, by induction, the coefficients in the polynomial gu, for every child u of
v, are polynomials of degree at most dv − 1 (in the labels y1, . . . , ys). Since the edge (u, v) is
labelled by an element of {y1, . . . , ys}, the coefficients in the polynomial gv are polynomials
of degree at most dv (in the labels y1, . . . , ys).

3.3 The Polynomial f̃

Let X = {x1, . . . , xn} be an additional set of input variables. Let f = (f1, . . . , fm), where
f1, . . . , fm ∈ F[x1, . . . , xn], be a polynomial-mapping f : F

n → F
m. Intuitively, since we

think of a point in F
m as a tuple of n polynomials in the set of variables Z, we can think of

f as a tuple of n polynomials in the sets of variables X,Z.

Formally, given f , we define a tuple of n polynomials f̃1, . . . , f̃n ∈ F[X,Z], by

f̃i(x1, . . . , xn, z1, . . . , zn) =

∑

q∈M

f(h(q),i)(x1, . . . , xn) · q =
∑

j∈[m′]

f(j,i)(x1, . . . , xn) · h−1(j)

26

(where, as before, we think of (h(q), i) and (j, i) as elements of [m]). In other words, for
every monomial qx in the variables {x1, . . . , xn} and monomial qz ∈ M , the coefficient of the
monomial qxqz in f̃i is simply the coefficient of the monomial qx in f(h(qz),i). (For monomials

qx, qz, such that qz 6∈ M , the coefficient of the monomial qxqz in f̃i is 0).

Finally, we define the polynomial f̃ as follows. Let W = {w1, . . . , wn} be an additional
set of input variables. Define f̃ ∈ F[X,Z,W], by

f̃(x1, . . . , xn, z1, . . . , zn, w1, . . . , wn) =
n

∑

i=1

wi · f̃i(x1, . . . , xn, z1, . . . , zn).

For a = (a1, . . . , an) ∈ F
n, denote by f̃1|a, . . . , f̃n|a ∈ F[Z], the n polynomials f̃1, . . . , f̃n ∈

F[X,Z], after the substitution x1 = a1, . . . , xn = an.
Proposition 3.5. ∀a ∈ F

n, we have, (f̃1|a, . . . , f̃n|a) ∈ Mn, and H((f̃1|a, . . . , f̃n|a)) = f(a).

Proof. The proof is straightforward from the definitions. For every i ∈ [n] and a =
(a1, . . . , an) ∈ F

n,

f̃i|a(z1, . . . , zn) = f̃i(a1, . . . , an, z1, . . . , zn) =
∑

q∈M

f(h(q),i)(a) · q ∈ M.

Thus,
H

(

(f̃1|a, . . . , f̃n|a)
)

=

H
(

(
∑

q∈M f(h(q),1)(a) · q, . . . ,
∑

q∈M f(h(q),n)(a) · q)
)

=

H
(

(
∑

j∈[m′] f(j,1)(a) · h−1(j), . . . ,
∑

j∈[m′] f(j,n)(a) · h−1(j))
)

=
(

f(1,1)(a), . . . , f(m′,n)(a)
)

= f(a)

Proposition 3.6. If f = (f1, . . . , fm) is poly(n)-definable (see Definition 1.3), then the
polynomial f̃ ∈ F[X,Z,W] is poly(n)-definable.

Proof. We will show that for every i ∈ [n], the polynomial f̃i ∈ F[X,Z] is poly(n)-definable.
Obviously, this implies that the polynomial f̃ =

∑n
i=1 wi · f̃i is poly(n)-definable.

First, we construct an arithmetic circuit C, of size and degree poly(n), that gets as input
the variables z1, . . . , zn, u1, . . . , ul (for some l = poly(n)), and the binary representation j̄ (of
j − 1), for an integer j ∈ [m′], and such that for every j̄ ∈ {0, 1}log m′

,

∑

u1,...,ul∈{0,1}

C(z1, . . . , zn, u1, . . . , ul, j̄) = h−1(j).

(For j 6∈ [m′], we define h−1(j) = 0).

This is done by the following steps:

27

1. First construct a poly(n)-size Boolean circuit C1 that gets as input the binary rep-
resentation j̄ and outputs r vectors (c1,1, . . . , c1,n), · · · , (cr,1, . . . , cr,n) ∈ {0, 1}n, such
that,

∏r
a=1

∑n
b=1 ca,bza,b = h−1(j). That is, on input j̄, the circuit C1 generates a “de-

scription” of the monomial h−1(j) ∈ M . Obviously, this can be done in poly(n) time,
and hence such a circuit C1 exists. Denote by l the number of nodes in C1.

2. For every node in C1, we introduce a variable in {0, 1} that represents the value com-
puted at that node. Let u1, . . . , ul ∈ {0, 1} be these variables. We rename the variables
corresponding to the r · n output nodes by u1,1, . . . , u1,n, · · · , ur,1, . . . , ur,n (we think of
these variables as having two names). We can now construct a poly(n)-size Boolean
formula C2 (in conjunctive-normal-form), that gets as input the binary representation j̄
and the set of variables {u1, . . . , ul} (including the r ·n output variables), and outputs 1
iff (u1, . . . , ul) is the correct computation of C1 on j̄. This is done as in Cook-Levin’s
proof for the NP -completeness of SAT . Note that if (u1, . . . , ul) is the correct compu-
tation, then u1,1, . . . , u1,n, · · · , ur,1, . . . , ur,n are such that,

∏r
a=1

∑n
b=1 ua,bza,b = h−1(j).

Hence,
∑

u1,...,ul∈{0,1}

C2(u1, . . . , ul, j̄) ·
r

∏

a=1

n
∑

b=1

ua,bza,b = h−1(j).

Since any polynomial-size Boolean formula can be easily translated into an arithmetic
formula of polynomial size and degree, we can think of C2 as an arithmetic circuit of
size and degree poly(n).

3. Finally, we define the arithmetic circuit C by,

C(z1, . . . , zn, u1, . . . , ul, j̄) = C2(u1, . . . , ul, j̄) ·
r

∏

a=1

n
∑

b=1

ua,bza,b.

Recall that for an integer k, we denote by k̄ the binary representation of k − 1. Note
that since we assumed that n is a power of 2, the binary representation (j, i), for (j, i) ∈ [m],
is simply (j̄, ī) (where, as before, we think of (j, i) ∈ [m′] × [n] as an element of [m] by the
lexicographic order).

Since the polynomial-mapping f : F
n → F

m is poly(n)-definable, for some l′ = poly(n),
there is an arithmetic circuit D, of size and degree poly(n), that gets as input variables
x1, . . . , xn, e1, . . . , el′ , and the binary representations j̄, ī (for j ∈ [m′], i ∈ [n]), and such that
for every (j, i) ∈ [m],

f(j,i)(x1, . . . , xn) =
∑

e1,...,el′∈{0,1}

D(x1, . . . , xn, e1, . . . , el′ , j̄, ī).

We can now write, for every i ∈ [n],

f̃i(x1, . . . , xn, z1, . . . , zn) =
∑

j∈[m′]

f(j,i)(x1, . . . , xn) · h−1(j) =

∑

j∈[m′]

∑

e1,...,el′∈{0,1}

D(x1, . . . , xn, e1, . . . , el′ , j̄, ī) ·
∑

u1,...,ul∈{0,1}

C(z1, . . . , zn, u1, . . . , ul, j̄).

28

Since we can replace the sum over j ∈ [m′] by a sum over j̄ ∈ {0, 1}log m′

, the polynomial f̃i

is poly(n)-definable, by the definition of poly(n)-definability.

3.4 The Route to Lower Bounds

In this subsection, we prove our main results for polynomial-mappings f that elude polynomial-
mappings Γ of degree larger than 2. The results are given by five propositions and corollaries.
Proposition 3.7, Corollary 3.8, Corollary 3.9 and Corollary 3.10 give the connection for gen-
eral arithmetic circuits. Note that these four propositions and corollaries are only interesting
for r ≥ 2, (although, to avoid confusion, they are stated for r ≥ 1). Proposition 3.11 gives
the connection for arithmetic circuits of depth d, and is the one used to prove our lower
bounds for bounded-depth arithmetic circuits. All five propositions and corollaries are only
interesting for s < m (although this condition is not stated explicitly).

Recall that we think of all the parameters (r, s,m, etc.) as functions of the basic param-
eter n.

Recall that given a polynomial-mapping f : F
n → F

m, and given a field extension G ⊃ F,
we can think of f as a polynomial-mapping f : G

n → G
m. This is because we assume

that a polynomial mapping f : F
n → F

m is given as a tuple (f1, . . . , fm) of polynomials in
F[x1, . . . , xn] ⊂ G[x1, . . . , xn] (see the discussion in Subsection 1.4).
Proposition 3.7. For integers 1 ≤ r ≤ n ≤ s′, and m = n ·

(

n+r−1
r

)

, let ΓG : F
s → F

m

(where s = O((s′)2 · r8)) be the (homogenous) polynomial-mapping of degree 2r − 1 from
Proposition 3.3. Let f : F

n → F
m be a polynomial-mapping.

If over some field extension G ⊇ F, (e.g., G = F),

Image(f : G
n → G

m) 6⊂ Image(ΓG : G
s → G

m),

then any arithmetic circuit (over F) for the polynomial f̃ : F
3n → F (explicitly defined from

f in Subsection 3.3), is of size > s′/5.

Proof. Let us first prove the proposition for G = F.

By Proposition 3.3, for every (g1, . . . , gn) ∈ Mn, if there exists an arithmetic circuit of
size s′ (over F) for the n polynomials g1, . . . , gn, then H((g1, . . . , gn)) ∈ Image(ΓG).

Assume for a contradiction that there exists an arithmetic circuit (over F) of size s′/5,
for the polynomial f̃ : F

3n → F. Baur and Strassen proved that if a polynomial (f̃) can be
computed by an arithmetic circuit of size s′′, then all partial derivatives of that polynomial
can be computed by one arithmetic circuit of size 5s′′ [BS83]. By the result of Baur and
Strassen, there is an arithmetic circuit of size s′ for the n polynomials f̃1, . . . , f̃n : F

2n → F.
By substituting in this circuit x1 = a1, . . . , xn = an, we obtain an arithmetic circuit of size
s′ for the n polynomials f̃1|a, . . . , f̃n|a, (where a = (a1, . . . , an) ∈ F

n), and note that by
Proposition 3.5, f̃1|a, . . . , f̃n|a ∈ M. Hence, by Proposition 3.3, (for every a1, . . . , an ∈ F),
H((f̃1|a, . . . , f̃n|a)) ∈ Image(ΓG). Thus, by Proposition 3.5, for every a1, . . . , an ∈ F,

f(a1, . . . , an) = H((f̃1|a, . . . , f̃n|a)) ∈ Image(ΓG).

29

That is,
Image(f) ⊂ Image(ΓG).

Assume now that G is a general field, extending F, and assume that,

Image(f : G
n → G

m) 6⊂ Image(ΓG : G
s → G

m).

By the part that we already proved (i.e., the case G = F), we know that any arithmetic
circuit over G, for the polynomial f̃ , is of size > s′/5. But any arithmetic circuit over F

is in particular an arithmetic circuit over G. Thus, any arithmetic circuit over F for the
polynomial f̃ is of size > s′/5. (Formally, we need to verify that the polynomials f̃ and
(ΓG)1, . . . , (ΓG)m remain the same polynomials when we work over G, rather than over F.
This can be easily verified. For (ΓG)1, . . . , (ΓG)m, it was noted after the definition of ΓG

that they do not depend on the field at all, but only on its characteristic. As for f̃ , by its
definition, its coefficients are just corresponding coefficients from the polynomials f1, . . . , fm,
and hence they do not depend on the field G).

Corollary 3.8. Let 1 ≤ r ≤ n ≤ s, and m = n ·
(

n+r−1
r

)

be integers. Let f : F
n → F

m be a
polynomial-mapping. If over some field extension G ⊇ F, (e.g., G = F), f is (s, (2r − 1))-
elusive (see Definition 1.1), then any arithmetic circuit (over F) for the polynomial f̃ : F

3n →
F (explicitly defined from f in Subsection 3.3), is of size ≥ Ω(

√
s/r4).

Proof. The proof follows immediately from Proposition 3.7. Let s′ = c · √s/r4, where
c is a small enough constant. If f is (s, (2r − 1))-elusive, then in particular it satisfies
Image(f) 6⊂ Image(ΓG), where ΓG is the mapping from Proposition 3.7.

Corollary 3.9. Let F be a field of characteristic different than 2. Let 1 ≤ r ≤ n ≤ s,
and m = n ·

(

n+r−1
r

)

be integers, such that, s = nω(1). If there exists a poly(n)-definable
polynomial-mapping, f : F

n → F
m, such that, over some field extension G ⊇ F, (e.g.,

G = F), f is (s, (2r−1))-elusive (see Definition 1.3 and Definition 1.1), then any arithmetic
circuit for the permanent over F is of size ≥ sΩ(1).

Proof. Assume that such a polynomial-mapping f exists. By Proposition 3.6, and Corol-
lary 3.8, the polynomial f̃ : F

3n → F (explicitly defined from f in Subsection 3.3) is poly(n)-
definable, and any arithmetic circuit (over F) for f̃ is of size ≥ sΩ(1).

Valiant proved that over any field of characteristic different than 2, the permanent is
a complete polynomial for the class V NP of poly(n)-definable polynomials [Val79] (see
also [Gat87, Bur00]). Hence, any arithmetic circuit of size s′ for the permanent implies an
arithmetic circuit of size poly(s′) for any other poly(n)-definable polynomial. Hence, any
arithmetic circuit for the permanent over F is of size s′ ≥ sΩ(1).

Corollary 3.10. Let 1 ≤ r ≤ n ≤ s, and m = n ·
(

n+r−1
r

)

be integers (and recall that we
think of r, s,m as functions of n). Assume that there exists a poly(sr)-time Turing machine
T , such that:

30

• The inputs for T are r, n, s,m and a (homogenous) polynomial-mapping Γ : F
s → F

m of
degree 2r − 1, given by all coefficients of the polynomials Γ1, . . . , Γm (that are assumed
to be integers10 in, say, {0, . . . , (3r)!}).

• The output of T is a poly(n)-definable polynomial-mapping f : F
n → F

m (described,
e.g., by an arithmetic circuit for the polynomial g that defines it in Definition 1.3),
s.t., over some field extension G ⊇ F, (e.g., G = F),

Image(f : G
n → G

m) 6⊂ Image(Γ : G
s → G

m).

Then, there exists a poly(sr)-time Turing machine that on input n outputs a 3n-variables,
poly(n)-definable, polynomial f̃ (explicitly defined from f in Subsection 3.3, and described,
e.g., by an arithmetic circuit for the polynomial g that defines it in Definition 1.3), such
that, any arithmetic circuit for f̃ is of size ≥ Ω(

√
s/r4).

Proof. The proof follows immediately from Proposition 3.7. Let s′ = c · √s/r4, where c is a
small enough constant. We run the Turing machine T on the polynomial-mapping Γ = ΓG,
where ΓG is the mapping from Proposition 3.7. Note that by Proposition 3.3, ΓG can be
constructed in time poly(sr) (for details, see Proposition 3.3).

Proposition 3.11. Let n, d ≤ s, and m = n2 be integers. Let f : F
n → F

m be a
polynomial-mapping. If over some field extension G ⊇ F, (e.g., G = F), f is (s, d)-elusive
(see Definition 1.1), then any depth-d arithmetic circuit (over F) for the n polynomials
f̃1, . . . , f̃n : F

2n → F (explicitly defined from f in Subsection 3.3, (using r = 1)), is of
size > s. (Note that the degree of each f̃i is at most the degree of f plus 1).

Proof. Let us first prove the proposition for G = F.

Let X = {x1, . . . , xn} and Z = {z1, . . . , zn} be two sets of input variables.

Let F(X) = F(x1, . . . , xn) be the field of rational functions in the variables {x1, . . . , xn},
over F. Let f̃1, . . . , f̃n ∈ F[X,Z] be the polynomials explicitly defined from f in Subsec-
tion 3.3, using r = 1. Note that the total-degree of these polynomials in the set of variables
Z is 1 (by the definition of f̃1, . . . , f̃n). We can think of the polynomials f̃1, . . . , f̃n as mem-
bers of the ring of polynomials F(X)[z1, . . . , zn], that is, polynomials in the set of variables
Z, over the field F(X). Note, that f̃1, . . . , f̃n ∈ F(X)[Z] are linear polynomials (as their
total-degree in the set of variables Z is 1).

Assume for a contradiction that there exists an arithmetic circuit Φ, over F, of depth d and
size s, for the n polynomials f̃1, . . . , f̃n ∈ F[X,Z]. We can think of Φ as an arithmetic circuit
for f̃1, . . . , f̃n, over the field F(X) and set of input variables Z, i.e., an arithmetic circuit for
f̃1, . . . , f̃n ∈ F(X)[Z]. By Proposition 2.5, we can assume without loss of generality that Φ
is in a normal-linear-form, (see Definition 2.4). That is, there is an arithmetic circuit Ψ, of
depth d and size s, in a normal-linear-form, that computes f̃1, . . . , f̃n, over the field F(X)
and set of input variables Z. Moreover, by the proof of Proposition 2.5, we can assume that
the labels of the edges in Ψ are polynomials in F[X], rather than rational functions in F(X).

10Recall that we think of the integers as members of every field, by the inductive definition n = (n−1)+1.

31

(This is true because in the proof of Proposition 2.5, the labels of the edges in Ψ are defined
from the labels of the edges in Φ without using divisions). Denote by G = GΨ, the circuit
graph of Ψ (see Definition 2.1).

By Proposition 3.4, the mapping ΓG : F
s → F

m is a polynomial-mapping of degree d.
Hence, since f is (s, d)-elusive, there exists (a1, . . . , an) ∈ F

n, such that, f(a1, . . . , an) 6∈
Image(ΓG).

By substituting in the circuit Ψ the values x1 = a1, . . . , xn = an, we obtain an arith-
metic circuit of size s and depth d, over F, with circuit-graph G, for the n polynomials
f̃1|a, . . . , f̃n|a ∈ F[Z]. (Note that when we substitute x1 = a1, . . . , xn = an, we do not
introduce divisions-by-zero, because the labels of the edges in Ψ are polynomials in F[X],
rather than rational functions in F(X)). Note that by Proposition 3.5, f̃1|a, . . . , f̃n|a ∈ M.
Hence, by Proposition 3.1, H((f̃1|a, . . . , f̃n|a)) ∈ Image(ΓG). Hence, by Proposition 3.5,
f(a1, . . . , an) = H((f̃1|a, . . . , f̃n|a)) ∈ Image(ΓG), which is a contradiction.

Assume now that G is a general field, extending F, and assume that f is (s, d)-elusive
over G. By the part that we already proved (i.e., the case G = F), we know that any depth-d
arithmetic circuit, over G, for the n polynomials f̃1, . . . , f̃n is of size > s. But any arithmetic
circuit over F is in particular an arithmetic circuit over G. Thus, any depth-d arithmetic
circuit, over F, for the n polynomials f̃1, . . . , f̃n is of size > s. (Formally, as before, we
need to verify that the polynomials f̃1, . . . , f̃n remain the same polynomials when we work
over G, rather than over F. This can be easily verified, as by the definition of f̃1, . . . , f̃n,
their coefficients are just the corresponding coefficients from the polynomials f1, . . . , fm, and
hence they do not depend on the field).

4 Lower Bounds for Bounded-Depth Circuits

4.1 A Construction of an Elusive Polynomial-Mapping

For an integer k, denote by [k] the set {1, . . . , k}. Let n be a prime, and let m = n2. We
identify the set [m] with [n] × [n] (by the lexicographic order). Let 1 ≤ d ≤ (log2 n)/100 be
an integer. Let d′ = 5d. Let X = {xi,j}i∈[d′],j∈[n] be a set of n · d′ input variables. For every
(a, b) ∈ [n] × [n] = [m], define a polynomial

f(a,b)(x1,1, . . . , xd′,n) =
d′

∏

i=1

xi,a+i·b

where the sum a + i · b, (as well as all other sums of this sort that appear below), is taken
modulo n. Let f = (f(1,1), f(1,2), . . . , f(n,n)). Note that for every field G, we can view f as a
polynomial mapping f : G

n·d′ → G
m.

Lemma 4.1. Let n be a prime, and let m = n2. Let d be an integer, s.t., 1 ≤ d ≤
(log2 n)/100. Let d′ = 5d. Let G be a field of size larger than m (e.g., an infinite field).
Then, the polynomial mapping f : G

n·d′ → G
m (as defined above) is (s, d)-elusive (see

Definition 1.1), where s = bn1+1/(2d)c.

32

Proof. Let r = bn1−1/(2d)c. For a set Q ⊂ [n] × [n], denote

fQ =
∏

(a,b)∈Q

f(a,b) =
∏

(a,b)∈Q

∏

i∈[d′]

xi,a+i·b

We say that Q ⊂ [n] × [n] is retrievable, if fQ determines Q, that is, Q is retrievable if for
every Q′ 6= Q, we have fQ′ 6= fQ.

Claim 4.2. Let Q ⊂ [n]× [n] be a random subset of size r. Then, with probability of at least
a half, Q is retrievable.

Proof. Let us first prove the following claim.

Claim 4.3. If for every (a, b) ∈ [n] × [n] \ Q, at least one of the variables in {xi,a+i·b}i∈[d′]

doesn’t appear in the monomial fQ, then the set Q is retrievable.

Proof. Let Q′ ⊂ [n] × [n] be such that fQ′ = fQ. We will show that Q′ = Q.

For every (a, b) ∈ [n]× [n]\Q, at least one of the variables in {xi,a+i·b}i∈[d′] doesn’t appear
in the monomial fQ = fQ′ , and hence (a, b) 6∈ Q′. Thus Q′ ⊆ Q. Since the total-degrees of
fQ and fQ′ are the same, |Q′| = |Q|. Hence, Q′ = Q.

It is hence enough to show that with probability (over Q) of at least 1/2, for every
(a, b) ∈ [n] × [n] \ Q, at least one of the variables in {xi,a+i·b}i∈[d′] doesn’t appear in the
monomial fQ.

A variable xi,j appears in the monomial fQ iff there exists (a′, b′) ∈ Q, such that, j =
a′ + i · b′. Hence, a variable xi,a+i·b appears in the monomial fQ iff there exists (a′, b′) ∈ Q,
such that, a + i · b = a′ + i · b′, that is, (a′ − a) + i · (b′ − b) = 0. Denote by la,b,i the line
{(a′, b′) ∈ [n] × [n] : (a′ − a) + i · (b′ − b) = 0}. Thus, a variable xi,a+i·b appears in the
monomial fQ iff Q ∩ la,b,i 6= ∅.

Thus, for (a, b) ∈ [n] × [n], the statement “at least one of the variables in {xi,a+i·b}i∈[d′]

doesn’t appear in the monomial fQ” is equivalent to the statement “there exists i ∈ [d′],
such that, Q ∩ la,b,i = ∅”.

Fix (a, b) ∈ [n]× [n]. Note that for different i1, i2 ∈ [d′], the two lines la,b,i1 , la,b,i2 intersect
only at the point (a, b). Hence, the probability, over Q, s.t., (a, b) 6∈ Q, for the event: “for
every i ∈ [d′], Q ∩ la,b,i 6= ∅”, is at most

[|Q| · (n − 1)

(n2 − 1)

]d′

≤ n−d′/(2d) ≤ n−2/2

Thus, for every (a, b) ∈ [n] × [n], the probability, over Q, for the event: “(a, b) 6∈ Q, and
for every i ∈ [d′], Q ∩ la,b,i 6= ∅” is at most n−2/2.

By the union bound, with probability, (over Q), of at most 1/2, there exists (a, b) ∈
[n] × [n], such that: (a, b) 6∈ Q, and for every i ∈ [d′], Q ∩ la,b,i 6= ∅.

Thus, with probability, (over Q), of at least 1/2, for every (a, b) ∈ [n] × [n], either
(a, b) ∈ Q, or there exists i ∈ [d′], such that, Q ∩ la,b,i = ∅.

Thus, with probability of at least 1/2, the set Q is retrievable.

33

Denote by L the set of all multilinear homogenous polynomials Λ : G
m → G of total-

degree exactly r, such that, every monomial that appears in Λ (with coefficient different
than 0) corresponds to a retrievable set Q ⊂ [n] × [n] = [m]. Thus, by Claim 4.2, L is a
vector space (over G), of dimension ≥

(

m
r

)

/2 ≥
(

m
r

)r ≥ sr.

Claim 4.4. For every Λ ∈ L, other than the 0 polynomial, the polynomial Λ ◦ f : G
n·d′ → G

is not the 0 polynomial.

Proof. Λ ◦ f : G
n·d′ → G is a linear combination of monomials fQ (in the n · d′ variables

{xi,j}i∈[d′],j∈[n]), where Q ⊂ [n] × [n] is a retrievable set of size r. Since for every two
different retrievable sets Q1, Q2, the monomials fQ1 , fQ2 are different monomials (in the n ·d′

variables {xi,j}i∈[d′],j∈[n]), there are no cancellations of monomials, and hence the polynomial
Λ ◦ f cannot be the 0 polynomial.

Fix Γ : G
s → G

m to be a polynomial-mapping of degree d. Thus, for every Λ ∈ L, the
polynomial Λ ◦ Γ : G

s → G is of total-degree at most r · d.

Denote by K the set of all polynomials from G
s to G of total-degree at most r ·d. Thus, K

is a vector space (over G), of dimension ≤
(

s+r
r

)d ≤ (s+r)r·d

(r!)d ≤ (2s)r·d

(r/e)r·d ≤
(

2es
r

)r·d ≤ (6n)r < sr.

For a fixed Γ : G
s → G

m (of degree d), the mapping Λ → Λ ◦ Γ (where Λ ∈ L) is a
linear mapping from L to K. Hence, since dim(L) > dim(K), there exist Λ 6= 0, such that,
Λ ◦ Γ = 0. Fix ΛΓ to be that Λ.

By Claim 4.4, ΛΓ ◦ f is not the 0 polynomial. Hence, since |G| ≥ m and since the degree
of ΛΓ ◦ f is smaller than m, the function ΛΓ ◦ f : G

n·d′ → G is not the 0 function. Since the
function ΛΓ ◦ Γ is the 0 function, Image(f) 6⊂ Image(Γ).

Since this is true for every polynomial-mapping Γ : G
s → G

m, of degree d, the polynomial-
mapping f is (s, d)-elusive, by definition.

4.2 The Lower Bound

Let n be a prime. Let 1 ≤ d ≤ (log2 n)/100 be an integer. Let d′ = 5d. Let {xi,j}i∈[d′],j∈[n]

be a set of n · d′ input variables. For every (a, b) ∈ [n] × [n], define (as in Subsection 4.1),

f(a,b)(x1,1, . . . , xd′,n) =
∏

i∈[d′]

xi,a+i·b

(where the sum a + i · b is taken modulo n).

Let {z1, . . . , zn}, {w1, . . . , wn}, be two sets of input variables. Define, for every a ∈ [n],

f̃a =
∑

b∈[n]

zb · f(a,b)

Define,

f̃ =
∑

a∈[n]

wa · f̃a

34

Note that these definitions are consistent with the definitions in Subsection 3.3.

Note that every f̃a is a polynomial in n · (d′ + 1) variables, and is of total-degree d′ + 1,
and f̃ is a polynomial in n · (d′ + 2) variables, and is of total-degree d′ + 2.
Corollary 4.5. Let n be a prime, and let 1 ≤ d ≤ (log2 n)/100 be an integer. Any depth-
d arithmetic circuit, over any field F, for the n polynomials (of total-degree 5d + 1 each)
f̃1, . . . , f̃n : F

n·(5d+1) → F, (as defined above), is of size ≥ n1+1/(2d).

Proof. Let G be an infinite field extending F.

The proof follows immediately by Proposition 3.11, Lemma 4.1, and the trivial observa-
tion that an (s, d)-elusive polynomial-mapping stays (s, d)-elusive, when padded by zeros.

Corollary 4.6. Let n be a prime, and let 1 ≤ d ≤ (log2 n)/100 be an integer. Any
depth-bd/3c arithmetic circuit, over any field F, for the polynomial (of total-degree 5d + 2)
f̃ : F

n·(5d+2) → F, (as defined above), is of size ≥ n1+1/(2d)/5.

Proof. Baur and Strassen proved that if a polynomial (f̃) can be computed by an arithmetic
circuit of size s′ and depth d′, then all partial derivatives of that polynomial can be computed
by one arithmetic circuit of size 5s′ and depth 3d′ [BS83].

Thus the proof follows immediately by Corollary 4.5.

5 Arithmetic Circuits and Polynomial-Mappings: Part II

In this section, we describe and prove our main results for polynomial-mappings f that elude
polynomial-mappings Γ of degree 2. The main results appear in Subsection 5.4.

5.1 Notation

Let F be a field. Let n, r be integers. We fix m to be the number of monomials of total-degree
exactly r in n variables, that is, m =

(

n+r−1
r

)

. Note that r is not necessarily a constant,
and may be a function of n. In general, we think of all parameters as functions of the basic
parameter n. We assume that 3 ≤ r ≤ n, and we assume for simplicity that n is a power
of 2. For an integer k, denote by [k] the set {1, . . . , k}.

Let Z = {z1, . . . , zn} be a set of n input variables. Let M be the set of all monomials of
total-degree exactly r in the variables {z1, . . . , zn}. Note that |M | = m. We can identify the
set M with the set [m], by the lexicographic order of monomials. Formally, let h : M → [m]
be the lexicographic order of monomials.

We denote by M the set of all homogenous polynomials in F[Z] of total-degree exactly r.
We identify the vector space M = F

M with the vector space F
[m] (by the bijection h between

the bases). Formally, we denote this homomorphism by H : M → F
m. Intuitively, this means

that we think of a vector in F
m as a polynomial in M, and vice versa. Each coordinate of

the vector in F
m corresponds to the coefficient of one monomial in the polynomial.

35

Denote by Dn,r, the set of homogenous circuit-graphs G (see Section 2), of syntactic-
degree r, over the set of input variables Z = {z1, . . . , zn}, such that G has a single output-
gate and is in a normal-depth-4-form (see Section 2). For a circuit-graph G ∈ Dn,r, denote
by S(G), the number of product-gates in G at the level above the leaves (that is, the number
of product-gates that are connected by an edge to a leaf).

5.2 The Polynomial-Mapping ΓG : F
s → F

m

Let G ∈ Dn,r. That is, G is a homogenous circuit-graph, of syntactic-degree r, over the
set of input variables Z = {z1, . . . , zn}, such that G has a single output-gate, and is in a
normal-depth-4-form. Denote, s = S(G), that is, the number of product-gates in G at the
level above the leaves. (Assume without loss of generality that s ≥ n).

Let Φ be an arithmetic circuit over F, with circuit-graph GΦ = G. Without loss of
generality, we assume that in the circuit Φ, all edges are labelled by 1, except for the edges
that leave product-gates at the level above the leaves. (Otherwise, if an edge that reaches a
product-gate at the level above the leaves is labelled by α 6= 1, we just change its label to 1
and multiply the label of the edge that leaves that product-gate by α. Also, since G is a
tree, we can assume without loss of generality that edges at upper levels are labelled by 1).
Denote the labels of the s edges that leave product-gates at the level above the leaves by
y1, . . . , ys.

(Intuitively, since Φ is in a normal-depth-4-form, its computation can be presented as
a homogenous sum,

∑

i PiQi, where Pi, Qi are homogenous polynomials of degree at most
2r/3. Intuitively, the labels y1, . . . , ys are just the coefficients of all the monomials in all the
polynomials Pi, Qi).

The circuit Φ computes a homogenous polynomial in F[Z] of total-degree exactly r, (that
is, a polynomials in M), where the coefficients in this polynomial depend on the labels
y1, . . . , ys. Since we think of a polynomial in M as a point in F

m, we obtain for every point
(y1, . . . , ys) ∈ F

s, a point in F
m.

Formally, we define a mapping ΓG : F
s → F

m, as follows. Given y1, . . . , ys ∈ F, let Φ be
an arithmetic circuit over F, with circuit-graph GΦ = G, such that, the labels of all edges
in Φ are 1, except for edges that leave product-gates at the level above the leaves, and the
labels of the s edges that leave product-gates at the level above the leaves are y1, . . . , ys.
Denote the polynomial computed by Φ by g ∈ M (note that this polynomial depends on
the labels y1, . . . , ys). Define,

ΓG(y1, . . . , ys) = H(g).

Note that the output of the circuit Φ can be viewed as a polynomial in both z1, . . . , zn and
y1, . . . , ys. That is, we can think of g as a polynomial in the input variables z1, . . . , zn, with
coefficients that are polynomials in the input variables y1, . . . , ys. Therefore, the functions
(ΓG)1, . . . , (ΓG)m are polynomials in F[y1, . . . , ys]. That is, ΓG is a polynomial mapping.
Moreover, it is straightforward to prove (formally, by induction on the circuit) that the
polynomials (ΓG)1, . . . , (ΓG)m do not depend on the field F, but only on its characteristic
(intuitively, this is obvious because all the coefficients in these polynomials are derived by

36

a sequence of sum and product operations on the constants 0,1, and are hence members of
the minimal subfield of F that contains 0,1).
Proposition 5.1. Let G ∈ Dn,r. For every g ∈ M, we have: H(g) ∈ Image(ΓG) iff there
exists an arithmetic circuit Φ, (over F), with GΦ = G, for the polynomial g.

Proof. If H(g) ∈ Image(ΓG) then obviously, by the definition of ΓG, there exists an arithmetic
circuit Φ, (over F), with GΦ = G, for the polynomial g.

If there exists an arithmetic circuit Φ, (over F), with GΦ = G, for the polynomial g,
without loss of generality, we assume that in the circuit Φ, all edges are labelled by 1, except
for edges that leave product-gates at the level above the leaves.

Denote the labels of the s edges in Φ that leave product-gates at the level above the
leaves by α1, . . . , αs. Then, by the definition of ΓG, we have ΓG(α1, . . . , αs) = H(g).

Proposition 5.2. Let G ∈ Dn,r. Then, the mapping ΓG : F
s → F

m (where s = S(G) and
m =

(

n+r−1
r

)

) is a (homogenous) polynomial-mapping of degree 2.

Moreover, given G, one can construct ΓG in time poly(s,m) in the following sense. There
exists a poly(s,m)-time Turing machine, that on input G outputs (all the coefficients of) the
m polynomials (ΓG)1, . . . , (ΓG)m ∈ F[y1, . . . , ys], and such that, all the coefficients in these
polynomials are in {0, 1}.

Proof. Let Φ be an arithmetic circuit over F, with circuit-graph GΦ = G, such that, in Φ,
all edges are labelled by 1, except for edges that leave product-gates at the level above the
leaves, and the labels of the s edges that leave product-gates at the level above the leaves
are y1, . . . , ys.

Since Φ is in a normal-depth-4-form, its computation can be presented as a homogenous
sum, g =

∑

i PiQi, where Pi, Qi are homogenous polynomials of degree at most 2r/3. Note
that the labels y1, . . . , ys are just the coefficients of all the monomials in all the polynomials
Pi, Qi.

Thus, the coefficients of the monomials of g are homogenous polynomials of degree 2 in
the labels y1, . . . , ys, and are in {0, 1}. Moreover, these coefficients can be computed in time
polynomial in s,m.

Proposition 5.3. For every n, r,m, s′, s.t., 3 ≤ r ≤ n ≤ s′ and m =
(

n+r−1
r

)

, there exists a

circuit-graph G ∈ Dn,r, with S(G) = O(s′ ·
(

n+r′−1
r′

)

· r3), and Size(G) = O(s′ ·
(

n+r′−1
r′

)

· r4),
where r′ = b2r/3c, such that:

1. ΓG : F
s → F

m (where s = S(G)) is a (homogenous) polynomial-mapping of degree 2.

2. For every g ∈ M, if there exists an arithmetic circuit of size s′ (over F) for the
polynomial g, then H(g) ∈ Image(ΓG).

3. For every g ∈ M, if H(g) ∈ Image(ΓG), then there exists an arithmetic circuit Φ,
(over F), with GΦ = G, for the polynomial g.

37

Moreover, one can construct G, ΓG in time poly(s,m) in the following sense. There exists
a poly(s,m)-time Turing machine, that on input n, r, s′, outputs G and (all the coefficients
of) the m polynomials (ΓG)1, . . . , (ΓG)m ∈ F[y1, . . . , ys], and such that, all the coefficients in
these polynomials are in {0, 1}.

Proof. Let G be the circuit-graph from Proposition 2.9, with parameters n, s′, r, that is, a
universal circuit-graph for n-inputs and one-output circuits of size s′ that compute homoge-
nous polynomials of degree r. Denote s = S(G), and note that S(G) = O(s′ ·

(

n+r′−1
r′

)

· r3),

and Size(G) = O(s′ ·
(

n+r′−1
r′

)

· r4). By Proposition 2.9, G is in a normal-depth-4-form,
and note that G is of syntactic-degree r. Hence, by Proposition 5.2, ΓG : F

s → F
m is a

(homogenous) polynomial-mapping of degree 2.

Let g ∈ M. Assume that there exists an arithmetic circuit of size s′ (over F) for the poly-
nomial g. Then, by Proposition 2.9, there exists an arithmetic circuit Φ, for the polynomial
g, such that GΦ = G. Thus, by Proposition 5.1, H(g) ∈ Image(ΓG).

The third claim is a special case of Proposition 5.1 (and is restated here for completeness).
The moreover part follows immediately from the moreover parts of Proposition 2.9 and
Proposition 5.2.

5.3 The Polynomial f̃

Let X = {x1, . . . , xn} be an additional set of input variables. Let f = (f1, . . . , fm), where
f1, . . . , fm ∈ F[x1, . . . , xn], be a polynomial-mapping f : F

n → F
m. Intuitively, since we

think of a point in F
m as a polynomial in the set of variables Z, we can think of f as a

polynomial in the sets of variables X,Z.

Formally, given f , we define a polynomial f̃ ∈ F[X,Z], by

f̃(x1, . . . , xn, z1, . . . , zn) =
∑

q∈M

fh(q)(x1, . . . , xn) · q =
∑

j∈[m]

fj(x1, . . . , xn) · h−1(j).

In other words, for every monomial qx in the variables {x1, . . . , xn} and monomial qz ∈ M ,
the coefficient of the monomial qxqz in f̃ is simply the coefficient of the monomial qx in fh(qz).

(For monomials qx, qz, such that qz 6∈ M , the coefficient of the monomial qxqz in f̃ is 0).

For a = (a1, . . . , an) ∈ F
n, denote by f̃ |a ∈ F[Z], the polynomial f̃ ∈ F[X,Z], after the

substitution x1 = a1, . . . , xn = an.
Proposition 5.4. ∀a ∈ F

n, we have, f̃ |a ∈ M, and H(f̃ |a) = f(a).

Proof. The proof is straightforward from the definitions. For every a = (a1, . . . , an) ∈ F
n,

f̃ |a(z1, . . . , zn) = f̃(a1, . . . , an, z1, . . . , zn) =
∑

j∈[m]

fj(a) · h−1(j) ∈ M.

Thus,
H

(

f̃ |a
)

= H
(∑

j∈[m] fj(a) · h−1(j)
)

=
(

f1(a), . . . , fm(a)
)

= f(a)

38

Proposition 5.5. If f = (f1, . . . , fm) is poly(n)-definable (see Definition 1.3), then the
polynomial f̃ ∈ F[X,Z] is poly(n)-definable.

Proof. Similar to the proof of Proposition 3.6.

5.4 The Route to Lower Bounds

In this subsection, we prove our main results for polynomial-mappings f that elude polynomial-
mappings Γ of degree 2. The results are given by four propositions and corollaries.

All four propositions and corollaries are only interesting for s < m (although this con-
dition is not stated explicitly). Recall that we think of all the parameters (r, s,m, etc.) as
functions of the basic parameter n.

Recall that given a polynomial-mapping f : F
n → F

m, and given a field extension G ⊃ F,
we can think of f as a polynomial-mapping f : G

n → G
m. This is because we assume

that a polynomial mapping f : F
n → F

m is given as a tuple (f1, . . . , fm) of polynomials in
F[x1, . . . , xn] ⊂ G[x1, . . . , xn] (see the discussion in Subsection 1.4).
Proposition 5.6. For integers 3 ≤ r ≤ n ≤ s′, and m =

(

n+r−1
r

)

, and r′ = b2r/3c, let

ΓG : F
s → F

m, where s = O(s′ ·
(

n+r′−1
r′

)

· r3), be the (homogenous) polynomial-mapping of
degree 2 from Proposition 5.3. Let f : F

n → F
m be a polynomial-mapping.

If over some field extension G ⊇ F, (e.g., G = F),

Image(f : G
n → G

m) 6⊂ Image(ΓG : G
s → G

m),

then any arithmetic circuit (over F) for the polynomial f̃ : F
2n → F (explicitly defined from

f in Subsection 5.3), is of size > s′.

Proof. Let us first prove the proposition for G = F.

By Proposition 5.3, for every g ∈ M, if there exists an arithmetic circuit of size s′ (over F)
for the polynomials g, then H(g) ∈ Image(ΓG).

Assume for a contradiction that there exists an arithmetic circuit (over F) of size s′, for
the polynomial f̃ : F

2n → F. By substituting in this circuit x1 = a1, . . . , xn = an, we obtain
an arithmetic circuit of size s′ for the polynomial f̃ |a, (where a = (a1, . . . , an) ∈ F

n), and
note that by Proposition 5.4, f̃ |a ∈ M. Hence, by Proposition 5.3, (for every a1, . . . , an ∈ F),
H(f̃ |a) ∈ Image(ΓG). Thus, by Proposition 5.4, for every a1, . . . , an ∈ F,

f(a1, . . . , an) = H(f̃ |a) ∈ Image(ΓG).

That is,
Image(f) ⊂ Image(ΓG).

Assume now that G is a general field, extending F, and assume that,

Image(f : G
n → G

m) 6⊂ Image(ΓG : G
s → G

m).

39

By the part that we already proved (i.e., the case G = F), we know that any arithmetic circuit
over G, for the polynomial f̃ , is of size > s′. But any arithmetic circuit over F is in particular
an arithmetic circuit over G. Thus, any arithmetic circuit over F for the polynomial f̃ is of
size > s′. (Formally, we need to verify that the polynomials f̃ and (ΓG)1, . . . , (ΓG)m remain
the same polynomials when we work over G, rather than over F. This can be easily verified.
For (ΓG)1, . . . , (ΓG)m, it was noted after the definition of ΓG that they do not depend on the
field at all, but only on its characteristic. As for f̃ , by its definition, its coefficients are just
corresponding coefficients from the polynomials f1, . . . , fm, and hence they do not depend
on the field G).

Corollary 5.7. Let 3 ≤ r ≤ n ≤ s, and m =
(

n+r−1
r

)

be integers. Let r′ = b2r/3c. Let
f : F

n → F
m be a polynomial-mapping. If over some field extension G ⊇ F, (e.g., G = F), f

is (s, 2)-elusive (see Definition 1.1), then any arithmetic circuit (over F) for the polynomial
f̃ : F

2n → F (explicitly defined from f in Subsection 5.3), is of size ≥

Ω

(

s
(

n+r′−1
r′

)

· r3

)

Proof. The proof follows immediately from Proposition 5.6. Let s′ = c · s/(
(

n+r′−1
r′

)

· r3),
where c is a small enough constant. If f is (s, 2)-elusive, then in particular it satisfies
Image(f) 6⊂ Image(ΓG), where ΓG is the mapping from Proposition 5.6.

Corollary 5.8. Let F be a field of characteristic different than 2. Let 3 ≤ r ≤ n ≤ s, and
m =

(

n+r−1
r

)

be integers. Let r′ = b2r/3c. Assume that s/
(

n+r′−1
r′

)

≥ nω(1). If there exists
a poly(n)-definable polynomial-mapping, f : F

n → F
m, such that, over some field extension

G ⊇ F, (e.g., G = F), f is (s, 2)-elusive (see Definition 1.3 and Definition 1.1), then any
arithmetic circuit for the permanent over F is of size ≥

(

s
(

n+r′−1
r′

)

· r3

)Ω(1)

Proof. Assume that such a polynomial-mapping f exists. By Proposition 5.5, and Corol-
lary 5.7, the polynomial f̃ : F

2n → F (explicitly defined from f in Subsection 5.3) is poly(n)-

definable, and any arithmetic circuit (over F) for f̃ is of size ≥ Ω
(

s/(
(

n+r′−1
r′

)

· r3)
)

.

Valiant proved that over any field of characteristic different than 2, the permanent is
a complete polynomial for the class V NP of poly(n)-definable polynomials [Val79] (see
also [Gat87, Bur00]). Hence, any arithmetic circuit of size s′ for the permanent implies an
arithmetic circuit of size poly(s′) for any other poly(n)-definable polynomial. Hence, any

arithmetic circuit for the permanent over F is of size s′ ≥
(

s/(
(

n+r′−1
r′

)

· r3)
)Ω(1)

.

Corollary 5.9. Let 3 ≤ r ≤ n ≤ s, and m =
(

n+r−1
r

)

be integers (and recall that we think
of r, s,m as functions of n). Let r′ = b2r/3c. Assume that there exists a poly(s,m)-time
Turing machine T , such that:

40

• The inputs for T are r, n, s,m and a (homogenous) polynomial-mapping Γ : F
s → F

m

of degree 2, given by all coefficients of the polynomials Γ1, . . . , Γm (that are assumed to
be in {0, 1}).

• The output of T is a poly(n)-definable polynomial-mapping f : F
n → F

m (described,
e.g., by an arithmetic circuit for the polynomial g that defines it in Definition 1.3),
s.t., over some field extension G ⊇ F, (e.g., G = F),

Image(f : G
n → G

m) 6⊂ Image(Γ : G
s → G

m).

Then, there exists a poly(s,m)-time Turing machine that on input n outputs a 2n-variables,
poly(n)-definable, polynomial f̃ (explicitly defined from f in Subsection 5.3, and described,
e.g., by an arithmetic circuit for the polynomial g that defines it in Definition 1.3), such
that, any arithmetic circuit for f̃ is of size ≥

Ω

(

s
(

n+r′−1
r′

)

· r3

)

Proof. The proof follows immediately from Proposition 5.6. Let s′ = c · s/(
(

n+r′−1
r′

)

· r3),
where c is a small enough constant. We run the Turing machine T on the polynomial-mapping
Γ = ΓG, where ΓG is the mapping from Proposition 5.6. Note that by Proposition 5.3, ΓG

can be constructed in time poly(s,m) (for details, see Proposition 5.3).

Acknowledgement

I am grateful to Zeev Dvir, Yael Tauman Kalai, Toni Pitassi, Omer Reingold, Amir Sh-
pilka, Avi Wigderson and Amir Yehudayoff, for very helpful conversations and comments at
different stages of this work.

References

[Ajt83] M. Ajtai. Σ1
1-Formulae on Finite Structures. Ann. Pure Appl. Logic 24: 1-48 (1983)

[ABRW00] M. Alekhnovich, E. Ben-Sasson, A. Razborov, A. Wigderson. Pseudorandom
Generators in Propositional Proof Complexity. SIAM J. Comput. 34(1): 67-88 (2004)
(preliminary version in FOCS 2000)

[AR01] M. Alekhnovich, A. Razborov. Lower Bounds for the Polynomial Calculus: Non-
Binomial Case. Proceedings of the Steklov Institute of Mathematics. 242: 18-35 (2003)
(preliminary version in FOCS 2001)

[Bur00] P. Burgisser. Completeness and Reduction in Algebraic Complexity Theory.
Springer-Verlag Berlin, (2000)

41

[BCS97] P. Burgisser, M. Clausen, M. A. Shokrollahi. Algebraic Complexity Theory.
Springer-Verlag Berlin, (1997)

[BS83] W. Baur, V. Strassen. The Complexity of Partial Derivatives. Theor. Comput. Sci.
22: 317-330 (1983)

[DDPW83] D. Dolev, C. Dwork, N. Pippenger, A. Wigderson. Superconcentrators, Gener-
alizers and Generalized Connectors with Limited Depth. STOC 1983: 42-51

[FSS81] M. L. Furst, J. B. Saxe, M. Sipser. Parity, Circuits, and the Polynomial-Time
Hierarchy. Mathematical Systems Theory 17(1): 13-27 (1984) (preliminary version in
FOCS 1981)

[Gat87] J. von zur Gathen. Feasible Arithmetic Computations: Valiant’s Hypothesis. J.
Symbolic Computation 4(2): 137-172 (1987)

[Gat88] J. von zur Gathen. Algebraic Complexity Theory. Ann. Rev. Computer Science 3:
317-347 (1988)

[GK98] D. Grigoriev, M. Karpinski. An Exponential Lower Bound for Depth 3 Arithmetic
Circuits. STOC 1998: 577-582

[GR98] D. Grigoriev, A. A. Razborov. Exponential Lower Bounds for Depth 3 Arithmetic
Circuits in Algebras of Functions over Finite Fields. Applicable Algebra in Engineering,
Communication and Computing 10(6): 465-487 (2000) (preliminary version in FOCS
1998)

[Has86] J. Hastad. Almost Optimal Lower Bounds for Small Depth Circuits, Advances in
Computing Research 5: 143-170 (1989) (preliminary version in STOC 1986)

[IK03] R. Impagliazzo, V. Kabanets. Derandomizing Polynomial Identity Tests Means Prov-
ing Circuit Lower Bounds. Computational Complexity 13(1-2): 1-46 (2004) (preliminary
version in STOC 2003)

[Lip75] R. J. Lipton. Polynomials with 0-1 Coefficients that Are Hard to Evaluate. SIAM
J. Comput. 7(1): 61-69 (1978) (preliminary version in FOCS 1975)

[Lok95] S.V. Lokam. Spectral Methods for Matrix Rigidity with Applications to Size-Depth
Tradeoffs and Communication Complexity. Journal of Computer and System Sciences
(2001) (preliminary version in FOCS 1995)

[Nis91] N. Nisan. Lower Bounds for Non-Commutative Computation. STOC 1991: 410-418

[NW95] N. Nissan, A. Wigderson. On the Complexity of Bilinear Forms. STOC 1995:
723-732

[Pud94] P. Pudlak. Communication in Bounded Depth Circuits. Combinatorica 14(2): 203-
216 (1994)

42

[Pud98] P. Pudlak. A Note on Using the Detrminant for Proving Lower Bounds on the Size
of Linear Circuits. Electronic Colloquium on Computational Complexity (ECCC), Report
No. 42, 1998.

[R02] R. Raz. On the Complexity of Matrix Product. SIAM J. Comput. 32(5) (2003)
(preliminary version in STOC 2002)

[R04a] R. Raz. Multi-Linear Formulas for Permanent and Determinant are of Super-
Polynomial Size. STOC 2004: 633-641

[R04b] R. Raz. Separation of Multilinear Circuit and Formula Size. Theory Of Computing
2(6) (2006) (preliminary version in FOCS 2004, title: Multilinear-NC1 6= Multilinear-
NC2)

[Razb87] A. A. Razborov. Lower Bounds on the Size of Bounded-Depth Networks over a
Complete Basis with Logical Addition (in Russian). Matematicheskie Zametki, 41(4):
598-607 (1987). English translation in Mathematical Notes of the Academy of Sci. of the
USSR 41(4): 333-338, 1987

[Razb95] A. A. Razborov. Bounded Arithmetic and Lower Bounds in Boolean Complexity.
Feasible Mathematics II. Progress in Computer Science and Applied Logic, 13: 344-386
(1995)

[RS01] R. Raz, A. Shpilka. Lower Bounds for Matrix Product in Bounded Depth Circuits
with Arbitrary Gates. SIAM J. Comput. 32(2): 488-513 (2003) (preliminary version in
STOC 2001)

[RY07] R. Raz, A. Yehudayoff. Multilinear Formulas, Maximal-Partition Discrepancy and
Mixed-Sources Extractors. Manuscript, 2007.

[Smo87] R. Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean
Circuit Complexity STOC 1987: 77-82

[Str74] V. Strassen. Polynomials with Rational Coefficients Which Are Hard to Compute.
SIAM J. Comput. 3(2): 128-149 (1974)

[Str75] V. Strassen. Die Berechnungskomplexitt der Symbolischen Differentiation von Inter-
polationspolynomen. Theor. Comput. Sci. 1(1): 21-25 (1975)

[SS91] V. Shoup, R. Smolensky. Lower Bounds for Polynomial Evaluation and Interpolation
Problems FOCS 1991: 378-383

[SW99] A. Shpilka, A. Wigderson. Depth-3 Arithmetic Circuits Over Fields of Characteristic
Zero. Computational Complexity 10(1): 1-27 (2001) (preliminary version in Conference
on Computational Complexity 1999)

[Val79] L. G. Valiant. Completeness Classes in Algebra STOC 1979: 249-261

[VSBR83] L. G. Valiant, S. Skyum, S. Berkowitz, C. Rackoff. Fast Parallel Computation of
Polynomials Using Few Processors. SIAM J. Comput. 12(4): 641-644 (1983)

43

[Yao85] A. C. C. Yao. Separating the Polynomial-Time Hierarchy by Oracles FOCS 1985:
1-10

44

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

