NP-Hard Sets are Exponentially Dense Unless coNP $\subseteq \mathrm{NP} /$ poly

Harry Buhrman* John M. Hitchcock ${ }^{\dagger}$

Abstract

We show that hard sets S for NP must have exponential density, i.e. $\left|S_{=n}\right| \geq 2^{n^{\epsilon}}$ for some $\epsilon>0$ and infinitely many n, unless coNP \subseteq $\mathrm{NP} /$ poly and the polynomial-time hierarchy collapses. This result holds for Turing reductions that make $n^{1-\epsilon}$ queries.

In addition we study the instance complexity of NP-hard problems and show that hard sets also have an exponential amount of instances that have instance complexity n^{δ} for some $\delta>0$. This result also holds for Turing reductions that make $n^{1-\epsilon}$ queries.

1 Introduction

The density of NP-complete and hard sets was an early object of study in complexity theory. Assuming that P is not equal to NP, the real question is how many instances are indeed hard? In principle it could be that $\mathrm{P} \neq$ NP only because of a few instances that are hard to compute, but almost all instances can be decided by an efficient algorithm. This question was formalized and investigated in a large body of work starting with that of Berman and Hartmanis [2], Meyer and Paterson [9], Fortune [4], Karp and Lipton [7], Mahaney [8], and many others.

It is problematic for this question to just focus on a fixed NP-complete set for the following reason. Suppose that $\mathrm{P} \neq \mathrm{NP}$, and suppose there is

[^0]a machine M that runs in polynomial time on all but $2^{n^{\epsilon}}$ many formulae of length n. We can then solve SAT in randomized polynomial time, by simple padding. Given any formula ϕ we can construct 2^{n} many different other formulae ϕ_{i}^{\prime} of roughly the same length that are satisfiable if and only if ϕ is satisfiable. It is easy to see that M will with high probability run in polynomial time on a randomly chosen ϕ_{i}. For this reason the focus has been on the density of all NP-complete or NP-hard problems. This simple padding trick cannot work for an arbitrary NP-complete problem, since the reduction can map the equivalent formula ϕ_{i} back to the original ϕ. Therefore attention has been on the density of NP-complete and NP-hard sets under various types of reductions.

Mahaney [8] showed that if there exists a sparse many-one hard set for NP then $\mathrm{P}=\mathrm{NP}$. A set is sparse if for every length n it contains no more than $p(n)$ strings for some polynomial p. This result shows that many-one hard sets for NP are super-polynomially dense unless $\mathrm{P}=\mathrm{NP}$. Mahaney's result has been extended to weaker notions of reductions, notably by Ogihara and Watanabe for bounded truth-table reductions [10]. But it remains an open question to show the same result for $\log (n)$-truth-table reductions, let alone for the more general Turing reductions. Karp and Lipton [7] showed that if there exists a sparse Turing hard set for NP, or equivalently if NP is in $\mathrm{P} /$ poly, then the polynomial-time hierarchy collapses to its second level $\left(\Sigma_{2}^{p}=\Pi_{2}^{p}\right)$. Hence Turing hard sets for NP are also super-polynomially dense unless the polynomial-time hierarchy collapses.

In this paper we improve these results from sparse to subexponential density. A set S has subexponential density if for every $\epsilon>0,\left\|S_{=n}\right\| \leq 2^{n^{\epsilon}}$ for almost all n. We show that if there exists an NP-hard set with subexponential density then coNP \subseteq NP/poly and by a result of Yap [12] it follows that the polynomial-time hierarchy collapses to its third level $\left(\Sigma_{3}^{p}=\Pi_{3}^{p}\right)$. Our result holds for Turing reductions that make $n^{1-\epsilon}$ queries (any $\epsilon>0$). This shows that NP-hard sets have exponential density $2^{n^{\epsilon}}$ for some $\epsilon>0$, unless coNP $\subseteq \mathrm{NP} /$ poly. This is the best possible result for NP-hard sets with respect to their density, since simple padding shows that for every $\epsilon>0$ there exists an NP-hard set with density less than $2^{n^{\epsilon}}$. Our results make use of a recent combinatorial lemma due to Fortnow and Santhanam [3].

Another way to make the notion of hard instances precise is that of instance complexity due to Orponen et. al. [11]. The instance complexity of an instance x with respect to some set A, $\operatorname{ic}(x: A)$, is the size of the smallest (polynomial-time) program p that correctly decides x and for all other
instances either outputs no decision or the correct decision. It is easy to see that ic $(x: A) \leq|x|+O(1)$. Strings with high instance complexity do not have small efficient programs that decide them. The instance complexity of NP-complete sets has been studied. The best known bound [11] is that if every instance of SAT (or any NP-complete problem) has logarithmic instance complexity, i.e. ic $(\phi: \mathrm{SAT}) \leq O(\log |\phi|)$ for all ϕ, then $\mathrm{P}=\mathrm{NP}$. We show that if SAT has sublinear instance complexity, that is ic $(\phi:$ SAT $) \leq|\phi|^{1-\epsilon}$ for all ϕ and some $\epsilon>0$, then coNP $\subseteq \mathrm{NP} /$ poly.

2 Preliminaries

We shall consider decision problems for languages over the alphabet $\Sigma=$ $\{0,1\}$. The length of a string $x \in\{0,1\}^{*}$ is denoted $|x| ; \lambda$ denotes the empty string. Given strings x, y, we denote with $x \cdot y$ the concatenation of x and y : $x y$. We represent the pair $\langle x, y\rangle$ as the string $\bar{x} 10 y$, where \bar{x} denotes x with each of its characters doubled.

For a set B and number $n, B_{=n}=\{x \in B| | x \mid=n\}$ and $B_{\leq n}=\{x \in B \mid$ $|x| \leq n\}$. The cardinality of a finite set C is denoted $\|C\|$.

A set S has subexponential density if for every $\epsilon>0,\left\|S_{=n}\right\| \leq 2^{n^{\epsilon}}$ for all but finitely many n. We write SUBEXPD for the class of languages with subexponential density. A set is exponentially dense if it does not have subexponential density.

An AND-function for a set A is a polynomial-time computable function g such that for all strings $x_{1}, x_{2}, \ldots, x_{n}, g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in A$ iff $x_{i} \in A$ for all i. Similarly, and OR-function g satisfies $g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in A$ iff $x_{i} \in A$ for some i. We say that g has order s if $\left|g\left(x_{1}, \ldots, x_{n}\right)\right|=O\left(\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)^{s}\right)$. Observe that if g is an AND-function for A, then g is also an OR-function for \bar{A}.

3 Reductions

To introduce the technique we will begin with the easier case of many-one reductions. This result has the corollary that if $\overline{\mathrm{SAT}}$ many-one reduces to a set of subexponential density, then coNP $\subseteq \mathrm{NP} /$ poly.

Theorem 3.1. Let A be any set that has an AND-function. If there is a set S with subexponential density such that $A \leq_{m}^{p} S$ then $A \in \mathrm{NP} /$ poly.

Proof. Let $g\left(x_{1}, \ldots, x_{n}\right)$ be the AND-function for A. Let f be the many-one reduction from A to S. We say that a string $z \in S$ is NP-proof for $x \in A$, with $|x|=n$, iff there exist x_{1}, \ldots, x_{n}, such that for all $i,\left|x_{i}\right|=n$ and there exists an i, with $x=x_{i}$, and in addition $f\left(g\left(x_{1}, \ldots, x_{n}\right)\right)=z$.

The idea is to show that there exists a string $z_{1} \in S$ that is NP-proof for half the strings in $A_{=n}$. We will then recurse on the remaining strings in $A_{=n}$, for which z_{1} is not NP-proof, until we end up with a sequence of at most n strings z_{1}, \ldots, z_{k} such that for all $x \in A_{=n}$ there is an i such that z_{i} is NP-proof for x. These NP proofs serve as advice to show that $A \in \mathrm{NP} /$ poly.

First observe that if z is NP-proof for precisely t strings $x \in A$ then

$$
\begin{equation*}
\|\left\{<x_{1}, \ldots, x_{n}>\left|\left|x_{i}\right|=n \text { and } f\left(g\left(x_{1}, \ldots, x_{n}\right)\right)=z\right\} \| \leq t^{n}\right. \tag{3.1}
\end{equation*}
$$

Assume that f and g both run in time n^{c} for some c. Let $m_{n}=n^{2 c^{2}}$, hence $\left|f\left(g\left(x_{1}, \ldots, x_{n}\right)\right)\right| \leq m_{n}$. Since S has subexponential density, for large enough n it holds that $\left\|S_{\leq m_{n}}\right\|<2^{n}$.

Let t be the largest such that some z_{1} is NP-proof for t elements of length n in A. Since for every n-tuple $<x_{1}, \ldots, x_{n}>$ with for all $i, x_{i} \in A$, $f\left(g\left(<x_{1}, \ldots, x_{n}>\right)\right)$ maps to some string z in $S_{\leq n_{m}}$, we now have:

$$
\begin{equation*}
t^{n}\left\|S_{\leq m_{n}}\right\| \geq\left\|A_{=n}\right\|^{n} \tag{3.2}
\end{equation*}
$$

and hence

$$
\begin{equation*}
t^{n} 2^{n} \geq\left\|A_{=n}\right\|^{n} \tag{3.3}
\end{equation*}
$$

which implies that $t \geq\left\|A_{=n}\right\| / 2$, and hence z_{1} is NP-proof for half the elements in A of length n. The proof now continues by finding a z_{2} that is NP-proof for half of the elements in A for which z_{1} is not NP-proof, resulting ultimately in the desired sequence $z_{1}, \ldots, z_{k}(k \leq n)$. The inductive generation of z_{i} is possible because all the strings in A for which none of the z_{1}, \ldots, z_{i-1} is NP-proof, let's call them A^{\prime}, have the following property. For every $y_{1}, \ldots, y_{n} \in A^{\prime}$ it holds that $f\left(g\left(y_{1}, \ldots, y_{n}\right)\right) \in S \backslash\left\{z_{1}, \ldots, z_{i-1}\right\}$. Hence the counting arguments in equations (3.1), (3.2), and (3.3) still hold for A^{\prime}.

Our main technical tool, Lemma 3.2 below, is a generalization of Theorem 3.1. Instead of a many-one reduction to a subexponentially dense set, we consider a nondeterministic disjunctive reduction to a family of sets where the density can be exponential.

Definition. Let $\mathcal{B}=\left(B_{n} \mid n \geq 0\right)$ be a family of subsets of $\{0,1\}^{*}$. We say that A NP-reduces to \mathcal{B} if there is an NPMV function N such that for all n, for all $x \in\{0,1\}^{n}, x \in A$ iff at least one output of $N(x)$ is in B_{n}.

Lemma 3.2. Let A have an $A N D$-function of order s and let $\alpha<1 / s$. Let $\mathcal{B}=\left(B_{n} \mid n \geq 0\right)$ be a family of sets with $\left\|B_{n}\right\| \leq 2^{n^{\alpha}}$ for sufficiently large n. If A NP-reduces to \mathcal{B}, then $A \in \mathrm{NP} /$ poly.

Proof. Let M compute the NPMV function for the reduction from A to \mathcal{B}. Let g be the AND-function for A. For simplicity we assume that for all $x_{1}, \ldots, x_{n} \in\{0,1\}^{m}$, the length of $g\left(x_{1}, \ldots, x_{n}\right)$ is exactly $(n m)^{s}$. The general case when the length is $O\left((n m)^{s}\right)$ is similar.

Choose a constant k so that $\frac{k}{k+1} \geq \alpha s$. Fix an input length m, let $n=m^{k}$, and let $N=(n m)^{s}$. Note that we have

$$
\left\|B_{N}\right\| \leq 2^{N^{\alpha}}=2^{m^{(k+1) s \alpha}} \leq 2^{m^{k}}=2^{n}
$$

For any $x \in\{0,1\}^{m}$,
$x \in A \Longleftrightarrow$ there exist $x_{1}, \ldots, x_{n} \in\{0,1\}^{m}$ with $x_{i}=x$ for some i such that M on input $g\left(x_{1}, \ldots, x_{n}\right)$ outputs some string $z \in B_{N}$.

Call such a string z an NP-proof that $x \in A$. As in the proof of Theorem 3.1, we claim that there exists a collection of at most m strings z_{1}, \ldots, z_{l} such that each $x \in A_{=m}$ has an NP-proof in the collection.

Suppose that z is an NP-proof for exactly t strings in $A_{=m}$. Then

$$
\|\left\{<x_{1}, \ldots, x_{n}>\mid M\left(g\left(x_{1}, \ldots, x_{n}\right)\right) \text { outputs } z\right\} \| \leq t^{n} .
$$

Let t be the maximal such that some string z is an NP-proof for t strings. Then

$$
\left\|A_{=m}\right\|^{n} \leq\left\|B_{N}\right\| \cdot t^{n} \leq 2^{n} t^{n}
$$

so $t \geq\left\|A_{=m}\right\| / 2$. Therefore there is a string z_{1} that works for at least half of the strings in $A_{=m}$. Repeating this argument yields a string z_{2} that works for at least half of the remaining strings. After at most m repetitions we have NP-proofs for all the strings.

As our first application of Lemma 3.2 we extend Theorem 3.1 to disjunctive reductions.

Theorem 3.3. If A has an $A N D$-function and $A \leq_{\mathrm{d}}^{\mathrm{p}} \mathrm{SUBEXPD}$, then $A \in$ NP/poly.

Proof. Suppose that $A \leq_{\mathrm{d}}^{\mathrm{p}} S \in \mathrm{SUBEXPD}$ via a reduction g in $p(n)$ time. Define an NPMV function N that on input x guesses and outputs one of the queries in $g(x)$. Let $B_{n}=S_{\leq p(n)}$. Then A NP-reduces to the family $\left(B_{n} \mid n \geq 0\right)$ via N.

Let $\alpha<1 / s$ where s is the order of the AND-function. We have $\left\|B_{n}\right\| \leq$ $2^{n^{\alpha}}$ for sufficiently large n because S has subexponential density. By Lemma 3.2 we have $A \in \mathrm{NP} /$ poly.

We apply Theorem 3.3 with $\overline{\mathrm{SAT}}$ to obtain the following:
Theorem 3.4. If coNP $\nsubseteq N P /$ poly, then every $\leq_{\mathrm{d}}^{\mathrm{p}}$-hard set for coNP is exponentially dense.

Allender, Hemachandra, Ogiwara, and Watanabe [1] showed that if $A \leq_{\mathrm{btt}}{ }^{-}$ reduces to a sparse set, then $A \leq_{\mathrm{d}}^{\mathrm{p}}$-reduces to another sparse set. Part of the proof shows that the complement of any sparse set disjunctively reduces to a sparse set. This argument also applies to subexponentially dense sets. For completeness we include a proof. Here we write that S has density $d(n)$ if $\left\|S_{\leq n}\right\|=d(n)$.
Lemma 3.5. Let S be a set with density $d(n)$. Then there is a set T with density at most $n d(n)+n$ such that $\bar{S} \leq_{\mathrm{d}}^{\mathrm{p}} T$. In particular, if $S \in \mathrm{SUBEXPD}$, then $\bar{S} \leq_{\mathrm{d}}^{\mathrm{p}} T$ for some $T \in \operatorname{SUBEXPD}$.

Proof. We isolate the part we need of the proof in [1]. Let T be the set of all $0^{n} 1 w b$ where b is a bit and w has an extension in $S_{=n}$, but $w b$ does not have an extension in $S_{=n}$. If $S_{=n}=\emptyset$, we add $0^{n} 1$ to T.

We claim that a string y is in $\bar{S}_{=n}$ if and only if y has a prefix z such that $0^{n} 1 z \in T$.

- If $y \notin S$ and $S_{=n} \neq \emptyset$, then let z be the longest prefix of y that has an extension in S. The string $0^{n} 1 z$ is in T. If $S_{=n}=\emptyset$, then $0^{n} 1$ is in T, so the claim holds for $z=\lambda$.
- If $y \in S$, then every prefix z of y has an extension in S and $0^{n} 1 z \notin T$.

Therefore $\bar{S} \leq_{\mathrm{d}}^{\mathrm{p}} T$ via the reduction that lists the prefixes of its input.
For each length n, we added at most $(n+1)\left\|S_{=n}\right\|+1$ strings to T.
Therefore $\left\|T_{\leq n}\right\| \leq \sum_{m=0}^{n-1}(m+1)\left\|S_{=m}\right\|+1 \leq n d(n)+n$.

Theorem 3.3 and Lemma 3.5 yield the following for conjunctive reductions.

Theorem 3.6. If A has an $O R$-function and $A \leq_{\mathrm{c}}^{\mathrm{p}} \operatorname{SUBEXPD}$, then $A \in$ coNP/poly.

Proof. Suppose that $A \leq{ }_{\mathrm{c}}^{\mathrm{p}} S \in$ SUBEXPD. Then $\bar{A} \leq_{\mathrm{d}}^{\mathrm{p}} \bar{S}$ and by Lemma 3.5 there is a $T \in$ SUBEXPD such that $\bar{S} \leq_{\mathrm{d}}^{\mathrm{p}} T$. Composing reductions yields $\bar{A} \leq_{\mathrm{d}}^{\mathrm{p}} T$, so $\bar{A} \in \mathrm{NP} /$ poly by Theorem 3.3, because the OR-function for A is an AND-function for \bar{A}.

Theorem 3.7. If coNP $\nsubseteq \mathrm{NP} /$ poly, then every $\leq_{\mathrm{c}}^{\mathrm{p}}$-hard set for NP is exponentially dense.

Our next theorem concerns query-bounded Turing reductions. In the proof we use techniques from $[1,5]$ to convert the Turing reduction into an NP disjunctive reduction.

Theorem 3.8. Let A have an $A N D$-function of order s and let $\alpha<1 / s$. If $A \leq_{n^{\alpha}-\mathrm{T}}^{\mathrm{p}}$ SUBEXPD, then $A \in \mathrm{NP} /$ poly.

Proof. Suppose $A \leq_{n^{\alpha}-\mathrm{T}}^{\mathrm{p}} S \in \mathrm{SUBEXPD}$ via M. Fix an input length n. For an input $x \in\{0,1\}^{n}$, consider using each $z \in\{0,1\}^{n^{\alpha}}$ as the sequence of yes/no answers to M 's queries. Each z causes M to produce a sequence of queries $w_{1}^{x, z}, \ldots, w_{n \alpha}^{x, z}$ and an accepting or rejecting decision. (We can assume that M always makes n^{α} queries.) Let $Z_{x} \subseteq\{0,1\}^{n^{\alpha}}$ be the set of all query answer sequences that cause M to accept x. Then we have $x \in A$ if and only if

$$
\left(\exists z \in Z_{x}\right)\left(\forall 1 \leq j \leq n^{\alpha}\right) S\left[w_{j}^{x, z}\right]=z[j],
$$

which is equivalent to

$$
\left(\exists z \in Z_{x}\right)\left(\forall 1 \leq j \leq n^{\alpha}\right) z[j] \cdot w_{j}^{x, z} \in \bar{S} \oplus S,
$$

where $\bar{S} \oplus S$ is the disjoint union $\{0 x \mid x \in \bar{S}\} \cup\{1 x \mid x \in S\}$.
By Lemma 3.5 there is a set $T \in$ SUBEXPD such that $\bar{S} \leq_{\mathrm{d}}^{\mathrm{p}} T$. Let $U=T \oplus S$. We then have $\bar{S} \oplus S \leq_{\mathrm{d}}^{\mathrm{p}} U$ via some reduction g. For each $z \in Z_{x}$, let

$$
H_{x, z}=\left\{<u_{1}, \ldots, u_{n^{\alpha}}>\mid(\forall j) u_{j} \in g\left(z[j] \cdot w_{j}^{x, z}\right)\right\} .
$$

Let $r(n)$ be a polynomial bounding the run time of g on inputs of the form $z[j] \cdot w_{j}^{x, z}$, where $|x|=n$. Define

$$
B_{n}=\left\{<u_{1}, \ldots, u_{n^{\alpha}}>\mid(\forall j) u_{j} \in U_{\leq r(n)}\right\} .
$$

Then we have

$$
x \in A \Longleftrightarrow\left(\exists z \in Z_{x}\right)\left(\exists y \in H_{x, z}\right) y \in B_{n} .
$$

Define an NPMV function N that on input x chooses some $z \in Z_{x}$ and tuple $y \in H_{x, z}$ and outputs y. Then N is an NP-reduction of A to the family ($B_{n} \mid n \geq 0$).

Let $\bar{\delta}=(1 / s-\alpha) / 2$. Then since $U \in \mathrm{SUBEXPD},\left\|U_{\leq r(n)}\right\| \leq 2^{n^{\delta}}$ for sufficiently large n. This implies

$$
\left\|B_{n}\right\|=\left\|U_{\leq r(n)}\right\|^{n^{\alpha}} \leq 2^{n^{\alpha+\delta}}=2^{n^{(1 / s)-\delta}}
$$

Lemma 3.2 applies to show $A \in \mathrm{NP} /$ poly.
We now have the main result of this paper:
Theorem 3.9. If coNP $\nsubseteq \mathrm{NP} /$ poly, then for all $\epsilon>0$, every $\leq_{n^{1-\epsilon}-\mathrm{T}}^{\mathrm{p}}$-hard set for NP is exponentially dense.

Proof. Suppose that SAT $\leq_{n^{1-\epsilon-T}}$-reduces to a subexponentially dense set. Then $\overline{\text { SAT }} \leq_{n^{1-\epsilon}-T^{-}}^{\mathrm{p}}$-reduces to the same set by inverting the reduction's answers. Moreover $\overline{\mathrm{SAT}}$ has an AND-function of order $s=1$. Theorem 3.8 applies to show coNP $\subseteq \mathrm{NP} /$ poly.

In fact, we can show a slightly stronger result. Theorem 3.8 still holds if the Turing reduction uses nondeterminism:

Theorem 3.10. Let A have an AND-function of order s and let $\alpha<1 / s$. If $A \in \mathrm{NP}^{S\left[n^{\alpha}\right]}$ for some $S \in \mathrm{SUBEXPD}$, then $A \in \mathrm{NP} /$ poly.

Proof. We extend the proof of Theorem 3.8. Suppose $A=L\left(M^{S\left[n^{\alpha}\right]}\right)$ where M is an NP machine running in time $t(n)$. For an input $x \in\{0,1\}^{n}$, we can use any pair $\left\langle p, z>\right.$ where $p \in\{0,1\}^{t(n)}$ and $z \in\{0,1\}^{n^{\alpha}}$ to run M on input x. We use p to provide the nondeterministic choices and z to provide the query answers. In this computation M produces a sequence of queries
$w_{0}^{x, p, z}, \ldots, w_{n^{\alpha}}^{x, p, z}$ and an accepting or rejecting decision. Let Z_{x} be the set of all $\langle p, z\rangle$ that cause M to accept x. Then we have $x \in A$ if and only if

$$
\left(\exists<p, z>\in Z_{x}\right)\left(\forall 1 \leq j \leq n^{\alpha}\right) S\left[w_{j}^{x, p, z}\right]=z[j] .
$$

The remainder of the proof carries through with z replaced by $\langle p, z\rangle$ throughout.

We obtain an extension of Theorem 3.10 to strong nondeterministic polynomialtime reductions.

Theorem 3.11. If coNP $\nsubseteq \mathrm{NP} /$ poly, then for all $\epsilon>0$, every $\leq_{n^{1-\epsilon}-\mathrm{T}^{-}}^{\mathrm{SNP}}$-hard set for NP is exponentially dense.

Proof. Suppose that S has subexponential density and is $\leq_{n^{1-\epsilon}-T^{-}}^{\mathrm{SNP}}$-hard for NP. Then $\overline{\mathrm{SAT}} \leq_{n^{1-\epsilon}-\mathrm{T}}^{\mathrm{SNP}} S$, so $\overline{\mathrm{SAT}} \in \mathrm{NP}^{S\left[n^{1-\epsilon}\right]}$. Theorem 3.10 implies $\overline{\mathrm{SAT}} \in \mathrm{NP} /$ poly.

All our results to this point are conditional. For an unconditional result we go to the $\tilde{\mathrm{P}} \mathrm{H}$ hierarchy, where $\tilde{\mathrm{P}}$ means $n^{O(\log n)}$.

Theorem 3.12. For all $\epsilon>0$, every $\leq_{n^{1-\epsilon}-\mathrm{T}}^{\mathrm{p}}$-hard set for $\sum_{3}^{\tilde{\mathrm{P}}}$ is exponentially dense.

Proof. First, we claim that $\Sigma_{3}^{\tilde{\mathrm{P}}} \nsubseteq \mathrm{NP} /$ poly. This is similar to Kannan's proof that Σ_{2}^{P} does not have n^{k}-size circuits [6]. We can show that there is a set $H \in \Sigma_{4}^{\tilde{\mathrm{P}}}-\mathrm{NP} /$ poly by a direct counting argument. Then we consider two cases: if coNP $\nsubseteq \mathrm{NP} /$ poly, the claim holds immediately because coNP $\subseteq \Sigma_{3}^{\tilde{\mathrm{P}}}$. Otherwise coNP $\subseteq \mathrm{NP} /$ poly and we have $\mathrm{PH}=\Sigma_{3}^{\mathrm{P}}$ by Yap's theorem [12]. From this padding gives $\tilde{\mathrm{P}} H=\Sigma_{3}^{\tilde{\mathrm{P}}}$ and therefore $H \in \Sigma_{3}^{\tilde{\mathrm{P}}}$.

There is a many-one complete set A for $\Sigma_{3}^{\tilde{P}}$ with an AND-function of order 1. Suppose that $A \leq_{n^{1-\epsilon}-\mathrm{T}}^{\mathrm{p}}$-reduces to a set S of subexponential density. Theorem 3.8 implies $A \in \mathrm{NP} /$ poly, so $\Sigma_{3}^{\tilde{\mathrm{P}}} \subseteq \mathrm{NP} /$ poly, a contradiction.

We remark that Theorem 3.12 also holds for conjunctive, disjunctive, and SNP $n^{1-\epsilon}$-Turing reductions.

4 Instance Complexity

Let A be a set and let $t(n)$ be a time bound. A program p is consistent with A for all $x, p(x) \in\{0,1, ?\}$, and whenever $p(x) \neq ?, p(x)=A(x)$. The t-instance complexity of x with respect to A, written ic ${ }^{t}(x: A)$ is the length of a shortest program p such that

- p is consistent with A,
- $p(x)$ halts within $t(|x|)$ steps, and
- $p(x)=A(x)$.

Formally, $p(x)=U(p, x)$ where U is an efficient universal machine. See [11] for more information on instance complexity.

Theorem 4.1. Let A have an AND-function of order s, let $\alpha<1 / s$, and let q be a polynomial. If $\mathrm{ic}^{q}(x: A) \leq n^{\alpha}$ for all but finitely many $x \in A$, then $A \in \mathrm{NP} /$ poly .

Proof. For each n, let $B_{n}=\left\{p \mid p\right.$ is consistent with A and $\left.|p| \leq n^{\alpha}\right\}$. Then $\left\|B_{n}\right\| \leq 2^{n^{\alpha}+1}$. Define an NPMV function N that on input x guesses a program p and outputs p if the program accepts x within $q(|x|)$ steps. Then N reduces A to the family ($B_{n} \mid n \geq 0$), so Lemma 3.2 yields $A \in \mathrm{NP} /$ poly.

Corollary 4.2. If NP \nsubseteq coNP/poly, then for every polynomial q and $\epsilon>0$, there exist infinitely many $\phi \in \overline{\mathrm{SAT}}$ with $\mathrm{ic}^{q}(\phi:$ SAT $)>|\phi|^{1-\epsilon}$.

Corollary 4.2 should be contrasted with the result that if $\mathrm{P} \neq \mathrm{NP}$, then there are infinitely many ϕ with $\mathrm{ic}^{q}(\phi: \mathrm{SAT}) \geq c \log |\phi|$. With the stronger NP \nsubseteq coNP/poly hypothesis, we get a nearly linear lower bound on the instance complexity of SAT instances. Since $i c^{t(n)}(\phi$: SAT $) \leq|\phi|+O(1)$ for $t(n)=O(n \log n)$, this bound is fairly tight.

We can also show that the lower bound holds for a large set of SAT instances. Our next theorem is an extension of Theorem 4.1 that accounts for the density of the hard instances.

Theorem 4.3. Let A have an AND-function of order s, let $\alpha<1 / s$, and let q be a polynomial. Define $H=\left\{x \in A\left|i c^{q}(x: A)>|x|^{\alpha}\right\}\right.$. If $\left\|H_{\leq n}\right\| \leq 2^{n^{\alpha}}$ for sufficiently large n, then $A \in \mathrm{NP} /$ poly.

Proof. Let $P_{n}=\left\{p \mid p\right.$ is consistent with A and $\left.|p| \leq n^{\alpha}\right\}$. We define B_{n} as the disjoint union of $H_{\leq n}$ and P_{n} :

$$
B_{n}=0 H_{\leq n} \cup 1 P_{n} .
$$

Then $\left\|B_{n}\right\| \leq 2^{n^{\alpha}+2}$ for large n. Define an NPMV function N that on input x either
(i) outputs $0 x$, or
(ii) guesses a program p and outputs $1 p$ if p accepts x within $q(|x|)$ steps.

Then N reduces A to the family $\left(B_{n} \mid n \geq 0\right)$ and Lemma 3.2 implies $A \in \mathrm{NP} /$ poly .

Corollary 4.4. Suppose NP \nsubseteq coNP/poly. Then for all $\epsilon>0$ and polynomials q,

$$
\left\|\left\{\phi \in \overline{\mathrm{SAT}}_{\leq n}\left|\mathrm{ic}^{q}(\phi: \mathrm{SAT})>|\phi|^{1-\epsilon}\right\} \| \geq 2^{n^{1-\epsilon}}\right.\right.
$$

for infinitely many n.
Next we consider reductions to sets that have low instance complexity.
Theorem 4.5. Let A have an $A N D$-function of order s and let $\alpha<1 / s$. Let C be a set where for all $\delta>0$, there is a polynomial r such that $\mathrm{ic}^{r}(x: C)<$ $|x|^{\delta}$ for all but finitely many x. If $A \leq_{n^{\alpha}-\mathrm{T}}^{\mathrm{p}} C$, then $A \in \mathrm{NP} /$ poly.

Proof. Let M compute the reduction from A to C in $t(n)$ time. Let $\epsilon=$ $[(1 / s)-\alpha] / 2$. Choose $\delta>0$ so that $t(n)^{\delta}<n^{\epsilon}$ for sufficiently large n. There is a polynomial r such that ic ${ }^{r}(x: C)<|x|^{\delta}$ for almost all x.

Let x have length n. We can assume that M makes exactly n^{α} queries on input x. Define an NP machine N that on input x simulates M. When M makes a query q_{i}, N does the following:
(i) Guess a program p_{i} with $\left|p_{i}\right|<\left|q_{i}\right|^{\delta}$.
(ii) Run p_{i} on input q_{i}, aborting the computation if it runs for more than $r\left(\left|q_{i}\right|\right)$ steps.
(iii) If p_{i} produces a decision, use that as the answer for query q_{i} in the simulation of M.
(iv) If p_{i} was aborted or did not output a decision, N halts and outputs nothing.

If M accepts x at the end of this simulation, then N outputs the tuple $\left.<p_{1}, \ldots, p_{n^{\alpha}}\right\rangle$ of programs it guessed.

Each query q_{i} has $\left|q_{i}\right| \leq t(n)$. Then for sufficiently large n,

$$
\operatorname{ic}^{r}\left(q_{i}: C\right)<\left|q_{i}\right|^{\delta} \leq t(n)^{\delta}<n^{\epsilon} .
$$

Define

$$
E_{n}=\left\{p \mid p \text { is consistent with } C \text { and }|p|<n^{\epsilon}\right\}
$$

and

$$
\left.B_{n}=\left\{<p_{1}, \ldots, p_{n^{\alpha}}\right\rangle \mid \text { each } p_{i} \in E_{n}\right\} .
$$

Then $\left\|B_{n}\right\| \leq\left(2^{n^{\epsilon}}\right)^{n^{\alpha}}=2^{n^{(1 / s)-\epsilon}}$ and N reduces A to the family $\left(B_{n} \mid n \geq 0\right)$. Lemma 3.2 now applies to show $A \in \mathrm{NP} /$ poly.

We can also extend Theorem 4.5 to consider the density of the hard instances.

Theorem 4.6. Let A have an $A N D$-function of order s and let $\alpha<1 / s$. Let C be a set where for all $\delta>0$, there is a polynomial r such that the collection of hard instances

$$
H^{\delta, r}=\left\{x \mid \mathrm{ic}^{r}(x: C) \geq n^{\delta}\right\}
$$

has subexponential density. If $A \leq_{n^{\alpha}-\mathrm{T}}^{\mathrm{p}} C$, then $A \in \mathrm{NP} /$ poly.
Proof. Let M compute the reduction from A to C in $t(n)$ time. We assume that M makes exactly n^{α} queries. Let $\epsilon=[(1 / s)-\alpha] / 2$ and choose $\delta>0$ such that $t(n)^{\delta}<n^{\epsilon}$ for large n. There is a polynomial r such that $H^{\delta, r}$ has subexponential density.

Let x have length n. Define an NP machine N that on input x simulates M. When M makes a query q_{i}, N nondeterministically chooses (I) or (II) below to answer the query:
(I) Guess a bit b and use it as the answer for query q_{i}. Record $z_{i}=\left\langle b, q_{i}\right\rangle$.
(II) (i) Guess a program p_{i} with $\left|p_{i}\right|<\left|q_{i}\right|^{\delta}$.
(ii) Run p_{i} on input q_{i}, aborting the computation if it runs for more than $r\left(\left|q_{i}\right|\right)$ steps.
(iii) If p_{i} was aborted or did not output a decision, N halts and outputs nothing.
(iv) If p_{i} produces a decision, use that as the answer for query q_{i}. Record $z_{i}=<\lambda, p_{i}>$.

If M accepts x at the end of the simulation, then N outputs the tuple $<z_{1}, \ldots, z_{n^{\alpha}}>$.

We have $\left\|H_{\leq t(n)}^{\delta, r}\right\|<2^{n^{\epsilon}}$ for sufficiently large n. Define

$$
\begin{gathered}
E_{n}=\left\{<\lambda, p>\mid p \text { is consistent with } C \text { and }|p|<n^{\epsilon}\right\}, \\
D_{n}=\left\{<1, q>\mid q \in H_{\leq t(n)}^{\delta, r} \cap C\right\} \cup\left\{<0, q>\mid q \in H_{\leq t(n)}^{\delta, r} \cap \bar{C}\right\},
\end{gathered}
$$

and

$$
\left.B_{n}=\left\{<z_{1}, \ldots, z_{n^{\alpha}}\right\rangle \mid \text { each } z_{i} \in D_{n} \cup E_{n}\right\} .
$$

Then

$$
\left\|B_{n}\right\|=\left(\left\|E_{n}\right\|+\left\|H_{\leq t(n)}^{\delta, r}\right\|\right)^{n^{\alpha}} \leq\left(2^{n^{\epsilon}+1}\right)^{n^{\alpha}} \approx 2^{n^{(1 / s)-\epsilon}}
$$

We apply Lemma 3.2 to obtain $A \in \mathrm{NP} /$ poly.
Corollary 4.7. Suppose that NP \nsubseteq coNP/poly and let C be $\leq_{n^{1-\epsilon}-\mathrm{T}}^{\mathrm{p}}$-hard for NP. There is a $\delta>0$ such that for every polynomial r, the set

$$
\left\{x\left|\operatorname{ic}^{r}(x: C) \geq|x|^{\delta}\right\}\right.
$$

has exponential density.
Just like Theorem 3.11 we can show that Corollary 4.7 also holds for strong nondeterministic polynomial-time reductions. Also, by following the line of argument in Theorem 3.12, we can obtain an absolute result for instance complexity in $\sum_{3}^{\tilde{\mathrm{P}}}$-hard sets.

Acknowledgements. We thank Lance Fortnow and Rahul Santhanam for sharing a preliminary version of [3], and for useful discussions. We also thank Scott Aaronson, Steve Fenner, Kolya Vereshchagin, and John Rogers for interesting discussions.

References

[1] E. Allender, L. A. Hemachandra, M. Ogiwara, and O. Watanabe. Relating equivalence and reducibility to sparse sets. SIAM Journal on Computing, 21(3):521-539, 1992.
[2] L. Berman and H. Hartmanis. On isomorphisms and density of NP and other complete sets. SIAM J. Comput., 6:305-322, 1977.
[3] L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for NP. Technical Report TR07-096, Electronic Colloquium on Computational Complexity, 2007.
[4] S. Fortune. A note on sparse complete sets. SIAM J. Comput., 8(3):431433, 1979.
[5] J. M. Hitchcock. Online learning and resource-bounded dimension: Winnow yields new lower bounds for hard sets. SIAM Journal on Computing, 36(6):1696-1708, 2007.
[6] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and Control, 55(1-3):40-56, October/November/December 1982.
[7] R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes. In Proc. 12th ACM Symposium on Theory of Computing, pages 302-309, 1980.
[8] S. Mahaney. Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis. J. Comput. System Sci., 25:130-143, 1982.
[9] A. Meyer and M. Paterson. With what frequency are apparently intractable problems difficult? Technical Report MIT/LCS/TM-126, M.I.T., 1979.
[10] M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table reducibility of NP sets to sparse sets. SIAM Journal on Computing, 20(3):471-483, 1991.
[11] P. Orponen, K-I Ko, U. Schöning, and O. Watanabe. Instance complexity. J. Assoc. Comput. Mach, 41(1):96-121, 1994.
[12] C. K. Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical Computer Science, 26:287-300, 1983.

[^0]: *CWI Kruislaan 409, 1098 SJ Amsterdam, the Netherlands, and University of Amsterdam; e-mail:buhrman@cwi.nl. Supported by an NWO VICI grant.
 ${ }^{\dagger}$ Department of Computer Science, University of Wyoming; e-mail: jhitchco@cs.uwyo.edu. Supported in part by NSF grants 0515313 and 0652601.

