
Multiparty Communication Complexity of

Disjointness

Arkadev Chattopadhyay and Anil Ada∗

School of Computer Science

McGill University, Montreal, Canada

achatt3,aada@cs.mcgill.ca

December 19, 2007

Abstract

We extend the ’Generalized Discrepancy’ technique suggested by
Sherstov [8] to the ‘Number on the Forehead’ model of multiparty
communication. This allows us to prove strong lower bounds of nΩ(1)

on the communication needed by k players to compute the Disjoint-
ness function, provided k is a constant. In general, our method yields
strong bounds for functions induced by a symmetric predicate if the
approximation degree of the predicate is nΩ(1). Similar bounds have
been independently obtained recently by Lee and Shraibman.

In this note, we obtain a lower bound of nΩ(1) on the k-party random-
ized communication complexity of the Disjointness function in the ‘Number
on the Forehead’ model of multiparty communication for constant k. The
previous best lower bound for three players until recently was Ω(log n). We
are told that this has been recently pushed to nΩ(1) by Lee and Shraibman
independent of our work. Our strong bounds follow surprisingly in a sim-
ple way from the Approximation/Orthogonality principle in the beautiful
recent work of Sherstov [8] and the technique used to prove the Multiparty
Degree-Discrepancy Lemma by Chattopadhyay [4].

We obtain our bounds developing a technique that extends the classical
discrepancy method to what is called the Generalized Discrepancy Method.
This idea also originates in the work of [8] and the earlier work of Razborov
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[7]. It was known that the classical discrepancy method fails to give stronger
than log n lower bounds for Disjointness.

Our strong bounds on Disjointness has consequences for proof complexity
(ex. see [10, 3, 2]).

1 Extension of the classical discrepancy method

Babai, Nisan and Szegedy introduced the following notion of discrepancy on
boolean functions: The key combinatorial object that arises in the study of
multiparty communication is a cylinder-intersection. A k-cylinder in the ith
dimension is a subset S of Y1 × · · · ×Yk with the property that membership
in S is independent of the ith co-ordinate. A set S is called a cylinder-
intersection if S = ∩ki=1Si, where Si is a cylinder in the ith dimension.
Equivalently, a k-cylinder in the ith dimension can be viewed as a function
φi : ({0, 1}n)k → {0, 1} such that φi(y1, ..., yk) does not depend on yi. A
cylinder intersection is viewed as the product

φ(y1, ..., yk) = φ1(y1, ..., yk)...φ
k(y1, ..., yk).

An important measure, defined for a function f : Y1× ...×Yk → {−1, 1},
is its discrepancy. With respect to any probability distribution µ over Y1 ×
· · · × Yk and cylinder intersection φ, define

discφk,µ(f) =

∣

∣

∣

∣

Pr
µ

[

f(y1, . . . , yk) = 1 ∧ φ(y1, . . . , yk) = 1
]

− Pr
µ

[

f(y1, . . . , yk) = −1 ∧ φ(y1, . . . , yk) = 1

(1)

Since f is -1/1 valued, it is not hard to verify that equivalently:

discφk,µ(f) =

∣

∣

∣

∣

Ey1,...,yk∼µf(y1, . . . , yk)φ(y1, . . . , yk)

∣

∣

∣

∣

(2)

The discrepancy of f w.r.t. µ, denoted by disck,µ(f) is maxφdiscφk,µ(f).
For removing notational clutter, we will often drop µ from the subscript
when the distribution is clear from the context. Let Rεk(f) denote the k-
party randomized communication complexity of f with (two-sided) error
probability ε. We now state the well-known connection between discrepancy
and the randomized communication complexity of a function:
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Theorem 1 (see [1, 5]) Let 0 < ε < 1/2 be any real and k ≥ 2 be any

integer. For every function f : Y1 × ...×Yk → {1,−1} and distribution µ on

inputs from Y1 × · · · × Yk,

R
1/2−ε
k (f) ≥ log

(

2ε

disck,µ(f)

)

(3)

BNS estimated the discrepancy of functions like GIPk w.r.t k-wise cylin-
der intersections and the uniform distribution. These estimates resulted in
the first strong lower bounds in the k-party model via Theorem 1. Unfortu-
nately, the applicability of Theorem 1 is limited to those functions that have
small discrepancy. Disjointess is a classical example of a function that does
not have small discrepancy. For dealing with such functions we will need to
generalize the discrepancy method. First, extend the definition of discrep-
ancy provided in (2) to real valued functions. For two functions f, g : X → R

and a distribution µ on {0, 1}n, define

Corrµ(f, g) =
∣

∣Ex∼µf(x)g(x)
∣

∣ (4)

Lemma 2 (Generalized Discrepancy Method) Denote X = Y1 × ...×
Yk. Let f : X → {−1, 1} and g : X → {−1, 1} be such that under some

distribution µ we have Corrµ(f, g) > ε. Then

Rδk(f) ≥ log

(

ε− 2δ

disck,µ(g)

)

(5)

Proof: Let P be a k-party randomized protocol that computes f with error
probability of at most δ and cost c. Then for every distribution µ over the
inputs, we can derive a deterministic k-player protocol P ′ for f that errs only
on at most δ fraction of the inputs (w.r.t µ) and has cost c. Take µ to be
a distribution satisfying the correlation inequality. We know P ′ partitions
the input space into at most 2c monochromatic cylinder intersections. Let
C denote this set of cylinder intersections. Then,

ε <
∣

∣Ex∼µf(x)g(x)
∣

∣

=
∣

∣

∑

x

f(x)g(x)µ(x)
∣

∣

≤
∣

∣

∑

x

P ′(x)g(x)µ(x)
∣

∣ +
∣

∣

∑

x

(f(x) − P ′(x))g(x)µ(x)
∣

∣

Note that P ′ is a constant over every cylinder intersection S in C. Therefore,
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ε <
∑

S∈C

∣

∣

∑

x∈S

P ′(x)g(x)µ(x)
∣

∣ +
∑

x

∣

∣g(x)
∣

∣

∣

∣f(x) − P ′(x)
∣

∣µ(x)

≤
∑

S∈C

∣

∣

∑

x∈S

g(x)µ(x)
∣

∣ +
∑

x

∣

∣f(x) − P ′(x)
∣

∣µ(x)

≤ 2cdisck,µ(g) + 2δ.

This gives us immediately (5).

2 Approximation Degree of boolean functions

We consider the vector space of functions from {0, 1}n → R. Equip this
space with the standard inner product < f, g >

< f, g >= Exf(x)g(x) (6)

For each S ⊆ [n], define χS(x) = (−1)
P

i∈S
xi . Then it is easy to verify

that the set of functions {χS |S ⊆ [n]} forms an orthonormal basis for this
inner product space, and so every f can be expanded in terms of its Fourier

coefficients

f(x) =
∑

S⊆[n]

f̂(S)χS(x) (7)

where f̂(S) is defined as < f,χS >. This expansion is unique and the
exact degree of f is defined to be largest d such that there exists S ⊆ [n]
with |S| = d and f̂(S) 6= 0.

A natural question is how large degree is needed if we want to simply ap-
proximate f well. Define the ε-approximate degree of f , denoted by degε(f)
to be the smallest integer d for which there exists a function φ of exact
degree d such that

max{0,1}n

∣

∣

∣

∣

f(x) − φ(x)

∣

∣

∣

∣

≤ ε

Sherstov [8] proves a beautiful result using linear programming duality
that we restate in an equivalent form:
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Lemma 3 Let f : {0, 1}m → R be given with degε(f) = d ≥ 1. Then there

exists g : {0, 1}m → {−1, 1} and a distribution µ on {0, 1}m such that:

Ex∼µg(x)χS(x) = 0 for |S| < d,

Corrµ(f, g) > ε.

The following restatement suits our needs here.

3 Using degree to generate a hard problem

Let f : {0, 1}m → R be any function (called the base function) on inputs
of length m. Let k ≥ 2 be any integer. We will create a function Fk that
takes as input a string x of length `k−1m for some suitable `, and a set of
bits that mask every bit of x except some m bits that are left unmasked.
Fk essentially computes f on the unmasked bits. Here it is convenient to
view x as a k-dimensional m× `× `× · · · × ` array. More precisely, define
Fk : X × ([`]m)k−1 → R, where X = {0, 1}`k−1m and Fk(x, S

1, . . . , Sk−1) =
f(x[1, S1[1], S2[1], . . . , Sk−1[1]], . . . , x[m,S1[m], S2[m], . . . , Sk−1[m]]) where the
Si are the masking inputs and we view each as a one dimensional array in
[`]m. Note that our construction is inspired by the construction of ‘pattern
matrices’ in [8].

It can be easily verified that the proof of the Multiparty Degree-Discrepancy
Lemma in [4], that extended the work of [9] yields the following :

Lemma 4 Let f : {−1, 1}m → {−1, 1} have the property that Ex∼µf(x)χS(x) =
0, for some probability distribution µ and all |S| < d, where d ≥ 2 is an

integer. Define a probability distribution λ on {0, 1}m`k−1 ×
(

[`]m
)k−1

as

λ(x, S1, . . . , Sk−1) = µk(x,S1,...,Sk−1)

`m(k−1)2m`k−1−m
where µk is the k-wise masked func-

tion induced by the base distribution µ.

(

disck,λ
(

Fk
)

)2k−1

≤
m

∑

j=d

(

(k − 1)m

j

)(

22k−1−1

`

)j

(8)

Hence, for ` ≥ 22k

(k − 1)em and d > 2,

disck,λ
(

Fk
)

≤ 1

2d/2k−1
(9)
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Proof: The starting point is to write the expression for discrepancy w.r.t an
arbitrary cylinder intersection φ,

discφk(Fk) =
∣

∣

∣

∣

∑

x,S1,...,Sk−1

Fk(x, S
1, . . . , Sk−1)φ(x, S1, . . . , Sk)

·λ(x, S1, . . . , Sk−1)

∣

∣

∣

∣

(10)

where φ is the intersection of k cylinders φ1, . . . , φk, and can be expressed
as below:

φ(x, S1, . . . , Sk) =

(

k−1
∏

i=1

φi(x, S1, . . . , Sk−i−1, Sk−i+1, . . . , Sk−1)
)

× φk(S1, . . . , Sk−1)

This changes to the more convenient expected value notation as follows:

discφk(Fk) = 2m
∣

∣

∣

∣

Ex,S1,...,Sk−1Fk(x, S
1, . . . , Sk−1)

×φ(x, S1, . . . , Sk−1)µS1,...,Sk−1

(

x
)

∣

∣

∣

∣

(11)

where, as before, (x, S1, . . . , Sk−1) is now uniformly distributed over {0, 1}m`k−1×
(

[`]m
)k−1

. Then, we use the trick of repeatedly combining triangle inequal-
ity with Cauchy-Schwarz exactly as done in Chattopadhyay[4] to obtain the
following:

(discφk(Fk))
2k−1 ≤

22k−1mES1
0 ,S

1
1 ,...,S

k−1
0 ,Sk−1

1
Gk

(

S1
0 , S

1
1 , . . . , S

k−1
0 , Sk−1

1

)

(12)

where,

Gk
(

S1
0 , S

1
1 , . . . , S

k−1
0 , Sk−1

1

)

=

∣

∣

∣

∣

E
x∈{0,1}m`k−1

∏

u∈{0,1}k−1

(

Fk(x, S
1
u1
, . . . , Sk−1

uk−1
)

× µS1
u1
,...,Sk−1

uk−1
(x)

)
∣

∣

∣

∣

(13)
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where µS1,...,Sk−1(x) = µk(x, S
1, . . . , Sk−1). As before we look at a fixed

Si0, S
i
1, for i = 1, . . . , k − 1. Let r = max{|S1

0 ∩ S1
1 |, . . . , |Sk−1

0 ∩ Sk−1
1 |}. We

now make two claims.

Claim 5

Gk
(

S1
0 , S

1
1 , . . . , S

k−1
0 , Sk−1

1

)

≤ 2(2k−1−1)r

22k−1m
(14)

Claim 6 Let r < d. Then,

Gk
(

S1
0 , S

1
1 , . . . , S

k−1
0 , Sk−1

1

)

= 0 (15)

We leave it to the reader to verify that Claim 5 and Claim 6 made above
can be deduced quite easily respectively from Claim 15 and Claim 16 given
in the Appendix section of [4]. Applying these two claims we obtain the
following:

(discφk(Fk))
2k−1

≤
m

∑

j=d

2(2k−1−1)j

×
∑

j1+···+jk−1=j

Pr
[

N1 = j1 ∧ · · · ∧Nk−1 = jk−1

]

(16)

where, N i = |Si0 ∩ Si1| for 1 ≤ i ≤ k − 1.
Substituting the value of the probability, we further obatin:

(discφk(Fk))
2k−1

≤
m

∑

j=d

2(2k−1−1)j

×
∑

j1+···+jk−1=j

(

m

j1

)

· · ·
(

m

jk−1

)

(`− 1)m−j1 · · · (`− 1)m−jk−1

`(k−1)m
(17)

Applying simple combinatorial identities as in [4], (17) leads to (8), prov-
ing the Lemma.

We will now apply the above Lemma, in conjunction with the General-
ized Discrepancy Method i.e. Lemma 2, to conclude the following:
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Theorem 7 Let f : {0, 1}m → {1,−1} be such that degε(f) = d ≥ 2.
Consider the k-wise masked function Fk. Then, for any δ > 0 and ` ≥
22k

(k − 1)em,

Rδk(Fk) ≥
d

2k−1
+ log(ε− 2δ) (18)

Proof: Applying Lemma 3 we obtain a function g and a distribution µ such
that Corrµ(f, g) > ε and Ex∼µg(x)χS(x) = 0 for |S| < d. These g and µ
satisfy the conditions of Lemma 4, therefore we have

disck,λ
(

Gk
)

≤ 1

2d/2k−1

where λ is obtained from µ as stated in Lemma 4.
It can be easily verified that Corrλ(Fk, Gk) = Corrµ(f, g) > ε. Thus,

by plugging the value of disck,λ
(

Gk
)

in (5) of the generalized discrepancy
method we get the desired result.

4 Approximability of symmetric functions

For any D : {0, 1, . . . , n} → {1,−1}, define

`0(D) ∈ {0, 1, . . . , bn/2c}

`1(D) ∈ {0, 1, . . . , dn/2e}
such that D is constant over the interval [`0(D), n − `1(D)] and `0(D) and
`1(D) are the smallest possible values for which this happens.

Paturi’s theorem provides bounds on the approximate degree of sym-
metric functions.

Theorem 8 (Paturi[6]) Let f : {0, 1}n → {1,−1} be any symmetric func-

tion induced from the predicate D : {0, . . . , n} → {1,−1}. Then,

deg1/3(f) = Θ
(
√

n(`0(D) + `1(D))
)

(19)

5 Disjointness and Other Symmetric Functions

Let f : {0, 1}n → {1,−1}. Define FComk : ({0, 1}n)k → {1,−1} such
that FComk (x1, x2, . . . , xk) = f(z) where z is the n-bit string obtained from
x1, ...xk in the following way: zi = x1i ∧ x2i ∧ · · · ∧ xki. Here zi denotes the
ith bit of z and xji denotes the ith bit of the string xj.

Given ψ : X1 × · · · × Xk → R, we associate the |X1| × · · · × |Xk| k-
dimensional input matrix Aψ where Aψ[x1, . . . , xk] = ψ(x1, . . . , xk).
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Observation 9 Let g : {0, 1}n → {−1, 1} be a symmetric function induced

from predicate D : {0, 1, . . . , n} → {−1, 1}. Let f : {0, 1}m → {−1, 1}
be another symmetric function such that f(z) = D(|z|). Then, AFk

is a

submatrix of AGCom

k

when n = m`k−1.

Note that if g is the NOR (the complemant of the OR function), then
GComk is precisely the famous k-wise DISJOINTNESS function denoted by
DISJk.

Theorem 10

Rδk(DISJk) = Ω
( n

1
2k

22ke(k − 1)2k−1

)

as long as δ < 1/6.

Proof: We let g : {0, 1}n → {−1, 1} be the NOR function. As in Observa-
tion 9, define f : {0, 1}m → {−1, 1} using g. Thus f is the NOR function
on m bits. Then AFk

is a submatrix of AGCom

k

for n = m`k−1. Thus for this

setting of parameters, Rδk(G
Com
k ) ≥ Rδk(Fk). By Theorem 7, we know that

Rδk(Fk) ≥
deg1/3(f)

2k−1
+ log(1/3 − 2δ) ≥ d

2k−1

for δ < 1/6 and ` ≥ 22k

(k − 1)em2. We know deg1/3(f) = Ω(
√
m) by

Theorem 8. Plugging in the values gives the result.

6 Conclusion

It is easy to verify that our method allows us to prove strong lower bounds
on the k-party communication complexity of every function induced by a
symmetric predicate whose approximation degree is nΩ(1).
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