
NP-Hard Sets are Exponentially Dense Unless

coNP ⊆ NP/poly

Harry Buhrman∗ John M. Hitchcock†

Abstract

We show that hard sets S for NP must have exponential density,

i.e. |S=n| ≥ 2nε
for some ε > 0 and infinitely many n, unless coNP ⊆

NP/poly and the polynomial-time hierarchy collapses. This result

holds for Turing reductions that make n1−ε queries.

In addition we study the instance complexity of NP-hard problems

and show that hard sets also have an exponential amount of instances

that have instance complexity nδ for some δ > 0. This result also

holds for Turing reductions that make n1−ε queries.

1 Introduction

The density of NP-complete and hard sets was an early object of study in
complexity theory. Assuming that P is not equal to NP, the real question
is how many instances are indeed hard? In principle it could be that P 6=
NP only because of a few instances that are hard to compute, but almost
all instances can be decided by an efficient algorithm. This question was
formalized and investigated in a large body of work starting with that of
Berman and Hartmanis [2], Meyer and Paterson [9], Fortune [4], Karp and
Lipton [7], Mahaney [8], and many others.

It is problematic for this question to just focus on a fixed NP-complete
set for the following reason. Suppose that P 6= NP, and suppose there is

∗CWI Kruislaan 409, 1098 SJ Amsterdam, the Netherlands, and University of Amster-

dam; e-mail:buhrman@cwi.nl. Supported by an NWO VICI grant.
†Department of Computer Science, University of Wyoming; e-mail:

jhitchco@cs.uwyo.edu. Supported in part by NSF grants 0515313 and 0652601.

1

Electronic Colloquium on Computational Complexity, Report No. 22 (2008)

ISSN 1433-8092

a machine M that runs in polynomial time on all but 2nε
many formulae

of length n. We can then solve SAT in randomized polynomial time, by
simple padding. Given any formula φ we can construct 2n many different
other formulae φ′

i of roughly the same length that are satisfiable if and only
if φ is satisfiable. It is easy to see that M will with high probability run
in polynomial time on a randomly chosen φi. For this reason the focus has
been on the density of all NP-complete or NP-hard problems. This simple
padding trick cannot work for an arbitrary NP-complete problem, since the
reduction can map the equivalent formula φi back to the original φ. Therefore
attention has been on the density of NP-complete and NP-hard sets under
various types of reductions.

Mahaney [8] showed that if there exists a sparse many-one hard set for
NP then P = NP. A set is sparse if for every length n it contains no more
than p(n) strings for some polynomial p. This result shows that many-one
hard sets for NP are super-polynomially dense unless P = NP. Mahaney’s
result has been extended to weaker notions of reductions, notably by Ogihara
and Watanabe for bounded truth-table reductions [10]. But it remains an
open question to show the same result for log(n)-truth-table reductions, let
alone for the more general Turing reductions. Karp and Lipton [7] showed
that if there exists a sparse Turing hard set for NP, or equivalently if NP is
in P/poly, then the polynomial-time hierarchy collapses to its second level
(Σp

2 = Πp
2). Hence Turing hard sets for NP are also super-polynomially dense

unless the polynomial-time hierarchy collapses.
In this paper we improve these results from sparse to subexponential den-

sity. A set S has subexponential density if for every ε > 0, ||S=n|| ≤ 2nε
for

almost all n. We show that if there exists an NP-hard set with subexponen-

tial density then coNP ⊆ NP/poly and by a result of Yap [12] it follows that
the polynomial-time hierarchy collapses to its third level (Σp

3 = Πp
3). Our

result holds for Turing reductions that make n1−ε queries (any ε > 0). This
shows that NP-hard sets have exponential density 2nε

for some ε > 0, unless
coNP ⊆ NP/poly. This is the best possible result for NP-hard sets with re-
spect to their density, since simple padding shows that for every ε > 0 there
exists an NP-hard set with density less than 2nε

. Our results make use of a
recent combinatorial lemma due to Fortnow and Santhanam [3].

Another way to make the notion of hard instances precise is that of in-

stance complexity due to Orponen et. al. [11]. The instance complexity of
an instance x with respect to some set A, ic(x : A), is the size of the small-
est (polynomial-time) program p that correctly decides x and for all other

2

instances either outputs no decision or the correct decision. It is easy to see
that ic(x : A) ≤ |x| + O(1). Strings with high instance complexity do not
have small efficient programs that decide them. The instance complexity of
NP-complete sets has been studied. The best known bound [11] is that if ev-
ery instance of SAT (or any NP-complete problem) has logarithmic instance
complexity, i.e. ic(φ : SAT) ≤ O(log |φ|) for all φ, then P = NP. We show
that if SAT has sublinear instance complexity, that is ic(φ : SAT) ≤ |φ|1−ε

for all φ and some ε > 0, then coNP ⊆ NP/poly.

2 Preliminaries

We shall consider decision problems for languages over the alphabet Σ =
{0, 1}. The length of a string x ∈ {0, 1}∗ is denoted |x|; λ denotes the empty
string. Given strings x, y, we denote with x · y the concatenation of x and
y: xy. We represent the pair <x, y> as the string x̄10y, where x̄ denotes x
with each of its characters doubled.

For a set B and number n, B=n = {x ∈ B | |x| = n} and B≤n = {x ∈ B |
|x| ≤ n}. The cardinality of a finite set C is denoted ||C||.

A set S has subexponential density if for every ε > 0, ||S=n|| ≤ 2nε
for

all but finitely many n. We write SUBEXPD for the class of languages
with subexponential density. A set is exponentially dense if it does not have
subexponential density.

An AND-function for a set A is a polynomial-time computable function
g such that for all strings x1, x2, . . . , xn, g(x1, x2, . . . , xn) ∈ A iff xi ∈ A for
all i. Similarly, and OR-function g satisfies g(x1, x2, . . . , xn) ∈ A iff xi ∈ A
for some i. We say that g has order s if |g(x1, . . . , xn)| = O

(

(
∑n

i=1 |xi|)
s
)

.
Observe that if g is an AND-function for A, then g is also an OR-function
for Ā.

3 Reductions

To introduce the technique we will begin with the easier case of many-one
reductions. This result has the corollary that if SAT many-one reduces to a
set of subexponential density, then coNP ⊆ NP/poly.

Theorem 3.1. Let A be any set that has an AND-function. If there is a set

S with subexponential density such that A ≤p
m S then A ∈ NP/poly.

3

Proof. Let g(x1, . . . , xn) be the AND-function for A. Let f be the many-one
reduction from A to S. We say that a string z ∈ S is NP-proof for x ∈ A,
with |x| = n, iff there exist x1, . . . , xn, such that for all i, |xi| = n and there
exists an i, with x = xi, and in addition f(g(x1, . . . , xn)) = z.

The idea is to show that there exists a string z1 ∈ S that is NP-proof
for half the strings in A=n. We will then recurse on the remaining strings
in A=n, for which z1 is not NP-proof, until we end up with a sequence of at
most n strings z1, . . . , zk such that for all x ∈ A=n there is an i such that zi is
NP-proof for x. These NP proofs serve as advice to show that A ∈ NP/poly.

First observe that if z is NP-proof for precisely t strings x ∈ A then

||{<x1, . . . , xn> | |xi| = n andf(g(x1, . . . , xn)) = z}|| ≤ tn (3.1)

Assume that f and g both run in time nc for some c. Let mn = n2c2 ,
hence |f(g(x1, . . . , xn))| ≤ mn. Since S has subexponential density, for large
enough n it holds that ||S≤mn || < 2n.

Let t be the largest such that some z1 is NP-proof for t elements of
length n in A. Since for every n-tuple <x1, . . . , xn> with for all i, xi ∈ A,
f(g(<x1, . . . , xn>)) maps to some string z in S≤nm , we now have:

tn||S≤mn || ≥ ||A=n||
n (3.2)

and hence
tn2n ≥ ||A=n||

n (3.3)

which implies that t ≥ ||A=n||/2, and hence z1 is NP-proof for half the el-
ements in A of length n. The proof now continues by finding a z2 that is
NP-proof for half of the elements in A for which z1 is not NP-proof, result-
ing ultimately in the desired sequence z1, . . . , zk (k ≤ n). The inductive
generation of zi is possible because all the strings in A for which none of
the z1, . . . , zi−1 is NP-proof, let’s call them A′, have the following property.
For every y1, . . . , yn ∈ A′ it holds that f(g(y1, . . . , yn)) ∈ S \ {z1, . . . , zi−1}.
Hence the counting arguments in equations (3.1), (3.2), and (3.3) still hold
for A′.

Our main technical tool, Lemma 3.2 below, is a generalization of Theorem
3.1. Instead of a many-one reduction to a subexponentially dense set, we
consider a nondeterministic disjunctive reduction to a family of sets where
the density can be exponential.

4

Definition. Let B = (Bn | n ≥ 0) be a family of subsets of {0, 1}∗. We say
that A NP-reduces to B if there is an NPMV function N such that for all n,
for all x ∈ {0, 1}n, x ∈ A iff at least one output of N(x) is in Bn.

Lemma 3.2. Let A have an AND-function of order s and let α < 1/s. Let

B = (Bn | n ≥ 0) be a family of sets with ||Bn|| ≤ 2nα
for sufficiently large n.

If A NP-reduces to B, then A ∈ NP/poly.

Proof. Let M compute the NPMV function for the reduction from A to
B. Let g be the AND-function for A. For simplicity we assume that for
all x1, . . . , xn ∈ {0, 1}m, the length of g(x1, . . . , xn) is exactly (nm)s. The
general case when the length is O((nm)s) is similar.

Choose a constant k so that k
k+1

≥ αs. Fix an input length m, let n = mk,
and let N = (nm)s. Note that we have

||BN || ≤ 2Nα

= 2m(k+1)sα

≤ 2mk

= 2n.

For any x ∈ {0, 1}m,

x ∈ A ⇐⇒ there exist x1, . . . , xn ∈ {0, 1}m with xi = x for some i such that

M on input g(x1, . . . , xn) outputs some string z ∈ BN .

Call such a string z an NP-proof that x ∈ A. As in the proof of Theorem 3.1,
we claim that there exists a collection of at most m strings z1, . . . , zl such
that each x ∈ A=m has an NP-proof in the collection.

Suppose that z is an NP-proof for exactly t strings in A=m. Then

||{<x1, . . . , xn> | M(g(x1, . . . , xn)) outputs z}|| ≤ tn.

Let t be the maximal such that some string z is an NP-proof for t strings.
Then

||A=m||
n ≤ ||BN || · t

n ≤ 2ntn,

so t ≥ ||A=m||/2. Therefore there is a string z1 that works for at least half of
the strings in A=m. Repeating this argument yields a string z2 that works for
at least half of the remaining strings. After at most m repetitions we have
NP-proofs for all the strings.

As our first application of Lemma 3.2 we extend Theorem 3.1 to disjunc-
tive reductions.

5

Theorem 3.3. If A has an AND-function and A ≤p
d SUBEXPD, then A ∈

NP/poly.

Proof. Suppose that A ≤p
d S ∈ SUBEXPD via a reduction g in p(n) time.

Define an NPMV function N that on input x guesses and outputs one of
the queries in g(x). Let Bn = S≤p(n). Then A NP-reduces to the family
(Bn | n ≥ 0) via N .

Let α < 1/s where s is the order of the AND-function. We have ||Bn|| ≤
2nα

for sufficiently large n because S has subexponential density. By Lemma
3.2 we have A ∈ NP/poly.

We apply Theorem 3.3 with SAT to obtain the following:

Theorem 3.4. If coNP 6⊆ NP/poly, then every ≤p
d-hard set for coNP is

exponentially dense.

Allender, Hemachandra, Ogiwara, and Watanabe [1] showed that if A ≤p
btt-

reduces to a sparse set, then A ≤p
d-reduces to another sparse set. Part of the

proof shows that the complement of any sparse set disjunctively reduces to
a sparse set. This argument also applies to subexponentially dense sets. For
completeness we include a proof. Here we write that S has density d(n) if
||S≤n|| = d(n).

Lemma 3.5. Let S be a set with density d(n). Then there is a set T with

density at most nd(n)+n such that S ≤p
d T . In particular, if S ∈ SUBEXPD,

then S ≤p
d T for some T ∈ SUBEXPD.

Proof. We isolate the part we need of the proof in [1]. Let T be the set of
all 0n1wb where b is a bit and w has an extension in S=n, but wb does not
have an extension in S=n. If S=n = ∅, we add 0n1 to T .

We claim that a string y is in S=n if and only if y has a prefix z such that
0n1z ∈ T .

- If y 6∈ S and S=n 6= ∅, then let z be the longest prefix of y that has an
extension in S. The string 0n1z is in T . If S=n = ∅, then 0n1 is in T , so
the claim holds for z = λ.

- If y ∈ S, then every prefix z of y has an extension in S and 0n1z 6∈ T .

Therefore S ≤p
d T via the reduction that lists the prefixes of its input.

For each length n, we added at most (n + 1)||S=n|| + 1 strings to T .
Therefore ||T≤n|| ≤

∑n−1
m=0(m + 1)||S=m|| + 1 ≤ nd(n) + n.

6

Theorem 3.3 and Lemma 3.5 yield the following for conjunctive reduc-
tions.

Theorem 3.6. If A has an OR-function and A ≤p
c SUBEXPD, then A ∈

coNP/poly.

Proof. Suppose that A ≤p
c S ∈ SUBEXPD. Then A ≤p

d S and by Lemma 3.5
there is a T ∈ SUBEXPD such that S ≤p

d T . Composing reductions yields
A ≤p

d T , so A ∈ NP/poly by Theorem 3.3, because the OR-function for A is
an AND-function for A.

Theorem 3.7. If coNP 6⊆ NP/poly, then every ≤p
c -hard set for NP is expo-

nentially dense.

Our next theorem concerns query-bounded Turing reductions. In the
proof we use techniques from [1, 5] to convert the Turing reduction into an
NP disjunctive reduction.

Theorem 3.8. Let A have an AND-function of order s and let α < 1/s. If

A ≤p
nα−T SUBEXPD, then A ∈ NP/poly.

Proof. Suppose A ≤p
nα−T S ∈ SUBEXPD via M . Fix an input length n. For

an input x ∈ {0, 1}n, consider using each z ∈ {0, 1}nα
as the sequence of

yes/no answers to M ’s queries. Each z causes M to produce a sequence of
queries wx,z

1 , . . . , wx,z
nα and an accepting or rejecting decision. (We can assume

that M always makes nα queries.) Let Zx ⊆ {0, 1}nα
be the set of all query

answer sequences that cause M to accept x. Then we have x ∈ A if and only
if

(∃z ∈ Zx)(∀1 ≤ j ≤ nα) S[wx,z
j] = z[j],

which is equivalent to

(∃z ∈ Zx)(∀1 ≤ j ≤ nα) z[j] · wx,z
j ∈ S ⊕ S,

where S ⊕ S is the disjoint union {0x | x ∈ S} ∪ {1x | x ∈ S}.
By Lemma 3.5 there is a set T ∈ SUBEXPD such that S ≤p

d T . Let
U = T ⊕ S. We then have S ⊕ S ≤p

d U via some reduction g. For each
z ∈ Zx, let

Hx,z = {<u1, . . . , unα> | (∀j) uj ∈ g(z[j] · wx,z
j)}.

7

Let r(n) be a polynomial bounding the run time of g on inputs of the form
z[j] · wx,z

j , where |x| = n. Define

Bn = {<u1, . . . , unα> | (∀j) uj ∈ U≤r(n)}.

Then we have

x ∈ A ⇐⇒ (∃z ∈ Zx)(∃y ∈ Hx,z)y ∈ Bn.

Define an NPMV function N that on input x chooses some z ∈ Zx and tuple
y ∈ Hx,z and outputs y. Then N is an NP-reduction of A to the family
(Bn | n ≥ 0).

Let δ = (1/s − α)/2. Then since U ∈ SUBEXPD, ||U≤r(n)|| ≤ 2nδ
for

sufficiently large n. This implies

||Bn|| = ||U≤r(n)||
nα

≤ 2nα+δ

= 2n(1/s)−δ

.

Lemma 3.2 applies to show A ∈ NP/poly.

We now have the main result of this paper:

Theorem 3.9. If coNP 6⊆ NP/poly, then for all ε > 0, every ≤p
n1−ε−T-hard

set for NP is exponentially dense.

Proof. Suppose that SAT ≤p
n1−ε−T-reduces to a subexponentially dense set.

Then SAT ≤p
n1−ε−T-reduces to the same set by inverting the reduction’s an-

swers. Moreover SAT has an AND-function of order s = 1. Theorem 3.8
applies to show coNP ⊆ NP/poly.

In fact, we can show a slightly stronger result. Theorem 3.8 still holds if
the Turing reduction uses nondeterminism:

Theorem 3.10. Let A have an AND-function of order s and let α < 1/s.
If A ∈ NPS[nα] for some S ∈ SUBEXPD, then A ∈ NP/poly.

Proof. We extend the proof of Theorem 3.8. Suppose A = L(MS[nα]) where
M is an NP machine running in time t(n). For an input x ∈ {0, 1}n, we
can use any pair <p, z> where p ∈ {0, 1}t(n) and z ∈ {0, 1}nα

to run M on
input x. We use p to provide the nondeterministic choices and z to provide
the query answers. In this computation M produces a sequence of queries

8

wx,p,z
0 , . . . , wx,p,z

nα and an accepting or rejecting decision. Let Zx be the set of
all <p, z> that cause M to accept x. Then we have x ∈ A if and only if

(∃<p, z> ∈ Zx)(∀1 ≤ j ≤ nα) S[wx,p,z
j] = z[j].

The remainder of the proof carries through with z replaced by <p, z> through-
out.

We obtain an extension of Theorem 3.10 to strong nondeterministic polynomial-
time reductions.

Theorem 3.11. If coNP 6⊆ NP/poly, then for all ε > 0, every ≤SNP
n1−ε−T-hard

set for NP is exponentially dense.

Proof. Suppose that S has subexponential density and is ≤SNP
n1−ε−T-hard for

NP. Then SAT ≤SNP
n1−ε−T S, so SAT ∈ NPS[n1−ε]. Theorem 3.10 implies

SAT ∈ NP/poly.

All our results to this point are conditional. For an unconditional result
we go to the P̃H hierarchy, where P̃ means nO(log n).

Theorem 3.12. For all ε > 0, every ≤p
n1−ε−T-hard set for ΣP̃

3 is exponentially

dense.

Proof. First, we claim that ΣP̃
3 6⊆ NP/poly. This is similar to Kannan’s proof

that ΣP
2 does not have nk-size circuits [6]. We can show that there is a set

H ∈ ΣP̃
4 − NP/poly by a direct counting argument. Then we consider two

cases: if coNP 6⊆ NP/poly, the claim holds immediately because coNP ⊆ ΣP̃
3 .

Otherwise coNP ⊆ NP/poly and we have PH = ΣP
3 by Yap’s theorem [12].

From this padding gives P̃H = ΣP̃
3 and therefore H ∈ ΣP̃

3 .

There is a many-one complete set A for ΣP̃
3 with an AND-function of order

1. Suppose that A ≤p
n1−ε−T-reduces to a set S of subexponential density.

Theorem 3.8 implies A ∈ NP/poly, so ΣP̃
3 ⊆ NP/poly, a contradiction.

We remark that Theorem 3.12 also holds for conjunctive, disjunctive, and
SNP n1−ε-Turing reductions.

9

4 Instance Complexity

Let A be a set and let t(n) be a time bound. A program p is consistent

with A for all x, p(x) ∈ {0, 1, ?}, and whenever p(x) 6= ?, p(x) = A(x). The
t-instance complexity of x with respect to A, written ict(x : A) is the length
of a shortest program p such that

- p is consistent with A,

- p(x) halts within t(|x|) steps, and

- p(x) = A(x).

Formally, p(x) = U(p, x) where U is an efficient universal machine. See [11]
for more information on instance complexity.

Theorem 4.1. Let A have an AND-function of order s, let α < 1/s, and let

q be a polynomial. If icq(x : A) ≤ nα for all but finitely many x ∈ A, then

A ∈ NP/poly.

Proof. For each n, let Bn = {p | p is consistent with A and |p| ≤ nα}. Then
||Bn|| ≤ 2nα+1. Define an NPMV function N that on input x guesses a
program p and outputs p if the program accepts x within q(|x|) steps. Then N
reduces A to the family (Bn | n ≥ 0), so Lemma 3.2 yields A ∈ NP/poly.

Corollary 4.2. If NP 6⊆ coNP/poly, then for every polynomial q and ε > 0,
there exist infinitely many φ ∈ SAT with icq(φ : SAT) > |φ|1−ε.

Corollary 4.2 should be contrasted with the result that if P 6= NP, then
there are infinitely many φ with icq(φ : SAT) ≥ c log |φ|. With the stronger
NP 6⊆ coNP/poly hypothesis, we get a nearly linear lower bound on the
instance complexity of SAT instances. Since ict(n)(φ : SAT) ≤ |φ|+ O(1) for
t(n) = O(n log n), this bound is fairly tight.

We can also show that the lower bound holds for a large set of SAT
instances. Our next theorem is an extension of Theorem 4.1 that accounts
for the density of the hard instances.

Theorem 4.3. Let A have an AND-function of order s, let α < 1/s, and let

q be a polynomial. Define H = {x ∈ A | icq(x : A) > |x|α}. If ||H≤n|| ≤ 2nα

for sufficiently large n, then A ∈ NP/poly.

10

Proof. Let Pn = {p | p is consistent with A and |p| ≤ nα}. We define Bn as
the disjoint union of H≤n and Pn:

Bn = 0H≤n ∪ 1Pn.

Then ||Bn|| ≤ 2nα+2 for large n. Define an NPMV function N that on input
x either

(i) outputs 0x, or

(ii) guesses a program p and outputs 1p if p accepts x within q(|x|) steps.

Then N reduces A to the family (Bn | n ≥ 0) and Lemma 3.2 implies
A ∈ NP/poly.

Corollary 4.4. Suppose NP 6⊆ coNP/poly. Then for all ε > 0 and polyno-

mials q,
∣

∣

∣

∣

{

φ ∈ SAT≤n | icq(φ : SAT) > |φ|1−ε
}
∣

∣

∣

∣ ≥ 2n1−ε

for infinitely many n.

Next we consider reductions to sets that have low instance complexity.

Theorem 4.5. Let A have an AND-function of order s and let α < 1/s. Let

C be a set where for all δ > 0, there is a polynomial r such that icr(x : C) <
|x|δ for all but finitely many x. If A ≤p

nα−T C, then A ∈ NP/poly.

Proof. Let M compute the reduction from A to C in t(n) time. Let ε =
[(1/s)−α]/2. Choose δ > 0 so that t(n)δ < nε for sufficiently large n. There
is a polynomial r such that icr(x : C) < |x|δ for almost all x.

Let x have length n. We can assume that M makes exactly nα queries
on input x. Define an NP machine N that on input x simulates M . When
M makes a query qi, N does the following:

(i) Guess a program pi with |pi| < |qi|
δ.

(ii) Run pi on input qi, aborting the computation if it runs for more than
r(|qi|) steps.

(iii) If pi produces a decision, use that as the answer for query qi in the
simulation of M .

11

(iv) If pi was aborted or did not output a decision, N halts and outputs
nothing.

If M accepts x at the end of this simulation, then N outputs the tuple
<p1, . . . , pnα> of programs it guessed.

Each query qi has |qi| ≤ t(n). Then for sufficiently large n,

icr(qi : C) < |qi|
δ ≤ t(n)δ < nε.

Define
En = {p | p is consistent with C and |p| < nε}

and
Bn = {<p1, . . . , pnα> | each pi ∈ En}.

Then ||Bn|| ≤ (2nε
)nα

= 2n(1/s)−ε
and N reduces A to the family (Bn | n ≥ 0).

Lemma 3.2 now applies to show A ∈ NP/poly.

We can also extend Theorem 4.5 to consider the density of the hard
instances.

Theorem 4.6. Let A have an AND-function of order s and let α < 1/s. Let

C be a set where for all δ > 0, there is a polynomial r such that the collection

of hard instances

Hδ,r = {x | icr(x : C) ≥ nδ}

has subexponential density. If A ≤p
nα−T C, then A ∈ NP/poly.

Proof. Let M compute the reduction from A to C in t(n) time. We assume
that M makes exactly nα queries. Let ε = [(1/s) − α]/2 and choose δ > 0
such that t(n)δ < nε for large n. There is a polynomial r such that Hδ,r has
subexponential density.

Let x have length n. Define an NP machine N that on input x simulates
M . When M makes a query qi, N nondeterministically chooses (I) or (II)
below to answer the query:

(I) Guess a bit b and use it as the answer for query qi. Record zi = <b, qi>.

(II) (i) Guess a program pi with |pi| < |qi|
δ.

(ii) Run pi on input qi, aborting the computation if it runs for more
than r(|qi|) steps.

12

(iii) If pi was aborted or did not output a decision, N halts and out-
puts nothing.

(iv) If pi produces a decision, use that as the answer for query qi.
Record zi = <λ, pi>.

If M accepts x at the end of the simulation, then N outputs the tuple
<z1, . . . , znα>.

We have ||Hδ,r

≤t(n)|| < 2nε
for sufficiently large n. Define

En = {<λ, p> | p is consistent with C and |p| < nε},

Dn = {<1, q> | q ∈ Hδ,r

≤t(n) ∩ C} ∪ {<0, q> | q ∈ Hδ,r

≤t(n) ∩ C},

and
Bn = {<z1, . . . , znα> | each zi ∈ Dn ∪ En}.

Then

||Bn|| =
(

||En|| + ||Hδ,r

≤t(n)||
)nα

≤ (2nε+1)nα

≈ 2n(1/s)−ε

.

We apply Lemma 3.2 to obtain A ∈ NP/poly.

Corollary 4.7. Suppose that NP 6⊆ coNP/poly and let C be ≤p
n1−ε−T-hard

for NP. There is a δ > 0 such that for every polynomial r, the set

{

x
∣

∣icr(x : C) ≥ |x|δ
}

has exponential density.

Just like Theorem 3.11 we can show that Corollary 4.7 also holds for
strong nondeterministic polynomial-time reductions. Also, by following the
line of argument in Theorem 3.12, we can obtain an absolute result for in-
stance complexity in ΣP̃

3 -hard sets.

Acknowledgements. We thank Lance Fortnow and Rahul Santhanam for
sharing a preliminary version of [3], and for useful discussions. We also
thank Scott Aaronson, Steve Fenner, Kolya Vereshchagin, and John Rogers
for interesting discussions.

13

References

[1] E. Allender, L. A. Hemachandra, M. Ogiwara, and O. Watanabe. Re-
lating equivalence and reducibility to sparse sets. SIAM Journal on

Computing, 21(3):521–539, 1992.

[2] L. Berman and H. Hartmanis. On isomorphisms and density of NP and
other complete sets. SIAM J. Comput., 6:305–322, 1977.

[3] L. Fortnow and R. Santhanam. Infeasibility of instance compression and
succinct PCPs for NP. Technical Report TR07-096, Electronic Collo-
quium on Computational Complexity, 2007.

[4] S. Fortune. A note on sparse complete sets. SIAM J. Comput., 8(3):431–
433, 1979.

[5] J. M. Hitchcock. Online learning and resource-bounded dimension: Win-
now yields new lower bounds for hard sets. SIAM Journal on Computing,
36(6):1696–1708, 2007.

[6] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets.
Information and Control, 55(1–3):40–56, October/November/December
1982.

[7] R. Karp and R. Lipton. Some connections between nonuniform and
uniform complexity classes. In Proc. 12th ACM Symposium on Theory

of Computing, pages 302–309, 1980.

[8] S. Mahaney. Sparse complete sets for NP: solution of a conjecture of
Berman and Hartmanis. J. Comput. System Sci., 25:130–143, 1982.

[9] A. Meyer and M. Paterson. With what frequency are apparently in-
tractable problems difficult? Technical Report MIT/LCS/TM-126,
M.I.T., 1979.

[10] M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table
reducibility of NP sets to sparse sets. SIAM Journal on Computing,
20(3):471–483, 1991.

[11] P. Orponen, K-I Ko, U. Schöning, and O. Watanabe. Instance complex-
ity. J. Assoc. Comput. Mach, 41(1):96–121, 1994.

14

[12] C. K. Yap. Some consequences of non-uniform conditions on uniform
classes. Theoretical Computer Science, 26:287–300, 1983.

15

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

