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Abstract

Locally testable codes (LTCs) are error-correcting codes for which membership, in the code, of a
given word can be tested by examining it in very few locations. Most known constructions of locally
testable codes are linear codes, and give error-correcting codes whose duals have (superlinearly) many
small weight codewords. Examining this feature appears to be one of the promising approaches to
proving limitation results for (i.e., upper bounds on the rate of) LTCs.

Unfortunately till now it was not even known if LTCs need to be non-trivially redundant, i.e., need
to have one linear dependency among the low-weight codewords in its dual. In this paper we give the
first lower bound of this form, by showing that every positive rate constant query strong LTC must
have linearly many redundant low-weight codewords in its dual. We actually prove the stronger claim
that the actual test itself must use a linear number of redundant dual codewords (beyond the minimum
number of basis elements required to characterize the code); in other words, non-redundant (in fact, low
redundancy) local testing is impossible.
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1 Introduction

In this work, we exhibit some limitations of locally testable linear codes. A linear code over a finite field F
is a linear subspace C ⊆ Fn. The dimension of C is its dimension as a vector space, and its rate is the ratio of
its dimension to n. The distance of C is the minimal Hamming distance between two different codewords.
One is typically interested in codes whose distance is a growing function of the block length n, ideally Ω(n).
Such a code is locally testable if given a word x ∈ Fn one can verify with good accuracy whether x ∈ C by
reading only a few (say a constant independent of n) chosen symbols from x. More precisely such a code
has a tester, which is a randomized algorithm with oracle access to the received word x. The tester reads at
most q symbols from x and based on this local view decides if x ∈ C or not. It should accept codewords
with probability one, and reject words that are far (in Hamming distance) from the code with noticeable
probability.

Locally Testable Codes (henceforth, LTCs) are the combinatorial core of PCP constructions. In recent
years, starting with the work of Goldreich and Sudan [17], several surprising constructions of LTCs have
been given (see [16] for an extensive survey of some of these constructions). The principal challenge is to
understand the largest asymptotic rate possible for LTCs, and to construct LTCs approaching this limit. We
now know constructions of LTCs of dimension n/ logO(1) n which can tested with only three queries [11,
13].

One of the outstanding open questions in the subject is whether there are asymptotically good LTCs,
i.e., LTCs that have dimension Ω(n) and distance Ω(n). Our understanding of the limitations of LTCs is,
however, quite poor (in fact, practically non-existent), and approaches that may rule out the existence of
asymptotically good LTCs have been elusive. Essentially the only negative results on LTCs concern binary
codes testable with just 2-queries [8, 19] (which is a severe restriction), random LDPC codes [10], and cyclic
codes [4].1 In fact, we cannot even rule out the existence of binary LTCs meeting the Gilbert-Varshamov
bound (which is the best known rate for codes without any local testing restriction). So, for all we know, the
strong testability requirement of LTCs may not “cost” anything extra over normal codes!

This work is a (modest) initial attempt at addressing our lack of knowledge concerning lower bound
results for LTCs. For linear codes, one can assume without loss of generality [10] that the tester picks a
low-weight dual codeword c⊥ from some distribution, and checks that the input x is orthogonal c⊥. It is
thus necessary that if C is a q-query LTC of dimension k, then its dual C⊥ has a basis of n− k codewords
each of weight at most q.2 All known constructions of LTCs in fact have duals which have super-linearly
many low-weight dual codewords. In other words, there must be a substantial number of linear dependencies
amongst the low-weight dual codewords. Examining whether this feature is necessary might be one of the
promising approaches to proving limitations (i.e., upper bounds on the rate) of LTCs, as it imposes strong
constraints on the dual code.3 Nevertheless, till now it was not even known if the dual of a LTC has to be
non-trivially redundant, i.e., if it must have at least one linear dependency among its low-weight codewords.

In this work, we give the first lower bound of this form, by showing that every positive rate constant
query LTC must have Ω(n) redundant low-weight codewords. The result is actually stronger — it shows

1The last result rules out asymptotically good cyclic LTCs; the existence of asymptotically good cyclic codes has been a long-
standing open problem, and the result shows the “intersection” of these questions concerning LTCs and cyclic codes has a negative
answer.

2To be precise, only when C is a strong LTC, as per Definition 2, need C⊥ be spanned by words of weight q. Non-strong LTCs
have the property that the set of low-weight words in the dual code must span a large dimensional subspace of C⊥ (see Proposition
24 for an exact statement).

3We remark that information on the dual weight distribution is useful, for example, in the linear programming bounds on the
rate vs. distance trade-off of a linear code. For LDPC codes whose dual has a low weight basis, stronger upper bounds on distance
are known compared to general linear codes of the same rate [6].

2



that the actual test itself must use Ω(n) extra redundant dual codewords (beyond the minimum n− k basis
elements). In other words, non-redundant testing is impossible. While this might sounds like an intuitively
obvious statement, we remark that even for Hadamard codes (whose dual has Θ(n2) weight 3 codewords),
a non-redundant test consisting of a basis of weight 3 dual codewords was not ruled out prior to our work.
Also, without the restriction on number of queries, every code does admit a basis tester (which makes at most
k + 1 queries). We also note that a known upper bound [5, Proposition 11.2] shows that O(n) redundancy
suffices for testing. [5] prove this in the context of PCPs, but the technique extends to LTCs as well. For
completeness, in Section 6, we include a proof showing that for every q-query LTC, there is a O(q)-query
tester that picks a test uniformly from at most 3(n − k) = O(n) dual codewords. The quantity n − k (as
opposed to n) is significant in that this is the dimension of the dual code, and our lower bound shows that
every tester (for any code) must have a support of size at least n− k.

2 Defining the redundancy of a tester

Preliminary notation Throughout this paper F is a finite field, [n] denotes the set {1, . . . , n} and Fn
denotes F[n]. For w = 〈w1, . . . , wn〉 ∈ Fn let supp(w) = {i|wi 6= 0} and wt(w) = |w| = |supp(w)|. We
define the distance between two words x, y ∈ Fn to be ∆(x, y) = |{i | xi 6= yi}| and the relative distance
to be δ(x, y) = ∆(x,y)

n .
We use the standard notation for describing linear error correcting codes and point out that all codes

discussed in this paper are linear. A [n, k, d]F-code is a k-dimensional subspace C ⊆ Fn of distance d,
defined next. The relative distance of C is denoted δ(C) and defined to be the minimal value of δ(x, y) for
two distinct codewords x, y ∈ C. The distance of C is ∆(C) = δ(C) · n. Let δ(x, C) = miny∈C{δ(x, y)}
denote the relative distance of x from the codeC. We say that x is α-far from C if δ(x, C) > α and otherwise
we say x is α-close to C. The inner-product between two vectors u and v in Fn is 〈u, v〉 =

∑n
i=1 uivi .

For a linear code C let C⊥ denote its dual code, i.e., C⊥ = {u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0} and recall
dim(C⊥) = n− dim(C). Let C⊥<t = {u ∈ C⊥ | |u| < t} and C⊥6t = {u ∈ C⊥ | |u| 6 t}.

Definition 1 (Tester). Suppose C is a [n, k, d]F-code. A q-query test for C is an element u ∈ C⊥6q and a
q-query tester T for C is defined by a distribution p over q-query tests. When C is clear from context we
omit reference to it. The support of T , denoted S = ST , is the support of p, i.e., the set S = ST ={
u ∈ C⊥6q

∣∣∣ p(u) > 0
}

. When p is uniform over a subset of C⊥6q we say the tester is uniform and may
identify the tester with S.

Invoking the tester T on a wordw ∈ Fn is done by sampling a test u ∈ ST according to the distribution p
and outputting accept if 〈u,w〉 = 0, in which case we say that u (and T ) acceptw, denoted T [w] = accept,
and outputting reject, denoted T [w] = reject, if 〈u,w〉 6= 0. Clearly any such tester always accepts w ∈ C.

• A (q, ρ′)-strong tester is a q-query tester T satisfying for all w ∈ Fn

Pr[T [w] = reject] > ρ′ · δ(w, C).

• A (q, ε, ρ)-tester is a q-query tester T satisfying for all w ∈ Fn that is ε-far from C

Pr[T [w] = reject] > ρ.

The probability in both equations above is according to the distribution p associated with T .
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Definition 2 (Locally Testable Code (LTC) [17]). A [n, k, d]F-code C is said to be a (q, ρ′)-strong locally
testable code if it has a (q, ρ′)-strong tester, and C is a (q, ε, ρ)-locally testable code if it has (q, ε, ρ)-tester.
The parameter ρ is known as the soundness of T and ε is its distance parameter.

Note that a (q, ρ′)-strong LTC is also a (q, ε, ρ′ · ε) LTC for every ε > 0. Moreover, if T is a (q, ρ′ > 0)-
strong tester for a [n, k, d]F-code then, letting ST denote the support of T , we have dim(ST ) = dim(C⊥) =
n− k.

Remarks on definitions of testers Our definition of a tester, and an LTC is somewhat different from
previous definitions (notably [10] and [17]). We clarify the differences here.

We start with Definition 2. The definition of strong LTCs we use is the same as that in [17]. The weak
notion is weaker than their definition of a weak tester (which simply allowed the rejection probability of a
weak tester to be smaller by a o(1) additive amount compared to the strong case). Our definition on the other
hand only requires rejection probability to be positive when the word is very far (constant relative distance)
from the code. Since our goal is to prove “impossibility” results, doing so with weaker definitions makes
our result even stronger.

We now discuss Definition 1. For linear LTCs it was shown in [10] (see also references therein) that
the tester might as well pick a collection of low-weight dual codewords and verify that the given word w is
orthogonal to all of them. On the other hand, our definition (Definition 1) requires the tester to pick only
one dual codeword and test orthogonality to it. Our definition is more convenient to us when defining and
analyzing the redundancy of tests (defined below). We first note that our restricted forms of tests may only
alter the soundness of the test by a constant factor. For this we recall the assertion from [10] who showed
that without loss of generality a q-query “standard” tester for a [n, k, d]F-code is defined by a distribution
over subsets I ⊆ [n], |I| 6 q. The test associated with I accepts a word w if and only if 〈w, u〉 = 0 for all
u ∈ C⊥ such that supp(u) ⊆ I . (The soundness and distance parameters of a “standard” tester are defined as
in Definition 1.) To convert this “standard” tester to one that only tests one dual codeword, consider a tester
that, given I , samples uniformly from the set UI =

{
u ∈ C⊥

∣∣ supp(u) ⊆ I
}

and accepts iff 〈u,w〉 = 0.
This resulting tester conforms to our Definition 1. Furthermore, if the soundness of the “standard” tester is ρ
then the soundness of the tester that samples uniformly from UI is at least |F|−1

|F| ρ > 1
2ρ. To see this, notice

that UI forms a linear space over F. And the set {u ∈ UI | 〈u,w〉 = 0} is a linear subspace of UI . Thus,
whenever w is rejected by some u ∈ UI we actually know that w is rejected by at least a fraction |F|−1

|F| of UI
because the set of rejecting words is the complement of a subspace of UI . Hence, using our definition of a
tester is equivalent to the most general definition of a tester, up to a constant loss in the soundness parameter.

Definition 3 (Linearly independent tester, basis tester and tester redundancy). Suppose C is a [n, k, d]F-
code. A q-query tester T for C is said to be a linearly independent tester if its support ST ⊆ C⊥6q is
a set of linearly independent vectors. If T is a linearly independent tester and its support ST is of size
|ST | = dim(C⊥) = n − k then we call it a basis tester because ST forms a basis for C⊥. In case ST has
size larger than dim(span(ST )) we define the redundancy of T to be |ST | − dim(span(ST )). (Notice that
a linearly independent tester has redundancy 0.)

Definition 4 (Expected query complexity). The expected query complexity of a tester for C with distribution
p over its support S ⊆ C⊥ is defined to be Eu∼p[|u|].
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3 Main results

This section contains four parts. We start by stating our main results — Theorem 5 and Corollaries 7
and 8. Then, we discuss the main technical contribution of this paper — Theorem 12 — which implies
all of our main results. We go on to show another application of Theorem 12, namely, a generalization
and simplification of the main result from [10] stating that random low-density-parity-check (LDPC) codes
require linear query complexity. Finally, we provide the proofs of our main results assuming Theorem 12.
The proof of Theorem 12 appears in the next section.

3.1 Statement of main results

Theorem 5 (Linearly independent tester). If a [n, k, d]F-code C has a (q, δ(C)3 , ρ)-linearly independent tester
then

ρ 6
q

k
.

Remark 6. Theorem 5 (Linearly independent tester) holds even for a basis tester that has only expected
query complexity 6 q (and all other parameters are as in the statement of the theorem). Recall that a tester
has expected query complexity at most q if Eu∼D[|u|] 6 q where the expectation is taken with respect to the
probability D associated with the tester.

The first corollary of our main theorem says that Ω(n) redundancy is necessary for uniform testing of
all codes that have nontrivial (i.e., super-constant) size.

Corollary 7 (Uniform testers for LTCs with super constant size require linear redundancy). Let C be a
[n, k, d] code that is (q, 1

3δ(C), ρ)-locally testable by a uniform tester using a set S ⊆ C⊥6q. Then

|S| >
(

1− q/k
1− ρ

)
· dim(span(S)) =

(
1− q/k
1− ρ

)
· Ω(n).

In words, S has redundancy at least ρ−q/k1−ρ · dim(span(S)).

For instance, if k = dim(C) = ω(1) and ρ, q are constants then the previous corollary says that a
uniform tester for C requires a linear amount (Ω(n)) of redundancy. Note that dim(span(S)) = Ω(n) by
claim 27.

Our second corollary shows that non-trivial redundancy is necessary for general (i.e., for nonuniform)
testing.

Corollary 8 (Testers for LTCs with constant rate require linear redundancy). Let C be a [n, k, d] code that
is (q, 1

3δ(C), ρ)-locally testable by a tester that is distributed over a set S ⊆ C⊥6q. Then

|S| > dim(span(S)) +
ρk

q
− 1.

In words, S has redundancy at least ρkq − 1.

For instance, if k = Θ(n) and ρ, q are constants (i.e., when C comes from an asymptotically good family
of error correcting codes) then, once again, a linear amount of redundancy is required by any constant-query
tester for C. For the state of the art LTCs [11, 13, 22] k = Θ(n/poly(log n)) and our result implies that
Θ(n/poly(log n)) redundancy is necessary in such cases.
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Later on in the paper we show that our main theorem is almost tight in two respects. In section 5
we show that there do exist codes of constant size that can be strongly tested by a uniform basis tester
and that every code can be strongly tested by a uniform basis tester that has large query complexity. We
conclude by showing in Section 6 that if C ⊆ Fn2 is a (q, ε, ρ)-LTC then it has a (10q

ρ , ε,
1

100)-tester that
is uniform over a multiset S with a small (linear) amount of redundancy, i.e., with |S| 6 3 dim(C⊥) and
dim(S) > dim(C⊥)− 3εn.

3.2 Main Technical Theorem

Theorem 5 follows from the theorem stated next, which is the main technical contribution of this paper. To
state the theorem we need a couple of preliminary definitions.

Definition 9 (Support size of a test). Let T be a tester for C and S ⊆ C⊥ be its support. Let B ⊆ S be a
basis for S and u ∈ S. Then let {u}B be the subset of B needed to represent u in the basis B. Formally, if
u =

∑
v∈B av · v then

{u}B = {v ∈ B | av 6= 0}.

We let |u|B = |{u}B| be the support size of u with respect to the basis B.

Example 10. For u ∈ S of the form u = u1 + u2 + u3 for u1, u2, u3 ∈ B we have {u}B = {u1, u2, u3}
and |u|B = |{u}B| = 3.

It will be convenient to work with the following measure.

Definition 11 (Average weight). Given u ∈ S ⊆ C⊥ and a basis B we let

avg({u}B) =

∑
ui∈{u}B

|ui|
|u|B

to denote the average weight of the words in {u}B .

Theorem 12 (Main Technical Theorem). If a [n, k, d]F-code C has a (·, δ(C)3 , ρ)-tester which is a distribution
D over S ⊆ C⊥ then for every basis B of S it holds that

E
u∼D

[|u|B · avg({u}B)] > ρk.

In particular,

• If for every u ∈ S we have |u|B 6 c then Eu∼D[avg({u}B)] > ρk
c .

• If for every u ∈ S we have avg({u}B) 6 q then Eu∼D[|u|B] > ρk
q .

Remark 13. The support S of a q-query tester for C is not required to span all C⊥, i.e., it can be the case
that span(S) ⊂ C⊥. In this case we only know that S ( C⊥6q and thus there is q-query basis for S which can
be completed to a basis B for C⊥. We notice that regardless of how the basis for S is completed to a basis
for C⊥ we have that for all u ∈ S and u′ ∈ {u}B it holds that |u′| 6 q and so avg({u}B) 6 q. Moreover,
notice that the theorem statement does not depend explicitly on the query complexity of the tester but in
implicit way through weight of the words from basis B. In this way if the tester for C is q-query this imply
that the corresponding basis can be constructed only by q-weight words, and so for every test u we will get
avg({u}B) 6 q.
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3.3 A simpler proof of the main result from [10]

Ben-Sasson et al. showed in [10] that a family of randomly chosen low-density-parity-check (LDPC) codes
requires, with high probability, linear query complexity. To explain the significance of this result recall that
a code C is said to have characterization weight w if C⊥ is spanned by words of weight at most w. The
result of [10] shows a huge gap between characterization weight — which, there, equals 3 — and query
complexity, which, there, is shown to be linear in the blocklength of the code. All other upper bounds on the
rate of families of locally testable codes are obtained by ruling out a small-weight characterization of the
code. For example, the results of [8, 19] that rule out 2-query LTCs do this by (roughly) showing that any
code that is characterized by 2-query words must be of small size. Similarly, the results of [4] show that any
cyclic code with constant rate cannot be characterized by constant weight words.

In this section we use our main result to present an arguably simpler proof of the main result of [10]. In
particular, we show that to obtain the same qualitative bounds as in [10], we only require one of the three
conditions required there. Now for the details.

We start by stating the main result of [10], which is the combination of Definition 3.4 and Theorem 3.5
there.

Theorem 14 (Some locally-characterized codes require large query complexity). Let C be a [n, k, d]-code
over the two element field F2 such that C⊥ has a basis B satisfying the following two conditions for some
0 < ε, µ < 1/2 and some integer q:

• Every w ∈ Fn2 that is orthogonal to all but one constraint in B satisfies |w| > εn.

• Every u ∈ C⊥ that is the sum of at least µ|B| constraints of B must satisfy |u| > q.

Then any tester as per Definition 1 that rejects words that are ε-far from C with probability at least 2µ must
have query complexity > q.

In [10] it was shown that a family of random LDPC codes of constant rate will satisfy the conditions of
the previous theorem for some 0 < ε, µ < 1/2 and q = δn for some δ > 0.

Our work can be used to simplify theorem 14. In particular, the following statement does not require a
basis for C⊥ (any set S spanning C⊥ suffices) and, more importantly, we completely remove the need for
the first bullet in Theorem 14.

Theorem 15 (Simpler statement of Theorem 14). Let C be a [n, k, d]-code over the two element field F2

such that C⊥ is spanned by a set S ⊆ C⊥6q∗ satisfying the following condition for some 0 < µ < 1 and some
integer q:

• Every u ∈ C⊥ that is the sum of at least µ dim(C)
q∗ constraints of S must satisfy |u| > q.

Then any tester as per Definition 1 that rejects words that are δ(C)
3 -far from C with probability at least µ

must have query complexity > q.

For instance, in the case of random LDPC codes take S to be the set of rows of the parity check matrix
of the code. We get q∗ = O(1) and, following the analysis of random expanders as in [10], one can verify
that the assumption of the theorem holds for any sufficiently small µ > 0 and for q = µ′n where µ′ > 0
depends only on µ. This implies that testing random LDPC codes requires linear query complexity and thus
we recover the main result of [10].
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Proof. By way of contradiction assume that for q′ < q the code C is a (q′, δ(C)3 , µ)-LTC with a tester having
distribution D. Pick any basis B ⊆ S and then by Theorem 12 it holds that Eu∼D[|u|B] > µ dim(C)

q∗ , where

D(u) > 0 implies |u| 6 q′ < q. This implies the existence of u ∈ C⊥ such that |u| < q and |u|B > µdim(C)
q∗ .

But then |u| > q by the assumption of our theorem. Contradiction, and the proof is complete.

3.4 Proofs of main results

We end this section by proving Theorem 5 and its corollaries using Theorem 12.

Proof of Theorem 5. By assumption C has a (q, δ(C)3 , ρ)-linearly independent tester which is a distribution
D over some setB′ (support of the tester). We consider a distributionD as a function from C⊥ to [0, 1] such
that D(u) > 0 iff u ∈ B′. We have Eu∼D[|u|] 6 q. Since B′ contains only linearly independent vectors it
can be completed to a basis B for C⊥ by adding some u ∈ C⊥ such that D(u) = 0. Notice that we still
have Eu∼D[|u|] 6 q since distribution was not changed. We know that for any u ∈ B it holds that |u|B = 1
and avg(uB) = |u|. Thus by the first bullet of Theorem 12 we have

q > E
u∼D

[|u|] > ρk.

Proof of Corollary 7. By assumption dim(S) 6 dim(C⊥) = n − k. Partition S into B ∪ S′ where B is a
basis for S ⊆ C⊥, |B| = dim(S) 6 n− k and S′ = S \ B is the set of redundant tests. We bound the size
of S′ from below.

Consider a basis tester defined by B. By Theorem 5 this tester is not very sound, i.e., there exists a word
w ∈ Fn that is (1

3δ(C))-far from C and is rejected by at most a fraction ρB 6 q dim(S)
k of the constraints in

B. The overall number of constraints rejecting w is at least ρ|S| = ρ(|B| + |S′|) because S is a uniform
tester for C and w is far from C. Taking the most extreme case that all words in S′ reject w we get

ρ((dim(S)) + |S′|) 6 |{u ∈ S | 〈u,w〉 6= 0}|

6
q

k
(dim(S)) + |S′|

which implies

|S′| > ρ− (q/k)
1− ρ

· (dim(S))

and this completes the proof of Corollary 7.

Proof of Corollary 8. The high level idea is to partition S into a basis B for S ⊆ C⊥ and a set of redundant
tests S′ such that, roughly speaking, the probability of sampling from B, according to the distribution p
associated with T , is large. Then we continue as in the proof of Corollary 7.

To construct the said partition start with an arbitrary partition S = B ∪ S′ with B a basis for S ⊆ C⊥.
Iteratively modify the partition as follows. If there exists u ∈ S′ represented in the basis B as

∑
b∈B αbb

and p(b) < p(u) for some b ∈ B with αb 6= 0, then replace b with u, i.e., set B to be (B ∪ {u}) \ {b} and
S′ to be (S′ ∪{b}) \ {u}. Repeat the process until no such u ∈ S′ exists. Notice the process must terminate
because

∑
b∈B p(b) is bounded by 1 and there exists γ > 0 such that with each iteration this sum increases

by at least γ.
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At the end of the process we have partitioned S into a basis B for C⊥ and a redundant set S′ with the
following property that will be crucial to our proof. For u ∈ S′, letting B(u) denote the minimal subset of
B required to represent u, i.e., B(u) satisfies

u =
∑

b∈B(u)

αbb where αb 6= 0,

then p(u) 6 p(b) for all b ∈ B(u).
We continue with our proof. Consider the basis tester T ′ defined by taking the conditional distribution

of our tester on B and let p′ denote the conditional distribution on B, noticing p′(b) > p(b) for all b ∈ B.
By theorem 5 there exists w that is 1

3δ(C)-far from C and is rejected by T ′ with probability at most q/k. Let
B′ ⊆ B be the set of tests that reject w and notice p(B′) 6 p′(B′) 6 q/k.

Consider a word u ∈ S′ that rejects w and represent u as a linear combination of elements ofB(u) ⊆ B.
Note that if the test u rejects w then there must be some b in B(u) that also rejects w (and hence belongs to
B′). By the special properties of our partition which were discussed in the previous paragraph we have

p(u) 6 p(b) 6 p(B′) 6 p′(B′) 6 q/k .

Thus, every test that rejects w from S′ has probability at most q/k of being performed and furthermore, the
probability of rejecting w using an element of B is at most q/k as well. Summing up, we get

ρ 6 Pr[T [w] = reject] 6 q/k + |S′| · q/k

which after rearranging the terms give |S′| > ρk
q − 1 as claimed.

4 Proof of Main Technical Theorem 12

4.1 Overview — Proof of a simple case of Theorem 5

Instead of giving an overview for the proof of Main Theorem 12 we prefer to give an overview to the proof
of Theorem 12. To explain what goes on in the proof we focus on a relatively simple case. We say that a
tester is smooth if it has the property that every bit of the input wordw is queried by it with equal probability.
Let us sketch how to prove a linear lower bound on the query complexity q of a (q, ρ)-strong smooth and
uniform basis tester for a [n, k = κn, d = δn]F2-code C over the two-element field F2. Namely, we will
show q = Ω(n).

Let B = {u1, . . . , un−k} be the set of tests selected (uniformly) by our smooth basis tester T . By
assumption B is a basis for C⊥ and contains words of size at most q.

The main idea implemented in the proof is to build a special basis for Fn using the code C and the
basis B. Specifically we define a set V = {v1, . . . , vn−k} such that for every word w ∈ Fn we can find a
codeword cw ∈ C and a set Vw ⊆ V such that w = cw +

∑
v∈Vw v. (Specifically, we build such a set V by

letting vj ∈ C⊥ such that vj has inner product zero with ui for every i 6= j and inner product one with uj .)
We note that in this basis, the rejection probability of the basis tester based on B is straightforward to

compute. A word w is rejected with probability exactly |Vw|/|V |. (This follows from the fact that ui rejects
w iff vi ∈ Vw.)

Since this applies also to the elements vi ∈ V also, we conclude they have small weight. Specifically,
using the assumption that B is a (q, ρ)-strong tester we conclude

ρ · |vi|
n

= ρδ(vi, C) 6 Pr[T [vi] = reject]

9



=
|{vi}|
|V |

6
1

(1− κ)n

which gives |vi| 6 1
ρ(1−κ) = O(1).

The non-trivial step now is to consider the probability of rejecting some low-weight words. Specifically
we consider the probability of rejecting the “unit” vector ei in the standard basis. I.e., ei = 0i−110n−i. On
the one hand, smoothness implies this word can not be rejected with high-probability if the query complexity
is low (since its weight is so low). On the other hand, we note that for some i, the set Vei has to be large and
so it must be rejected with high probability. This leads to a contradiction to the assumption that the query
complexity is low. We give more details below.

Note that there must exist a vector ei whose representation is

ei = cei +
∑
vj∈Vei

vj

where cei is a nonzero codeword. This is because e1, . . . , en are linearly independent, so they cannot all
belong to span(V ) which is a (n − k)-dimensional space. The crucial observation is that |Vei | must be
large. This is because |vj | 6 1

ρ(1−κ) and |cei | > δn so |Vei | > δ
ρ(1−κ)n. This implies that ei is rejected with

probability
|Vei |
|V |

>
δ

ρ(1−κ)n

(1− κ)n
=
δ

ρ
.

On the other hand, the assumption of smoothness implies rejection probability of ei is precisely the proba-
bility of querying the ith coordinate which is q

n−k = q
(1−κ)n . We conclude

δ

ρ
6
|Vei |
|V |

= Pr[T [ei] = reject] =
q

(1− κ)n

which gives q > δ(1−κ)
ρ n = Ω(n) as claimed.

Our proof of Theorem 12 follows the outline laid above. The noticeable differences are that the tester
need not be smooth, nor uniform, and the field size may be greater than 2. Furthermore, we think of words
represented in an arbitrary basis B for C⊥ and show that many words will be simultaneously far from C and
accepted by the tester with high probability. But the overall picture is roughly the same. Now for the details.

4.2 The (C, V )-representation of words in Fn

Let B = {u1, . . . , un−k} ⊆ C⊥6q be a basis for C⊥ obtained by starting with a basis for S and completing it
to a basis for C⊥ in an arbitrary manner.

The first part of our proof shows that every word in Fn can be represented uniquely as the sum of a
codeword in C and a subset of a set of vectors V = {v1, . . . , vn−k} where the rejection probability of w is
related to its representation structure. We start by defining V .

Definition 16. For i ∈ [n− k] let vi be a word of minimal weight that satisfies

〈vi, uj〉 =
{

1 i = j
0 j ∈ [n− k] \ {i} (1)

and let V = {v1, . . . , vn−k}.

10



Proposition 17. For all vi ∈ V we have wt(vi)
n = δ(vi, C).

Proof. We have δ(vi, C) 6 wt(vi)
n because δ(vi, 0n) = wt(vi)

n and 0n ∈ C. On the other hand, for every c ∈ C
we must have δ(vi, c) > wt(vi)

n because if δ(vi, c) <
wt(vi)
n then setting v′i = vi−cwe have wt(v′i) < wt(vi)

but v′i satisfies (1) (with respect to index i), thus contradicting the minimal weight of vi.

The following claim states that Fn is the direct sum of the code C and span(V ).

Claim 18. dim(span(C ∪ V )) = n and dim(V ) = n− k.

Proof. Let S = C ∪ V . To prove both equalities stated in our claim it is sufficient to show that S⊥ = {0n},
i.e., that dim(S⊥) = 0, because dim(C) = k and |V | = n−k. Assume by way of contradiction that u ∈ S⊥
is nonzero. Then in particular u ∈ C⊥ because C ⊆ S which implies C⊥ ⊇ S⊥. Thus, u is a nonzero linear
combination of vectors from B because B is a basis for C⊥. Suppose ui appears in the representation of u
under B. Then from (1) we conclude 〈u, vi〉 6= 0 which implies u 6∈ V ⊥ which gives u 6∈ S⊥, contradicting
the assumption u ∈ S⊥. So dim(S⊥) = 0 and this completes our proof.

Claim 18 shows that every w ∈ Fn has a unique representation as a sum of a single element from
C, denoted c(w), and a linear combination of vj’s, denoted v(w). We say (c(w), v(w)) is the (C, V )-
representation of w. We denote by Γ(w) ⊆ [n − k] the set of indices (j) of vj’s participating in v(w).
Formally, if v(w) =

∑n−k
j=1 αjvj then

Γ(w) = {j | αj 6= 0}.

The next claim relates the rejection probability of w by our basis tester to the structure of v(w). For
i ∈ [n − k] let p(i) = p(ui) denote the probability of ui under the distribution associated with our basis
tester. For I ⊆ [n− k] the set of indices of B′ ⊆ B let p(I) = p(B′) =

∑
i∈I p(i) =

∑
ui∈B′ p(ui).

Claim 19 (Rejection probability is related to (C, V )-representation structure). For all w ∈ Fn we have

Γ(w) = {j ∈ [n− k] | 〈uj , w〉 6= 0}. (2)

Consequently, we have
Pr[T [w] = reject] = p(Γ(w)).

Proof. Consider the (C, V )-representation of w:

w = c(w) +
∑

j∈Γ(w)

αjvj , where αj 6= 0.

By assumption for all ui ∈ B we have 〈ui, c(w)〉 = 0 and by (1) we have 〈ui, v(w)〉 6= 0 if and only if
i ∈ Γ(w). This implies (2). The consequence follows because, by definition, the probability of rejecting w
is the probability of the event 〈ui, w〉 6= 0 where ui is selected from B with probability p(i). This completes
the proof.
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4.3 Main Lemma and Proof of Main Theorem 5

The following lemma is the main part of our proof. Assuming it we shall promptly complete the proof of
Theorem 12 and the proof of the lemma comes after the proof of the theorem. In what follows the singleton
vector ei = 0i−110n−i is the characteristic vector of the singleton set {i} ⊂ [n].

Lemma 20 (Main Lemma). If C is an [n, k, d]F-code and B = {u1, ..., un−k} is a basis for C⊥, then there
exist k distinct indices i1, ..., ik ∈ [n] and k corresponding words wi1 , ..., wik ∈ Fn such that for every ij
the following two conditions hold:

• δ(wij , C) > δ(C)
3 .

• For every u ∈ B we have 〈u,wij 〉 6= 0 only if ij ∈ supp(u).

Proof of Theorem 12. By Main Lemma 20, without loss of generality we assume that {i1, ..., ik} = [k].
Recall that we have w1, ..., wk such that for every i ∈ [k] it holds that δ(wi, C) > δ(C)

3 and for every u ∈ B
we have 〈u,wi〉 6= 0 only if i ∈ supp(u).
For i ∈ [k] let [Bwi = {u ∈ B | 〈u,wi〉 6= 0}. Note that Bwi ⊆ {u ∈ B | i ∈ supp(u)}, so we have the
following claim.

Claim 21. For every i ∈ [k] and u ∈ B it holds that if u ∈ Bwi then i ∈ supp(u) and thus u can belong to
at most |supp(u)| = |u| different Bwj -s.

For all i ∈ [k] we have
Pr
u∈DS

[〈u,wi〉 6= 0] > ρ

because D is (q, δ(C)3 , ρ) tester of C. Hence for all i ∈ [k] we have

Pr
u∈DS

[|{u}B ∩Bwi | > 1] > ρ.

So by linearity of expectation:

E
u∈DS

[|{u}B ∩Bw1 |+ |{u}B ∩Bw2 |+ ...+ |{u}B ∩Bwk |] > ρk.

Let us consider
|{u}B ∩Bw1 |+ |{u}B ∩Bw2 |+ ...+ |{u}B ∩Bwk |.

Let m = |{u}B| and {u}B = {u1, ..., um}. Let Xi,j to be an indicator variable for the event “ui ∈ Bwj”,
i.e. Xi,j equals 1 if ui ∈ Bwj and equals 0 otherwise. Then

|{u}B ∩Bw1 |+ |{u}B ∩Bw2 |+ ...+ |{u}B ∩Bwk | =
k∑
j=1

m∑
i=1

Xi,j =
m∑
i=1

k∑
j=1

Xi,j

Note that Bw1 ∪ ... ∪Bwk ⊆ B. By claim 21 ui is contained in at most |ui| sets Bwj and thus we have

|{ui} ∩Bw1 |+ |{ui} ∩Bw2 |+ ...+ |{ui} ∩Bwk | =
k∑
j=1

Xi,j 6 |ui|

12



So,

|{u}B∩Bw1 |+|{u}B∩Bw2 |+...+|{u}B∩Bwk | =
k∑
j=1

m∑
i=1

Xi,j =
m∑
i=1

k∑
j=1

Xi,j 6
m∑
i=1

|ui| =
∑

ui∈{u}B

|ui|

Thus

E
u∈DS

[avg({u}B) · |u|B] = E
u∈DS

 ∑
ui∈{u}B

|ui|

 > ρk.

This completes the proof of Theorem 12 from Lemma 20.

Proof of Lemma 20. We start by showing that there exist k distinct singleton vectors, denoted without loss
of generality e1, . . . , ek, such that c(e1), . . . , c(ek) are linearly independent, hence distinct and nonzero.

Since every word in Fn has a unique (C, V )-representation we get ei ∈ {c(ei) + v | v ∈ span(V )}. This
implies

{e1, . . . , en} ⊆ span({c(e1), . . . , c(en)} ∪ V ).

Counting dimensions, we have

n = dim(span({e1, . . . , en}))
6 dim(span({c(e1), . . . , c(en)} ∪ V ))
6 dim(span({c(e1), . . . , c(en)})) + dim(span(V )).

By Claim 18 we have dim(span(V )) = n−k, so we conclude that (without loss of generality) c(e1), . . . , c(ek)
are linearly independent, as claimed.

Next, we argue that for i ∈ [k] we have |v(ei)| > d− 1. This is because ei = c(ei) + v(ei) and |ei| = 1
and |c(ei)| > d because c(ei) is a nonzero word in a linear code with minimal distance d.

So far we have shown that every v(ei), i ∈ [k] we have |v(ei)| > d− 1
Let i ∈ [k] and let us show that there exists wi ∈ span({vj | j ∈ Γ(ei)}) such that δ(wi, C) > δ(C)

3 .
Note that in this case for all u ∈ B we have 〈u,wi〉 6= 0 only if i ∈ supp(u). Now, if |vj | > 1

3d for some
j ∈ Γ(ei) then setting wi = vj completes the proof because Proposition 17 implies that vj is d

3n -far from C.
From here on we assume |vj | < 1

3d for all j ∈ Γ(ei). Let t = |Γ(ei)| and assume wlog Γ(ei) = [t].
Denote the (C, V )-representation of ei by c(ei) +

∑t
j=1 αjvj where αj 6= 0. Let w` =

∑`
j=1 αjvj . We

know the following:

• |w1| < 1
3d.

• |wt| = |v(ei)| > d− 1 by the second bullet in Lemma 20.

• |w`+1| 6 |w`|+ |v`+1| < |w`|+ 1
3d for all 1 6 ` < t, by the triangle inequality.

This implies the existence of some ` ∈ [t] such that 1
3d < |w`| 6 2d

3 and notice wi = w` is d
3n -far from

C.
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5 Tightness of Main Theorem 5

In this section we argue that the bound (k 6 q
ρ ) obtained in Theorem 5 is close to tight. In Proposition

22 we show that there are codes with constant relative distance and constant dimension which have a basis
tester, and in Proposition 23 we show in all codes have a basis tester whose query complexity equals to the
dimension of the code plus one.

Proposition 22 (The repetition code has a (2, 1)-strong uniform basis tester). For any finite field F and
constant c ∈ N+ there exists a [n = cm, k = c, d = m]F-code C which has a (2, 1)-strong basis tester.

Proof. Let C be the [n = cm, k = c, d = m]F repetition code where a c-symbol message a1, . . . , ac is en-
coded by repeating each symbolm times, i.e., a1, . . . , ac 7→ am1 , . . . , a

m
c . Consider the tester that compares a

random position in a block to the first bit in the block. Formally, the tester is defined by the uniform distribu-
tion over the following setB of words of weight 2 : B = {eim+1 − eim+j | i ∈ {0, . . . , c− 1}, j ∈ {2, . . . ,m}},
where e` has a 1 in the `th coordinate and is zero elsewhere.

It can be readily verified that B is a basis for C⊥, has query complexity 2 and rejects a word w with
probability δ(w, C) because if the rejection probability is ε this means that at most an ε fraction of symbols
need to be changed to reach a word that is constant on each of its c blocks.

The next proposition is a folklore.

Proposition 23 (Every code has a basis tester with large query complexity). Let F be a finite field and C be
a [n, k, d]F code. Then C has a (k + 1, 1) strong uniform basis tester.

Proof. Assume without loss of generality the first k entries of a codeword are message bits. This means that
after querying the first k symbols of a word w1, . . . , wk, one can interpolate to obtain any other symbol of
the codeword that is the encoding of the message (w1, . . . , wk). For k < i 6 n let ui be the constraint that
queries the first k bits of w and accepts iff wi is equal to the ith symbol of the encoding of (w1, . . . , wk). It
can be readily that B = {uk+1, . . . , un} is a basis for C⊥ and has query complexity k + 1.

Consider the soundness of the uniform tester over B. If Pr[T [w] = reject] 6 ρ then w is ρ-close to the
codeword of C that is the encoding of (w1, . . . , wk), implying that δ(w, C) 6 ρ.

6 Upper bounds on tester support size

We show that every binary linear code C can be tested with linear redundancy, by proving the following
statement. We point out that [5] implicitly showed already that every code can be tested with a linear amount
of redundancy. The added value of the following statement is that it shows that the amount of redundancy
can be as small as twice the dimension of C⊥.

Proposition 24 (2 dim(C⊥) redundancy is sufficient for testing any LTC). If C is a [n, k, d]F2 code that is a
(q, ε, ρ)-LTC and ε 6 δ(C)/3, then C has a (10q

ρ , ε,
1

100)-tester whose support is over a set U of size at most
3 dim(C⊥) and additionally dim(U) > dim(C⊥)− 3εn.

Remark 25. Inspection of the proof of Proposition 24 reveals that C can be tested by a (c · q, ε, 1/c)-tester
whose support is over U of size 6 (4 ln 2 + η) · (n − k) for any η > 0, where c > 1 is a constant that
depends on η and goes to infinity as η goes to 0. Recalling 4 ln 2 = 2.77258 . . ., we preferred to round this
constant up to the closest integer in the statement of the proposition above.
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We point out that the support of a non-strong tester need not span C⊥. However, the lower bound on
dim(U) stated above implies that every tester’s support must at least span a large subspace of C⊥. The proof
of this proposition follows immediately from the following two claims.

Claim 26. If C ⊆ Fn2 is a [n, k, d]F2-code that is a (q, ε, ρ)-LTC, then it has (10q
ρ , ε,

1
100)-tester whose

support is over a set U of size at most 3 dim(C⊥).

Claim 27. Let T be a (q, ε, ρ)-tester for a linear code C ⊆ Fn2 such that ε 6 δ(C)
3 . Let U ⊆ C⊥6q denote the

support of T . Then dim(U) > dim(C⊥)− 3εn.

In the remainder of this section we prove these two claim. Let us state a couple of inequalities in
probability that will be used later on in the proof.

Claim 28 (Chernoff Bound). If X =
∑m

i=1Xi is a sum of independent {0, 1}-valued random variables,
where Pr[Xi = 1] = γ, then

Pr[X < (1− σ)γm] 6 exp(−σ2γm/2).

Claim 29. If X =
∑m

i=1Xi is a sum of independent {0, 1}-valued random variables, where Pr[Xi = 1] =
γ, then

Pr[X ≡ 0 (mod 2)] 6
1
2

(1 + exp(−2γm)).

Proof. Let Yi = (−1)Xi and let Y =
∏m
i=1 Yi. Notice X ≡ 0 (mod 2) iff Y = 1. Since Y is the product

of independent random variables we have

Pr[X ≡ 0 (mod 2)] = E

[
1
2

(1 + Y )
]

=
1
2

(1 +
i∏

E[Yi]) =
1
2

(1 + (1− 2γ)m)

6
1
2

(1 + e−2γm).

Proof of Claim 26. Let t = 10
ρ and m = 3 dim(C⊥) = 3(n−k). Let T be the assumed (q, ε, ρ) tester for C.

Pick U = {u1, . . . , um} where each ui is obtained by taking the sum of t independent samples from T . U
is a multiset and the distribution p associated with our tester is the uniform distribution over U . The query
complexity of U is bounded by tq = 10q

ρ .
To analyze soundness, fix a word w that is ε-far from C. Let Xi be the indicator random variable for the

event 〈w, ui〉 6= 0. By Claim 29 it holds that

Pr[Xi = 0] 6
1
2

(1 + e−2ρt)

and
Pr[Xi = 1] >

1
2

(1− e−2ρt)

15



Let Ubad = {u ∈ U | 〈u,w〉 6= 0}. Then by the Chernoff bound (Claim 28) we have

Pr
[
|Ubad|
m

<
1

100

]
6 e−0.982( 1

2
(1−e−2ρt))m/2

We take a union bound over all words that are ε-far from C. Notice that Fn2 can be partitioned into 2n−k

affine shifts of (the linear space) C. For each such affine shift, which has the form v + C = {v + c | c ∈ C},
the probability of rejecting any two words from v + C is equal, because they differ only by a word from C
which has inner product 0 with all tests. Thus, it suffices to take a union bound over one representative per
affine shift, and there are at most 2n−k of them.

Continuing with the proof, the probability that there exists a ε-far word that is rejected with probability
less than 1

100 is at most
e−0.982( 1

2
(1−e−2ρt))m/2 · 2n−k

= e−0.982( 1
2

(1−e−2ρt))m/2+ln(2)(n−k)

We have
e−0.982( 1

2
(1−e−2ρt))m/2+ln(2)(n−k) < 1 if

−0.982(
1
2

(1− e−2ρt))m/2 + ln(2)(n− k) < 0.

By construction we have m > 2.95(n− k). So

m >
2.773(n− k)

0.983
⇒

m >
2.773(n− k)

0.982
⇒

((1− e−2ρt))m >
4 ln(2)(n− k)

0.982
⇒

−0.982(
1
2

(1− e−2ρt))m/2 + ln(2)(n− k) < 0

Hence we showed that there is a positive probability to pick the set U such that every ε-far word is rejected
with probability at least 1

100 and this completes the proof.

Proof of Claim 27. Assume by way of contradiction that dim(U) < dim(C⊥) − 3εn. We call a word w a
coset leader if w has minimal weight in w+C = {w + c | c ∈ C}. (If there is more than one minimal weight
word in w + C pick arbitrarily one of them to be the coset leader.) The proof of Proposition 17 implies that
if w is a coset leader then wt(w)

n = δ(w,C).
Let

V = {w ∈ Fn2 \ C | ∀u ∈ U : 〈u,w〉 = 0

and w is a coset leader of w + C},

i.e. V contains all non-codewords that are accepted by all tests in U . We have dim(V ) > 3εn and thus
|
⋃
v∈V (supp(v))| > 3εn. In addition for all v ∈ V we have supp(v) < εn because

Pr[T [v] = reject] = 0.
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Let w1, . . . , ws be an arbitrary ordering of the elements of V . Let µ(`) the maximal size of an element in
span(w1, . . . , w`). We have µ(1) 6 εn and µ(s) > 3

2εn because the expected size of a word in span(V ) is
(exactly) 1

2 |
⋃
w∈V (supp(w))|. Finally, we have µ(`+ 1) < µ(`) + εn. We conclude there must exist ` for

which εn < µ(`) 6 2εn. Let w′ be a word of maximal size in span(w1, . . . , w`). We see that w′ is ε-far
from C but accepted by T with probability 1, a contradiction.

7 Open questions and Discussion

Recall that C ⊆ Fn is (q, ε, ρ)-LTC whose tester has support S. And let B ⊆ C⊥6q be a corresponding basis.

The technique of the Main Theorem 12 implies that there are Ω(k) different vi such that each one is δ(C)
2q far

from C. To see this note that for each i ∈ [k] we have:

ei = ci +
∑
j∈Ji

vj ; ci ∈ C \ {0}

We say that j ∈ [k] has high degree if for at least 2q different u ∈ B it holds that j ∈ supp(u). The
number of high degree indices j ∈ [k] is bounded above by qk

2q = k
2 . Thus the number of low degree indices

j ∈ [k] is at least k − k/2 = k/2. Without loss of generality we assume that all i ∈ [k/2] has low degree,
i.e.

ei = ci +
∑
j∈Ji

vj ; ci ∈ C \ {0} and |Ji| 6 2q

Thus
∑

j∈Ji |vj | > ∆(C)− 1 and thus there exists vj ,|vj | > ∆(C)−1
2q .

Each vj can be counted at most q times, since |supp(uj)| 6 q. Thus there are at least k
2q different vj

such that every vj is δ(C)
2q far from C. We feel that a constant fraction of them should be also far from each

other and this should some how result in additional restrictions for LTCs. E.g. assuming the existence of
asymptotically good LTC C, one should get Ω(n) different vj where each one is δ(C)

2q far from C and from
the other vj-s.
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