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Abstract

We prove the existence of a poly(n,m)-time computable pseudorandom generator which
“1/poly(n,m)-fools” DNFs with n variables and m terms, and has seed length O(log2 nm ·
log log nm). Previously, the best pseudorandom generator for depth-2 circuits had seed length
O(log3 nm), and was due to Bazzi (FOCS 2007).

It follows from our proof that a 1/mÕ(logmn)-biased distribution 1/poly(nm)-fools DNFs
with m terms and n variables. For inverse polynomial distinguishing probability this is nearly
tight because we show that for every m, δ there is a 1/mΩ(log 1/δ)-biased distribution X and a
DNF φ with m terms such that φ is not δ-fooled by X.

For the case of read-once DNFs, we show that seed length O(logmn · log 1/δ) suffices, which
is an improvement for large δ.

It also follows from our proof that a 1/mO(log 1/δ)-biased distribution δ-fools all read-once
DNF with m terms. We show that this result too is nearly tight, by constructing a 1/mΩ̃(log 1/δ)-
biased distribution that does not δ-fool a certain m-term read-once DNF.
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1 Introduction

One of the main open questions in unconditional pseudorandomness and derandomization is to
construct logarithmic-seed pseudorandom generators that “fool” bounded-depth circuits.1 Ajtai
and Wigderson [AW89] first considered the problem of pseudorandomness against bounded-depth
circuits, and constructed a pseudorandom generator against AC0 with a seed of length O(nε) for
any ε > 0. This was substantially improved by Nisan [Nis91], who used the hardness of parity
against AC0 [H̊as86] to construct a pseudorandom generator against depth d circuits with a seed
of length O(log2d+6 n). This remains the best known result for AC0.

Even for depth-2 circuits, the construction of optimal pseudorandom generators remains a chal-
lenging open question. A depth-2 circuit is either a CNF or a DNF formula, and a pseudorandom
generator that fools DNFs must also fool CNFs with the same distinguishing probability, so from
now on we will focus without loss of generality on DNFs, and denote by n the number of variables
and m the number of terms. We remark that even constructing an optimal pseudorandom gener-
ator for read-once DNFs would be interesting as Healy, Vadhan and Viola [HVV04] have shown a
connection between such pseudorandom generators and hardness amplification in NP.

Nisan’s result quoted above gives a pseudorandom generator for DNFs with seed lengthO(log10 nm).
Luby, Velickovic and Wigderson [LVW93] reduced the seed length to O(log4 nm) via various op-
timizations. For the simpler task of approximating the number of satisfying assignments to a
DNF with m terms, Luby and Velickovic [LV96] provide a deterministic algorithm of running time
(m log n)exp(O(

√
log logm)).

The current best pseudorandom generator for DNFs is due to Bazzi [Baz07]. In 1990, Linial and
Nisan [LN90] conjectured that depth-d circuits are fooled by every distribution that is (logmn)Od(1)-
wise independent. Bazzi proved the depth-2 case of the Linial-Nisan conjecture, and showed that ev-
ery O(log2(m/δ))-wise independent distribution δ-fools DNFs. This result gives two approaches to
constructing a pseudorandom generator for DNFs of seed O(log n · log2(m/δ)), which is O(log3 nm)
when δ = 1/poly(n,m). One is to use one of the known constructions of k-wise independent genera-
tors of seed length O(k log n). The other is to use a result of Alon, Goldreich and Mansour [AGM03]
showing that every ε-biased distribution, in the sense of Naor and Naor [NN93], over n bits is εnk-
close to a k-wise independent distribution. This means that, because of Bazzi’s theorem, every
exp(−O(log n · log2(m/δ)))-biased distribution fools DNFs; Naor and Naor [NN93] prove that an
ε-biased distribution over n bits can be sampled using a seed of O(log(n/ε)) random bits, and so a
exp(−O(log n · log2(m/δ)))-biased distribution can be sampled using O(log n · log2(m/δ)) random
bits.

Razborov [Raz09] considerably simplified Bazzi’s proof (retaining the same quantitative bounds).
In a recent breakthrough, building on Razborov’s argument, Braverman [Bra09] has recently proved
the full Linian-Nisan conjecture.

For width-w DNF formulas (formulas with each term involving at most w variables), better bounds
are known for small w. Luby and Velickovic [LV96] prove the existence of a generator with seed
length O(log n + w2w log 1/δ) which δ-fools all width-w DNFs. It follows from their proof that
every exp(−O(w2w log 1/δ))-biased distribution δ-fools width-w DNFs. One may always assume
without loss of generality that w = O(log(m/δ)), and so if the Luby-Velickovic result could be
improved to a seed length of O(w + log(n/δ)), the result would be a generator of optimal seed

1We say a random variable X, ranging over {0, 1}n, “δ-fools” a function f : {0, 1}n → R if Ef(X)− Ef(Un)| ≤ δ,
where Un is uniformly distributed over {0, 1}n. If C is a class of functions, then we say that X δ-fools C if X δ-fools
every function f ∈ C.
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DNF Family Seed length
[Nis91] general DNFs O(log10(mn/δ))
[LVW93] general DNFs O(log4(mn/δ))
[Baz07] general DNFs O(log n · log2(m/δ))
This work general DNFs O(log n+ log2(m/δ) · log log(m/δ))
[LV96] width-w DNFs O(log n+ w2w · log(1/δ))
This work width-w DNFs O(log n+ w logw · log(m/δ))
[Baz03] read-once DNFs O(log n · logm · log(1/δ))
This work read-once DNFs O(log n+ logm · log(1/δ))

Figure 1: Pseudorandom generators to δ-fool DNFs with m terms and n variables

length O(log(mn/δ)).

For read-once DNFs (formulas with each variable appearing in at most one term), Bazzi proves that
every O(logm·log 1/δ)-wise independent distribution δ-fools every read-once DNF, and hence every
exp(−O(log n · logm · log 1/δ))-biased distribution δ-fools read-once DNFs. This gives a generator
of seed length O(log n · logm · log 1/δ), which is O(log2 nm) for constant δ.

Our Results

We prove that every width-w DNF is δ-fooled by every exp(−O(log n+w logw(logm+ log 1/δ)))-
biased distribution. This gives a pseudorandom generator of seed length O(log2mn · log logmn)
for general DNFs and δ = 1/poly(n,m).

Regarding read-once DNFs, we show that they are δ-fooled by every exp(−O(logm·log 1/δ))-biased
distribution, leading to a generator with seed length O(log n+logm·log 1/δ), which is O(log nm) for
constant δ. Unfortunately this is still not sufficient in order to improve the hardness amplification
in [HVV04], which requires a pseudorandom generator with δ = 1/poly(n,m).

We prove that our quantitative connections between small bias and DNF derandomization are nearly
tight. Specifically, we construct an m-term DNF that is not δ-fooled by a certain 1/mΩ(log 1/δ)-
biased distribution, which means that seed length Ω(log n + logm · log 1/δ) is necessary if one
wants to δ-fool DNFs using a generic small bias distribution. This matches our positive result up
to a log log nm term when δ = 1/poly(n,m). It remains open whether seed length O(log nm) is
achievable for constant δ.

We also construct an m-term read-once DNF that is not δ-fooled by a certain 1/mΩ̃(log 1/δ)-biased
distribution (where the Ω̃ notation hides a 1/ log log 1/δ term). This means that seed length
Ω(log2 nm/ log log nm) is necessary if one wants to 1/poly(nm)-fool read-once DNFs using a generic
small bias distribution.

Our Techniques

Our positive results for DNFs and read-once DNFs are based on techniques similar to the ones
developed by Bazzi [Baz07] and simplified by Razborov [Raz09].

Bazzi shows that a sufficient (and necessary) condition for a function g to be δ-fooled fooled by a
k-wise independent distribution is that the function be “sandwiched” between two bounded real-
valued functions f`, fu which are degree-k polynomials and such that f`(x) ≤ g(x) ≤ fu(x) holds
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for every x, and Ex∈Un [fu(x)−f`(x)] ≤ δ. We provide a similar sufficient (and necessary) condition
for a function g to be δ-fooled by an ε-biased distribution in terms of g being sandwiched between
functions whose Fourier transform has small `1 norm.

Bazzi and Razborov then proceed to show how to construct the sandwiching functions for every
DNF by showing that it suffices to find just one low-degree function that approximates the DNF
in the `2 norm, and such a function is provided by a result of Linial, Mansour and Nisan [LMN93]
on the Fourier spectrum of DNFs. Our goal, instead, is to find a function of small `1 Fourier
norm which approximates the given DNF well in the `2 norm. The existence of such a function is
guaranteed by a result of Mansour [Man95].

For the case of read-once DNFs we explicitly construct the sandwiching functions with bounded
Fourier `1 norm, using the inclusion-exclusion formula for the DNF. To analyze the error in the
truncated inclusion-exclusion formula, we apply an argument which is similar to the one appearing
in a paper by Even et al. [EGL+92] on the related subject of pseudorandomness for combinato-
rial rectangles. The technical difference between our argument and the one in [EGL+92] is that
while they use the kth-truncations of the inclusion-exclusion series to directly show that k-wise
independence fools combinatorial rectangles, we use these to compute functions with low `1 norm
sandwiching the given DNF.

Our negative example for general DNFs is related to a counterexample by Mansour (cited in [LV96]).
Mansour shows that there is a k-wise independent distribution that does not δ-fool a certain m-
term DNF, where k = (logm) · (log 1/δ), showing that for δ = 1/poly(n,m) the analysis of Bazzi
is optimal. Mansour’s distribution is uniform over the bit strings of odd parity, and so it is not
a small-bias distribution. We show that one can use, instead, the uniform distribution over bit
strings whose number of ones is not a multiple of 3, which is a small bias distribution.

Our negative example for read-once DNFs is somewhat more technical. We start from a “tribes”
function, a read-once DNF with m terms each with logm literals, and we show how to construct
a 1/mΩ̃(log 1/δ)-biased distribution that does not δ-fool the tribes function. We show that for every
parameter d we can construct a distribution X that is roughly 1/md-biased, and is such that the
distinguishing probability of the tribe between X and the uniform distribution is the same as the
error of the d-th term of the inclusion-exclusion formula in approximating the tribe. The latter
error is roughly 1/d!, so we get our result by setting d = (log 1/δ)/(log log 1/δ).

2 Preliminaries

We start by reviewing some basic Fourier analysis.

Definition 2.1 (Fourier analysis on {0, 1}n) The characters of {0, 1}n is the set of linear func-
tions from {0, 1}n to {−1, 1} given by

χS(x) =
∏
i∈S

(−1)xi where S ⊆ [n].

It is easy to see that the following identities are true.

• For any character χ, ||χ||2 = Ex∈Un [χ2(x)] = 1.
• For two distinct characters, χ and χ′, 〈χ, χ′〉 = Ex∈Un [χ(x)χ′(x)] = 0.

Note that there are 2n characters and hence they form an orthonormal basis for the functions
mapping {0, 1}n to R. Therefore, every function f can be expressed as a linear combination of
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these characters which is called the Fourier expansion. The Fourier expansion of f : {0, 1}n → R
is

f(x) =
∑
S

f̂(S)χS(x).

In the above, f̂(S) is called the Fourier coefficient corresponding to the set S. It is easy to check
that the following identity (known as Parseval-Plancherel identity) is true∑

S

f̂2(S) = E
x∈Un

[f2(x)]

We use the following notation for the Fourier `1 norm of f and a minor variant of it as below:

‖f‖1 :=
∑
S

∣∣∣f̂(S)
∣∣∣ and ‖f‖ 6=∅1 :=

∑
S 6=∅

∣∣∣f̂(S)
∣∣∣

Definition 2.2 We say a probability distribution X over {0, 1}n ε-fools a real function f : {0, 1}n →
R if

|E[f(X)]− E[f(Un)]| ≤ ε.
We say a probability distribution X over {0, 1}n is ε-biased if it ε-fools the character functions χS.

Proposition 2.3 (Efficient construction of ε-biased sets [NN93, AGHP92]) A subset B ⊆
{0, 1}n is called an ε-biased set if the uniform distribution with support B is ε-biased. There exist
ε-biased sets of size O(n2/ε2) such that a random element from the set can be sampled using a seed
of length 2 log(n/ε) +O(1), in time poly(n, log(1/ε)).

Definition 2.4 (DNF) A DNF formula φ is of the form φ =
∨m
i=1Ci where each term Ci is an

AND of literals (variables or negations). A formula φ is said to be of width w if every term Ci
involves at most w distinct variables. A DNF is said to be read-once if every variable appears in at
most one of the terms.

2.1 Sandwich bound

In this section, we state a characterization of functions that can be fooled well by ε-biased probability
distributions. The characterization derived here is similar to the one derived by Bazzi [Baz07] in
context of k-wise independent distributions. The first observation is that if f has a small Fourier
`1 norm, then it is fooled by small ε-biased sets:

Lemma 2.5 Every function f : {0, 1}n → R is ε‖f‖ 6=∅1 -fooled by any ε-biased probability distribu-
tion.

Proof: Let X be sampled from an ε-biased distribution. We have

|E[f(X)]− E[f(Un)]| =

∣∣∣∣∣E
[∑

S

f̂(S)χS(X)

]
− f̂(∅)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
S 6=∅

f̂(S)E[χS(X)]

∣∣∣∣∣∣
≤ ε

∑
S 6=∅

|f̂(S)| ≤ ε‖f‖6=∅1 .
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We can strengthen Lemma 2.5 as follows.

Proposition 2.6 (Sandwich bound) Suppose f, f`, fu : {0, 1}n → R are three functions such
that for every x ∈ {0, 1}n we have f`(x) ≤ f(x) ≤ fu(x). Furthermore, assume E[f(Un)] −
E[f`(Un)] ≤ δ and E[fu(Un)] − E[f(Un)] ≤ δ. Let l = max(‖f`(x)‖ 6=∅1 , ‖fu(x)‖ 6=∅1 ). Then any
ε-biased probability distribution (δ + εl)-fools f .

Proof: Let X be an ε-biased random variable. We have

E[f(X)] ≤ E[fu(X)]

≤ E[fu(Un)] + ε‖fu‖6=∅1

≤ E[f(Un)] + δ + ε‖fu‖ 6=∅1 .

Similarly we have E[f(X)] ≥ E[f(Un)]− δ − ε‖f`‖ 6=∅1 . Thus the result follows.

The following result shows that the condition of Proposition 2.6 is not only a sufficient condition
for being fooled by ε-biased distributions but also a necessary condition.

Proposition 2.7 (Inverse of the sandwich bound) Suppose f : {0, 1}n → R is ε′-fooled by
any ε-biased set. Then there exist functions f`, fu : {0, 1}n → R and δ, l ∈ R ≥ 0 with the following
properties:

• For every x ∈ {0, 1}n we have f`(x) ≤ f(x) ≤ fu(x).

• E[f(x)]− E[f`(x)] ≤ δ and E[fu(x)]− E[f(x)] ≤ δ,
• ‖f`(x)‖6=∅1 ≤ l, ‖fu(x)‖6=∅1 ≤ l, and δ + εl ≤ ε′.

Proof: Consider the following linear program in variables px:

min
∑

x f(x)px∑
x px = 1

∀S 6= ∅
∑

x pxχS(x) ≥ −ε
∀S 6= ∅

∑
x pxχS(x) ≤ ε

∀x px ≥ 0

where x ∈ {0, 1}n and S ⊆ {1, . . . , n}. The constraints specify that px is the probability distribution
of an ε-biased random variable. Since f is ε′-fooled by ε-biased sets, the optimum value of the LP
is ≥ E[f(Un)]− ε′.
We now write the dual of the above LP:

max z − ε
∑

S 6=∅(y
+
S + y−S )

∀x z +
∑

S 6=∅ χS(x)(y+
S − y

−
S ) ≤ f(x)

∀S 6= ∅ y+
S , y

−
S ≥ 0

which is equivalent to
max z − ε

∑
S 6=∅ |yS |

∀x z +
∑

S 6=∅ χS(x)yS ≤ f(x)
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Since the optimum value of the primal is ≥ E[f(Un)] − ε′, there exists a feasible set of values
z∗ and y∗S for the above optimization program such that z∗ − ε

∑
S 6=∅ |y∗S | ≥ E[f(Un)] − ε′. Let

f`(x) = z∗+
∑

S 6=∅ y
∗
SχS(x). Clearly E[f`(Un)] = z∗ and

∑
S 6=∅ |y∗S | = ‖f`‖

6=∅
1 ; Set δ = E[f(Un)]−z∗

and l =
∑

S 6=∅ |y∗S |. It is easy to check that f`, δ, l so defined satisfies all the constraints. Similarly,
one can consider a different primal where the objective is to maximize

∑
x f(x)px and then use its

dual to define fu which satisfies the aforementioned conditions.

It is easy to observe the following properties of `1 norm of functions over the Fourier domain.

Observation 2.8 If f, g : {0, 1}n → R, then ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1 and ‖fg‖1 ≤ ‖f‖1‖g‖1

Observation 2.9 If φ : {0, 1}n → {0, 1} is an AND of some subset of literals (i.e., variables or
their negations), then ‖φ‖1 = 1.

3 Fooling Read-once DNF formulas

In this section, we show that ε-biased sets can fool read-once DNFs. In particular, we show the
following theorem.

Theorem 3.1 Let φ be a read-once DNF formula with m terms. For 1 ≤ k ≤ m, ε-biased dis-
tributions O(2−Ω(k) + εmk)-fool φ. In particular, we can δ-fool φ by an ε-biased distribution, for
ε = m−O(log(1/δ)).

If we plug in the construction from Proposition 2.3, we get a pseudorandom generator which δ-fools
a read-once DNF with n variables and m terms and has seed length O(log n + logm · log(1/δ)).
Before going into the proof of Theorem 3.1, we recall the inclusion-exclusion principle.

LetA1, . . . , Am bem arbitrary events in a probability space. The principle of inclusion and exclusion
asserts that

Pr[A1 ∪ · · · ∪Am] =
m∑
j=1

(−1)j−1Tj ,

where

Tj =
∑

S⊆[m],|S|=j

Pr

[⋂
i∈S

Ai

]
.

Moreover, the partial sum
∑r

j=1(−1)j−1Tj is an upper bound for Pr[A1 ∪ · · · ∪Am] for odd values
of r, and a lower bound for Pr[A1 ∪ · · · ∪Am] for even values of r.

We now return to the proof of Theorem 3.1. The proof follows that of Theorem 2 in [EGL+92].

Proof: [of Theorem 3.1] Let φ = C1 ∨ · · · ∨ Cm be the read-once formula. For 1 ≤ i ≤ m, let
Ai denote the event that term Ci is satisfied. We divide the analysis into two cases depending on
whether

∑m
i=1 Pr[Ai] ≤ k/(2e) or not.

Case 1:
∑m

i=1 Pr[Ai] ≤ k/(2e).

Let Tk denote the kth term of the inclusion-exclusion formula. Since the terms are disjoint, we
have

Tk =
∑

S⊆[m],|S|=k

∏
i∈S

Pr[Ai].
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We now observe that Tk ≤ 2−k. Indeed, subject to the restriction
∑m

i=1 Pr[Ai] = α and Pr[Ai] ≥ 0,
a convexity based argument implies that Tk is maximized when all the Pr[Ai]’s are equal implying
that Tk ≤

(
m
k

)
(2em/k)−k ≤ 2−k.

Consider the rth approximation to φ, obtained by inclusion-exclusion:

φr(x) =
r∑
j=1

(−1)j−1
∑

S⊆[m],|S|=j

∧
l∈S

Cl(x),

where
∧

is the AND function. The functions φk−1 and φk sandwich φ and we shall use them in
applying Proposition 2.6. To verify the conditions, we note that the function

∧
l∈S Cl(x) is an

AND of AND terms, therefore ‖
∧
l∈S Cl(x)‖6=∅1 = O(1), and hence ‖φr‖ 6=∅1 = O(mr). We also have

|E[fk(Un)]−E[fk−1(Un)]| = Tk ≤ 2−k. and hence, by Proposition 2.6, φ is O(2−k + εmk)-fooled by
ε-biased distributions.

Case 2:
∑m

i=1 Pr[Ai] > k/(2e).

Consider the first m′ where
∑m′

i=1 Pr[Ai] ≥ k/(2e). Define φ′ = C1∨· · ·∨Cm′ . Observe that the DNF
φ′ is satisfied with probability 1− 2−Ω(k), for it is not satisfied with probability

∏m′

i=1(1−Pr[Ai]) ≤
(1 − k/(2em′))m

′ ≤ 2−Ω(k). (Again by a convexity argument,
∏
i(1 − Pr[Ai]) is maximized when

Pr[Ai]s are equal.)

Let φ′r(x) denote the rth approximation to φ′. Also, (without loss of generality) let k be even so
that φ′k ≤ φ′ ≤ φ. Note that while φ′k−1 is a an upper bound on φ′, it is not an upper bound on
φ. We shall use φ′k and identically 1 function respectively as lower and upper bounds for applying
Proposition 2.6 to φ.

From argument above, we know that E[1− φ] ≤ E[1− φ′] ≤ 2−Ω(k). To bound E[φ− φ′k], we note
that

E
[
φ− φ′k

]
= E

[
φ− φ′

]
+ E

[
φ′ − φ′k

]
≤ E

[
1− φ′

]
+ E

[
φ′k−1 − φ′k

]
≤ 2−Ω(k)

where in the last inequality we used that E[φ′k−1−φ′k] as in the previous case, since
∑m′

i=1 Pr[Ai] <
k/(2e) + 1. The bound on the ‖φ′k‖

6=∅
1 is as before. Applying Proposition 2.6, we then get that

ε-biased sets O(2−Ω(k) + εm′k)-fool φ.

4 Fooling general DNF formulas

In this section, we show that small biased distributions fool general DNFs. While the seed length
will not be as good as in the previous section, the result will be more general. Also, this section
will involve use of more analytic tools. Our proof shall be along the lines of Razborov’s simplified
proof of Bazzi’s theorem [Raz09]. The following two theorems will be the main theorems of this
section.

Theorem 4.1 Let φ be a width w-DNF formula with m terms. Then, φ is δ-fooled by an ε-biased
distribution where ε = w−O(w log(m/δ)).

Theorem 4.2 Let φ be a DNF formula with m terms. Then, φ is δ-fooled by an ε-biased distribu-
tion where ε = (log(m/δ))O(− log2(m/δ)).
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Plugging in the pseudorandom generator construction from Proposition 2.3 in Theorem 4.1, we
get a pseudorandom generator which δ-fools width-w DNFs with m terms over n variables and
has a seed of length O(log n + w logw log(m/δ)). Doing the same for Theorem 4.2, we get a
pseudorandom generator which δ-fools DNFs with m terms over n variables and has a seed of
length O(log n+ log2(m/δ) log log(m/δ)). Theorem 4.2 follows by a reduction to Theorem 4.1, by
deleting the terms with large width, as we describe later. For most of this section, we will be
concerned with DNFs of a bounded width. To prove Theorem 4.1, we will be interested in finding
sandwiching functions fl and fu to apply Proposition 2.6.

Using an argument similar to [Baz07], we reduce this to the problem of finding a function g such
that ‖φ− g‖2 and ‖g‖1 are small, and φ(x) = 0 =⇒ g(x) = 0. We then show how to remove
the last condition and then find an appropriate g using a Fourier concentration result of Mansour
[Man95]. More formally, we prove the following three lemmas.

Lemma 4.3 Let φ : {0, 1}n → {0, 1} be a DNF with m terms and g : {0, 1}n → R be such that:
‖g‖1 ≤ l, ||φ − g||2 ≤ ε1 and g(x) = 0 whenever φ(x) = 0. Then, we can get f`, fu : {0, 1}n → R
such that

• ∀ x, f`(x) ≤ φ(x) ≤ fu(x)

• Ex∈Un [fu(x)− φ(x)] ≤ mε21 and Ex∈Un [φ(x)− f`(x)] ≤ mε21.

• ‖f`‖1, ‖fu‖1 ≤ (m+ 1)(l + 1)2 + 1

Lemma 4.4 Let φ : {0, 1}n → {0, 1} be a width-w DNF with m terms. Suppose for every width-w
DNF φ1, there is a function g1 : {0, 1}n → R such that: ‖g1‖1 ≤ l1 and ||φ1 − g1||2 ≤ ε2. Then,
we can get g : {0, 1}n → R such that ‖g‖1 ≤ m(l1 + 1), ||φ − g||2 ≤ mε2 and g(x) = 0 whenever
φ(x) = 0.

Lemma 4.5 Let φ : {0, 1}n → {0, 1} be a width w DNF and ε2 > 0. Then there is a function
g1 : {0, 1}n → R such that ||φ− g1||2 ≤ ε2 and ‖g1‖1 = wO(w log(1/ε2))

Before, we prove these lemmas, we show how it implies Theorem 4.1.

Proof: [of Theorem 4.1] Set ε2 =
√
δ/2m3 and ε1 =

√
δ/2m. By applying Lemma 4.5, for every

width-w DNF φ1, we can get a function g1 : {0, 1}n → R such that

• ||φ1 − g1||2 ≤ ε2 =
√
δ/2m3

• ||g1||1 = wO(w log(1/ε2)) = wO(w log(m/δ))

Now, we apply Lemma 4.4 with l1 = wO(w log(m/δ)) and ε2 =
√
δ/2m3. Then, for the given DNF φ,

we get a function g such that ||g||1 = wO(w log(m/δ)) and ||g − φ||2 ≤ mε2 = ε1 =
√
δ/2m. Finally,

we apply Lemma 4.3 with g and ε1 as defined and l = wO(w log(m/δ)) to get f` and fu such that φ
is sandwiched by f` and fu, ||f`||1, ||fu||1 ≤ wO(w log(m/δ)) and

E
x∈Un

[fu(x)− φ(x)] ≤ δ

2
and E

x∈Un

[φ(x)− f`(x)] ≤ δ

2

By applying Proposition 2.6, we get that an ε = w−O(w log(m/δ)) (for an appropriately large constant
inside O(·)) biased set fools φ by δ/2 + εl ≤ δ.

We now get back to proofs of Lemma 4.3, Lemma 4.4 and Lemma 4.5. We start with proof of
Lemma 4.3.

8



Proof: [of Lemma 4.3] Let φ =
∨m
i=1Ai where Ai are the terms. We define f` and fu as follows:

• f` = 1− (1− g)2

• fu = 1− (1−
∑m

i=1Ai)(1− g)2

We note that this is the same construction of functions as in Lemma 3.3 in [Baz07]. In particular,
the following two things are already proven there.

• ∀ x, f`(x) ≤ φ ≤ fu(x)

• Ex∈Un [fu(x)− φ(x)] ≤ m||φ− g||22 and Ex∈Un [φ(x)− f`(x)] ≤ m||φ− g||22

Using this, we have the proof of the first two items in the lemma. Only the third item i.e., bound
on ‖f`‖1 and ‖fu‖1 remains to be proven. To get this, we use Observation 2.8 and Observation 2.9
along with the hypothesis ‖g‖1 ≤ l. Using this, we get that ‖f`‖1 ≤ 1 + (1 + l)2 and ‖fu‖1 ≤
1 + (m+ 1)(l + 1)2 which proves the lemma.

We now turn to the proof of Lemma 4.4. The proof follows the proof by Razborov [Raz09] with
some changes.

Proof: [of Lemma 4.4] We first observe as in [Raz09] (attributed to Avi Wigderson) that if
φ =

∨m
i=1Ai where Ai are the individual terms, then φ can be rewritten as

∑m
i=1Ai(1−

∨i−1
j=1Aj).

Let us write
∨i−1
j=1Aj = φi (φi = 0 if i = 1). Then, we can say that φ =

∑m
i=1Ai(1 − φi).

Note that each of the φi is a width w-DNF. Hence, we can apply our hypothesis to get functions
g1, . . . , gm : {0, 1}n → R such that for all i, ‖gi‖1 ≤ l1 and ‖gi−φi‖2 ≤ ε2. Let us now consider the
function g : {0, 1}n → R defined as

g =
m∑
i=1

Ai(1− gi)

We observe that if φ(x) = 0 for some x, then ∀ i, Ai(x) = 0 which implies that g(x) = 0.
Applying Observation 2.8 and using that Ai’s are terms and hence ||Ai||1 = 1, we also get that
‖g‖1 ≤ m(l1 + 1). So, the only thing that remains to be proven is that ‖φ − g‖2 ≤ mε2. Though
this is done in [Raz09], we do it here for the sake of completeness.

‖g − φ‖22 = E
x∈Un

( m∑
i=1

Ai(φi − gi)(x)

)2


≤ m E
x∈Un

[
m∑
i=1

(Ai(φi − gi)(x))2

]
(By Jensen’s inequality)

= m
m∑
i=1

E
x∈Un

[
(Ai(φi − gi)(x))2

]
≤ m

m∑
i=1

E
x∈Un

[
(φi − gi)(x)2

]
(Using Ai is bounded by 1)

= m
m∑
i=1

||φi − gi||22 ≤ m2ε22 (Using ||φi − gi||2 ≤ ε2)

This proves that ||φ− g||2 ≤ mε2 which finishes the proof.
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We now come to the proof of Lemma 4.5. The proof is dependent upon the following well-known
concentration result by Mansour [Man95] (or see Ryan O’Donnell’s lecture notes on Fourier anal-
ysis [OD07]).

Theorem 4.6 [Man95] Let φ : {0, 1}n → {0, 1} be a width w-DNF with m terms and ε2 > 0. Let∑
S⊂[n] φ̂(S)χS be the Fourier expansion of φ. Then there is a subset Γ ⊂ 2[n] of size wO(w log(1/ε2))

such that g defined as g1 =
∑

S∈Γ φ̂(S)χS is such that ||φ− g1||2 ≤ ε2.

Proof: [of Lemma 4.5] For the given φ and ε2, let g1 be the function given by Theorem 4.6.
Clearly, it satisfies ||φ − g1||2 ≤ ε2. To bound ‖g1‖1, note that ‖g1‖1 =

∑
S∈Γ |φ̂(S)| where |Γ| =

wO(w log(1/ε2)). Note that
∑

S∈Γ |φ̂(S)|2 = α for some α ∈ [0, 1] (by Parseval-Plancherel identity and
the fact that φ lies in [0, 1]). Now, we have(∑

S∈Γ

|φ̂(S)|

)2

≤ |Γ|

(∑
S∈Γ

|φ̂(S)|2
)
≤ |Γ| (By Jensen’s inequality)

Hence, this gives us
∑

S∈Γ |φ̂(S)| ≤
√
|Γ| = wO(w log(1/ε2)) which proves the lemma.

Theorem 4.2 now follows by reducing the case of arbitrary DNFs to that of bounded width, by delet-
ing the terms with width greater than log(m/2δ) and arguing that the change in the distinguishing
probability is small.

Proof: [of Theorem 4.2] Let φw be the DNF obtained by removing all the terms from φ which
have more than w literals, for a value of w to be specified later. Note that ∀ x, φw(x) ≤ φ(x). Also,
note that

E
x∈Un

[φ(x)− φw(x)] ≤ Pr
x∈Un

[∃ term present in φ but not in φw which is satisfied] ≤ m2−w

The last inequality uses that all the terms present in φ but not φw have more than w literals and
hence are satisfied with probability at most 2−w under the uniform distribution. Also, let D be
any ε-biased distribution. We can again say that

E
x∈D

[φ(x)− φw(x)] ≤ Pr
x∈D

[∃ term present in φ but not in φw which is satisfied] ≤ m(2−w + ε)

The last inequality uses that under a ε-biased distribution, a term of width-w is satisfied with
probability at most 2−w + ε. This is because a term has `1 norm 1 and hence is ε fooled by a
ε-biased distribution. Using the above two inequalities as well as φw ≤ φ, we can say

E
x∈D

φ(x)− E
x∈Un

φ(x) ≥ E
x∈D

φw(x)− E
x∈Un

φ(x) ≥ E
x∈D

φw(x)− E
x∈Un

φw(x)−m2−w

E
x∈D

φ(x)− E
x∈Un

φ(x) ≤ E
x∈D

φ(x)− E
x∈Un

φw(x) ≤ E
x∈D

φw(x)− E
x∈Un

φw(x) +m(ε+ 2−w)

which together imply that

| E
x∈D

φ(x)− E
x∈Un

φ(x)| ≤ | E
x∈D

φw(x)− E
x∈Un

φw(x)|+m(ε+ 2−w)

Let us put w = log(2m/δ). Then, Theorem 4.1 says that |Ex∈D φw(x)−Ex∈Un φw(x)| is δ/4 fooled
by an ε biased distribution where ε = w−O(w log(m/δ)) = (log(m/δ))−O(log2(m/δ)). Then,

| E
x∈D

φ(x)− E
x∈Un

φ(x)| ≤ δ

4
+m(ε+ 2−w) ≤ δ

4
+
δ

2
+m(log(m/δ))−O(log2(m/δ)) ≤ δ
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5 Limitations of small biased spaces

In this section we provide various lower bounds on fooling DNFs by ε-biased distributions. Recall
that in Section 3, we showed that a bias less than m−O(log(1/δ)) is sufficient to δ-fool a read-once
DNF with m terms. We first give a simple example which shows that this bound is optimal when
δ is a small constant.

For smaller values of δ, we give a somewhat more technical construction, which shows that the bias
needs to be less than m−Ω(log(1/δ)/ log log(1/δ)) to δ-fool a read-once DNF with m terms. Note that
this would also imply the optimality for constant δ but we choose to retain the previous example
due to its simplicity.

For the case of general DNFs, we give an instance showing that ε must be necessarily less than
m−Ω(log(1/δ)). This does match our bound for the case of read-once DNFs, but is somewhat far
from the upper bound we provide in Section 4 (which uses ε = (log(m/δ))−O(log2(m/δ))).

5.1 Lower bounds for read-once DNFs when δ = Θ(1)

Our analysis gives that for δ = Θ(1) and m = nΘ(1), an ε-biased distribution with ε = n−Θ(1)

suffices to δ-fool a read-once DNF with m terms. The following theorem shows this tradeoff is
optimal.

Theorem 5.1 There is read-once DNF φ : {0, 1}n → {0, 1} with Θ(n/ log n) terms and an ε-biased
distribution D over {0, 1}n where ε = n−Θ(1) such that

| Pr
x∈Un

[φ(x) = 1]− Pr
x∈D

[φ(x) = 1]| = Ω(1)

Proof: Let t be an integer such that t ≡ 2(mod 4) and for x ∈ {0, 1}t, define the inner product

IP (x) =

 t/2∑
i=1

xixt/2+i

 (mod 2)

Define distribution D over {0, 1}t+1 as follows. It is a uniform distribution on x ◦ IP (x) for
x ∈ {0, 1}t. The following fact is easy to verify.

Fact 5.2 For all subsets S ⊂ [t], χS : {0, 1}t → {−1, 1},∣∣∣∣ E
x∈Ut

[
χS(x)(−1)IP (x)

]∣∣∣∣ = 2−t/2

Claim 5.3 D is 2−Ω(t) biased distribution over {0, 1}t+1.

Proof: Consider any character χS : {0, 1}t+1 → {0, 1}. In case, (t + 1) 6∈ S, then clearly
Ex∈D[χS(x)] = 0. If (t+ 1) ∈ S, then let S′ = S\{t+ 1}∣∣∣∣ E

x∈D
[χS(x)]

∣∣∣∣ =
∣∣∣∣ E
x′∈Ut

[χS′(x′)(−1)IP (x′)]
∣∣∣∣ = 2−Ω(t)

This implies that D is 2−Ω(t) biased distribution over {0, 1}t+1.
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Let n = (t+1)2t for t ≡ 2(mod 4). Split {0, 1}n into 2t chunks. Let the variables in the ith chunk be
yi,1, . . . , yi,t+1. Let D1, . . . , D2t be 2t independent copies of D such that Di is over yi,1, . . . , yi,t+1.
Let D′ defined over {0, 1}n be the product distribution of D1, . . . , D2t . Clearly, D′ is a 2−Ω(t) biased
distribution. Now, consider the read-once DNF φ defined as

φ =
2t∨
i=1

t+1∧
j=1

yi,j


Under the uniform distribution, each term is satisfied with probability 1/2t+1 while note that under
D′, each term is satisfied with probability 1/2t. This is because once the first t variables in a term
are 1, the t+ 1th variable is 1 in D as t ≡ 2(mod 4). As the terms are over disjoint sets of variables,
hence we can say that∣∣∣∣ Pr

y∈D
[φ(y) = 0]− Pr

y∈U
[φ(y) = 0]

∣∣∣∣ =

∣∣∣∣∣
(

1− 1
2t

)2t

−
(

1− 1
2t+1

)2t
∣∣∣∣∣ = Ω(1)

This proves the theorem.

5.2 Almost tight examples for smaller δ

The obvious scaling of the previous example would give ε = 2−Ω(logm+log log(1/δ)). Here we give
a construction of a specific ε-biased distribution which shows that to δ-fool the “tribes” DNF
(described below), one must have ε = m−Ω(log(1/δ)/ log log(1/δ)). We first state the more general
form of the theorem claiming the existence of such a DNF and a distribution and as a subsequent
corollary, we get the bias in terms of the distinguishing probability.

Theorem 5.4 For every sufficiently large integer n of the form n = m logm for m which is power
of 2 and for every integer d ≥ 1, there is an (m/2)−d-biased distribution D over {0, 1}n and a
read-once DNF φ with m terms such that φ distinguishes D from uniform by at least 1/(2d+ 3)!.

Proof: We first describe the DNF. The DNF is defined by splitting the n variables into m chunks
of size logm. Let the variables in the ith chunk be xi,1, . . . , xi,logm. The DNF is

φ(x) =
m∨
i=1

Ci where Ci ≡
logm∧
j=1

xi,j

The following two claims, describe the required distribution D.

Claim 5.5 There is a distribution Y = Y1 ◦ . . . ◦ Ym over {0, 1}m with the following properties

• for every 1 ≤ i ≤ m, Pr[Yi = 1] = 1/m.

• Y1, . . . , Ym are d-wise independent;

• For every y ∈ Supp(Y ), y1 + . . .+ ym ≤ d.

We can now describe the distribution D in terms of the random variables Y1, . . . , Ym. Given values
y1, . . . , ym, we choose xi,1, . . . , xi,logm to be all 1, if yi = 1 and uniformly from {0, 1}logm \ 1logm

if yi = 0. In particular, this ensures that
∧logm
j=1 xi,j = yi and hence Ci is satisfied if and only if

yi = 1. We claim that the distribution has a small bias.
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Claim 5.6 The distribution D defined above has bias at most (m/2)−d.

Before proving these two claims, lets see why they suffice to construct the counterexample. First,
observe that by Claim 5.6, term Ci being satisfied is equivalent to yi = 1. By inclusion-exclusion
principle, the probability that x ∈r D satisfies φ is

Pr
x∈D

[φ is satisfied] =
∑

S∈[m],|S|>0

(−1)|S|−1 Pr[∀i ∈ S, Ci is satisfied]

=
∑

S∈[m],|S|>0

(−1)|S|−1 Pr[∀i ∈ S, yi = 1]

=
∑

S∈[m],d≥|S|>0

(−1)|S| Pr[∀i ∈ S, yi = 1] (Using
m∑
i

yi ≤ d)

=
d∑
t=1

(−1)t−1

(
m

t

)
1
mt

The last equality uses that yi’s are d-wise independent and Pr[yi = 1] = 1/m. To estimate the
above probability for the uniform distribution, we can obtain upper and lower bounds on it by
truncating the inclusion-exclusion respectively at d + 1 and d + 2 when d is even (the upper and
lower bounds are switched when d is odd). Thus φ distinguishes D from uniform with probability
at least(

m

d+ 1

)
1

md+1
−
(

m

d+ 2

)
1

md+2
=

m!
md+1(d+ 1)!(m− d− 2)!

(
1

m− d− 1
− 1
m(d+ 2)

)
≥ m!

md+1(d+ 1)!(m− d− 2)!
1

2m

≥ 1
2(d+ 1)!

d+1∏
i=1

(
1− i

m

)

=
1

2(2d+ 2)!

d+1∏
i=1

(
(d+ 1 + i)

(
1− i

m

))
≥ 1

(2d+ 3)!

The last inequality uses that (d+ 1 + i)(1− i/m) ≥ 1. Hence, we need to prove Claims 5.5 and 5.6.
We start with Claim 5.5.

Proof: [of Claim 5.5] Let p0, . . . , pd ≥ 0 such that
∑
pi = 1 (We will non-constructively describe

pi’s later). The distribution Y is chosen as following. Pick i, 0 ≤ i ≤ d with probability pi.
Choose a uniformly random subset S ⊂ [m] of size d and set yi = 1 if i ∈ S and yi = 0 if
i 6∈ S. By construction, trivially the third property is satisfied. We need to set p0, . . . , pd such
that the first and the second properties are satisfied. Note that to ensure that Yi’s are d-wise
independent, it suffices to show that for every 0 ≤ i ≤ d and 1 ≤ j1 < . . . < ji ≤ m, we have
E[yj1 · . . . ·yji ] = E[yj1 ] · . . . ·E[yji ] = 1/mi (because each variable yk takes only two possible values.)
By symmetry of the construction, it suffices to ensure these properties when {j1, . . . , ji} = {1, . . . , i}
for every 0 ≤ i ≤ d. Thus we only need to select p0, . . . , pd such that for every 0 ≤ i ≤ d,

E[y1 · . . . · yi] =
d∑
t=i

(
m−i
t−i
)(

m
t

) pt = 1/mi.
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This is a triangular system of d+1 linear equations which has a unique solution p0, . . . , pd. However,
we must make sure that the values of the solution p0, . . . , pd are nonnegative. We use descent on i
to show pi ≥ 0. We have pd =

(
m
d

)
/md ≥ 0. For i < d, we have:

pi =
(
m

i

)[
1
mi
−

d∑
t=i+1

(
m−i
t−i
)(

m
t

) pt]

≥
(
m

i

)[
1
mi
−

d∑
t=i+1

(
m−i−1
t−i−1

)(
m
t

) mpt

]

= m

(
m

i

)[
1

mi+1
−

d∑
t=i+1

(
m−i−1
t−i−1

)(
m
t

) pt

]
= 0

We also give a constructive proof of the above claim in the appendix. However, we choose to retain
this argument as the technique used to justify existence of the distribution is more general.

Proof: [of Claim 5.6] To compute the bias of the distribution D, consider any character χS where
S ⊂ [m logm] is non-empty. For any i ∈ [m], let us define Si = S ∩ {(i− 1) logm+ 1, . . . , i logm}.
Note that

E
x∈D

[χS(x)] = E
x∈D

 ∏
i:Si 6=φ

χSi(x)


Our proof will only depend on the number of non-empty sets Si. Without loss of generality, we
can assume that the non-empty sets are S1, . . . , St for some t > 0. We denote the set of variables
xi,1, . . . , xi,logm by xi. To compute the bias, we then need to calculate

Ex∈D

[
t∏
i=1

χSi(xi)

]
= EY

[
t∏
i=1

Exi [χSi(xi)|yi]

]

as the variables x1, . . . xm are independent given Y . We now note that

Exi [χSi(xi)|yi = 1] = (−1)|Si| and Exi [χSi(xi)|yi = 0] = −(−1)|Si|

m− 1

If t ≤ d, then y1, . . . , yt are independent and the bias simply becomes 0 as below.

EY

[
t∏
i=1

Exi [χSi(xi)|yi]

]
=

t∏
i=1

Exi,yi [χSi(xi)]

=
t∏
i=1

(
1
m
· (−1)|Si| −

(
1− 1

m

)
· (−1)|Si|

m− 1

)
= 0
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If t > d, we can bound the bias as

EY

[
t∏
i=1

Exi [χSi(xi)|yi]

]
≤ EY

[
t∏
i=1

|Exi [χSi(xi)|yi]|

]

≤ EY

[
d∏
i=1

|Exi [χSi(xi)|yi]|

]

=
d∏
i=1

(
1
m

+
(

1− 1
m

)
· 1
m− 1

)
=
(

2
m

)d
which proves the claim.

By plugging d = log(1/δ)/ log log(1/δ) in the above theorem, we get the following corollary.

Corollary 5.7 For m which is a power of 2 and δ > 0, there is a read-once DNF φ over n =
m logm variables and a distribution D over {0, 1}n which has bias m−O(log(1/δ)/ log log(1/δ)) and φ
distinguishes D from uniform by δ.

5.3 Lower bounds for fooling general DNFs

Below we show that to δ-fool general DNFs with m terms, one requires a m−Ω(log 1/δ) biased set.
Before, we state the theorem, we state the following technical lemma.

Lemma 5.8 For x ∈ {0, 1}n, let MOD3(x) =
∑n

i=1 xi (mod 3). Consider the distribution D over
{0, 1}n which is the uniform distribution on the set D0 defined as

D0 = {x|MOD3(x) 6= 0}

Then D is 2−Ω(n) biased distribution.

Proof: Consider any linear function χ : {0, 1}n → {−1, 1}. Lemma 2.9 in [VW08] says that

| Pr
x:MOD3(x)=0

[χ(x) = 1]− Pr
x:MOD3(x) 6=0

[χ(x) = 1]| = 2−Ω(n)

Also, |x : χ(x) = 1| =
(

Pr
x:MOD3(x)6=0

[χ(x) = 1]
)
|D0|+

(
Pr

x:MOD3(x)=0
[χ(x) = 1]

)
(2n − |D0|)

=⇒ |x : χ(x) = 1| ≥
(

Pr
x:MOD3(x) 6=0

[χ(x) = 1]
)
|D0|+

(
Pr

x:MOD3(x)6=0
[χ(x) = 1]− 2−Ω(n)

)
(2n − |D0|)

=⇒ |x : χ(x) = 1|
2n

+
2−Ω(n)(2n − |D0|)

2n
≥
(

Pr
x:MOD3(x) 6=0

[χ(x) = 1]
)

=⇒ 1
2

+ 2−Ω(n) ≥
(

Pr
x:MOD3(x) 6=0

[χ(x) = 1]
)

Similarly, we can prove that

1
2
− 2−Ω(n) ≤

(
Pr

x:MOD3(x)6=0
[χ(x) = 1]

)
This implies that |Ex∈D[χ(x)]| = 2−Ω(n) which implies that D is a 2−Ω(n) biased set.
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We now prove the existence of small biased sets which are distinguished by DNFs. The bound on
the bias in terms of number of terms and distinguishing probability is in the subsequent corollary.

Theorem 5.9 For any t ≥ 3, `, there exists a DNF φ over `t variables with O(t2`) terms and an
ε = 2−Ω(`t)-biased distribution D such that φ distinguishes D from uniform with probability 2−O(t).

Proof: The distribution D will be the uniform distribution over D0 ⊂ {0, 1}`t which is defined
as

D0 =
{
x ∈ {0, 1}`t|MOD3(x) 6= 0

}
By Lemma 5.8, the bias of D0 is 2−Ω(`t). To define the DNF φ, we partition the variables into t
blocks, each block having ` variables. The jth variable in the ith block is denoted by xij . The DNF
φ is defined as φ1 ∨ . . .∨ φt where φi is a DNF over the ith block of variables which is 1 if and only
if the sum of the variables in the ith block is non-zero modulo 3. Note that φ is only a function of
variables in the ith block. Thus, we can always write φi using 2` terms. Hence, φ can be written
using t2` terms. We first observe that

Pr
x∈D

[φ(x) = 1] = 1

This is because if the sum of the variables in all the blocks is non-zero mod 3, then there must
be at least one block i in which the sum is non-zero mod 3 which ensures that φi = 1 implying
φ = 1. Now, note that under the uniform distribution, each φi = 0 with probability at least
1/3− 2−` ≥ 1/4. This is because φi = 1 iff

∑`
j=1 xij 6= 0(mod 3). As all φi’s are over disjoint sets

of variables, this implies

Pr
x∈U

[φ(x) = 1] = 1− Pr
x∈U

[φ(x) = 0] = 1− (∧ti=1 Pr
x∈U

[φi(x) = 0]) ≤ 1− 1
4t

This implies that φ distinguishes D from uniform by 1/4t = 2−O(t).

Corollary 5.10 For arbitrarily large m and arbitrary small δ such that 2−m/2 < δ, there exists a
DNF φ over O(logm log(1/δ)) variables and a distribution D such that φ has m terms, D has bias
m−Ω(log(1/δ)) and φ distinguishes D from uniform with probability δ.

Proof: From the above theorem, we can say that for every t, ` there is a DNF φ and a distribution
D such that φ has t2` terms, D is 2−Ω(t`) biased and φ can distinguish D from uniform by 2−O(t).
By setting t = Θ(log(1/δ)), we can get the distinguishing probability to be equal to δ. Similarly,
we set ` = logm − log log(1/δ) − Θ(1), we can get the number of terms to be m. Then the bias
of the distribution D guaranteed by the theorem is 2−Ω(t`) = 2−Ω((logm−log log(1/δ)−Θ(1)) log(1/δ) =
m−Ω(log(1/δ)) as long as δ > 2−m/2.
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A A constructive proof of Claim 5.5

We give below an alternate proof of Claim 5.5 which gives an explicit construction for the d-wise
independent distribution mentioned in the claim.

Claim A.1 There is a distribution Y = Y1 ◦ . . . ◦ Ym over {0, 1}m with the following properties

• for every 1 ≤ i ≤ m, Pr[Yi = 1] = 1/m.

• Y1, . . . , Ym are d-wise independent;

• For every y ∈ Supp(Y ), y1 + . . .+ ym ≤ d.

Proof: Since m is taken to be a power of 2, there exists a field F with |F| = m, the elements
of which we identify with the numbers 0, . . . ,m − 1. Choose d independent random elements
a0, . . . , ad−1 ∈ F and define the (random) degree-d polynomial

P (z) := zd + ad−1z
d + . . .+ a0.

We define the random variables Y1, . . . , Ym as

Yi :=
{

1 if P (i− 1) = 0
0 otherwise

Since P is a degree d-polynomial, for any y1, . . . , ym ∈ Supp(Y ), at most d of y1, . . . , ym are 1 and
hence y1 + . . . + ym ≤ d. Also, since P is equally likely to take any of the m values at the point
i− 1 (as a0 is uniform in F), Pr[Yi = 1] = Pr[P (i− 1) = 0] = 1/m.

Note that for any d distinct points i1, . . . , id and the polynomial P as above, the vector (P (i1), . . . , P (id))
can be computed as

(P (i1), . . . , P (id)) = (a0, . . . , ad−1) ·A+ (id1, . . . , i
d
d)

where A ∈ Fd×d is a matrix with the jth column as (1, ij , . . . , id−1
j )T. Since all the columns of A

are linearly independent, and (a0, . . . , ad−1) is a random element of Fd, (P (i1), . . . , P (id)) is also
uniformly distributed in Fd. This gives that the values of P at any d points are independent and
hence Y1, . . . , Ym form the required d-wise independent distribution.
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