Electronic Colloquium on Computational Complexity, Report No. 22 (2008)

NP-Hard Sets are Exponentially Dense Unless
coNP C NP /poly

Harry Buhrman* John M. Hitchcock'

Abstract

We show that hard sets S for NP must have exponential density,
i.e. [S—p| > 2" for some € > 0 and infinitely many n, unless coNP C
NP/poly and the polynomial-time hierarchy collapses. This result
holds for Turing reductions that make n'=¢ queries.

In addition we study the instance complexity of NP-hard problems
and show that hard sets also have an exponential amount of instances
that have instance complexity n’ for some § > 0. This result also
holds for Turing reductions that make n'=¢ queries.

1 Introduction

The density of NP-complete and hard sets was an early object of study in
complexity theory. Assuming that P is not equal to NP, the real question
is how many instances are indeed hard? In principle it could be that P #
NP only because of a few instances that are hard to compute, but almost
all instances can be decided by an efficient algorithm. This question was
formalized and investigated in a large body of work starting with that of
Berman and Hartmanis [2], Meyer and Paterson [9], Fortune [4], Karp and
Lipton [7], Mahaney [8], and many others.

It is problematic for this question to just focus on a fixed NP-complete
set for the following reason. Suppose that P # NP, and suppose there is

*CWI Kruislaan 409, 1098 SJ Amsterdam, the Netherlands, and University of Amster-
dam; e-mail:buhrman@cwi.nl. Supported by an NWO VICI grant.

"Department of Computer Science, University of Wyoming; e-mail:
jhitchco@cs.uwyo.edu. Supported in part by NSF grants 0515313 and 0652601.

ISSN 1433-8092

a machine M that runs in polynomial time on all but 2" many formulae
of length n. We can then solve SAT in randomized polynomial time, by
simple padding. Given any formula ¢ we can construct 2" many different
other formulae @) of roughly the same length that are satisfiable if and only
if ¢ is satisfiable. It is easy to see that M will with high probability run
in polynomial time on a randomly chosen ¢;. For this reason the focus has
been on the density of all NP-complete or NP-hard problems. This simple
padding trick cannot work for an arbitrary NP-complete problem, since the
reduction can map the equivalent formula ¢; back to the original ¢. Therefore
attention has been on the density of NP-complete and NP-hard sets under
various types of reductions.

Mahaney [8] showed that if there exists a sparse many-one hard set for
NP then P = NP. A set is sparse if for every length n it contains no more
than p(n) strings for some polynomial p. This result shows that many-one
hard sets for NP are super-polynomially dense unless P = NP. Mahaney’s
result has been extended to weaker notions of reductions, notably by Ogihara
and Watanabe for bounded truth-table reductions [10]. But it remains an
open question to show the same result for log(n)-truth-table reductions, let
alone for the more general Turing reductions. Karp and Lipton [7] showed
that if there exists a sparse Turing hard set for NP, or equivalently if NP is
in P/poly, then the polynomial-time hierarchy collapses to its second level
(X5 =T1I%). Hence Turing hard sets for NP are also super-polynomially dense
unless the polynomial-time hierarchy collapses.

In this paper we improve these results from sparse to subexponential den-
sity. A set S has subexponential density if for every € > 0, |S=,| < 2" for
almost all n. We show that if there exists an NP-hard set with subezponen-
tial density then coNP C NP /poly and by a result of Yap [12] it follows that
the polynomial-time hierarchy collapses to its third level (X% = II%). Our
result holds for Turing reductions that make n'~¢ queries (any € > 0). This
shows that NP-hard sets have exponential density 2™ for some € > 0, unless
coNP C NP/poly. This is the best possible result for NP-hard sets with re-
spect to their density, since simple padding shows that for every € > 0 there
exists an NP-hard set with density less than 2"°. Our results make use of a
recent combinatorial lemma due to Fortnow and Santhanam [3].

Another way to make the notion of hard instances precise is that of in-
stance complexity due to Orponen et. al. [11]. The instance complexity of
an instance x with respect to some set A, ic(x : A), is the size of the small-
est (polynomial-time) program p that correctly decides z and for all other

2

instances either outputs no decision or the correct decision. It is easy to see
that ic(z : A) < |z| + O(1). Strings with high instance complexity do not
have small efficient programs that decide them. The instance complexity of
NP-complete sets has been studied. The best known bound [11] is that if ev-
ery instance of SAT (or any NP-complete problem) has logarithmic instance
complexity, i.e. ic(¢ : SAT) < O(log|¢|) for all ¢, then P = NP. We show
that if SAT has sublinear instance complexity, that is ic(¢ : SAT) < |¢|'~¢
for all ¢ and some € > 0, then coNP C NP /poly.

2 Preliminaries

We shall consider decision problems for languages over the alphabet ¥ =
{0, 1}. The length of a string x € {0, 1}* is denoted |z|; A denotes the empty
string. Given strings z, y, we denote with x - y the concatenation of x and
y: xy. We represent the pair <z,y> as the string £10y, where Z denotes x
with each of its characters doubled.

For a set B and number n, B_,, = {x € B | || =n} and B<,, = {zr € B |
|z| < n}. The cardinality of a finite set C' is denoted |C/.

A set S has subexponential density if for every € > 0, |S—,| < 2" for
all but finitely many n. We write SUBEXPD for the class of languages
with subexponential density. A set is exponentially dense if it does not have
subexponential density.

An AND-function for a set A is a polynomial-time computable function
g such that for all strings 1, xs, ..., x,, g(x1,22,...,2,) € Aiff x; € A for
all 4. Similarly, and OR-function g satisfies g(x1,xs,...,x,) € Aiff x; € A
for some i. We say that g has order s if |g(z1,...,2,)| = O((X 1, |zi)*)-
Observe that if g is an AND-function for A, then ¢ is also an OR-function
for A.

3 Reductions

To introduce the technique we will begin with the easier case of many-one
reductions. This result has the corollary that if SAT many-one reduces to a
set of subexponential density, then coNP C NP /poly.

Theorem 3.1. Let A be any set that has an AND-function. If there is a set
S with subexponential density such that A <P S then A € NP /poly.

Proof. Let g(x1,...,x,) be the AND-function for A. Let f be the many-one
reduction from A to S. We say that a string z € S is NP-proof for = € A,
with |z| = n, iff there exist xy, ..., z,, such that for all i, |x;| = n and there
exists an 4, with z = x;, and in addition f(g(x1,...,2,)) = 2.

The idea is to show that there exists a string z; € S that is NP-proof
for half the strings in A_,. We will then recurse on the remaining strings
in A_,,, for which z; is not NP-proof, until we end up with a sequence of at
most n strings 21, ..., 2, such that for all z € A_,, there is an 7 such that z; is
NP-proof for z. These NP proofs serve as advice to show that A € NP /poly.

First observe that if z is NP-proof for precisely ¢ strings © € A then

”{<I1, cey Tp> ‘ ‘xl| =n andf(g(xl, s 7xn)) = Z}” S " (31)

Assume that f and ¢ both run in time n°¢ for some ¢. Let m, = n”,

hence |f(g(z1,...,2,))|] < m,. Since S has subexponential density, for large
enough n it holds that |S<,,,| < 2".
Let t be the largest such that some z; is NP-proof for t elements of

length n in A. Since for every n-tuple <zq,...,x,> with for all 7, x; € A,
flg(<zxy,...,x,>)) maps to some string z in S<,,,, we now have:
") S<mal = [A=n]” (3.2)
and hence
2" > A" (3.3)

which implies that ¢ > |A_,|/2, and hence z; is NP-proof for half the el-
ements in A of length n. The proof now continues by finding a 2, that is
NP-proof for half of the elements in A for which z; is not NP-proof, result-
ing ultimately in the desired sequence zi,...,z; (kK < n). The inductive
generation of z; is possible because all the strings in A for which none of
the z1,...,2z_1 is NP-proof, let’s call them A’, have the following property.
For every yi,...,y, € A" it holds that f(g(y1,...,yn)) € S\ {z1,...,2i-1}.
Hence the counting arguments in equations (3.1), (3.2), and (3.3) still hold
for A’. O

Our main technical tool, Lemma 3.2 below, is a generalization of Theorem
3.1. Instead of a many-one reduction to a subexponentially dense set, we
consider a nondeterministic disjunctive reduction to a family of sets where
the density can be exponential.

Definition. Let B = (B,, | n > 0) be a family of subsets of {0,1}*. We say
that A NP-reduces to B if there is an NPMV function N such that for all n,
for all z € {0,1}", x € A iff at least one output of N(z) is in B,,.

Lemma 3.2. Let A have an AND-function of order s and let o« < 1/s. Let
B=(B,|n>0) bea family of sets with | B,| < 2" for sufficiently large n.
If A NP-reduces to B, then A € NP /poly.

Proof. Let M compute the NPMV function for the reduction from A to
B. Let g be the AND-function for A. For simplicity we assume that for
all z1,...,x, € {0,1}", the length of g(xy,...,x,) is exactly (nm)®. The
general case when the length is O((nm)®) is similar.

Choose a constant k so that kiﬂ > as. Fix an input length m, let n = mF,
and let N = (nm)®. Note that we have

(k+1)sa k

|By| <2V =2m <™ =9n,
For any = € {0,1}™,
r €A <= thereexist xy,...,z, € {0,1}" with x; = x for some i such that
M on input g(z1,...,x,) outputs some string z € By.

Call such a string z an NP-proof that x € A. As in the proof of Theorem 3.1,
we claim that there exists a collection of at most m strings zi,..., 2 such
that each x € A_,, has an NP-proof in the collection.

Suppose that z is an NP-proof for exactly ¢ strings in A—,,. Then

{<x1,...,2,>| M(g(xy,...,z,)) outputs z}| < t".

Let ¢t be the maximal such that some string z is an NP-proof for ¢ strings.
Then
[A" < Byl - 1" < 27,

so t > |A=,u|/2. Therefore there is a string z; that works for at least half of
the strings in A_,,. Repeating this argument yields a string 2z, that works for
at least half of the remaining strings. After at most m repetitions we have
NP-proofs for all the strings. O

As our first application of Lemma 3.2 we extend Theorem 3.1 to disjunc-
tive reductions.

Theorem 3.3. If A has an AND-function and A <) SUBEXPD, then A €
NP /poly.

Proof. Suppose that A <} S € SUBEXPD via a reduction g in p(n) time.
Define an NPMV function N that on input x guesses and outputs one of
the queries in g(z). Let B, = S<pn). Then A NP-reduces to the family
(B, |n>0) via N.

Let a < 1/s where s is the order of the AND-function. We have |B,,| <
27" for sufficiently large n because S has subexponential density. By Lemma
3.2 we have A € NP /poly. O

We apply Theorem 3.3 with SAT to obtain the following:

Theorem 3.4. If coNP ¢ NP/poly, then every <§-hard set for coNP is
exponentially dense.

Allender, Hemachandra, Ogiwara, and Watanabe [1] showed that if A <} -
reduces to a sparse set, then A <J-reduces to another sparse set. Part of the
proof shows that the complement of any sparse set disjunctively reduces to
a sparse set. This argument also applies to subexponentially dense sets. For
completeness we include a proof. Here we write that S has density d(n) if

[S<nll = d(n).

Lemma 3.5. Let S be a set with density d(n). Then there is a set T' with
density at most nd(n)+n such that S <§ T'. In particular, if S € SUBEXPD,
then S <8 T for some T € SUBEXPD.

Proof. We isolate the part we need of the proof in [1]. Let T be the set of
all 0"1wb where b is a bit and w has an extension in S_,, but wb does not
have an extension in S—,. If S_, = (), we add 0"1 to T.

We claim that a string y is in S_,, if and only if y has a prefix z such that
0"z eT.

-Ify ¢ S and S—, # (), then let z be the longest prefix of y that has an
extension in S. The string 0”1z is in 7. If S_, = (), then 0"1 is in T, so
the claim holds for z = A.

- If y € S, then every prefix z of y has an extension in S and 0”1z ¢ T.

Therefore S < T' via the reduction that lists the prefixes of its input.
For each length n, we added at most (n + 1)|S=,| + 1 strings to 7.
Therefore | T, | < 3274 (m + 1) Szp| + 1 < nd(n) + n. O

6

Theorem 3.3 and Lemma 3.5 yield the following for conjunctive reduc-
tions.

Theorem 3.6. If A has an OR-function and A <P SUBEXPD, then A €
coNP /poly.

Proof. Suppose that A <P S € SUBEXPD. Then A <} S and by Lemma 3.5
there is a T € SUBEXPD such that S <} T. Composing reductions yields
A <BT, so AeNP/poly by Theorem 3.3, because the OR-function for A is
an AND-function for A. O

Theorem 3.7. If coNP & NP /poly, then every <P-hard set for NP is expo-
nentially dense.

Our next theorem concerns query-bounded Turing reductions. In the
proof we use techniques from [1, 5] to convert the Turing reduction into an
NP disjunctive reduction.

Theorem 3.8. Let A have an AND-function of order s and let o < 1/s. If
A <P, 1 SUBEXPD, then A € NP /poly.

Proof. Suppose A <P, S € SUBEXPD via M. Fix an input length n. For
an input = € {0,1}", consider using each z € {0,1}"" as the sequence of
yes/no answers to M’s queries. Each z causes M to produce a sequence of
queries wy’®, ..., wya and an accepting or rejecting decision. (We can assume
that M always makes n® queries.) Let Z, C {0,1}™ be the set of all query
answer sequences that cause M to accept x. Then we have z € A if and only
if

(32 € Z,)(V1 < j < n®) S[w?] = 2[j],

which is equivalent to
(Fze Z)(V1<j<n®) zjl-wj* eSS,

where S @ S is the disjoint union {0z | z € S} U {1z | z € S}.

By Lemma 3.5 there is a set T € SUBEXPD such that S <§ T. Let
U=T&S. We then have S & S <8 U via some reduction g. For each
z € Z,, let

Hx7z — {<u1, .. .,una> | (\V/]) u] c Q(Z[]] . ,UJJZ‘,Z)}

Let r(n) be a polynomial bounding the run time of g on inputs of the form
z[j] - w}®, where |z| = n. Define

B, = {<uy, ..., upa> | (V]) uj € Uiy }-
Then we have
re€A < (Jz€ Z,)(3y € H,.)y € B,.

Define an NPMV function N that on input x chooses some 2z € Z, and tuple
y € H,, and outputs y. Then N is an NP-reduction of A to the family
(B, | n>0).

Let 0 = (1/s — a)/2. Then since U € SUBEXPD, |U<,n)| < 2" for
sufficiently large n. This implies

@ o (1/5)-
HBTLH = ||U§r(n)||n < 2" 0 = 2" ' 6,

Lemma 3.2 applies to show A € NP /poly. O
We now have the main result of this paper:

Theorem 3.9. If coNP ¢ NP /poly, then for all e > 0, every <P, . ..-hard
set for NP is exponentially dense.

Proof. Suppose that SAT <P, _-reduces to a subexponentially dense set.
Then SAT <P,_. _-reduces to the same set by inverting the reduction’s an-

swers. Moreover SAT has an AND-function of order s = 1. Theorem 3.8
applies to show coNP C NP /poly. O

In fact, we can show a slightly stronger result. Theorem 3.8 still holds if
the Turing reduction uses nondeterminism:

Theorem 3.10. Let A have an AND-function of order s and let o < 1/s.
If A € NPl for some S € SUBEXPD, then A € NP /poly.

Proof. We extend the proof of Theorem 3.8. Suppose A = L(M5"") where
M is an NP machine running in time ¢(n). For an input x € {0,1}", we
can use any pair <p, z> where p € {0,1}(and z € {0,1}™ to run M on
input x. We use p to provide the nondeterministic choices and z to provide
the query answers. In this computation M produces a sequence of queries

we?? L wpd”® and an accepting or rejecting decision. Let Z, be the set of

all <p, z> that cause M to accept x. Then we have x € A if and only if

(3<p, 2> € Z,)(V1 < j < n?) Swi™*] = 2[j].

The remainder of the proof carries through with z replaced by <p, z> through-
out. U

We obtain an extension of Theorem 3.10 to strong nondeterministic polynomial-
time reductions.

Theorem 3.11. If coNP & NP /poly, then for all e > 0, every §E¥E_T-hard
set for NP is exponentially dense.

Proof. Suppose that S has subexponential density and is <5\ -hard for
NP. Then SAT <3 S, so SAT € NP1 Theorem 3.10 implies
SAT € NP /poly. O

All our results to this point are conditional. For an unconditional result

we go to the PH hierarchy, where P means n®osm),

Theorem 3.12. Foralle > 0, every <P,_. ..-hard set for Zg 1s exponentially
dense.

Proof. First, we claim that 2§ ¢ NP /poly. This is similar to Kannan’s proof
that ¥:5 does not have n*-size circuits [6]. We can show that there is a set
H e EE — NP/poly by a direct counting argument. Then we consider two
cases: if coNP & NP /poly, the claim holds immediately because coNP C 25’.
Otherwise coNP C NP /poly and we have PH = X by Yap’s theorem [12].
From this padding gives PH = 2315 and therefore H € 2315)

There is a many-one complete set A for Eg) with an AND-function of order
1. Suppose that A <P, . . -reduces to a set S of subexponential density.

Theorem 3.8 implies A € NP /poly, so 2313 C NP/poly, a contradiction. [

We remark that Theorem 3.12 also holds for conjunctive, disjunctive, and
SNP n!'~¢-Turing reductions.

4 Instance Complexity

Let A be a set and let t(n) be a time bound. A program p is consistent
with A for all z, p(z) € {0,1,7}, and whenever p(z) # ?, p(z) = A(x). The
t-instance complexity of x with respect to A, written ic’(x : A) is the length
of a shortest program p such that

- p is consistent with A,
- p(z) halts within ¢(|x|) steps, and

- pla) = Aa).

Formally, p(z) = U(p,z) where U is an efficient universal machine. See [11]
for more information on instance complexity.

Theorem 4.1. Let A have an AND-function of order s, let a < 1/s, and let
q be a polynomial. If ic?(x : A) < n® for all but finitely many x € A, then
A € NP/poly.

Proof. For each n, let B, = {p | p is consistent with A and [p| < n®}. Then
|B.] < 27°FL. Define an NPMV function N that on input z guesses a
program p and outputs p if the program accepts = within ¢(|z|) steps. Then N
reduces A to the family (B,, | n > 0), so Lemma 3.2 yields A € NP/poly. O

Corollary 4.2. If NP Z coNP /poly, then for every polynomial ¢ and € > 0,
there exist infinitely many ¢ € SAT with ic?(¢ : SAT) > |¢p|' .

Corollary 4.2 should be contrasted with the result that if P # NP, then
there are infinitely many ¢ with ic?(¢ : SAT) > clog |¢|. With the stronger
NP & coNP/poly hypothesis, we get a nearly linear lower bound on the
instance complexity of SAT instances. Since ic!™ (¢ : SAT) < |¢| + O(1) for
t(n) = O(nlogn), this bound is fairly tight.

We can also show that the lower bound holds for a large set of SAT
instances. Our next theorem is an extension of Theorem 4.1 that accounts
for the density of the hard instances.

Theorem 4.3. Let A have an AND-function of order s, let a« < 1/s, and let
q be a polynomial. Define H = {x € A |ic?(x : A) > |z|°}. If |H<p| < 2™
for sufficiently large n, then A € NP /poly.

10

Proof. Let P, = {p | p is consistent with A and |p| < n®}. We define B,, as
the disjoint union of H<,, and P,:

B, =0H, U1P,.

Then |B,| < 2"°*2 for large n. Define an NPMV function N that on input
x either

(i) outputs Ox, or
(ii) guesses a program p and outputs 1p if p accepts = within ¢(|z|) steps.

Then N reduces A to the family (B, | n > 0) and Lemma 3.2 implies
A € NP/poly. O

Corollary 4.4. Suppose NP & coNP /poly. Then for all € > 0 and polyno-
mials q,

€

H{¢ € SAT.,, | ic?(¢ : SAT) > |¢|1—e}

for infinitely many n.

| > 27"

Next we consider reductions to sets that have low instance complexity.

Theorem 4.5. Let A have an AND-function of order s and let « < 1/s. Let
C' be a set where for all 6 > 0, there is a polynomial r such that ic"(z : C) <
|z|° for all but finitely many x. If A <P. . C, then A € NP /poly.

Proof. Let M compute the reduction from A to C' in #(n) time. Let € =
[(1/s) —a]/2. Choose & > 0 so that t(n)° < n¢ for sufficiently large n. There
is a polynomial 7 such that ic"(z : C') < |z|° for almost all x.

Let x have length n. We can assume that M makes exactly n® queries
on input x. Define an NP machine N that on input = simulates M. When
M makes a query ¢;, N does the following:

(i) Guess a program p; with |p;| < |g|°.

(ii) Run p; on input ¢;, aborting the computation if it runs for more than
r(|qi|) steps.

(iii) If p; produces a decision, use that as the answer for query ¢; in the
simulation of M.

11

(iv) If p; was aborted or did not output a decision, N halts and outputs
nothing.

If M accepts x at the end of this simulation, then N outputs the tuple
<p1,...,Ppa> of programs it guessed.
Each query ¢; has |¢;| < t(n). Then for sufficiently large n,

ic"(qi : C) < |qi° < t(n)’ < n".

Define
E, ={p| pis consistent with C' and |p| < n‘}

and
B, ={<p1,...,pna> | each p; € E,}.

Then |B,| < (2")"" = 27?7 and N reduces A to the family (B, | n > 0).
Lemma 3.2 now applies to show A € NP /poly. O

We can also extend Theorem 4.5 to consider the density of the hard
instances.

Theorem 4.6. Let A have an AND-function of order s and let « < 1/s. Let
C be a set where for all § > 0, there is a polynomial r such that the collection

of hard instances
H = {z |ic"(z: C) > n’}

has subexponential density. If A <P, + C, then A € NP /poly.

Proof. Let M compute the reduction from A to C' in t(n) time. We assume
that M makes exactly n® queries. Let € = [(1/s) — a]/2 and choose § > 0
such that t(n)? < n¢ for large n. There is a polynomial r such that H°" has
subexponential density.

Let x have length n. Define an NP machine N that on input x simulates
M. When M makes a query ¢;, N nondeterministically chooses (I) or (II)
below to answer the query:

(I) Guess a bit b and use it as the answer for query ¢;. Record z; = <b, ¢;>.
(I1) (i) Guess a program p; with |p;| < |q]°.

(ii) Run p; on input ¢;, aborting the computation if it runs for more
than r(|g;|) steps.

12

(iii) If p; was aborted or did not output a decision, N halts and out-
puts nothing.

(iv) If p; produces a decision, use that as the answer for query g¢;.
Record z; = <\, p;>.

If M accepts x at the end of the simulation, then N outputs the tuple
<Zl, ey Zna>.
We have |H i’:(n) | < 2™ for sufficiently large n. Define

E, = {<\,p>| pis consistent with C' and |p| < n‘},

D,={<l,¢>]|qe Hi’:(n) NCYU{<0,¢> | qe Hi’:(n) NnCY,

and
B, ={<z,...,2pa>|each z; € D, U E,}.
Then .
1Bl = (1Bl + 1, 1) < @)™ m 2
We apply Lemma 3.2 to obtain A € NP /poly. O

Corollary 4.7. Suppose that NP ¢ coNP /poly and let C' be <P, . ..-hard
for NP. There is a 0 > 0 such that for every polynomial r, the set

{zlic"(z:C) > |:E|5}
has exponential density.

Just like Theorem 3.11 we can show that Corollary 4.7 also holds for
strong nondeterministic polynomial-time reductions. Also, by following the
line of argument in Theorem 3.12, we can obtain an absolute result for in-
stance complexity in ¥¥-hard sets.

Acknowledgements. We thank Lance Fortnow and Rahul Santhanam for
sharing a preliminary version of [3]|, and for useful discussions. We also
thank Scott Aaronson, Steve Fenner, Kolya Vereshchagin, and John Rogers
for interesting discussions.

13

References

1]

E. Allender, L. A. Hemachandra, M. Ogiwara, and O. Watanabe. Re-
lating equivalence and reducibility to sparse sets. SIAM Journal on
Computing, 21(3):521-539, 1992.

L. Berman and H. Hartmanis. On isomorphisms and density of NP and
other complete sets. SIAM J. Comput., 6:305-322, 1977.

L. Fortnow and R. Santhanam. Infeasibility of instance compression and
succinct PCPs for NP. Technical Report TR07-096, Electronic Collo-
quium on Computational Complexity, 2007.

S. Fortune. A note on sparse complete sets. STAM J. Comput., 8(3):431~
433, 1979.

J. M. Hitchcock. Online learning and resource-bounded dimension: Win-
now yields new lower bounds for hard sets. SIAM Journal on Computing,
36(6):1696-1708, 2007.

R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets.
Information and Control, 55(1-3):40-56, October/November /December
1982.

R. Karp and R. Lipton. Some connections between nonuniform and
uniform complexity classes. In Proc. 12th ACM Symposium on Theory
of Computing, pages 302-309, 1980.

S. Mahaney. Sparse complete sets for NP: solution of a conjecture of
Berman and Hartmanis. J. Comput. System Sci., 25:130-143, 1982.

A. Meyer and M. Paterson. With what frequency are apparently in-
tractable problems difficult? Technical Report MIT/LCS/TM-126,
M.L.T., 1979.

M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table
reducibility of NP sets to sparse sets. SIAM Journal on Computing,
20(3):471-483, 1991.

P. Orponen, K-I Ko, U. Schoning, and O. Watanabe. Instance complex-
ity. J. Assoc. Comput. Mach, 41(1):96-121, 1994.

14

[12] C. K. Yap. Some consequences of non-uniform conditions on uniform
classes. Theoretical Computer Science, 26:287-300, 1983.

15

ECCC ISSN 1433-8092
http://eccc.hpi-web.de/

