
Non-uniform attacks against one-way functions and PRGs

Anindya De∗ Luca Trevisan† Madhur Tulsiani‡

November 8, 2009

Abstract

We study the power of non-uniform attacks against one-way functions and pseudorandom
generators.

Fiat and Naor [FN99] show that for every function f : [N]→ [N] there is an algorithm that
inverts f everywhere using (ignoring lower order factors) time, space and advice at most N3/4.

We show that an algorithm using time, space and advice at most

max{ε 5
4N

3
4 ,
√
εN}

exists that inverts f on at least an ε fraction of inputs. A lower bound of Ω̃(
√
εN) also holds,

making our result tight in the “low end” of ε ≤ 3

√
1
N .

(Both the results of Fiat and Naor and ours are formulated as more general trade-offs between
the time and the space and advice length of the algorithm. The results quoted above correspond
to the interesting special case in which time equals space and advice length.)

We also show that for every length-increasing generator G : [N]→ [2N] there is a algorithm
that achieves distinguishing probability ε between the output of G and the uniform distribution
and that can be implemented in polynomial (in logN) time and with advice and space O(ε2 ·
N logN). Alternatively, it can be implemented as a circuit of size O(ε2 ·N). We prove a lower
bound of S · T ≥ Ω(ε2N) where T is the time used by the algorithm and S is the amount of
advice.

We prove stronger lower bounds in the common random string model, for families of one-way
permutations and of pseudorandom generators.

Keywords: One-way functions, pseudorandom generators, random permutations, time-space trade-
offs
∗Computer Science Division, University of California, Berkeley, CA, USA. anindya@cs.berkeley.edu. Supported

by the “Berkeley Fellowship for Graduate Study” and US-Israel BSF grant 2006060.
†Computer Science Division, University of California, Berkeley, CA, USA. luca@cs.berkeley.edu. This material

is based upon work supported by the National Science Foundation under grant No. CCF-0729137 and by the BSF
under grant 2006060.
‡Institute for Advanced Study, Princeton, NJ, USA. madhurt@math.ias.edu. This material is based upon work

supported by the National Science Foundation under grant No. CCF-0832797 and IAS Sub-contract no. 00001583.
Work done partly when the author was a graduate student at UC Berkeley.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 113 (2009)

1 Introduction

In the applied cryptography literature, a cryptographic primitive with a key of length k is typically
considered “broken” if the key can be recovered in time less than 2k, that is, faster than via an
exhaustive brute force search. Implicit in this attitude is the belief in the existence of primitives
for which a brute force attack is optimal. A time t brute force attack against a one-way function
f : {0, 1}n → {0, 1}n, consisting in trying about t random guesses for the inverse, only succeeds with
probability about t/2n, and a brute force attack that attempts to distinguish a length increasing
generator G : {0, 1}n−1 → {0, 1}n from the uniform distribution by attempting to guess the seed
achieves distinguishing probability about t/2n. Is it plausible that such trade-offs are optimal?
Would it be plausible to assume that AES with 128 key bit cannot be distinguished from a random
permutation with distinguishing probability more than 2−40 by adversaries running in time 260?1

If we apply a non-uniform measure of complexity, that is, if we restrict ourselves to a fixed finite one-
way function or pseudorandom generator, and allow our adversary to use precomputed information
as advice, then it turns out that the above “brute force” bounds can always be improved upon.

In 1980, Hellman [Hel80] proved that for every one-way permutation f : [N]→ [N] (for this discus-
sion, it will be convenient to set N = 2n and identify {0, 1}n with [N]) and for every parameters
S, T satisfying S · T ≥ N , there is a data structure of size Õ(S) and an algorithm that, with the
help of the data structure, given f(x) is always able to find x in time Õ(T). (The notation Õ(·)
hides lower order factors that are polynomial in logN ; we will ignore such factors from now on in
the interest of readability.) We shall refer to S, the size of the pre-computed data structure used
by the algorithm, as the space used by the algorithm.

In particular, every one-way permutation can be inverted in time
√
N using

√
N bits of advice.2

Hellman algorithm only requires oracle access to the permutation. Yao [Yao90] proves that, in this
oracle setting, Hellman’s trade-off is tight for random permutations. (See also [Gol09].)

Hellman also considers the problem of inverting a random function f : [N]→ [N] given oracle access
to f . He provides a heuristic argument suggesting that for every S, T satisfying TS2 ≥ N2, and
with high probability over the choice or a random function f : [N]→ [N], there is a data structure
of size S and an algorithm of complexity T that inverts f everywhere using the data structure and
given oracle access f . This trade-off yields the interesting special case S = T = N2/3.

Fiat and Naor [FN99] prove Hellman’s result rigorously, and are able to handle arbitrary functions,
not just random functions. If the given function f : [N]→ [N] has collision probability3 λ, then the
algorithm of Fiat and Naor requires the trade-off TS2 ≥ λ · N3. Note that with high probability
a random function has collision probability about 1/N (recall that we ignore (logN)O(1) terms),
and so one recovers Hellman’s tradeoff. For general functions, Fiat and Naor are able to prove the
trade-off TS3 ≥ N3, which has the special case S = T = N3/4.

1The answer to the last question is no. It follows from our results in Appendix 9 that there is a distinguisher
that makes two queries, then performs a computation realizable as a circuit of size 256, assuming a complete basis
of fan-in two gates, and achieves distinguishing probability ≥ 2−40 between AES128 and a random permutation
{0, 1}128 → {0, 1}128. Otherwise, after the two oracle queries, the distinguisher can be implemented in a 64-bit
architecture with two table look-ups and three unit-cost RAM operations, given access to a precomputed table of 249

entries.
2This doesn’t mean that there is a circuit of size Õ(

√
N); the running time of Õ(

√
N) is in the RAM model. The

relationship between non-uniform time/space complexity measures and circuit complexity is the following: a circuit of
size C can be simulated using time at most Õ(C) given a pre-computed data structure of size Õ(C); and an algorithm
that uses time T and a pre-computed data structure of size S can be simulated by a circuit of size Õ((S + T)2).

3Here by the collision probability of a function we mean the probability that after sampling two independent
random inputs x, y we have f(x) = f(y).

1

Barkan, Biham, and Shamir [BBS06] prove that the TS2 = N2 trade-off of Fiat and Naor for
random functions is optimal under certain assumptions on what is stored in the data structure and
on the behavior of the algorithm.

The result of Fiat and Naor can also be applied to the task of distinguishing a given pseudorandom
generator from the uniform distribution (and hence a given pseudorandom permutation from a
random permutation or a given pseudorandom function from a random function) by recovering the
seed. We are not aware of previous work that focused specifically on the complexity of distinguishers
for pseudorandom generators. Two related results, however, should be mentioned. It has been
known for a long time (going back to, as far we know, [AGHP92]) that every distribution that has
constant statistical distance from the uniform distribution, and, in particular, the output of any
length increasing generator, can be distinguished from the uniform distribution over n bits using
a parity function (of linear circuit complexity), and with distinguishing probability Ω(2−

n
2). The

other result is due to Andreev, Clementi and Rolim [ACR97], who prove that for every boolean
predicate P : {0, 1}n → {0, 1} and every ε there is a circuit of size O(ε22n) that computes P on at
least a 1/2 + ε fraction of inputs. This implies that for every pseudorandom generator of the form
x → f(x)P (x), where f is a permutation and P is a hard-core predicate for f , and every ε > 0,
there is a circuit of size O(ε22n) that achieves distinguishing probability ε.

Our Results

We show that for every f : [N] → [N] and every ε there is an algorithm that inverts f on an ε
fraction of inputs and whose time complexity, space complexity and advice length are bounded by

Õ
(

max
{√

εN , ε
5
4N

3
4

})
Here the Õ hides factors of 2poly log log. It follows from known results, and we present a proof in
Appendix 10, that, in an oracle setting, it is not possible to do better than Ω(

√
εN), so our result

is best possible when ε < N1/3.

Indeed, we establish the following more general trade-off: for every T < 1/ε and S satisfying the
trade-off ST = εN we can construct an algorithm that has time T and uses a data structure of
size S (up to lower order factors); for every T > 1/ε, we can use time T and space S provided
TS3 = ε5N3. As we discuss below, a straight-forward application of the analysis of Fiat and Naor
would have given a trade-off TS3 = ε3N3, or a time and space complexity Õ(ε

3
4N

3
4) in the T = S

case. For comparison, when ε = N−1/3, we can achieve (optimal) time and space N1/3; the straight-
forward use of the Fiat-Naor analysis would have given time and space

√
N . Given an upper bound

λ on the collision probability, we can achieve the optimal trade-off TS = εN if S ≥ ε2N2λ, and
the trade-off TS = ε2N2λ otherwise. For example, if we have a function with collision probability
close to 1/N , and we want to achieve inversion probability ε = N−1/4, then we can do so, using
the latter construction, employing time, space and advice at most N5/12 = N .416...; using our
generic construction (which applies to functions of arbitrary collision probability) would have given
a complexity of N7/16 = N .4375. There is a small catch : A technicality in the construction requires
S = Ω̃(

√
εN) to get the aforementioned trade-off curves. In fact, all the positive results (past results

as well as ours) that we state in this paper regarding time-space trade-offs require S = Ω̃(
√
εN)

The difference between our analysis and the one in [FN99] is explained in Section 2.1 below.

Given an arbitrary length-increasing generator G : {0, 1}n → {0, 1}m, m > n, we show that, for
every ε, there is a distinguisher that runs in polynomial time, uses a data structure of size Ø(ε22n),

2

and achieves distinguished probability ε. The distinguisher can also be implemented as a circuit of
size O(ε2n). Notably, the distinguisher need not have oracle access to G, and so our result applies
to generators constructed for applications in derandomization, in which the generator may have
complexity 2O(n), or even higher. In this setting, in which the complexity of the generator is not
bounded, it is easy to see that advice Ω(ε22n) is necessary. We also present a simpler construction
that achieves the slightly worse circuit size O(ε2n2n).

Open Questions

It remains open to either improve the Fiat-Naor construction or to prove a stronger lower bound
for the problem of inverting a random function or an arbitrary function everywhere. It is plausible
that the optimal trade-off ST = N , while achievable for permutations, is impossible to achieve for
general functions, maybe even impossible for random functions. Such a separation between the
complexity of dealing with general or random functions versus permutations would be extremely
interesting.

If one wants to invert a random permutation or function uniformly (that is, given no advice), then
the lower bound T ≥ N (ignoring lower-order factors) holds. A quantum computer, however, can
achieve T =

√
N [Gro96], which is optimal [BBBV97]. What is the complexity of inverting a

random permutation, a random function, or an arbitrary function with a quantum computation
that takes advice?

We do not have matching upper and lower bounds for the problem of constructing distinguishers
for pseudorandom generators, except in the extremal case T = 1, S = ε2N . Is T = ε2N , S = 1
achievable? More generally, for what range of parameters is it possible to achieve distinguishability
even though inversion of one-way permutations or functions is impossible?

2 Overview of Previous Techniques and Our Results

2.1 One-Way Functions

How can one invert one-way functions, in general, faster than by brute force?

2.1.1 An Overview of the Ideas of Hellman and of Fiat and Naor

If we are given a one-way permutation f : [N] → [N], then it is easy to construct an inverter
for f() that uses time and space Õ(

√
N). Suppose for simplicity that f() is a cyclic permutation

and that N = s2 is a perfect square: then pick
√
N “equally spaced” points x1, . . . , xs, such that

xi+1 = f (s)(xi), and create a data structure to store the pairs (xi, xi+1). Then given y, we compute
f(y), f(f(y)), and so on, until, for some j, we reach a point f (j)(x) which is one of the special
points in the data structure. Then we can read from the data structure the value f (j−s)(y), and
then by repeatedly computing f again we will eventually reach f (−1)(y). Note that this takes O(s)
evaluations of f and table look-ups, so both the time and space complexity are approximately
s =
√
N . If f() is not cyclic, we do a similar construction for each cycle of length less than s, and

if N is not a perfect square we can round s to d
√
Ne.

Abstractly, this construction works for the following reason. Consider the graph Gf = ([N], E)
that has [N] as set of vertices and that for every x has the directed edge (x, f(x)). Then, if f is a
permutation, it is possible to cover Gf using

√
N edge-disjoing paths, each of length

√
N or, more

3

0

1

2

5

8

3

4

11

6

7

14

9

10

17

12

13

20

15

16

23

18

19

26

21

22

29

24

25

32

27

28

35

30

31

38

33

34

41

36

37

44

39

40

47

42

43

50

45

46

53

48

49

56

51

52

59

54

55 57

58

0

20

131

44

59

2

29

4

3

28

53

14

5

11

26

6

40

52

7

56

31

8

41

9

58

10

17

50

12

15

22

16

18

19

43

37

21

34

23

24

46 27

38

30

49

32

33

35

47

36

39

55

42

45

4851 5457

Figure 1: A graph Gf that cannot be partitioned into few edge-disjoing paths and the graph Gf◦g
where g is a random permutation.

general, S edge-disjoing paths of length T , provided ST ≥ N . Furthermore, if f is a function such
that Gf can be covered using S edge-disjoint paths, each of length at most T , then we have an
algorithm to invert f using space S and time T .

The problem is that, in general, no good collection of paths may exist. Suppose, for example, that
Gf looks like the graph on the left in Figure 1: a directed path of length 1

3N with a length-2 path
joining in at each point. Then we see that there is a set S (the vertices of indegree zero in the
picture) of size N/3 such that no path can contain more than one vertex of S, and so no collection
of o(N) paths can cover the entire graph.

Hellman [Hel80] considers the case in which f() is a random function. Then, even though it’s
not clear how many edge-disjoint paths of what length can cover Gf it is not hard to see that
one can find N

1
3 paths of length N

1
3 having very few “collisions.” This gives a construction that

uses time and space N
1
3 and that inverts f() at N

2
3 points. Hellman then suggests to modify f()

by composing it with a fixed permutation of the input bits, and to reason heuristically as if the
new function behaved as an independently chosen new random function. Then one can repeat the
construction, and have a new algorithm of time and space complexity N

1
3 that inverts f() at N

2
3

points, which are assumed to be an independent random subset of size N
2
3 . After iterating this

process N
1
3 times one has N

1
3 candidate algorithms, each of time and space complexity N

1
3 , such

that, for every x, f(x) is inverted by at least one of the algorithms. Overall, one gets an algorithm
of complexity N

2
3 that inverts f everywhere.

Fiat and Naor [FN99] make Hellman’s argument rigorous. The idea of Fiat and Naor is to pick a
good random hash function g, and then work with the new function h(x) := f(g(x)). (See Figure 1
for an example of the effect of this randomization.) If g were a truly random function, and f where

4

a function such that every output has few pre-images, then one can repeat Hellman’s calculation
that N

1
3 nearly disjoint paths of length N

1
3 exist. Picking N

1
3 random functions gi then would

give a rigorous version of the full argument, except for the dependancy on several random oracles.
For a more general trade-off, it is possible to pick m nearly disjoint paths of length t provided
that m · t2 < N , and then iterate the construction r times, where r = N/mt. Thus one gets a
data structure of size r ·m, plus the space needed to store the descriptions of the hash functions,
and an inversion whose complexity is dominated by the complexity of evaluating the r random
hash functions at t points each. Fiat and Naor then show that each gi only needs to be k-wise
independent where k is approximately t, the length of the paths. While one evaluation of a t-wise
independent hash function would take time t, Fiat and Naor show that the overall time for the
rt evaluation can be made t2 + rt via a careful evaluation process and amortized analysis. The
different gi, in turn, only need to be pair-wise independent with respect to each other. Overall, the
r hash functions can be represented using only about t bits, so that the space complexity is of the
order of r · m + t. Choosing the parameters r,m, t optimally shows that the time-space tradeoff
TS2 = N2 is achievable.

For general functions, the above ideas continue to work if the collision probability λ of the distri-
bution f(U[N]) is small. In particular, one can have an algorithm of space S = m · r + t and time
T = t2 + t · r provided that m · t2 ≤ 1/λ and m · t · r ≥ N . This optimizes to the time-space tradeoff
TS2 = λ ·N3.

For functions having large collision probability, the idea is to create an additional look-up table L
(we also refer to it as a list), containing, for each of the ` elements y such that f (−1)(y) is largest,
the pair (x, y) where x is an arbitrary preimage of y. Then, given f(x) ∈ L we can immediately find
an inverse by searching L, and the problem of inverting f reduces to the problem of inverting the
restriction of f to {0, 1}n−f (−1)(L), which, intuitively, is the problem of inverting a function of low
collision probability. More precisely, if we define the “effective” collision probability of f relative
to L as the probability that, picking x, x′ uniformly at random we have f(x) = f(x′) conditioned
on f(x) 6∈ L, then the effective collision probability is at most 1/`. The TS2 = λN3 trade-off can
be extended to the case in which λ is the effective collision probability, although at the additional
cost of ` in the space. The optimal choice ends up being ` = S, and so the trade-off becomes
TS3 = N3. One additional difficulty that comes up in the analysis is that we need hash functions
gi with the property that gi(f(x)) 6∈ f (−1)(L) if f(x) 6∈ L. This is achieved by realizing gi by
starting from a sequence of functions g1

i , . . . , g
k
i , and then defining gi(y)to be hji (y) for the first j

such that hji (y) 6∈ f (−1)(L).

2.1.2 Scaling Down the Fiat-Naor Construction and Efficient k-wise Independent
Hash Functions

Consider now the issue of scaling down this construction in order to invert only εN points.

If we fix parameters r,m, t, ` such that r ·m · t = εN and m · t2 ≤ `, then we have an algorithm that
inverts the function at εN points and whose time complexity is t2 + rt and whose space complexity
is `+ rm+ t. Some calculations show that this gives a time-space trade-off of TS3 = (εN)3.

A first improvement comes by considering that if |f (−1)(L)| ≥ εN , then just by constructing L we
are done. This means that we may assume that the elements not in L have each at most εN/`
pre-images, and there are (1 − ε)N > N/2 elements not in f (−1)(L), meaning that the collision
probability of f restricted to {0, 1}n − f (−1)(L) is at most ε/`. This is a stronger bound than the
“effective collision probability” bound 1/` in the Fiat-Naor analysis. This means that we can set

5

the parameters so that rmt = εN , mt2 ≤ `/ε, and have S = `+ rm+ t and T = t2 + rt. This leads
to the improved trade-off TS3 = ε4N3, provided εN > T > ε−2.

A second improvement comes by using new constructions of t-wise independent hash functions that
can be evaluated in time negligible in t. We present such a construction in Appendix 8. Using
such a construction, the running time of the algorithm becomes just rt, rather than t2 + rt. In
the original Fiat-Naor construction, the two bounds are of the same order, because optimizing the
parameters always leads to r > t. In the scaled-down construction we described above, however,
r > t is optimal only as long as T > ε−2, which is why we added such a constraint above. Hence,
we require a family of hash functions with two properties:

• Small size: it is sufficient for our purposes that each function be representable with Θ(t) +
No(1) bits;

• Efficient evaluation: given the description of a function in the family and a point in the
domain, we would like the evaluation of the function at that point to take time to(1) ·No(1)

We note that most known constructions with small size do not satisfy the efficient computation
requirement. The only ones known to us, which satisfy both the properties is the construction
by Ostlin and Pagh [OP03] but their construction can differ from being uniform on a set of size
t by an inverse polynomial in t. This error is too large for us and hence we come up with a new
construction of t-wise independent function family which satisfy both these properties. (More about
our construction in Section 2.5 below.) Using these hash functions would lead to the same trade-off
TS3 = ε4N3, but for the wider range of parameters εN > T > ε−1.

2.1.3 The Main New Idea

Our main improvement over the techniques of Fiat and Naor comes from the use of a more precise
counting of the number of inputs x such that f(x) can be inverted using a given data structure.

We note that if we have the endpoints of a path of length t in our data structure, then we are able
to invert f not just at t inputs, but rather at as many inputs as the sum of the indegrees (in Gf)
of the vertices of the path.4 If, for example, the function f is k-regular (meaning that, for every
x, f(x) has exactly k pre-images), then a special case of the analysis that we provide shows that
we can invert everywhere with trade-off TS2 = N2/k2, while the Fiat-Naor analysis would give a
trade-off TS2 = N2 ·k. They are the same when k = Õ(1), but for larger k the analysis of Fiat and
Naor provides worse bounds, because the collision probability increases, while our analysis provides
better bounds.

For functions that are not regular, providing a good bound on the number of elements that are
inverted by the data structure is more challenging.

If the function has collision probability λ (or “effective” collision probability λ after discounting the
elements in the high-indegree table), and we construct r data structures, each having m paths of
length t, then the average sum of the indegrees of the vertices in the data structure is m · t · r ·λ ·N ,
which is potentially much more than mtr if the collision probability is large. It seems, then, that
we could fix parameters m, t, r such that

m · t2 ≤ λ−1

m · t · r · λN ≥ εN (1)

4Said differently, Fiat and Naor count the number of y which are inverted, while one should count the number of
x such that f(x) is inverted.

6

and be able to invert εN elements using time rt and space rm + t. This would optimize, in the
interesting case in which space and time are equal, to having space and time max{

√
εN, εN2/3},

which would be great. In particular, it would improve the Fiat-Naor construction even when ε = 1.
Unfortunately, while mrtλN is the expectation of the sum of the indegrees of the vertices in all the
paths of the data structure, it is not the expectation of the number of x such that f(x) is inverted:
the problem is that, if the collision probability is very high, there might be elements y with many
pre-images that occur in multiple data structures, and which would then be counted multiple times.

We then proceed by considering three cases. If the collision probability is small, that is, less than
ε2/S, where S is the amount of space we plan to use, then we find parameters m, t, r such that

mt2 ≤ S/ε2
mtr ≥ εN

that is, we take advantage of the bound on collision probability but we do not attempt to improve
the Fiat-Naor count on the number of inverted elements. This allows us to invert an ε fraction of
elements using time and space at most max{

√
εN, ε5/4N3/4}.

If the collision probability is more than ε2/S, then we consider how much mrtλN is overcounting
the real number of inverted elements. The overcounting is dominated by the elements x such that,
for a given choice of r,m, t, f(x) has probability Ω(1), say, probability ≥ 1/100, of belonging to
one of the data structures. Call such a y = f(x) a heavy image to invert.

If the number of pre-images of heavy elements is at least 100εN , then we are done, because we
expect to be able to invert at least a 1/100 fraction of heavy elements.

The remaining case, then, is when the collision probability is more than ε2/S, but the total number
of preimages of heavy elements is less than 100εN . This information, together with the fact that
(thanks to the size-S high-indegree table) we are only trying to invert elements with at most εN/S
preimages, allows us to bound the total number of occurrences of heavy elements in the data
structure, and to conclude that the total number of pre-images of non-heavy elements is at least
Ω(mrtλN). This means that a choice of m, r, t satisfying (1) leads us to invert an ε fraction of
inputs, and to do so with time and space at most max{

√
εN, εN2/3}.

Applying these ideas to get full time-space trade-offs give us that, if ε < 1/N1/3 we can have the
optimal trade-off TS = εN ; otherwise we achieve the trade-off TS3 = ε5N3.

We remark that for most of the allowed range of the parameters we have r < t, and that in the
“low-end” range ε < N−1/3 for which our result is optimal we have r = 1. For this reason there is
a notable improvement in using our efficient hash functions instead of the amortized hash function
evaluation of Fiat and Naor.

2.2 Pseudorandom Generators

The starting point of our result for pseudorandom generators is the fact [AGHP92] that if two
random variables ranging over {0, 1}m have constant statistical distance, then there is a linear
function (of O(m) circuit complexity) that distinguishes the two random variables with advantage
at least 2−m/2.

Suppose that we are given a length-increasing pseudorandom generator G : {0, 1}n−1 → {0, 1}n
and that we want to construct a distinguisher achieving distinguishing probability ε.

Our idea is to partition {0, 1}n into ε22n sets each of size ε−2, for example based on the value of the
first n − 2 log 1/ε bits, and then apply within each block the linear function that provides, within

7

that block, the best distinguishing probability. Overall, this defines a function of circuit complexity
O(ε2 · n · 2n). Then, intuitively, within each block we achieve distinguishing probability at least ε,
because each block is a set of size ε−2, and the distinguishing probability is at least the square root
of the inverse of the block size.

The straightforward implementation of this intuition would be to use, in each block, the linear
function that best distinguishes the uniform distribution within the block from the conditional
distribution of the output of the generator conditioned on landing in the block. Unfortunately this
approach would not work because the overall distinguishing probability is not a convex combination
of the conditional distinguishing probabilities.5

Instead, in each block, we choose the linear function that most contributes to the overall distin-
guishing probability. In order to quantify this contribution we need a slight generalization of the
result of [AGHP92].

We then present a more efficient distinguisher of circuit complexity O(ε2 ·2n) which employs a hash
function sampled from a 4-wise independent family, and whose analysis employs a more involved
fourth-moment argument, inspired by [ACR97].

2.3 Lower Bounds

Using techniques of Yao [Yao90], Gennaro and Trevisan [GT00], and Wee [Wee05], it is possible to
show that, in the generic oracle setting that we consider in this paper, there are permutations for
which the amount of advice S and the oracle query complexity T must satisfy

S · T ≥ Ω̃(εN)

for any algorithm that inverts an ε fraction of inputs. Such lower bound proofs are based on
the idea that an algorithm with better performance could be used to encode every permutation
f : [N]→ [N] using strictly less than logN ! bits, which is impossible. Here, we simplify such proofs
by using randomized encodings. (Even a randomized encodings cannot represent every permutation
using less than logN !, and showing that such an encoding would be possible if the lower bound
were wrong is easier by using randomization.) In fact, while previous proofs gave a lower bound on
the trade-off only when T = Õ(

√
εN), our lower bound works for the full range of parameters.

We then consider the question of the security of pseudorandom generators in the oracle setting.
By using the known results for permutations and applying efficient hard-core predicates it could
be possible to show the existence of generators for which S · T ≥ ε7N . By instead applying the
ideas of randomized encodings to a pair f, p where f is a random permutation (modeling a one-
way permutation) and p is a random predicate (modeling a “hard-core predicate” for p), we prove
the existence of length-increasing generators such that for every distinguisher that makes T oracle
queries to the generator, and which has advice S and distinguishing probability ε, we have

S · T ≥ Ω̃(ε2N)

where N is the number of seeds. There is still a gap, even for generators of the form x→ f(x)p(x)
where f is a permutation, between our lower bound and known constructions of distinguishers.

5This is a subtle issue related to the fact that the condition of landing in a given block might have different
probabilities in the uniform distribution versus the output of the generator. If so, then the respective conditional
probabilities are normalized differently, and the use of a distinguisher for the conditional distributions in a block does
not necessarily contribute to the task of distinguishing the original distributions.

8

In particular, the best known algorithm is one of the following (depending on ε, S, T) : Use the
algorithm for inverting functions which can be at best S · T ≤ Ω̃(εN) or use the circuit which we
described in the previous subsection. That in particular uses S = Ω̃(ε2N) and T = Ω̃(1).

Finally, we look at the common random string model, in which all parties share a common random
string k, which they can use to select a permutation fk(·) from a family of permutations, or a
generator Gk(·) from a family of generators. In such a setting, the trivial brute force attack
that achieve inverting (and distinguishing) probability ε = T/N with no advice remains possible.
Alternatively, one can think of a family of permutations as a single permutation (k, x)→ (k, fk(x)).
We show that, for families of permutations, either the trivial uniform algorithm or Hellman’s
construction applied to the mapping (k, x) → (k, fk(x)) are best possible, depending on whether
the available advice is shorter or longer than the number of keys.

For generators in the common random string model we show that either T ≥ Ω̃(ε2N) or ST ≥
Ω̃(ε2KN), where K is the number of keys.

2.4 Uniformity and Model of Computation

Positive Results

In the time/space trade-offs of Hellman, of Fiat and Naor, and of this paper, an algorithm uses
“time T” and “space S” if it runs in time at most T (in a RAM model), uses at most S bits of
space, and works correctly upon receiving S bits of advice, in the form of an S-bit data structure
that dominates the space requirement of the algorithm.

The “advice,” in turn, can be computed in uniform time Õ(N). In the work of Hellman and of
Fiat and Naor, one cannot hope, in general, to have processing time significantly smaller than N in
order to generate the data structure used by the algorithm. Otherwise, one would have a uniform
algorithm that inverts an arbitrary one-way permutation (or function) in time noticeable smaller
than N , which is impossible relative to a random permutation (or function) oracle.

In our paper, the data structure we use is also easily pre-computable in time Õ(N). Pre-processing
time significantly smaller than εN should not be expected, because then we would have a uniform
algorithm to invert a random function on an ε fraction of inputs in time significantly smaller than
εN . With some care, our data structure can indeed be pre-computed using optimal uniform time
Õ(εN). We, however, do not describe it here for the sake of simplicity.

Negative Results

When we show that a particular combination of space S and time T is not achievable, our result
rules out non-uniform algorithms that make at most T oracle queries to the function (or generator)
oracle, and which receive at most S bits of advice. The actual space used by the algorithm, as
well as the complexity of the computations performed between oracle queries, can be unbounded.
Likewise, the non-uniform advice can have arbitrary complexity.

2.5 Efficient k-wise Independent Hash Functions

It is important for our results to have families of k-wise independent hash functions that can be
represented using an Õ(k)-bit seed and can be evaluated in ko(1) time. Ostlin and Pagh [OP03]
present very efficient construction of almost k-wise independent hash functions that can be evaluated

9

in constant time on a RAM. In their construction, however, a k-tuple of evaluations can have a
distance from the uniform distribution which is inverse polynomial in k, which is too large for our
purposes.

We construct a family of efficient k-wise independent hash functions based on the unique-neighbor
expander graphs of by Capalbo et al. [CRVW02]. We note that, in order to construct a family
{hr} of k-wise independent functions hr[N] → {0, 1} indexed by a seed r ∈ {0, 1}t, it is enough
to construct N vectors a1, . . . , aN in {0, 1}t with the property that any k of them are linearly
independent, and then define hr(x) := 〈r, ax〉, where 〈·, ·〉 denotes inner product mod 2. If the
vectors are sparse, and one has an efficient way of generating the list of non-zero coordinates of the
vector ax given x, then the computation of hr(·) can take time ro(1) time. In our construction, we
choose the vectors to be rows of the adjacency matrix of the unique-neighbor bipartite expanders
of Capalbo et al.

3 The Fiat-Naor construction and our modification

We first describe the scheme for inverting one-way functions described by Fiat and Naor [FN99].
While our aim is to invert only a fraction of the inputs, Fiat and Naor are interested in inverting f
on all the inputs. Like Helllman, they also consider the composition h = g ◦ f for a suitably chosen
g (which was a random function for Hellman’s scheme) and store walks (sequences of iterates)
according to h. We define the notion formally below.

Definition 3.1 Let f, g be two functions and let h = g ◦ f . By a walk of length t starting at x, we
mean the sequence of points (x, h(x), . . . , ht(x)). We say that for a point z, the walk inverts f(z) if
there exists i ≤ t − 1 such that f(hi(x)) = f(z) i.e. one of the points in the walk is an inverse of
f(z).

The sequence above can be viewed as a walk if one considers the graph with all x ∈ [N] as vertices
and directed edges from x to h(x). The outdegree of every vertex in the graph is 1 and the indegree
is exactly the number of pre-images of the element corresponding to the vertex. Fiat and Naor
store the start and end points ({x, ht(x)}) of m walks according to h = g ◦ f for a sufficiently
random function g. Given an element y, they construct the sequence g(y), h(g(y)), . . . , ht−1(g(y).
If the sequence hits the endpoint for any of the stored walks, they searh the the stored walk from
the start looking for the inverse of y. Composing f with a random function g helps to ensure that
the walks cover a large portion of the graph and hence invert many elements in the range of f .

However, naively implementing this scheme does not work if the distribution of indegrees in the
graph is highly skewed. Note that for any g, the distribution of pre-images for the function h = g◦f
is at least as skewed as the distribution for f . Having a very skewed h can create the following
problem: suppose that f maps half of the points in the domain to one point and is a permutation
among the others. This means that irrespective of the randomness of g, the walk starting from any
point xi is going to cycle within a constant number of steps with very high probability. Hence, one
can only invert Θ(m) points from the image of permutation using m walks. Thus to invert all the
points, one needs to make m = Θ(N).

The strategy in [FN99] to take care of this problem is to construct a list L of size ` (` = Õ(N3/4)
in [FN99]) in which they store ` randomly chosen points (and their inverses) with probability
proportional to the number of pre-images. Also, the function g : [N] → [N] is chosen to be a
(pseudo)random function conditioned on having its images outside the list. The walks are then

10

used to only invert the elements which are outside the list (and are likely to have only few pre-
images) while the others can be inverted by searching the stored list L.

However, in the Fiat-Naor construction, the parameters m and t cannot be chosen to be too large.
If the length of the walks t becomes too large then the walks my cycle and their analysis does not
work for this case. Also, when the the number of walks is too large, starting the walk from a given
point y, one may reach the endpoint of many stored walks. It is then not clear which of the walks to
search to find an inverse. To boost the probability of inversion, they repeat the entire construction
r times according to r (r ≈ O(N1/3) for their construction) randomly chosen functions g1, . . . , gr.

One subtlety missing in the above description is that the functions g1, . . . , gr are actually chosen
according to a family of O(t)-wise independent functions. Given an element y to invert, one needs
to compute the sequences (gi(y), hi(gi(y)), . . . , ht−1

i (gi(y))) for all i ∈ [r]. It is not clear how to
compute each function in Õ(1) time on a given input to achieve a total running time of Õ(r · t).
However, their functions are chosen from a special family so that the r calls to g1, . . . , gr can be
computed in total Õ(r+ t) time. This results in a total running time of Õ(t2 + tr). As t = O(r) in
the setting in [FN99] (but not ours), they achieve a total running time of Õ(tr).

Our modification

As mentioned before, we only seek to invert f at an ε fraction of the inputs rather than all the
inputs (as was the case with Fiat and Naor [FN99]). In case of inverting all the inputs, the major
bottleneck is not the time and space for computing walks (which is about N2/3) but the space for
storing list consisting of the high in-degree elements to prevent walks from cycling. This requires
space N3/4 in the worst case. Since, we want to invert only ε fraction of elements, one can hope to
accomplish this with a much smaller table (list) space.

The basic structure of our construction is similar to the one by Fiat and Naor. We construct a data
structure similar to theirs (see Figure 2) with parameters `,m, t and r as described above. However
our analysis differs from theirs in accounting for the number of inputs which can be inverted by
presence of a single entry in the data structure. In particular, if an element y is present in a walk,
then helps invert f on

∣∣f−1(y)
∣∣ many inputs. This fact is exploited in our analysis.

Another point of difference in the family of functions from which g1, . . . gr are selected. As men-
tioned before, Fiat and Naor [FN99] use O(t)-wise independent functions. However, off-the-shelf
constructions of t-wise independent functions take Θ(t) time for evaluation at a single point and
time for computing each walk would then be O(t2) instead of O(t). In the Fiat-Naor this problem
was solved by choosing g1, . . . , gr from a specific family so that one evaluation of each of the r
functions could be performed in total Õ(t + r) time. In our case, when ε is small, then the opti-
mum parameters of the data structure are achieved with r = 1 and hence amortizing over different
functions is not an option.

We get rid of this problem by constructing a family of k-wise independent functions (we shall
need k = 2t · (logN)2) such that evaluation time for any of the functions from the family is
2O((log logN)3) = No(1). This is good for us as this is ko(1) because we always have k = NΘ(1) (As
previously mentioned, our bounds are anyway specified hiding factors of No(1)). The construction is
made possible due to a remarkable construction of lossless expanders by Capalbo et al. [CRVW02].
The construction of the functions is described in Appendix 8. We only need the following fact from
that section.

Theorem 3.2 For any N,N ′ ∈ N and k ≤ N0.99, there exists an explicit construction of a family

11

Parameters

` := Size of list L
t := Length of each walk
r := Number of independent functions g ∈ F used
m := Number of walks according to each function gi

Construction of Data Structure

1. Consider the ` elements in the range of f with highest value of I(y). For each such element y,
store an entry (y, x) in the list for some x ∈ f−1(y).

2. Choose functions g1, . . . , gr ∈ F pairwise independently at random. For each function gi, define
the partial function g∗i : [N]→ [N] as

g∗i (x) =

 gi(x, u) if u is the least index such that f(gi(x, u)) /∈ L

undefined if ∀u ∈ [(logN)2]. f(gi(x, u)) ∈ L

For each i, define the partial function hi = g∗i ◦ f .

3. For each i ∈ [r] and j ∈ [m], construct a walk Wij of length t; by starting at a random point
xij and computing the sequence xij , hi(xij), . . . , ht

i(xij). Discard the walk if

• for some t1 ≤ t, ht1
i (xij) is undefined.

• the walk cycles i.e. for t1, t2 ≤ t, ht1
i (xij) = ht2

i (xij).

For walks Wij that are not discarded, store the pairs (xij , h
t
i(xij)).

Figure 2: Description of data structure for inverting f

F : [N]× [N ′]→ [N] of k-wise independent functions such that the randomness required to sample
g ∈ F is k2Θ((log logN+log logN ′)3). Further, for any such g ∈ F , on any input x, g(x) can be
computed in time 2Θ((log logN+log logN ′)3).

We give a description of the data structure we construct in Figure 2. The functions g1, . . . , gr :
[N] × [n2] → [N] are chosen from a family F of k = 2t · (logN)2-wise independent functions, as
described in Theorem 3.2.

We use I(y) to denote the number of pre-images of an element y according to the function f .
The list L contains the ` entries of the form (x, y) for the ` elements in the range of f with the
highest values of I(y), and an arbitrary x ∈ f−1(y). We say that y ∈ L if (x, y) ∈ L for some x.
One parameter which will be useful in our analysis is the collision probability of the ditribution of
pre-images for the elements y not in L, which we denote by λ`. Let Ñ = N −

∑
y∈L I(y). Then,

λ` :=
∑
y/∈L

(
I(y)
Ñ

)2

(2)

The procedure for inversion

We now describe the algorithm used for inverting f on a given y using the data structure. Given
a y, we treat y as f(x) for an unknown x and compute r walks of length t starting at x (note that
we only need to know f(x) to compute the walk) according to the functions h1, . . . , hr. If we hit

12

Invert(y)

1. If (x, y) ∈ L for some L, return x.

2. For each i ∈ [r]

(a) Construct the sequence (g∗i (y), hi(g∗i (y)), . . . , ht−1
i (g∗i (y))).

(b) If there are indices j0 ∈ [m] and t0 ≤ t− 1 such that ht0
i (g∗i (y)) = ht

i(xij0), then compute
ht−t0−1

i (xij0). In case there are multiple choices for j0, pick the smallest one.

(c) If f(ht−t0−1
i (xij0)) = y, output ht−t0−1

i (xij0) else output fail.

Figure 3: Procedure for inverting a given element y

the endpoint of a stored walk according to any of the r functions, we compute the walk from the
stored starting point and check if it contains the inverse of y.

Note that we check only one of the walks Wi1, . . . ,Wim according to a function hi. In particular, if
the sequence (g∗i (y), hi(g∗i (y)), . . . , ht−1

i (g∗i (y))) contains the endpoints of two of the stored walks,
we pick one arbitrarily and search that. This requires that our data structure avoids false hits for
y, which we define formally below. We shall be concerned with the probability of false hits in our
analysis of the data structure.

Definition 3.3 We say that a walk W = (x, h(x), . . . , ht(x)) for h = g ◦ f produces a false hit for
y if the sequence (g(y), h(g(y)), . . . , ht−1(g(y))) does contain the endpoint ht(x) of W , but the walk
does not invert y.

4 Analysis of the Data Structure

In this section, we establish the constraints on the parameters of the data structure such that if
these constraints are satisfied, then the number of elements x ∈ [N] such that f(x) is contained in
one of the walks is at least εN . In particular, we prove the following theorem (recall that λ` is the
“effective collision probability” defined in (2)):

Theorem 4.1 For given ε > 0 and f : [N] → [N], let the parameters m, t, ` in the data structure
be such that mt2λ` < 1/8 and εt/` < 1/4. In case, the high in-degree list does not invert an ε
fraction trivially, then, there exists an r = O(εN/mt) such that

P
x∈[N]

[
Invert(f(x)) ∈ f−1(f(x))

]
≥ ε

Moreover, if ` · λ` ≥ 100ε2, then r can be taken to be O(ε/mtλ`). In the above expression, the
probability includes the probability over the randomness of the data structure. Further λ` ≤ 2ε/`
subject to the list itself not inverting an ε fraction of the elements.

To prove the theorem, we first prove various claims regarding the probability of a single input being
inverted by the data structure. Throughout the analysis, we will assume that ε ≤ c where c is an
arbitrarily small constant (The value c = 1

1000 suffices). The case ε ≥ c can be handled by simply
using the scheme in [FN99] which inverts all the elements. For large ε, the parameters we obtain
are the same as in [FN99] up to a multiplicative constant.

13

4.1 Inversion by the list

We are interested in the fraction of elements x such that f(x) is inverted by the data structure. If
the list itself does not suffice to invert f(x) on εN inputs, it does ensure that elements outside the
list have only a small number of pre-images. We formalize this in the claim below

Claim 4.2 If the list L does not invert f on ε fraction of the inputs i.e. Px∈[N][f(x) ∈ L] < ε, then

1.
∑

y/∈L I(y) ≥ (1− ε)N

2. For all elements y /∈ L, I(y) ≤ εN/`

3. 1/N ≤ λ` ≤ 2ε/`

Proof: To prove the claim we simply need to observe that each element y ∈ L contributes
exactly I(y)/N to Px∈[N][f(x) ∈ L]. Since the probability is less than ε by assumption, we get that∑

y∈L I(y) < εN . Also, since f is a total function,
∑

y∈[N] I(y) = N which proves the first part.

To prove the second part, we note that since the list contains the ` elements with the highest values
of I(y), for any element y /∈ L, I(y) ≤ Ez∈L[I(z)] < εN/`.

Recall that Ñ = N −
∑

y∈L I(y) denotes set {x ∈ [N] : f(x) 6∈ T}. The following gives the desired
upper bound on λ`.

λ` =
∑
y 6∈`

(
I(y)
Ñ

)2

≤

∑
y 6∈`

I(y)
Ñ

(max
y 6∈`

I(y)
Ñ

)
≤ εN

`Ñ
≤ 2ε

`

The last inequality uses that Ñ ≥ N/2. The lower bound on λ` follows simply from the fact that
λ` is the collision probability of a function over a domain of size Ñ ≤ N . As collision probability
of any function over a domain of size Ñ is at least 1/Ñ , the lower bound follows.

4.2 Inversion by walks

We first restrict ourselves to the case r = 1 and consider m walks W1, . . . ,Wm according to a single
function g ∈ F and the corresponding partial function h = g∗ ◦ f .

We shall be interested in computing the expected (over the randomness in the construction of the
data structure) number of elements x such that f(x) is inverted by the data structure. To this end,
we first compute the probability that a single walk W = (x, h(x), . . . ht(x)) inverts a given element
y /∈ L(and is well defined). Recall that we say that the walk inverts y if there is a point hj(x) in
the walk for j ≤ t−1 such that f(hj(x)) = y. All probabilities below shall be over the construction
of the data structure, unless specified otherwise.

Claim 4.3 Let W = (x, h(x), . . . , ht(x)) be a walk constructed using randomly chosen x and h.
For a given y /∈ L

P[W is not discarded and inverts y] ≥ tI(y)
2Ñ

(
1− tI(y)

Ñ
− t2λ`

)

14

Proof: Recall that a walk is discarded if it is undefined i.e. for some j ∈ [t], hj(x) is undefined.
For a given input z, h(z) is undefined if f(g(x, u)) ∈ L for all u ∈ [(logN)2]. Using the fact that
g(x, u) is uniformly distributed

P[f(g(x, u)) ∈ L] = P
x∈[N]

[f(x) ∈ L] < ε

Also, since g is 2t ·(logN)2-wise independent, P[g(z, u) ∈ T for all u] < ε(logN)2 . By a union bound,
P[W is undefined] ≤ t · ε(logN)2 .

We now compute the probability that the walk inverts y and does not cycle, given that it is defined
at each point. We can split this event into events f(hj(x)) = y for 0 ≤ j ≤ t− 1, which are disjoint
since we also include the condition that the walk does not cycle. We then get

P [W does not cycle and inverts y | W is defined]

=
t−1∑
j=0

P
[
f(hj(x)) = y & W does not cycle | W is defined

]
=

t−1∑
j=0

P
[
f(hj(x)) = y | W is defined

]
· P
[
W does not cycle | f(hj(x)) = y & W is defined

]
=

t−1∑
j=0

I(y)
Ñ
· P
[
W does not cycle | f(hj(x)) = y & W is defined

]
since f(hj(x)) is uniformly distributed outside the list L, when conditioned on W being defined
(using uniform distribution of hj(x)).

We now consider the probalilty of cycling. Let j1 < j2 be the smallest indices such that f(hj1(x)) =
f(hj2(x)). If either min{j1, j2} ≤ j, then there exists an index j′ ≤ 2t, j′ 6= j such that f(hj

′
(x)) =

f(hj(x)) = y. We can bound this probability using the estimate above and a union bound.

P
[
∃j′ ≤ 2t, j′ > j s.t. f(hj

′
(x)) = y | f(hj(x)) = y & W is defined

]
≤ 2tI(y)

Ñ

We now need to bound the probability of cycling when f(hj1(x)) = f(hj2(x)) for j < j1 < j2.
But for j1 and j2 both greater than j, f(hj1(x)) and f(hj2(x)) are both independently distributed
images of f outside L, even when we condition on f(hj(x)) = y. Hence the probability of their
being equal is exactly λ`, which was defined to be the collision probability of elements outside L.
This gives

P
[
∃j1, j2 > j s.t. f(hj1(x)) = f(hj1(x)) | f(hj(x)) & W is defined

]
≤ t2 · λ`

Thus we get a bound of 2tI(y)/Ñ + t2λ` on the probability of cycling. Using the previous bounds,
this gives

P [W is not discarded and inverts y] ≥ (1− t · ε(logN)2) · tI(y)
Ñ
·
(

1− 2tI(y)
Ñ

− t2 · λ`
)

which proves the claim since ε < 1/2 and t < N suffices to conclude t · ε(logN)2 < 1/2.

15

We will be interested in computing the probability that at least one of the walks inverts y. Two
walks can interfere with each other in two ways in the inversion process. The first interference,
which is in terms of the analysis, is that we need to account for the probability of two walks both
inverting y to get a lower bound on the probability of at least one walk inverting y.

The second interference is in terms of the procedure of inversion. Let W1 and W2 be two walks
generated according to the same function h and different starting points x1 and x2. Then, if
f(hj(x1)) = y and f(hj1(x1)) = f(hj2(x2)) for some j1 > j, then although the walk W2 does not
invert y, we may see both the points f(ht(x1)) and f(ht(x2)) if we start in the inversion procedure
from g∗(y) and take a t-step walk. This is the event we call a false hit, which affects the running
time of the inversion procedure.

In the claim below, we derive upper bounds on the probabilities of both kinds of interference
mentioned above.

Claim 4.4 Let W1 = (x1, h(x1), . . . , ht(x1)) and W2 = (x2, h(x2), . . . , ht(x2)) be two walks gener-
ated according to randomly chosen h, x1 and x2. Then for any y /∈ L,

1. P [W1,W2 are not discarded and both invert y] ≤
(
tI(y)
Ñ

)2

2. P [W1 inverts y & W2 generates a false hit] ≤ t3I(y)λ`
Ñ

Proof: To prove the first part of the claim, we simply note that the 2t-positions in the two
walks are independent. Also, conditioned on the walks being defined, the points in the walks are
uniformly distributed over the pre-images of elements not in L. This gives

P [W1,W2 are not discarded and both invert y]

≤
∑

j1,j2<t

P
[
f(hj1(x1)) = f(hj2(x2)) = y | W1,W2 are defined

]
= t2 ·

(
I(y)
Ñ

)2

For W1 to invert y, for some index j we must have f(hj(x1)) = y. Also, to have a false hit, we
must have two indices j1, j2 such that j1 > j and f(hj1(x1)) = f(hj2(x2)) (which will not equal y
if the walks do not cycle). Also, both the events are independent for fixed j, j1, j2 and hence

P [W1 inverts y & W2 generates a false hit]

≤
∑
j,j1,j2

P
[(
f(hj1(x1)) = f(hj2(x2))

)
∧
(
f(hj(x1)) = y

)
∧ (W1 doesn’t cycle) |W1,W2 are defined

]
≤
∑
j,j1,j2

P
[(
f(hj1(x1)) = f(hj2(x2))

)
∧
(
f(hj(x1)) = y

)
|W1,W2 are defined

]
=
∑
j,j1,j2

λ` ·
I(y)
Ñ

=
t3I(y)λ`

Ñ

We are now ready to prove a lower bound on the probabilty at least one of m walks constructed
according to a single function g inverts a given input y. We say that y is inverted without false hits
by the walks W1, . . . ,Wm, if some Wi inverts y and none of the other walks produce a false hit.

16

Claim 4.5 Let W1, . . . ,Wm be m walks of length t constructed according a function h chosen as
before and independent random starting points x1, . . . , xm. If mt2λ` ≤ 1/8 and εt/` ≤ 1/4, then
for any y /∈ L

P [y is inverted without false hits by W1, . . . ,Wm] ≥ min
(

1
32
,
mtI(y)

4Ñ

)
Proof: We will bound this probability by inclusion-exclusion. To express the required probabil-
ities, we first define the events Ei(y) and Fi(y) as below

Ei(y) := [Wi inverts y]
Fi(y) := [Wi produces a false hit for y]

It is clear that for any i, the events Ei and Fi are disjoint. We first express the required probability
in terms of the above events.

P [y is inverted without false hits by W1, . . . ,Wm] = P

(m∨
i=1

Ei(y)

)
∧

(
m∨
i=1

Fi(y)

)
For convenience of analysis, we will consider an m′ ≤ m and consider inversion only by the first m′

walks (however, false hits are still ruled out for all the walks). In particular, for any m′ ≤ m

P

(m∨
i=1

Ei(y)

)
∧

(
m∨
i=1

Fi(y)

) ≥ P

(m′∨
i=1

Ei(y)

)
∧

(
m∨
i=1

Fi(y)

)
We can now use inclusion-exclusion to bound the expression on the right.

P

(m′∨
i=1

Ei(y)

)
∧

(
m∨
i=1

Fi(y)

) ≥
m′∑
i=1

P

Ei(y) ∧

(
m∨
i=1

Fi(y)

)− ∑
i<j≤m′

P [Ei(y) ∧ Ej(y)]

≥
m′∑
i=1

P [Ei(y)]−
m∑

j=1,j 6=i
P [Ei(y) ∧ Fj(y)]

−

∑
i<j≤m′

P [Ei(y) ∧ Ej(y)]

≥ m′ · tI(y)
2Ñ

(
1− tI(y)

Ñ
− t2λ`

)
−m′(m− 1) · t

3I(y)λ`
Ñ

−
(
m′

2

)
·
(
tI(y)
Ñ

)2

≥ m′tI(y)
2Ñ

(
1− m′tI(y)

Ñ
− 2mt2λ`

)
In the above computation, we used the lower bound on P [Ei(y)] from Claim 4.3 and the upper
bounds on P [Ei(y) ∧ Ej(y)] and P [Ei(y) ∧ Fj(y)] from Claim 4.4. If mtI(y)/Ñ ≤ 1/4, then we
can simply take m′ = m and use mt2λ` ≤ 1/8 to conclude that the required probability is at least
mtI(y)/4Ñ .

17

If this is not the case, then choose an m′ ≤ m such that 1/4 < m′tI(y)/Ñ < 1/2. The upper bound
of 1/2 is possible to achieve, as from Claim 4.2 and the assumption εt/` < 1/4, we get that

tI(y)
Ñ

≤ t

Ñ
· εN
`

<
1
2

Using this m′ gives that the required probability is at least 1/32.

We now consider r sets of m walks, each setWi = {Wi1, . . . ,Wim} constructed according to pairwise
independently and randomly chosen function gi ∈ F . We are interested in the probability that at
least one set inverts a given y without false hits. Note that we only want to rule out false hits
within each set (the probability for which we have already computed). We do not need to rule out
the event that Wij inverts y and Wi′j′ produces a false hit for some i 6= i′, since if there are no
false hits within Wi, our algorithm will find an inverse. The following claim is easy to prove using
reasoning as before.

Claim 4.6 Let W1, . . . ,Wr be r sets of m walks each, as above. Also, let mt2λ` ≤ 1/8 and
εt/` < 1/4. Then, for any y /∈ L

P[y is inverted without false hits by one of the r sets] ≥ min
{

1
32
,
rmtI(y)

8Ñ

}
Proof: Let py be the probability that y is inverted by a single set without false hits. Since the r
sets are constructed according to pairwise independently chosen functions, for any r′ ≤ r

P[y is inverted without false hits by one of the r sets] ≥ r′ · py −
(
r′

2

)
· p2
y

Since the conditions for Claim 4.5 are satisfied, we have py ≥ min
{

1/32,mtI(y)/4Ñ
}

. We choose

r′ = 1 if mtI(y)/4Ñ ≥ 1/32 and r′ = r if rmtI(y)/8Ñ < 1/2. If neither of these is the case, then
choosing an r′ such that 1

4 ≤
r′mtI(y)

8Ñ
< 1

2 proves the claim.

We can now complete the proof of Theorem 4.1.

Proof (of Theorem 4.1): For an element y, let p(y) denote the the probability over the
construction of the data structure that Invert(y) ∈ f−1(y). Since every y for which the inverse
can be computed by the data structure contributes I(y)/N to the fraction of inputs x for which
f−1(f(x)) can be computed, we get that

E

[
P

x∈[N]

[
Invert(f(x)) ∈ f−1(f(x))

]]
=
∑
y

p(y) · I(y)
N

where the expectation is taken over the construction of the data structure. For a fixed r, consider
the set

Qr :=
{
y | y /∈ L and

rmtI(y)
8Ñ

>
1
32

}

18

Then it follows from Claim 4.5 and the definition of the list L that∑
y

p(y) · I(y)
N

=
∑
y∈L

I(y)
N

+
∑
y∈Qr

I(y)
32N

+
∑

y∈Qr∪L

rmtI(y)
8Ñ

· I(y)
N

≥
∑
y∈Qr

I(y)
32N

+
rmt

10
·
∑

y∈Qr∪L

(
I(y)
Ñ

)2

where we used Claim 4.2 to conclude that Ñ ≥ 4N/5. Let λ1 denote the quantity
∑

y∈Qr∪L

(
I(y)

Ñ

)2
.

For any r, either
∑

y∈Qr
I(y)
32N ≥ ε, or using Claim 4.2 we can get that

λ1 =
∑

y∈Qr∪L

(
I(y)
Ñ

)2

≥ 1∣∣Qr ∪ L∣∣ ·
 ∑
y∈Qr∪L

I(y)
Ñ

2

≥ 1∣∣Qr ∪ L∣∣ · (1− 33ε)2N2

(1− ε)2N2
≥ 1

2N

Hence, if we choose r = 20εN/mt, then either
∑

y∈Qr
I(y)
32N ≥ ε or rmtλ1/10 ≥ ε. In either case, the

data structure (in expectation) inverts f on ε fraction of inputs.

If we know that ` ·λ` ≥ 100ε2, then we can obtain a better bound on λ1 and hence on r. We observe
(using Claim 4.2) that

λ2 := λ` − λ1 =
∑
y∈Qr

(
I(y)
Ñ

)2

≤ εN

`Ñ
·
∑
y∈Qr

I(y)
Ñ

≤ εN

`Ñ
· 32εN

Ñ
≤ 50ε2

`

Thus, if λ` ≥ 100ε2/`, then λ1 ≥ λ`/2 and r = 20ε/mtλ` suffices.

5 Setting the parameters

In this section we argue the claimed time-space tradeoffs using the previous analysis. For a given
choice of the space parameter S, we show how to achieve parameters `,m, t and r satisfying all the
required constraints. Note that the actual space used by the data structure will be Õ(mr + t+ `),
and we will ensure that mr + t+ ` = O(S).

From the analysis in the previous section (Theorem 4.1) and the above discussion, it follows that
we need to satisfy the following constraints:

1. `,m, t ≥ 1. r ≥ 20ε/(mtλ`) if `λ` ≥ 100ε2 and r ≥ 20εN/mt otherwise.

2. mt2λ` ≤ 1/8.

3. εt/` ≤ 1/4.

4. mr + t+ ` = O(S).

We first note that to satisfy these constraints, the space cannot be extremely small.

Claim 5.1 The above constraints are feasible for a parameter S only if S = Ω(
√
εN).

19

Proof: For an arbitrary function f , we can always have that λ` = 1/N . For a such a function,
we will need to ensure that r ≥ 20εN/mt. The lower bound now follows by noting that

S · S = Ω(mr) · Ω(t) = Ω(mrt) = Ω(εN)

We now show how to achieve the tradeoffs for different ranges of S. We assume that S < (εN)/10,
since otherwise inverting the function on ε fraction of inputs is trivial using Õ(S) and Õ(1) time.
We will also need the bound λ` ≤ 2ε/` from Claim 4.2.

Achieving TS = O(εN) when S ∈ (ε2N, εN/10)

In this case, we set the parameters as below

` = 100S, m = 8S and t =
1
80

min
{
εN

S
,

10√
Sλ`

}
We take r = 20ε/(mtλ`) if ` · λ` ≥ 100ε2 and 20εN/mt otherwise. It is now easy to verify the
constraints.

1. We only need to check t ≥ 1. This follows because εN/(80S) ≥ 10 by assumption and
1/(8
√
Sλ`) ≥ 1/

√
2ε ≥ 1 using Claim 4.2.

2. mt2λS ≤ 8S · 1
64Sλ`

· λ` ≤ 1/8.

3. εt/` ≤ ε

100S
· εN

80S
<

1
80S

≤ 1/4.

4. t = O(S) as t ≤ εN/(80S) and εN = O(S2). To get the bound on r, consider the following
two cases:

• If t = O(εN/S), then by Claim 4.2, we can always get r = O(εN/mt) = O(1) upon
plugging the values of m and t.

• Now assume t = (1/8)
√

1/Sλ`. Further, observe that `λ` = 100Sλ` ≥ 100S/N ≥ 100ε2.
The penultimate inequality uses that λ` ≥ 1/N while the last one uses S ≥ ε2N . Hence,
we can take r = O(ε/mtλ`) = O(ε/

√
Sλ`) after plugging the values of m and t. Again

using Sλ` ≥ ε2, we get that r = O(1).

Thus we can always make r, a suitably large constant and note that mr = O(S). Hence,
mr + t+ ` = O(S) which verifies the fourth constraint.

To verify the tradeoff, note that since r = O(1), we have T = O(t) and hence,

TS = O(m · t) = O(8S · (εN/S)) = O(εN).

Achieving TS3 = O(ε5N3) when S ∈ (
√
εN, ε2N)

We divide this case into two subcases, depending on the value of S · λ`.

20

Case 1: S · λ` ≥ 100ε2

In this case, we can in fact achieve TS = O(εN) using the following parameters:

l = S, m = S, t =
2ε
Sλ`

and r =
20ε
mtλ`

= 5

We now verify the constraints:

1. We only need to verify t ≥ 1 which follows from λ` ≤ 2ε/S.

2. mt2λ` = S · 4ε2

S2λ2
`

· λ` ≤
4ε2

100ε2
<

1
8

.

3. εt/` =
ε

S
· 2ε
Sλ`

=
2ε2

S · (100ε2)
<

1
4

4. We only need to verify t = O(S) which follows from t =
2ε
Sλ`

≤ 1
50ε

=
S

50
· εN
S2
· S

ε2N
≤ S

50
.

The above uses that S2 ≥ εN and S ≤ ε2N .

Since r = O(1), T = O(t) and TS = O(ε/λ`) = O(εN) using λ` = Ω(1/N) from Claim 4.2. Note
that this also implies TS3 = ε5N3 since S ≤ ε2N .

Case 2: S · λ` < 100ε2

In this case, we will assume that S3 ≥ 800ε4N2, since otherwise we can simply achieve the claimed
tradeoff by setting T = εN . We choose the parameters as below:

` = S, m =
S2

8ε2N2λ`
, t =

εN

S
and r =

20εN
mt

It remains to verify the required conditions.

1. We only need to check m ≥ 1. This follows from the assumptions above since

m =
S3

8ε2N2 · Sλ`
≥ S3

8ε2N2 · (100ε2)
≥ 1

2. mt2λ` =
S2

8ε2N2λ`
· ε

2N2

S2
· λ` ≤ 1/8.

3. εt/` =
ε

S
· εN
S

=
ε2N

S2
≤ ε2N

εN
≤ 1/4.

4. We have t = O(S) since εN = O(S2). Also, note that mr =
20εN
t

= 20S = O(S).

5. Note that in this particular case, we also need to verify that r ≥ 1 (as in all other cases,
we were setting r to be a constant). Note that because mr = 20S, it suffices to verify that
m ≤ 20S. To see this,

m =
S2

8ε2N2λ`
≤ 100Sε2

8ε2N2λ2
`

<
7S
N2λ2

`

< 7S

The last inequality uses λ` ≥ 1/N and the first inequality uses S · λ` < 100ε2.

21

To calculate the tradeoffs, we note that for T = tr,

T =
20εN
m

=
(20εN)(8ε2N2λ`)

S2
=

(160ε3N3)(Sλ`)
S3

<
16000 · ε5N3

S3

which proves the claim that TS3 = O(ε5N3).

6 Final time space tradeoffs

In this section, we write down the final time-space trade-offs that can be obtained in the RAM
model for inverting functions. The following is the main theorem of this section.

Theorem 6.1 Let f : {0, 1}n → {0, 1}n be a function such that there is a data structure with
parameters `, m, t and r such that

P
x∈[N]

[
Invert(f(x)) ∈ f−1(f(x))

]
≥ ε

where the meaning of the symbols is same as in Theorem 4.1. Then assuming that (`+mr + t) =
O(S) and tr = O(T), there is an algorithm (in the RAM model) which uses space Õ(S) and time
Õ(T) and inverts f on an ε fraction of inputs. Here Õ hides factors of 2poly log logN .

Proof: We first note that Theorem 4.1 gives us that over the randomness of the data structure,
the algorithm Invert inverts an ε fraction of the inputs. This implies that there is a fixed value of
randomness (call it ‘good’ value) for which Invert inverts an ε fraction of the inputs. Note that
the randomness used in the data structure is just the randomness used to sample the functions
g1, . . . , gr : [N] × [N ′] → [N] where N ′ = O(log2N). As these functions are t wise independent,
and we pick these functions pairwise independently, the total randomness used to sample these
functions is t · log r ·2Θ((log logN+log logN ′)3) (using Corollary 8.9). This is actually just Õ(t) (because
r ≤ N). Hence, we can fix the randomness to a good value using Õ(t) bits.

Now, we describe the final algorithm. It is just the algorithm Invert with a fixed value of randomness.
Clearly, the total space required for the algorithm is the space consumed by the data structure which
is Õ(`+mr), plus the space used to store the value of randomness which is Õ(t) along with total
run-time space used by the algorithm which we will see is Õ(r+ t). Hence, the total space used by
the RAM algorithm is Õ(mr + t+ `) = Õ(S).

To find the total run time of the algorithm, note that it has three steps:

• Search in the high in-degree list

• Given the value of randomness, getting the succinct representation of gi’s

• Executing the algorithm Invert

The first step clearly takes O(log `) = Õ(1) time by binary search. Also, by Corollary 8.9, to
get a succinct representation of the different gi’s, the total time and space required is O(r + t).
The final step means doing r walks of length t each to find a hit and possibly another r walks
of length t to find the inverse (or find that its a false hit). Each step of the walk involves at
most 2n2 = O(log2N) evaluations of one of the gi’s and each evaluation clearly this takes time
2poly log logN (by Corollary 8.9). Thus the total time required is Õ(rt) = Õ(T). We note that
the only significant space consumption during execution of Invert is O(r + t). Hence, we get the
theorem.

22

Corollary 6.2 For any f : [N]→ [N], ε > 0 and S = Ω̃(
√
εN), there is an algorithm making oracle

calls to f which inverts f on an ε fraction of inputs and runs in time T such that TS3 = Õ(ε5N3)

Proof: This is simply obtained by combining theorem 6.1 with time-space trade-offs in the second
part of section 5.

Corollary 6.3 For any f : [N] → [N], ε > 0 and S = max{Ω̃(
√
εN), Ω̃(ε2N)}, there is an

algorithm making oracle calls to f which inverts f on an ε fraction of inputs and runs in time T
such that TS = Õ(εN)

Proof: This is obtained by combining theorem 6.1 with time-space trade-offs in the first part of
section 5.

Some canonical tradeoff points

We now describe some canonical trade-offs possible with our scheme. We first list down two
corollaries for which it is somewhat simpler to understand the time-space trade-off curve.

Corollary 6.4 For any f : [N]→ [N], ε > 1/N1/5, there is an algorithm making oracle calls to f
which inverts f on an ε fraction of inputs and runs in time T such that TS3 = Õ(ε5N3).

Proof: This follows from corollary 6.2. In particular, for the problem to be non-trivial, as we
have noted before, S3 ≥ ε4N2. However, for ε > 1/N1/5, this condition implies S ≥

√
εN .

Corollary 6.5 For any f : [N] → [N], ε > 1/N1/3 and S = Ω(ε2N), there is an algorithm
making oracle calls to f which inverts f on an ε fraction of inputs and runs in time T such that
TS = Õ(εN).

Proof: This follows from corollary 6.3. The condition S = Ω(ε2N) implies S = Ω(
√
εN) when

ε > 1/N1/3.

Among interesting points that can be achieved on the curve, it follows by Corollary 6.5 that on
1/N1/3 fraction of inputs, the function f can be inverted by an oracle algorithm running in time
T = Ω̃(N1/3) and space S = Ω̃(N1/3). As a generalization of the this, we now prove the following
statement which was stated in the abstract.

Corollary 6.6 For any f : [N]→ [N] and ε > 0, it is possible to get a time space trade-off scheme
such that T = S = max{Õ(

√
εN), Õ(ε

5
4N

3
4)}.

Proof: Note that
√
εN ≥ ε2N iff ε ≤ N−1/3. Hence, in this case, we can apply corollary 6.3,

to get a time space trade-off scheme with T = Õ(
√
εN) = S. If ε ≥ N−1/3, then note that

ε5/4N3/4 ≥
√
εN . Also observe that if we set T = Õ(ε5/4N3/4) = S, then TS3 ≥ ε5N3. Hence, for

ε > N−1/3, both the conditions for corollary 6.2 are satisfied if we set S = Õ(ε5/4N3/4) = T which
proves the result.

23

7 Bounds based on collision probability

The analysis in the previous section might wrongly suggest that by storing a pre-computed list of
points with large number of pre-images, we aim to bring down the effective collision probability of
the function. This however, is a false intuition. Rather the main purpose of the pre-computed list
is to put a bound on the deviation in the indegree of elements outside the high in-degree list. In
fact, our analysis can be used to show that the following trade-offs can be achieved provided the
function is guaranteed to be k-regular

• If S ≥ ε2N
k , then there is a time-space trade-off scheme achieving TS = O

(
εN
k

)
• If S < ε2N

k , then there is a time-space trade-off scheme achieving TS2 = O
(
ε3N2

k2

)
In light of this, it is an interesting question to ask what kind of time-space trade-off schemes can
be obtained if one is not allowed to use a pre-computed list. We now suggest a time-space trade-
off scheme for inversion when no precomputed list of high-indegree is allowed. It is only a minor
modification of the construction from the previous section.

In the data structure, we make no changes except we do not store a pre-computed list of high
in-degree. In the algorithm phase, let the total time for the scheme be T . Then initially, on being
given input y, the algorithm samples T/2 random points x1, . . . , xT/2 and checks if f(xi) = y for
any y. If this step fails, then the algorithm uses the algorithm of the previous section except that
because there is no list of high in-degree points, the step which searches for y in the list is absent.

To analyze this scheme, we need a variant of Theorem 4.1 which we state next.

Theorem 7.1 For given ε > 0 and f : [N]→ [N] such that the collision probability of f is λ, let the
parameters m, t in the data structure be such that mt2λ < 1/8. Then, there exists an r = O(εN/mt)
such that

P
x∈[N]

[
Invert(f(x)) ∈ f−1(f(x))

]
≥ ε

In fact, if λ > 1600ε2, then one can take r = O(ε/mtλ)

Proof: We only sketch the proof here as it is almost the same as that of Theorem 4.1. The
principal difference is that since there is no pre-computed list of high in-degree elements, there is
no upper bound on the size of the elements outside the (empty) list. To see the problem that can
arise, assume that for a particular element y, (tI(y))/N > 1/2. Then Claim 4.3 fails to give a lower
bound on the probability of occurrence of element y in a single walk and hence in the data structure.
However, note that if tI(y)/N > 0.1, then it means that if we randomly sample T/2 ≥ 100t (we
will ensure T > 200t; this just adds a constant overhead) points, with high probability, we will find
a pre-image of y. Hence, the random sampling phase of the algorithm will invert such a y.

Now, we describe the proof of Theorem 4.1. For a particular setting of m and t, let us define
BAD := {y : I(y) > 0.1N/t}. We can assume that

∑
y∈BAD I(y) < 2εN (otherwise, the random

sampling phase can invert an ε fraction of the elements). For elements y 6∈ BAD, Claims 4.3, 4.4,
4.5 and 4.6 all go through without any changes. Now, we define Qr and λ1 as in the proof of
Theorem 4.1. As was shown there, if

∑
y∈Qr I(y)/N ≥ 32ε, then our algorithm inverts an ε fraction

of elements. Similarly, as was shown above, if
∑

y∈BAD I(y)/N ≥ 2ε, then also our algorithm
inverts an ε fraction of the elements. Hence, we can assume that

∑
Qr∪BAD I(y)/N < 34ε. If this

is true, then as in the proof of Theorem 4.1, it is easy to show λ1 > 1/N and r = O(ε/mtλ1). This
gives r = O(εN/mt) which is the first part of the theorem.

24

Also, we can prove that in this case,

λ− λ1 =
∑
y∈Qr

I(y)2

N2
+

∑
y∈BAD

I(y)2

N2
≤

 ∑
y∈BAD∪Qr

I(y)
N

2

≤ (34ε)2 < 1500ε2

This gives the second part of the theorem.

7.1 Setting the parameters

We now show how to set the parameters of the data structure when we are not allowed to use a list
consisting of high in-degree elements. We first deal with the case when S is allowed to be large.

Achieving TS = O(εN) when S = Θ(ε2N2λ)

As before, for convenience, we let S ≥ Cε2N2λ for a very large constant C. The constant C can
be made smaller by just tweaking with the constants in the parameters. Also, we let C ′ be a
sufficiently large constant such that S′ = S/C ′. We assume that S′ ≤ εN because otherwise T is
being bounded by a large constant. We now set the parameters m and t to the following values

m = S′ t =
εN

m

It is clear that both m, t ≥ 1. Now, consider the quantity mt2λ = ε2N2λ/m = ε2N2λ/S′ ≤ 1/8 if
C ≥ 8C ′. Hence, we can now apply Theorem 7.1 to get r = O(εN/tm) = O(1). Hence, the total
space is mr = O(S′) ≤ S. Now, we set the total time T = 200tr = O(εN/S) (The factor of 200 is
just to account for the random sampling stage as promised in the proof of Theorem 7.1).

We also observe that t = O(S) as long as S = Ω(
√
εN).

Achieving TS2 = O(ε3N3λ) when S = o(ε2N2λ)

Now, we show the setting of parameters in case S < cε2N2λ where c is a very small constant. Let
S′ = S/C where C is a very large constant. We note that we can assume S′2 ≥ ε2N2λ as otherwise,
we can make time T = εN and can trivially achieve inversion of an ε fraction of elements. The
setting of parameters is as follows:

m =
S′2

ε2N2λ
t =

εN

4S′

We first check that because of the assumptions on the size of S, it clearly follows that m, t ≥ 1.
By definition of m and t, we can check that mt2λ ≤ 1

8 . Hence, we can apply Theorem 7.1 to
get r = O(εN/mt) = O(ε2N2λ/S′). The total space required is clearly O(mr) = O(S′) ≤ S.
The time required is T = 200tr = O(ε3N3λ/S2). Hence, we achieve the aforesaid trade-off i.e.,
TS2 = ε3λN3.

We also note that in both the above scenarios, t = O(εN/S) which means that if S ≥
√
εN ,

t = O(S).

Remark 7.2 The trade-off given above is an analogue of the trade-off in Fiat-Naor where they
show how to invert all the elements and achieve a trade-off of TS2 = N3λ. However, they do no
put a restriction that there should be no pre-computed list of high in-degree elements.

25

7.2 The final time-space tradeoffs

Now, we describe the final time space trade-offs which can be obtained if we know the collision
probability but are not allowed to use a high in-degree list. This is exactly analogous to Appendix 6.
We simply state the main theorem here and note that the proof is identical to Theorem 6.1.

Theorem 7.3 Let f : {0, 1}n → {0, 1}n be a function which has collision probability λ such that
there is a data structure with parameters m, t and r such that

P
x∈[N]

[
Invert(f(x)) ∈ f−1(f(x))

]
≥ ε

where the meaning of the symbols is same as before. Then assuming that O(mr + t) = O(S) and
tr = O(T), there is an algorithm (in the RAM model) which uses space Õ(S) and time Õ(T) and
inverts f on an ε fraction of inputs. Here Õ hides factors of 2poly log logN .

We get the following immediate corollaries of the above theorem by combining it with trade-offs
derived in this section.

Corollary 7.4 For any f : [N]→ [N], ε > 0 with collision probability λ and S = Ω̃(max{
√
εN, ε2N2λ}),

there is an algorithm making oracle calls to f which inverts f on an ε fraction of inputs and runs
in time T such that TS = Õ(εN)

Corollary 7.5 For any f : [N] → [N], ε > 0 with collision probability λ and S = Ω̃(
√
εN), there

is an algorithm making oracle calls to f which inverts f on an ε fraction of inputs and runs in time
T such that TS2 = Õ(λε3N3)

8 Construction of k-wise independent distributions with local com-
putability

A very important primitive required in our constructions is a family of k-wise independent functions
which are formally defined below.

Definition 8.1 A family F of functions D → R is said to be k-wise independent if for any
b, b1, . . . , bk−1 ∈ [D], a, a1, . . . , ak−1 ∈ [R] satisfying ∀ t < k, b 6= bt, the following holds:

Prf∈F [f(b) = a|f(b1) = a1, . . . , f(bk−1) = ak−1] =
1
|R|

Without loss of generality, we assume that the range is {0, 1}r. Once the range is {0, 1}r, it suffices
to consider family of k-wise independent functions F1 : D → {0, 1} and take its direct product.
More formally, we have the following.

Lemma 8.2 Let F1 : D → {0, 1} be a family of k-wise independent functions. Let F be defined to
be a family of functions mapping D to {0, 1}r where each f ∈ F is a r-tuple of functions from F1.
Also, the map of f is defined as

f ≡ (f1, . . . , fr) : (x1, . . . , xr) 7→ (f1(x1), . . . , fr(xr))

Then the family F is a k-wise independent. Further, if the randomness to sample an element of
F1 be w, then the randomness to sample an element of F is rw. Similarly, if the time required to
evaluate f1 ∈ F1 is t, then the time required to evaluate f ∈ F is rt.

26

In light of the above lemma, from now on, we focus on constructing family of k-wise independent
functions with a boolean range. There are many known constructions of k-wise independent func-
tions with optimal randomness requirement (i.e., Θ(k logD)) but most of them require time Ω(k)
for evaluation. In contrast, we would like to have an evaluation time (kD)o(1) with near-optimal
randomness requirement. The only one known to us which satisfies this requirement, is a construc-
tion by Ostlin and Pagh [OP03] . While the randomness required in their construction is optimal,
and they also achieve a constant evaluation time in the RAM model, the construction may deviate
from being uniformly random on any set of size k by up to 1

kc for some constant c. However, an
inverse polynomial error is not acceptable for our purpose.

We suggest a new construction here which does not seem to have appeared previously in litera-
ture. The idea is to use a efficiently computable lossless expander to construct k-wise independent
functions. While the idea of using graphs with pseudorandom properties is present in the work by
Siegel [Sie89], the construction described there is based on polynomial interpolation. In contrast,
our construction is based on the following lemma :

Lemma 8.3 Let G = (L,R,E) be a d left-regular bipartite graph i.e. any vertex l ∈ L has degree
d. Also for any V1 ⊂ L with |V1| ≤ k, the size of neighborhood of V1 is bigger than |V1|d

2 . For any
string s ∈ {0, 1}|R|, define fs : L→ {0, 1} as a function mapping x to the bit-wise XOR of the bits
corresponding to its neighbors in R i.e. fs(x) = ⊕i∈Γ(x)si. Then the family F = {fs : s ∈ {0, 1}|R|}
is a k-wise independent family of functions. Also if the time for evaluating a neighbor in the graph is
t, then the function is computable in time O(td) and the randomness required to sample a function
from F is |R|.

Proof: First, observe that the claim regarding the randomness requirement for sampling a
function from F as well as time required to evaluate f ∈ F follow trivially. For any vertex v ∈ L,
let Γ(v) ∈ {0, 1}|R| denote the characteristic vector of its neighborhood. Now, note that to prove
that the function family F is k-wise independent, it suffices to prove that for any set V1 ⊂ L of size
at most k, the set of vectors {Γ(v)}v∈V1 are linearly independent.

Consider any set V1 ⊂ L with |V1| ≤ k and assume for the sake of contradiction that the vectors
{Γ(v)}v∈V1 are linearly dependent. Consider a minimal set A ⊂ V1 such that {Γ(v)}v∈A satisfy
the same property. This however is same as saying that ⊕v∈AΓ(v) = 0. Now, by the expansion
property of G, there must be u ∈ R such that it has exactly one neighbor in A which means that the
coordinate corresponding to u in the sum ⊕v∈AΓ(v) is non-zero leading to a contradiction. Thus
the family F is k-wise independent.

Thus, we are left with the task of constructing bipartite graphs which have extremely good expan-
sion. For this, we use the construction by Capalbo et al. in [CRVW02]. While their main theorem
gives a construction which achieves optimal expansion, it is slightly non-constructive in the sense
that it requires construction of an auxillary graph which is hard to construct for extremely unbal-
anced expanders. We use a different result from the same paper which is more efficient to compute
though slightly slack in terms of expansion.

Theorem 8.4 ([CRVW02], Theorem 7.3) For any N and K ≤ N and ε > 0, there exists a

D left-regular bipartite graph G = (L,R,E) such that |L| = N , |R| = K and D = O(2(log logN
ε)3

)
such that every set of size Km ≤ Kmax has a neighborhood of size at least DKm(1 − ε) where
Kmax = Θ(εKD). Further, given v ∈ L and i ∈ D, the ith neighbor of v is computable in time
poly(logN).

27

For our application, we can put ε = 1
4 and K = CkD for a sufficiently large constant C, to get the

following family of expanders.

Theorem 8.5 For any N and k ≤ N0.99, there exists a D left-regular bipartite graph G = (L,R,E)
such that |L| = N , |R| = Ck2Θ((log logN)3) and D = 2Θ(log logN)3 such that every set of size Km ≤ k
has a neighborhood of size at least DKm(1 − ε). Further, given v ∈ L and i ∈ D, the ith neighbor
of v is computable in time poly(logN).

Applying Lemma 8.3, we get the following construction of family of k-wise independent functions.

Theorem 8.6 For any N ∈ N and k ≤ N0.99, there exists an explicit construction of a family
F : [N] → {0, 1} of k-wise independent functions such that the randomness required to sample
f ∈ F is k2Θ((log logN)3). Further, for any such f ∈ F , on any input x, f(x) can be computed in
time 2Θ((log logN)3).

Applying lemma 8.2, we get the following corollary.

Corollary 8.7 For any N,N ′ ∈ N and k ≤ N0.99, there exists an explicit construction of a family
F : [N]× [N ′]→ [N] of k-wise independent functions such that the randomness required to sample
f ∈ F is k2Θ((log logN+log logN ′)3). Further, for any such f ∈ F , on any input x, f(x) can be
computed in time 2Θ((log logN+log logN ′)3).

What we actually need is to sample pairwise independent functions from the family F above. The
following fact is well known

Fact 8.8 For any r,m ∈ N, there is an algorithm running in time O(m + r) such that r pairwise
independent uniformly random strings can be computed using mdlog re bits of randomness.

Combining the above fact and Corollary 8.7, we get the following corollary.

Corollary 8.9 For any N,N ′, r ∈ N and k ≤ N0.99, there exists an explicit construction of a
family G of r pairwise independent functions such that each function is a uniformly random sample
of F : [N]× [N ′]→ [N] which is a family of k-wise independent functions. Further, the randomness
required to sample these r functions is k · log r · 2Θ((log logN+log logN ′)3). Also, given the randomness
for sampling these r functions, one can get a representation of each of the r functions in total
time O(r + t). Also, once we have such a representation for f ∈ F , for any input x, f(x) can be
computed in time 2Θ((log logN+log logN ′)3).

9 Distinguishers for Pseudorandom Generators

In this section we prove the following result

Theorem 9.1 For every ε ≤ 2n/2 and every length-increasing function G : {0, 1}n−1 → {0, 1}n,
there is a circuit C of size O(ε2 · 2n) such that

P[C(G(Un−1)) = 1]− P[C(Un) = 1] ≥ ε

28

We first show that a slightly weaker bound of O(ε2 · n · 2n) can be achieved via a very simple
construction and analysis. Over the complete basis of fan-in two gates, the circuit has size at most
n + ε2 · 2n · 2n. The tight bound is achieved by a construction that is still rather simple, but
whose analysis involves a rather technical fourth-moment calculation about the large deviation of
four-wise independent distributions.

9.1 A Simpler Construction and Analysis

The construction in this section is based on the well known fact, which goes back at least to
[AGHP92], that if a random variable X ranging over {0, 1}k has constant statistical distance from
the uniform distribution Uk over {0, 1}k, then there is a linear function that distinguishes Uk from
X with advantage at least Ω(2−k/2). The standard proof proceeds via Fourier analysis. Here we
observe a more general proof that works for any family of pairwise independent hash functions.

Lemma 9.2 Let H be a pairwise independent family of functions h : Ω→ {−1, 1} and g : Ω→ R
be any real-valued function, then there exists a function h ∈ H such that∣∣∣∣∣∑

x∈Ω

h(x)g(x)

∣∣∣∣∣ ≥ 1√
|Ω|

∑
x

|g(x)|

Proof: Consider the random variable sh :=
∑

x∈Ω h(x)g(x) defined over the random choices of
h from H. Note that this is a sum of pairwise independent random variables and that E sh = 0, so
we have

E s2
h = Var sh

=
∑
x

Var h(x)g(x)

=
∑
x

g2(x) Var h(x)

=
∑
x

g2(x)

This implies that there is at least one function h0 ∈ H such that

s2
h0
≥
∑
x

g2(x)

and so

|sh0 | ≥
√∑

x

g2(x) ≥ 1√
|Ω|

∑
x

|g(x)|

Where the last inequality is an application of CauchySchwarz.

Theorem 9.3 For every ε ≤ 2n/2 and every length-increasing function G : {0, 1}n−1 → {0, 1}n,
there is a circuit C of size O(ε2 · 2n) such that

P[C(G(Un−1)) = 1]− P[C(Un) = 1] ≥ ε

29

Proof: Fix k = 2 + 2 log 1/ε, and for each z ∈ {0, 1}n−k define the set

Sz := {x ∈ {0, 1}n : z is a prefix of x}

Consider the (pairwise independent) family H of affine functions

hb,a1,...,an(x1, . . . , xn) := (−1)b+a1x1+···anxn

Note that each function in the family is computable by a circuit of size O(n). Define p(x) :=
P[G(Un−1) = x] to be the probability distribution of outputs of the generator G. Note that we have∑

x

∣∣p(x)− 2−n
∣∣ ≥ 1

because the left-hand side is twice the statistical distance between the output of G and the uniform
distribution, which is at least 1/2 as witnessed by the statistical test that accepts only the possible
outputs of G.

For every z, by applying Lemma 9.2 to Ω := Sz and g(x) := p(x) − 1
2n , we are guaranteed the

existence of a function h(z) ∈ H such that∑
x∈Sz

h(z)(x)(p(x)− 2−n) ≥ 2−k/2
∑
x∈Sz

|p(x)− 2−n|

(We do not need the absolute value on the left-hand side, because h ∈ H ⇔ −h ∈ H.)

Now define

C(x) :=
∑
z

1Sz(x)h(z)(x)

and note that C can be realized by a circuit of size at most O(2n−k · n) = O(ε2 · n · 2n). Also,
observe that C is ±1 i.e., a boolean valued circuit. We have∑

x

C(x) · (p(x)− 2−n) ≥
∑
z

2−
k
2

∑
x∈Sz

|p(x)− 2−n| ≥ 2−
k
2

∑
x

|p(x)− 2−n| ≥ 2−k/2

that is
E

x∼X
C(x)− E

x∼Un
C(x) ≥ 2−k/2

which is equivalent to

P
x∼X

[C(x) = 1]− P
x∼Un

[C(x) = 1] ≥ 1
2
· 2−k/2 ≥ ε

9.2 The Optimal Construction

We begin by proving the following stronger form of Lemma 9.2 for four-wise independent families
of functions.

30

Lemma 9.4 Let H be a four-wise independent family of functions h : Ω→ {−1, 1} and g : Ω→ R
be any real-valued function, then

P
h∼H

[∣∣∣∣∣∑
x∈Ω

h(x)g(x)

∣∣∣∣∣ ≥ 1
3
√
|Ω|

∑
x

|g(x)|

]
≥ .15

Proof: Consider the random variable, dependent on the choice of h from H,

sh :=

∣∣∣∣∣∑
x∈Ω

h(x)g(x)

∣∣∣∣∣
Then we have

E s2
h =

∑
x

g2(x) = ||g||22

and

E s4
h = 3

(∑
x

g2(x)

)2

− 2
∑
x

g2(x) = 3||g||42 − 2||g||22

so

E(s2
h − 2||g||22)2 = 3||g||42 − 2||g||22 ≤ 3||g||42

and, using CauchySchwarz at the beginning and Markov’s inequality at the end,

P
h∼H

[∣∣∣∣∣∑
x∈Ω

h(x)g(x)

∣∣∣∣∣ ≤ 1
3
√
|Ω|

∑
x

|g(x)|

]
≤ P

[∣∣∣∣∣∑
x∈Ω

h(x)g(x)

∣∣∣∣∣ ≤ 1
3

∑
x

g2(x)

]
(3)

= P
[
sh ≤

1
3
||g||2

]
(4)

= P
[
s2
h ≤

1
9
||g||22

]
(5)

= P
[
2||g||22 − s2

h ≤
17
9
||g||22

]
(6)

= P

[(
2||g||22 − s2

h

)2 ≤ (17
9

)2

||g||42

]
(7)

≤ 3||g||42(
17
9

)2 ||g||42 (8)

= .0.8408 · · · (9)

We can now prove our main result of this section, the existence of a generator of complexity O(ε22n).

31

Proof: [Of Theorem 9.1] Fix k = 2 log2 40/ε. Partition {0, 1}n into 2n−k sets Sz of size 2k each,
by defining, for every string z ∈ {0, 1}n−k, Sz to be the set of strings that have z as a prefix. Let H
be an efficiently computable family of 4-wise independent functions h : {0, 1}n → {0, 1}. For every
y ∈ {0, 1}n, define g(y) := P[G(x) = y]− 2n.

From Lemma 9.4, we have that for every set Sz

P
h∼H

[∣∣∣∣∣∑
x∈Sz

g(x)h(x)

∣∣∣∣∣ ≥ 1

3
√

2k

∑
x∈Sz

|g(x)|

]
≥ .15

So that

E
h∼H

[∑
z

∣∣∣∣∣∑
x∈Sz

g(x)h(x)

∣∣∣∣∣
]
≥ .05 · 1√

2k

∑
x∈{0,1}n

|g(x)| ≥ .05 · 1√
2k

where the last inequality is due to the fact that |
∑

x∈{0,1}n |g(x)| is twice the statistical distance
between G(x) and the uniform distribution, and that their statistical distance is at least 1/2.

In particular, there is a function h ∈ H such that

∑
z

∣∣∣∣∣∑
x∈Sz

g(x)h(x)

∣∣∣∣∣ ≥ .05 · 1√
2k
≥ 2ε

Define the function b : {0, 1}n−k → {−1, 1} such that b(z) = 1 if
∑

x∈Sz g(x)h(x) is positive, and
b(z) = −1 otherwise. Then

∑
x

b(x|n−k)h(x)g(x) =
∑
z

∣∣∣∣∣∑
x∈Sz

g(x)h(x)

∣∣∣∣∣ ≥ 2ε

Note that h is computable in nO(1) size, and b is computable in O(2n−k) = O(ε22n) size, so that
there is a circuit C of size O(ε22n + nO(1)) (giving outputs in ±1) such that∑

x

C(x)g(x) ≥ 2ε

which is the same as

P
x∈{0,1}n−1

[C(G(x)) = 1]− P
x∈{0,1}n

[C(x) = 1] ≥ ε

10 Lower Bounds

In this section we show a T ·S ≥ εN trade-off lower bound for the complexity of an inverter for one-
way permutations which succeeds on an ε fraction of inputs. This was already established by Wee
[Wee05], but here we present a slightly simpler proof based on a randomized compression scheme
which is easier to adapt to prove the other three results in this section, which are new. Also, Wee
established the optimal lower bound only when T = Õ(

√
εN) whereas we prove the lower bound

for the full range of parameters.

32

• For a family of one-way permutations indexed by a set [K] of keys, we have that either
T ≥ εN , showing the optimality of the brute-force algorithm, or ST ≥ εKN , showing the
optimality of Hellman’s approach applied to the permutation (k, x)→ (k, f(k, x)).

• For length-increasing generator G : [N]→ [2N], we show a trade-off lower bound ST ≥ ε2N .
This is known to be tight only in the case of very small time. (Via the construction that we
provide in Appendix 9.)

• For a family of length-increasing generators, we show that either T ≥ ε2N or ST ≥ ε2KN .

We begin with the proof of the trade-off for lower bound for permutations. The idea of the proof is
to show that if every permutation can be inverted on an ε fraction of inputs by an oracle algorithm
that uses time T (and, in particular, makes at most T oracle queries) and space S (so that its advice
is also bounded by S), then every permutation has a randomized encoding scheme that succeeds
with constant probability and compresses the permutation by S − ε2N/T + O(logN) bits. The
following fact helps us to get a lower bound on T and S from such a probabilistic encoding.

Fact 10.1 Suppose there is a randomized encoding procedure Enc : {0, 1}N × {0, 1}r → {0, 1}m
and a decoding procedure Dec : {0, 1}m × {0, 1}r → {0, 1}N such that

P
r∈Ur

[Dec(Enc(x, r), r) = x] ≥ δ

Then m ≥ N − log 1/δ.

Proof: By a standard averaging argument, we get that there is a r such that for at least a
δ fraction of the x’s, Dec(Enc(x, r), r) = x. However, that means that Enc(x, r) must attain at
least δ2N values as x varies over {0, 1}N . As the total number of values that Enc(x, r) can take is
bounded by 2m, 2m ≤ δ2N , thus giving us the required inequality.

Using the above fact and that the encoding scheme succeeds with constant probability, we get
S ≥ ε2N/T −O(logN).

Theorem 10.2 Fix an oracle algorithm A which makes at most T oracle queries and which takes
an advice string of length S. Fix a parameter ε.

There are randomized encoding and decoding procedures E,D which use shared randomness and
such that if f is a permutation and adv is an advice string such that

P[Afadv(f(x)) = x] ≥ ε

then

P
r
[D(r, E(r, f)) = f] ≥ .9

and the length of E(R, f) is at most

logN !− εN

100T
+ S +O(logN)

bits.

33

Proof: We use the shared randomness r to generate a random subset R ⊆ [N] such that each
element of [N] is independently chosen to be in R with probability 1/10T .

We say that an element x ∈ R is good if: (i) Afadv(f(x)) = x and (ii) none of the oracle queries in
the computation Afadv(f(x)) are in R, except possibly for the query x. Let G be the set of good
elements of R.

We claim that, with probability at least .9 over the choice of R, |G| ≥ εN/100T .

To prove the claim, note that, for a fixed x ∈ [N],

• the probability that x is in R is exactly 1/10T , and

• the probability that all queries (except possibly x) in the computation of Afadv(f(x)) are
outside of R is at least 1− (1− 1/10T)T ≈ 1− e−10, and it is more than 1− 1/100 for large
enough T .

Note also that the two events are independent, so the average number of x in R such that A inverts
f(x) but makes queries inside of R is at most I/1, 000T , where I is the number of elements of [N]
which are inverted by A. By Markov’s inequality, with probability at least .95 this quantity is at
most I/50T , and by Chernoff bound the probability that R contains at least I/20T elements of
[N] that A can invert is also at least .95, and so with probability at least .9, R contains at least
3I/100T ≥ εN/100T good elements, proving the claim.

From now we describe the encoding assuming |G| ≥ εN/100T .

The encoding contains the following information:

• The advice string adv

• The cardinality of the set G of good elements of R

• The set f(R), encoded using log
(
N
|R|
)

bits

• The values of f restricted to f : [N]−R→ [N]− f(R), encoded using log(N − |R|)! bits.6

• The set f(G) of images of good elements of R, encoded using log
(|R|
|G|
)

bits

• The values of f restricted to f : R−G→ f(R−G), encoded using log(|R| − |G|)! bits.7

The decoding proceeds as follows: it initializes an empty table to store the values of f , and it fills
up the mapping from [N]−R to [N]− f(R). Next, for every element y ∈ f(G), it finds its inverse
(because all oracle queries can be answered). At this point, we know the set G as well as the value
of f on every point in ([N] − R) ∪ G. To compute f on R − G, note that we (now) know G, R,
the set f(R−G) as well as the permutation restricted to R−G. Hence, we can compute f on the
remaining points i.e., R−G. This describes a complete decoding procedure for f . All that remains
is to compute the length of the encoding.

6That is, this part of the encoding is a permutation g : [N − |R|]→ [N − |R|], with the meaning that if g(i) = j,
then f maps the i-th element of the set [N] − R to the j-th element of the set [N] − f(R). Note that knowledge of
the sets R and f(R) is needed to decode this part of the encoding. This will not be a problem because the decoder
knows R, which is part of the common random string, and is given f(R).

7Similar remarks hold as we made in the previous footnote. The decoder needs to know the sets R − G and
f(R −G) to decode this part of the encoding. Although we have not explicitly specified the set G, it is possible for
decoder to reconstruct G from the encoding. See the description of the decoding procedure below.

34

S + log
(

N !
(N − |R|)!|R|!

· (N − |R|)! · |R|!
(|R| − |G|)!|G|!

· (|R| − |G|)!
)

+O(logN)

= S + logN !− log |G|! +O(logN)

Corollary 10.3 If A is an oracle algorithm that runs in time at most T and such that for every
permutation f there is a data structure adv of size ≤ S such that

P
x
[Afadv(f(x)) = x] ≥ ε

Then

S · T = Ω̃(εN)

Proof: Since the randomized encoding procedure compresses representation by S− (εN/100T)−
O(logN) bits and succeeds with constant probability, using fact 10.1 we get,

S − (εN/100T)−O(logN) < 1 ⇒ ST = Ω̃(εN)

To prove lower bounds on pseudorandom generators, we first prove the following lemma. A special
case of this lemma (for ε = 1/2) was proven by Yao [Yao90].

Lemma 10.4 Fix an oracle algorithm A which makes at most T oracle queries, which is not allowed
to query its input to the oracle, and which takes an advice string of length S. Fix a parameter ε.

There are randomized encoding and decoding procedures E,D which use shared randomness such
that if p : [N]→ {0, 1} satisfies

P[Apadv(x) = p(x)] ≥ 1
2

+ ε

Then

P
r
[D(r, E(r, p)) = p] ≥ Ω(ε/T)

and the length of E(r, p) is always at most

N − ε2N

10T
+ S +O(1)

Proof: We first modify A so that it makes exactly T distinct queries while never querying its
input. Clearly, the same success probability can be maintained by simply ignoring the oracle’s
answers on the extra queries.

Pick a random subset R ⊆ [N] by independently placing each element of [N] in R with probability
1/10T . An element x ∈ R is good if the computation Afadv(x) makes no query inside R. Let G be

35

the set of good elements. Let G0 be the set of elements of G on which A is correct and G1 the set
on which it is incorrect. We say that R is good if

|G0| − |G1| ≥
εN

20T
and |G| = Ω

(
N

T

)
We prove that R is good with probability at least ε/20T , and that given a good R we can achieve
the required compression.

Note that for each x we have

P[x ∈ G] =
(

1− 1
10T

)T
· 1

10T

Then the average, over the choice of R of the difference between |G0| and |G1| is

E
R

[|G0| − |G1|] ≥
(

1− 1
10T

)T
· 1

10T
· 2 · ε ·N ≥ εN

10T

On the other hand, for every choice of R we have |G0| − |G1| ≤ N , so with probability at least
ε/20T we have

|G0| − |G1| ≥ εN/20T

Further, note that ER[|G|] = Θ(N/T). Hence, a simple application of the Chernoff bound gives us
that

P
R

[|G| = O(N/T)] ≥ 1− e−
2N
T

Hence, we get that R is good with probability at least ε/20T − exp(−2N/T) ≥ ε/40T . To see
this, clearly T ≤ εN to prove any non-trivial result while we can safely assume that T ≥ N/ logN .
Assuming now that we have a good R, the encoding contains

• p restricted to [N]−R, taking N − |R| bits;

• p restricted to R − G, taking |R| − |G| bits; note that knowledge of the set G is needed
to decode this information, but given R and the values of f outside R then the set G is
completely specified.

• the set G0, taking |G| ·H(1/2 + εN/40T |G|) bits, which is at most |G| − ε2N2

O(T 2|G|)

We now explain briefly how the decoding algorithm works. It initializes an empty table for p, and
then fills all the entries corresponding to [N]−R. Next it computes G as follows: For every x ∈ R,
it runs the algorithm A. If A makes any query outside R, we already know the answer and hence
A can continue. If A makes any queries outside R, then x 6∈ G. Clearly, this test is both sound and
complete. Now, that we know G, we know R − G and hence the value of p can be computed on
R−G as well. The only remaining part of the reconstruction is computation of p on G. Since, by
definition G makes queries only outside R, clearly, we can compute A(x) for x ∈ G. Subsequently,
we flip all the answers on G − G0 to get the complete truth table of p. Overall the length of the
encoding is

S +N +O(1)− ε2N2/T 2O(|G|) ≤ S +N +O(1)− Ω(ε2N/T)

because |G| = O(N/T)

36

Theorem 10.5 Suppose that A is an oracle algorithm that makes T queries, uses a S-bit advice
string, and is such that for every length-increasing function G : [N] → [N] × {0, 1} there is an
advice string adv such that

|P[AGadv(G(x)) = 1]− P[AGadv(y) = 1]| ≥ ε

Then S · T ≥ Ω̃(ε2N)

Proof: Consider the set of 2N · N ! pairs f, p where f : [N] → [N] is a permutation and p is a
predicate. We show that (f, p) can be encoded using less than logN !+N+S+O(1)−Ω(ε2N/T) bits.
To see why proving this suffices, note that we achieve a total compression of Ω(ε2N/T)−S −O(1)
which should be at most 0 implying that S · T ≥ Ω̃(ε2N).

To get the encoding, we first apply Yao’s reduction of distinguishers to predictors [Yao82] to obtain
an algorithm B that uses at most S + 1 bits of advice and such that

P [BG
adv(f(x)) = p(x)] ≥ 1

2
+ ε

Clearly, one of the following two cases must be true:

• With probability at least ε/2, BG
adv(f(x)) queries x. We can give the entire truth table of p as

advice by adding N additional random bits, and then this gives us a circuit which queries x,
and hence inverts f(x) on at least an ε/2 fraction of the inputs. By Theorem 10.2, this implies
that there is a randomized encoding for f using logN !+S+O(1)−Ω(εN/T) bits. Since, we also
have an encoding of p, this gives an encoding of (f ◦p) using logN !+N+S+O(1)−Ω(ε2N/T)
bits.

• Otherwise, we give the entire truth table of f as advice to Badv using an additional logN !
bits. Because Badv has the truth table of f , we can interpret Badv as a circuit, which satisfies

P [Bp
adv(x) = p(x)] ≥ 1

2
+ ε

with the additional property that it does not query x on at least a 1 − ε/2 fraction of the
inputs. Now, we construct a modified circuit Cadv which is same as Badv except whenever
Badv queries p on x, Cadv outputs a random answer. Then we get Cadv

P [Cpadv(x) = p(x)] ≥ 1
2

+
ε

2

with the additional property that Cadv never queries its inputs. We now use Lemma 10.4 to
get a randomized encoding of (f ◦ p) with N + S + logN ! +O(1)− Ω(ε2N/T)

In either of the cases, the encoding succeeds with probability at least ε/T , we get that
S + log(ε/T) ≥ Ω(ε2N/T)−O(1) and hence S · T ≥ Ω̃(ε2N).

We say that a function f : [K] × [N] → [N] is a family of permutations if, for every k ∈ [K], the
mapping x→ f(k, x) is a permutation.

37

Lemma 10.6 Let A be a non-uniform oracle algorithm that takes S bits of advice and makes at
most T oracle queries. Then there are randomized encoding and decoding procedures such that for
every family of permutations f : [K]× [N]→ [N] such that there is an advice string adv such that

P
k∈[K], x∈[N]

[Afadv(k, f(k, x)) = x] ≥ ε

The encoding is decodable with probability at least .9 and has length at most K logN ! + S +
O(K logN)−KεN/T .

Proof: Choose a subset R ⊆ [K]× [N] by selecting each element independently with probability
εN/10T . We say that an element (k, x) ∈ R is good if Af (k, f(k, x)) makes oracle queries outside
of R−{(k, x)} and successfully inverts f(k, x). Let G be the set of good elements. Then, as proved
before in Theorem 10.2, with probability at least .9 the set G has cardinality at least εKN/100T .
The description of the family of permutations is given by providing, for every k:

• The advice string adv

• The cardinality of the set Gk for each k

• The set f−1(Rk), where Rk := {y : (k, y) ∈ R}

• The set f−1(Gk), where Gk := {y : (k, y) ∈ G}

• The inverse of f on {k} × ([N]−Rk)

• The inverse of f on {k} × (Rk −Gk)

We note that the above description is basically just providing the description for reconstructing the
permutation restricted to each member of the family. The reconstruction follows exactly the same
steps as in Theorem 10.2. By previous calculation, this has length∑

k

logN ! +O(K logN) + S −
∑
k

log |Gk|! ≤ logKN ! +O(K logN) + S − |G|

Assuming R is good, the above quantity is bounded by logKN ! +O(K logN) + S −KεN/T .

Corollary 10.7 Suppose that A is an oracle algorithm that makes T queries, uses an S-bit advice
string, and is such that for every family of permutations f : [K] × [N] → [N] there is an advice
string adv such that

P
k∈[K], x∈[N]

[Afadv(k, f(k, x)) = x] ≥ ε

Then S · T ≥ Ω̃(εKN)− Õ(KT)

Proof: Using Lemma 10.6, we get a total compression of KεN/T −O(K logN) with probability
at least 0.9. Using Fact 10.1, immediately gives us

S ≥ KεN/T −O(K logN)−O(1) ⇒ S · T ≥ Ω̃(εKN)− Õ(KT)

38

Theorem 10.8 Suppose that A is an oracle algorithm that makes T queries, uses an S-bit advice
string, and is such that for every family of length-increasing functions G : [K]× [N]→ [N]×{0, 1}
there is an advice string adv such that

| P
x∈[N]

[AGadv(k,G(k, x)) = 1]− P
y∈[2N]

[AGadv(k, y) = 1]| ≥ ε

Then S · T ≥ Ω̃(ε2KN)− Õ(KT), that is,

T ≥ Ω̃ min
{
ε2N,

ε2KN

S

}
Proof: Let f : [K]× [N]→ [N] be a family of permutations and p : [K]× [N]→ {0, 1} be a family
of predicates. Consider the family of length-increasing functions G(k, x) := (f(k, x), p(k, x)). By
Yao’s equivalence of indistinguishability and predictability we have an algorithm B using S+1 bits
of advice such that

P[Bf,p
adv(k, f(k, x)) = p(k, x)] ≥ 1

2
+ ε

We distinguish two cases. If B queries (k, x) for at least an ε/2 fraction of the inputs (k, x), then
we add the entire truth table of p as advice. Note that now B can be seen as inverting a family of
permutations on an ε/2 fraction of the inputs. Consequently, we can use the probabilistic encoding
given in Lemma 10.6 and get a probabilistic encoding of the pair (f, p) which achieves a compression
of εNK/T − O(K logN). In case, B queries (k, x) on less than ε/2 fraction of the inputs, we do
the following. We first give the entire truth table of f as advice to B. Then B can be seen as a
circuit computing p on at least 1/2 + ε fraction of inputs and making queries to p on (k, x) on at
most an ε/2 fraction of the inputs. From this, we consider the modified circuit C which behaves
the same as B except on inputs where B queries p on the input, C just makes a random guess. It
is clear that C satisfies

P[Cp(k, x) = p(k, x)] ≥ 1
2

+
ε

2

We sample a subset R ⊆ [K] × [N] by picking each element with probability 1/10T . We say that
an element (k, x) is good if C makes queries outside R. We let G0 be the set of good elements on
which C is correct and G1 the set of good elements on which it is incorrect. As in Lemma 10.4, it
can shown that with probability at least (ε/100T) we have

|G0| − |G1| ≥ εKN/100T and |Gk| ≤
N

T

where Gk denotes G ∩ {k} × [N]. Now assume that, we have a R which is good. With this, we
encode p with the following bits of information:

• For all k, p(k, x) such that x ∈ N −Rk where Rk := {x : (k, x) ∈ R}

• For all k, p(k, x) such that x ∈ Rk −Gk

• The set G0k where G0k = G0 ∩ {k} × [N].

39

To do the reconstruction, we apply the decoding procedure used in Lemma 10.4 restricted to
[N], Rk, Gk. We do not re-describe it here as it is identical. Let dk denote

dk := |G0,k| − |G1,k|

Then, the calculation in Lemma 10.4 shows that for each k, we achieve a compression of d2
k/|Gk|.

Also, note that
∑

k dk = εKN/100T . Hence, the total compression is∑
k

d2
k/|Gk| ≥

∑
k

d2
k/(N/T) ≥ T

KN
(
∑
k

dk)2 = ε2KN/10, 000T

bits. Here the first inequality uses that Gk ≤ N/T and the second is an application of Cauchy-
Schwarz inequality. As the compression succeeds with probability ε/T and compresses at least
Ω(ε2NK/T) bits in one case and εNK/T−O(K logN) in the other, we get that S ≥ Ω(ε2NK/T)−
O(K logN)− log(T/ε) giving us the final result (We use that log(T/ε) = O(logN).)

Acknowledgements

We would like to thank Daniel Wichs for suggesting the study of the common random string model,
and Cynthia Dwork, Omer Reingold, Udi Wieder and Hoeteck Wee for pointers to the literature.

References

[ACR97] Alexander E. Andreev, Andrea E.F. Clementi, and José D.P. Rolim. Optimal bounds for
the approximation of boolean functions and some applications. Theoretical Computer
Science, 180:243–268, 1997. 2, 8

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple constructions
of almost k-wise independent random variables. Random Structures and Algorithms,
3(3):289–304, 1992. 2, 7, 8, 29

[BBBV97] Charles Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths
and weaknesses of quantum computing. SIAM Journal on Computing, 26(5):1510–
1523, 1997. 3

[BBS06] Elad Barkan, Eli Biham, and Adi Shamir. Rigorous bounds on cryptanalytic
time/memory tradeoffs. In Proceedings of CRYPTO’06, pages 1–21, 2006. 2

[CRVW02] Michael R. Capalbo, Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Randomness
conductors and constant-degree lossless expanders. In Proceedings of the 34th ACM
Symposium on Theory of Computing, pages 659–668, 2002. 10, 11, 27

[FN99] Amos Fiat and Moni Naor. Rigorous time/space trade-offs for inverting functions.
SIAM Journal on Computing, 29(3):790–803, 1999. 1, 2, 4, 10, 11, 13

[Gol09] Alexander Golynski. Cell probe lower bounds for succinct data structures. In Proceed-
ings of the 20th ACM-SIAM Symposium on Discrete Algorithms, pages 625–634, 2009.
1

40

[Gro96] Lov Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the 28th ACM Symposium on Theory of Computing, pages 212–219, 1996. 3

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic cryp-
tographic constructions. In Proceedings of the 41st IEEE Symposium on Foundations
of Computer Science, pages 305–313, 2000. 8

[Hel80] Martin Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on In-
formation Theory, 26(4):401 – 406, 1980. 1, 4

[OP03] Anna Ostlin and Rasmus Pagh. Uniform hashing in constant time and linear space.
In Proceedings of the 35th ACM Symposium on Theory of Computing, pages 622–628,
2003. 6, 9, 27

[Sie89] Alan Siegel. On universal classes of fast high performance hash functions, their time-
space tradeoff, and their applications. In Proceedings of the 30th IEEE Symposium on
Foundations of Computer Science, pages 20–25, 1989. 27

[Wee05] Hoeteck Wee. On obfuscating point functions. In Proceedings of the 37th ACM Sym-
posium on Theory of Computing, pages 523–532, 2005. 8, 32

[Yao82] Andrew C. Yao. Theory and applications of trapdoor functions. In Proceedings of the
23th IEEE Symposium on Foundations of Computer Science, pages 80–91, 1982. 37

[Yao90] Andrew Yao. Coherent functions and program checkers. In Proceedings of the 22nd
ACM Symposium on Theory of Computing, pages 84–94, 1990. 1, 8, 35

41

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

