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Abstract. Algorithmic meta-theorems are general algorithmic results
applying to a whole range of problems, rather than just to a single prob-
lem alone. They often have a logical and a structural component, that
is they are results of the form: every computational problem that can be
formalised in a given logic L can be solved efficiently on every class C of
structures satisfying certain conditions.
This paper gives a survey of algorithmic meta-theorems obtained in re-
cent years and the methods used to prove them. As many meta-theorems
use results from graph minor theory, we give a brief introduction to the
theory developed by Robertson and Seymour for their proof of the graph
minor theorem and state the main algorithmic consequences of this the-
ory as far as they are needed in the theory of algorithmic meta-theorems.
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1 Introduction

Algorithmic meta-theorems are general algorithmic results applying to a whole
range of problems, rather than just to a single problem alone. In this paper we
will concentrate on meta-theorems that have a logical and a structural compo-
nent, that is on results of the form: every computational problem that can be
formalised in a given logic L can be solved efficiently on every class C of struc-
tures satisfying certain conditions.

The first such theorem is Courcelle’s well-known result [13] stating that every
problem definable in monadic second-order logic can be solved efficiently on any
class of graphs of bounded tree-width1. Another example is a much more recent
result stating that every first-order definable optimisation problem admits a
polynomial-time approximation scheme on any class C of graphs excluding at
least one minor (see [22]).

Algorithmic meta-theorems lie somewhere between computational logic and
algorithm or complexity theory and in some sense form a bridge between the two
areas. In algorithm theory, an active research area is to find efficient solutions to
otherwise intractable problems by restricting the class of admissible inputs. For
instance, while the dominating set problem is NP-complete in general, it can be
solved in polynomial time on any class of graphs of bounded tree-width.

In this line of research, algorithmic meta-theorems provide a simple and easy
way to show that a certain problem is tractable on a given class of structures.
Formalising a problem in MSO yields a formal proof for its tractability on classes
of structures of bounded tree-width, avoiding the task of working out the details
of a solution using dynamic programming – something that is not always trivial
to do but often enough solved by hand-wavy arguments such as “using standard
techniques from dynamic programming ...”.

Another distinguishing feature of logic based algorithmic meta-theorems is
the observation that for a wide range of problems, such as covering or colouring
problems, their precise mathematical formulation can often directly be translated
into monadic second-order logic. Hence, ideally, instead of having to design an
explicit algorithm for solving a problem on bounded tree-width graphs, one can
read off tractability results directly from the problem description.

Finally, algorithmic meta-theorems yield tractability results for a whole class
of problems providing valuable insight into how far certain algorithmic tech-
niques range. On the other hand, in their negative form of intractability results,
they also exhibit some limits to applications of certain algorithmic techniques.

In logic, one of the core tasks is the evaluation of logical formulas in structures
– a task underlying problems in a wide variety of areas in computer science from
database theory, artificial intelligence to verification and finite model theory.

Among the important logics studied in this context is first-order logic and its
various fragments, such as its existential conjunctive fragment known as conjunc-
tive queries in database theory. Whereas first-order model-checking is Pspace-

1 The definition of tree-width and the other graph parameters and logics mentioned
in the introduction will be presented formally in the following sections.
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complete in general, even on input structures with only two elements, it becomes
polynomial time for every fixed formula. So what can we possibly gain from re-
stricting the class of admissible structures, if the problem is hard as soon as
we have two elements and becomes easy if we fix the formula? Not much, if the
distinction is only between taking the formula as full part of the input or keeping
it fixed.

A finer analysis of first-order model-checking can be obtained by studying
the problem in the framework of parameterized complexity (see [36, 46, 69]). The
idea is to isolate the dependence of the running time on a certain part of the
input, called the parameter, from the dependence on the rest. We will treat
parameterized complexity formally in Section 2.4. The parameterized first-order
evaluation problem is the problem, given a structure A and a sentence ϕ ∈ FO,
to decide whether A |= ϕ. The parameter is |ϕ|, the length of the formula. It is
called fixed parameter tractable (FPT) if it can be solved in time f(|ϕ|) · |A|c, for
some fixed constant c and a computable function f : N → N. While first-order
model-checking is unlikely to be fixed-parameter tractable in general (unless
unexpected results in parameterized complexity happen), Courcelle’s theorem
shows that even the much more expressive monadic second-order logic becomes
FPT on graph classes of bounded tree-width. Hence, algorithmic meta-theorems
give us a much better insight into the structure of model-checking problems
taking structural information into account.

In this paper we will give an overview of algorithmic meta-theorems obtained
so far and present the main methods used in their proofs. As mentioned before,
these theorems usually have a logical and a structural component. As for the
logic, we will primarily consider first-order and monadic second-order logic (see
Section 2). As for the structural component, most meta-theorems have been
proved relative to some structure classes based on graph theory, in particular
on graph minor theory, such as classes of graphs of bounded tree-width, planar
graphs, or H-minor free graphs. We will therefore present the relevant parts of
graph structure theory needed for the proofs of the theorems presented here.

The paper is organised as follows. In Section 2, we present basic notation
used throughout the paper. In Section 2.3 we present the relevant logics and
give a brief overview of their model-checking problem. Section 2.4 contains an
introduction to parameterized complexity. In Section 3, we introduce the notion
of the tree-width of a graph and establish some fundamental properties. We
then state and prove theorems by Seese and Courcelle establishing tractability
results for monadic second-order logic on graph classes of bounded tree-width.
In Section 4 we present an extension of tree-width called clique-width and a
more recent, broadly equivalent notion called rank-width. Again we will see that
monadic second-order model checking and satisfiability is tractable on graph
classes of bounded clique-width. Section 5 contains a brief introduction to the
theory of graph minors to the extent needed in later sections of the paper. The
results presented in this section are then used in Section 7 to obtain tractability
results on graph classes excluding a minor. In Section 7, we also consider the
concept of localisation of graph invariants and use it to obtain further tractability
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results for first-order model checking. But before, in Section 6, we use the results
obtained in Section 5 to show limits to MSO-tractability. Finally, we conclude
the paper in Section 9.

Remark. An excellent survey covering similar topics as this paper has recently
been written by Martin Grohe as a contribution to a book celebrating Wolfgang
Thomas’ 60th birthday [53]. While the two papers share a common core of
results, they present the material in different ways and with a different focus.

2 Preliminaries

In this section we introduce basic concepts from logic and graph theory and fix
the notation used throughout the paper. The reader may safely skip this section
and come back to it whenever notation is unclear.

2.1 Sets

By N := {0, 1, 2, . . . } we denote the set of non-negative integers and by Z the
set of integers. For k ∈ N we write [k] for the set [k] := {0, . . . , k − 1}. For a set [k]

M and k ∈ N we denote by [M ]k and [M ]≤k the set of all subsets of M of size [M ]k, [M ]≤k

k and size ≤ k, respectively, and similarly for [M ]<k.

2.2 Graphs

A graph G is a pair consisting of a set V (G) of vertices and a set E(G) ⊆ V (G)

[V (G)]2 of edges. All graphs in this paper are finite, simple, i.e. no multiple E(G)

edges, undirected and loop-free. We will sometimes write G := (V,E) for a
graph G with vertex set V and edge set E. We denote the class of all (finite)
graphs by Graph. Graph

An edge e := {u, v} is incident to its end vertices u and v and u, v are adja- incident, adjacent

cent. If G is a graph then |G| := |V (G)| is its order and ||G|| := max{|V (G)|, |E(G)|}|G|, ||G||

its size.
For graphs H,G we define the disjoint union G∪̇H as the graph obtained as

the union of H and an isomorphic copy G′ of G such that V (G′) ∩ V (H) = ∅.

Subgraphs. A graph H is a subgraph of G, written as H ⊆ G, if V (H) ⊆ V (G) H ⊆ G

and E(H) ⊆ E(G) ∩ [V (H)]2. If E(H) = E(G) ∩ [V (H)]2 we call H an induced
subgraph.

Let G be a graph and U ⊆ V (G). The subgraph G[U ] induced by U in G is G[U ]

the graph with vertex set U and edge set E(G) ∩ [U ]2.
For a set U ⊆ V (G), we write G − U for the graph induced by V (G) \ U . G − U

Similarly, if X ⊆ E(G) we write G−X for the graph (V (G), E(G) \X). Finally, G − X

if U := {v} ⊆ V (G) or X := {e} ⊆ E(G), we simplify notation and write G − v G − v, G − e

and G − e.
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Degree and neighbourhood. Let G be a graph and v ∈ V (G). The neighbour-
hood NG(v) of v in G is defined as NG(v) := {u ∈ V (G) : {u, v} ∈ E(G)}. TheNG(v)

distance dG(u, v) between two vertices u, v ∈ V (G) is the length of the shortest
path from u to v or ∞ if there is no such path. For every v ∈ V (G) and r ∈ N

we define the r-neighbourhood of v in G as the set

NG
r (v) := {w ∈ V (G) : dG(v, w) ≤ r}.

of vertices of distance at most r from v. For a set W ⊆ V (G) we define NG
r (W ) :=

⋃

v∈W NG
r (v). We omit the index ·G whenever G is clear from the context.

The degree of v is defined as dG(v) := |NG(v)|. We will drop the index GdG(v)

whenever G is clear from the context. Finally, ∆(G) := max{d(v) : v ∈ V }
denotes the maximal degree, or just degree, of G and δ(G) := min{d(v) : v ∈ V }∆(G)

the minimal degree.δ(G)

Paths and walks. A walk P in G is a sequence x1, e1, . . . , xn, en, xn+1 such
that ei := {xi, xi+1} ∈ E(G) and xi ∈ V (G). The length of P is n, i.e. the number
of edges. A path is a walk without duplicate vertices, i.e. vi 6= vj whenever
i 6= j. We find it convenient to consider paths as subgraphs and hence use V (P )
and E(P ) to refer to its set of vertices and edges, resp. An X − Y -path, for
X,Y ⊆ V (G), is a path with first vertex in X and last vertex in Y . If X := {s}
and Y := {t} are singletons, we simply write s− t-path.

A graph is connected if it is non-empty and between any two vertices s and
t there is an s− t-path. A connected component of a graph G is a maximal
connected subgraph of G.

Special graphs. For n,m ≥ 1 we write Kn for the complete graph on nKn

vertices and Kn,m for the complete bipartite graph with one partition of order nKn,m

and one of order m. Furthermore, if X is a set then K[X] denotes the completeK[X]

graph with vertex set X.
For n,m ≥ 1, the n×m-grid Gn×m is the graph with vertex set {(i, j) : 1 ≤Gn×m

i ≤ n, 1 ≤ j ≤ m} and edge set {
(

(i, j), (i′, j′)
)

: |i− i′|+ |j − j′| = 1}. For i ≥ 1,
the subgraph induced by {(i, j) : 1 ≤ j ≤ m} is called the ith row of Gn×m and
for j ≥ 1 the subgraph induced by {(i, j) : 1 ≤ i ≤ n} is called the jth column.
See Figure 1 for a 3 × 4-grid.

• • • •

• • • •

• • • •

Fig. 1. A 3 × 4-grid

Trees. A tree T is a connected acyclic graph. Often we will work with rooted
trees T with a distinguished vertex r, the root of T . A leaf in T is a vertex of
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degree 1, all other vertices are called inner vertices. A tree is sub-cubic, if all
vertices have degree at most 3. It is cubic if every vertex has degree 3 or 1.

A directed tree is a rooted tree where all edges are directed away from the
root. A binary tree is a directed tree where every vertex has at most two outgoing
edges. In directed graphs, we view edges as tuples (u, v), where u is the tail and
v is the head of the edge, rather than sets {u, v}.

Coloured graphs. Let Σ be an alphabet. A Σ-labelled tree is a pair (T, λ),
where T is a tree and λ : V (T ) → Σ is a labelling function. Often, Σ will be a
set C of colours and then we call C-labelled trees C-coloured, or just coloured.
A Σ-tree is a Σ-labelled tree.

2.3 Logic

I assume familiarity with basic notions from mathematical logic. See e.g.[38, 57]
for an introduction to mathematical logic.

A signature σ := {R1, . . . , Rk, c1, . . . , cq} is a finite set of relation symbols Ri signature

and constant symbols ci. To each relation symbol R ∈ σ we assign an arity ar(R).
A σ-structure A is a tuple A :=

(

V (A), R1(A), . . . , Rk(A), c1(A), . . . , cq(A)
)

con- ar(R)

sisting of a set V (A), the universe, for each Ri ∈ σ of arity ar(Ri) := r a set
Ri(A) ⊆ V (A)r and for each ci ∈ σ a constant ci(A) ∈ V (A). We will usually
use letters A,B, ... for structures. Their universe is denoted as V (A) and for
each R ∈ σ we write R(A) for the relation R in the structure A and similarly
for constant symbols c ∈ σ.

Tuples of elements are denoted by a := a1, . . . ak. We will frequently write a

a without stating its length explicitly, which will then be understood or not
relevant. Abusing notation, we will treat tuples sometimes as sets and write
a ∈ a, with the obvious meaning, and also a ⊆ b to denote that every element
in a also occurs in b.

Two σ-structures A, B are isomorphic, denoted A ∼= B, if there is a bijection A ∼= B

π : V (A) → V (B) such that

– for all relation symbols R ∈ σ of arity r := ar(R) and all a ∈ V (A)r,
a ∈ R(A) if, and only if, (π(a1), . . . , π(ar)) ∈ R(B) and

– for all constant symbols c ∈ σ, c(B) = π(c(A)).

Let σ be a signature. We assume a countably infinite set of first-order vari-
ables x, y, ... and second-order variables X,Y, .... A σ-term is a first-order variable
or a constant symbol c ∈ σ. The class of formulas of first-order logic over σ, de-
noted FO[σ], is inductively defined as follows. If R ∈ σ and x is a tuple of σ-terms
of length ar(R), then Rx ∈ FO[σ] and if t and s are terms then t = s ∈ FO[σ].
Further, if ϕ,ψ ∈ FO[σ], then so are (ϕ∧ψ), (ϕ∨ψ) and ¬ϕ. Finally, if ϕ ∈ FO[σ]
and x is a first-order variable, then ∃xϕ ∈ FO[σ] and ∀xϕ ∈ FO[σ].

The class of formulas of monadic second-order logic over σ, denoted MSO[σ],
is defined by the rules for first-order logic with the following additional rules: if
X is a second-order variable and ϕ ∈ MSO[σ∪̇{X}], then ∃Xϕ ∈ MSO[σ] and
∀Xϕ ∈ MSO[σ]. Finally, we define FO :=

⋃

σ signature FO[σ] and likewise for MSO.
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First-order variables range over elements of σ-structures and monadic second-
order variables X range over sets of elements. Formulas ϕ ∈ FO[σ] are interpreted
in σ-structures A in the obvious way, where atoms Rx denote containment in
the relation R(A), = denotes equality of elements, ∨,∧,¬ denote disjunction,
conjunction and negation and ∃xϕ is true in A if there is an element a ∈ V (A)
such that ϕ is true in A if x is interpreted by a. Analogously, ∀xϕ is true in A
if ϕ is true in A for all interpretations of x by elements a ∈ V (A).

For MSO[σ]-formulas, ∃Xϕ is true in A if there is a set U ⊆ V (A) such that
ϕ is true if X is interpreted by U and analogously for ∀Xϕ.

The set of free variables of a formula is defined in the usual way. We will write
ϕ(x) to indicate that the variables in x occur free in ϕ. Formulas without free
variables are called sentences. If ϕ is a sentence we write A |= ϕ if ϕ is true inA |= ϕ

A. If ϕ(x) has free variables x and a is a tuple of the same length as x, we write
A |= ϕ(a) or (A, a) |= ϕ if ϕ is true in A where the free variables x are interpretedA |= ϕ(a)

(A, a) |= ϕ by the elements in a in the obvious way. We will sometimes consider formulas
ϕ(X) with a free second-order variable X. The notation extends naturally to
free second-order variables.

We will use obvious abbreviations in formulas, such as → (implication), x 6= y

instead of ¬x = y and
∨k

i=1 ϕi and
∧k

i=1 ϕi for disjunctions and conjunctions
over a range of formulas.

Example 2.1 1. An independent set, or stable set, in a graph G is a setindependent set

X ⊆ V (G) such that {u, v} 6∈ E for all u, v ∈ X. The first-order sentence

ϕk := ∃x1 . . . ∃xk

∧

1≤i<j≤k

(

xi 6= xj ∧ ¬Exixj

)

is true in a graph G (considered as an {E}-structure in the obvious way) if,
and only if, G contains an independent set of size k.

2. A dominating set in a graph G is a set X ⊆ V (G) such that for all v ∈ V (G),dominating set

either v ∈ X or there is a u ∈ X such that {v, u} ∈ E(G). The formula

ϕ(X) := ∀x
(

Xx ∨ ∃z(Exz ∧ Xz)
)

states that X is a dominating set. Precisely, a set U ⊆ V (G) is a dominating
set in G if, and only if, (G,U) |= ϕ.
To say that a graph contains a dominating set of size k we can use the
formula ∃x1 . . . ∃xk∀y

∨k
i=1

(

y = xi ∨ Exiy
)

. ⊣

Note the difference between the formulas defining an independent set and
a dominating set: whereas an independent set of size k can be defined by a
formula using existential quantifiers only, i.e. without alternation between exis-
tential and universal quantifiers, the formula defining a dominating set of size k
contains one alternation of quantifiers. This indicates that the independent set
problem might be simpler than the dominating set problem, a realisation that is
reflected in the parameterized complexity of the problem as discussed later (see
Proposition 2.10).
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Example 2.2 1. Consider the following MSO-formula

ϕ := ∀X
(

(

∃xXx ∧ ∀x∀y(Xx ∧ Exy → Xy)
)

→ ∀xXx
)

.

The formula says of a graph G that all sets X ⊆ V (G) which are non-empty
(∃xXx) and have the property that whenever v ∈ X and {v, u} ∈ E(G) then
also u ∈ X, already contain the entire vertex set of G.
Clearly, G |= ϕ if, and only if, G is connected, as the vertex set of any
connected component satisfies

(

∃xXx ∧ ∀x∀y(Xx ∧ Exy → Xy)
)

.
2. A 3-colouring of a graph G is a function f : V (G) → {1, 2, 3} such that

f(u) 6= f(v) for all {u, v} ∈ E(G). The formula

ϕ := ∃C1∃C2∃C3

(

∀x
3

∨

i=1

Cix
)

∧ ∀x∀y
(

Exy →
3

∧

i=1

¬(Cix ∧ Ciy)
)

is true in a graph G if, and only if, G is 3-colourable. ⊣

With any logic L, we can naturally associate the following decision problem,
called the model-checking problem of L.

MC(L)
Input: Structure A and sentence ϕ ∈ L.

Problem: Decide A |= ϕ.

Much of this paper will be devoted to studying the complexity of model-
checking problems on various classes of graphs, primarily in the parameterized
setting introduced in the next section.

Another natural problem associated with any logic is its satisfiability problem satisfiability

defined as the problem to decide for a given sentence ϕ ∈ L whether it has a
model. We will study this problem relative to a given class C of structures. This
is equivalent to asking whether the L-theory of C, i.e. the class of all formulas
ϕ ∈ L which are true in every structure A ∈ C, is decidable.

The quantifier rank of a formula ϕ, denoted qr(ϕ), is the maximal number of quantifier rank
qr(ϕ)quantifiers in ϕ nested inside each other. If ϕ ∈ MSO, we count first- and second-

order quantifiers. For instance, the formula in Example 2.2 (1) has quantifier rank
3.

Let A be a structure and v1, . . . , vk be elements in V (A). For q ≥ 0, the first-
order q-type tpFO

q (A, v) of v is the class of all FO-formulas ϕ(x) of quantifier-rank
first-order type
tpFO

q (A, v)

≤ q such that A |= ϕ(v). Monadic second-order types tpMSO
q (A, v) are defined tpMSO

q (A, v)

analogously.
By definition, types are infinite. However, it is well known that there are only

finitely many FO or MSO-formulas of quantifier rank ≤ q which are pairwise not
equivalent. Furthermore, we can effectively normalise formulas in such a way that
equivalent formulas are normalised syntactically to the same formula. Hence, we
can represent types by their finite set of normalised formulas.
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This has a number of algorithmic applications. For instance, it is decidable
if two types are the same and whether a formula ϕ is contained in a type Θ: we
simply normalise ϕ to a formula ψ and check whether ψ ∈ Θ. Note, however, that
it is undecidable whether a set of normalised formulas is a type: by definition,
types are satisfiable and satisfiability of first-order formulas is undecidable.

The following lemma, which essentially goes back to Feferman and Vaught
will be used frequently later on. We refer the reader to [53] or [64] for a proof.

Lemma 2.3 Let tp be either tpMSO or tpFO and let H,G be graphs such that
V (H) ∩ V (G) = {v}. Let u ∈ V (H) and w ∈ V (G).

For all q ≥ 0, tpq(G ∪ H, vuw) is uniquely determined by tpq(G, vw) and
tpq(H,uv) and this is effective, i.e. there is an algorithm that computes tpq(G∪
H, vuw) given tpq(G, vw) and tpq(H,uv).

Suppose G = H1 ∪ H2 can be decomposed into subgraphs H1,H2 such that
V (H1 ∩ H2) = v. The importance of the lemma is that it allows us to infer the
truth of a formula in G from the q-type of v in H1 and H2, where q := qr(ϕ).
Hence, if G is decomposable in this way, we can reduce the question G |= ϕ
to the question on smaller graphs H1,H2. This will be of importance when we
study graph-decompositions such as tree-decompositions and similar concepts in
Section 3 and 4.

MSO-Interpretations. Let C be a class of σ-structures and D be a class of
τ -structures. Suppose we know already that MSO-model-checking is tractable on
C and we want to show that it is tractable on D also. Here is one way of doing
this: find a way to “encode” a given graph G ∈ D in a graph G′ ∈ C and also
to “rewrite” the formula ϕ ∈ MSO[τ ] into a new formula ϕ′ ∈ MSO[σ] so that
G |= ϕ if, and only if, G′ |= ϕ′. Then tractability of MSO-model checking on D
follows immediately from tractability on C – provided the encoding is efficient.

MSO-interpretations help us in doing just this: they provide a way to rewrite
the formula ϕ speaking about D to a formula ϕ′ speaking about C and also give
us a translation of graphs “in the other direction”, namely a way to translate a
graph G′ ∈ C to a graph G := Γ (G′) ∈ D so that G′ |= ϕ′ if, and only if, G |= ϕ.
Hence, to reduce the model checking problem for MSO on D to the problem on
C, we have to find an interpretation Γ to translate the formulas from D to C
and an encoding of graphs G ∈ D to graphs G′ ∈ C so that Γ (G′) ∼= G. Figure 2
demonstrates the way interpretations are used as reductions.

We will first define the notion of interpretations formally and then demon-
strate the concept by giving an example.

Definition 2.4 Let σ := {E,P1, . . . , Pk} and τ := {E} be signatures, where E
is a binary relation symbol and the Pi are unary. A (one-dimensional) MSO in-
terpretation from σ-structures to τ -structures is a triple Γ := (ϕuniv, ϕvalid, ϕE)MSO-interpretation

of MSO[σ]-formulas.
For every σ-structure T with T |= ϕvalid we define a graph (i.e. τ -structure)

G := Γ (T ) as the graph with vertex set V (G) := {u ∈ V (T ) : T |= ϕuniv(v)} and
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Class D Class C

G G′

ϕ ∈ MSO[τ ] Γ (ϕ) ∈ MSO[σ]

Γ (G′) ∼= G G′

algorithmic encoding

interpretation

interpretation

Fig. 2. Using interpretations as reductions between problems

edge set
E(G) := {{u, v} ∈ V (G) : T |= ϕE(u, v)}.

If C is a class of σ-structures we define Γ (C) := {Γ (T ) : T ∈ C, T |= ϕvalid}.

Every interpretation naturally defines a mapping from MSO[τ ]-formulas ϕ
to MSO[σ]-formulas ϕ∗ := Γ (ϕ). Here, ϕ∗ is obtained from ϕ by recursively
replacing

– first-order quantifiers ∃xϕ and ∀xϕ by ∃x(ϕuniv(x)∧ϕ∗) and ∀x(ϕuniv(x) →
ϕ∗) respectively,

– second-order quantifiers ∃Xϕ and ∀Xϕ by ∃X
(

∀y(Xy → ϕuniv(y)) ∧ ϕ∗)

and ∀X
(

∀y(Xy → ϕuniv(y)) → ϕ∗) respectively and
– atoms E(x, y) by ϕE(x, y).

The following lemma is easily proved (see [57]).

Lemma 2.5 (interpretation lemma) Let Γ be an MSO-interpretation from
σ-structures to τ -structures. Then for all MSO[τ ]-formulas and all σ-structures
G |= ϕvalid

G |= Γ (ϕ) ⇐⇒ Γ (G) |= ϕ.

Note that here we are using a restricted form of interpretations. In particular, we
only allow one free variable in the formula ϕuniv(x) defining the universe of the
resulting graph. A consequence of this is that in any such an interpretation Γ ,
we always have |Γ (G)| ≤ |G|. In general interpretations, ϕuniv(x) can have any
number of free variables, so that the universe of the resulting structure consists of
tuples of elements and hence can be much (polynomially) larger than the original
structure. For our purposes, one-dimensional interpretations are enough and we
will therefore not consider more complex forms of interpretations as discussed
in e.g. [57].

Initially we studied interpretations to reduce complexity results from one
class C of graphs to another class D. This is done as follows. Let Γ be interpre-
tation from C in D, i.e. Γ is a set of formulas speaking about graphs in C so that
for all G ∈ C, Γ (G) ∈ D.

We first design an algorithm that encodes a given graph G ∈ D in a graph
G′ ∈ C so that Γ (G′) ∼= G. Now, given G ∈ D and ϕ ∈ MSO as input, we translate
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G to a graph G′ ∈ C and use the interpretation Γ to obtain ϕ′ ∈ MSO[σ] such
that G′ |= ϕ′ if, and only if, G |= ϕ. Then we can check – using the model-
checking algorithm for C – whether G′ |= ϕ′.

Example 2.6 Let C be the class of finite paths and D be the class of finite
cycles. Then Γ (C) = D for the following interpretation Γ := (ϕuniv, ϕvalid, ϕE):
ϕuniv(x) = ϕvalid := true and

ϕE(x, y) := Exy ∨ ¬∃z1∃z2

(

z1 6= z2 ∧
(

(Exz1 ∧ Exz2) ∨ (Eyz1 ∧ Eyz2)
))

The formula is true for a pair x, y if there is an edge between x and y or if
neither x nor y have two different neighbours. Hence, if P ∈ C is a path then
G := Γ (P ) is the cycle obtained from P by connecting the two endpoints.

Now, if we know that MSO-model-checking is tractable on C then we can infer
tractability on D is follows. Given C ∈ D and ϕ ∈ MSO, delete an arbitrary edge
from C to obtain a path P ∈ C and construct ϕ′ := Γ (ϕ). Obviously, Γ (P ) ∼= C
and hence P |= ϕ′, if and only if, C |= ϕ. ⊣

2.4 Complexity

We assume familiarity with basic principles of algorithm design and analysis,
in particular Big-O notation, as can be found in any standard textbook on al-
gorithms, e.g. [11]. Also, we assume familiarity with basic complexity classes
such as Ptime, NP and Pspace and standard concepts from complexity theory
such as polynomial-time reductions as can be found in any text book on com-
plexity theory, e.g. [72]. By reductions we will generally mean polynomial-time
many-one reductions, unless explicitly stated otherwise.

The following examples introduce some of the problems we will be considering
throughout the paper.

Example 2.7 1. Recall from Example 2.1 that an independent set in a graphindependent set

G is a set X ⊆ V (G) such that {u, v} 6∈ E for all u, v ∈ X. The independent
set problem is defined as

Independent Set
Input: A graph G and k ∈ N.

Problem: Decide if G contains an independent set of size k.

2. Recall from Example 2.1 that dominating set in a graph G is a set X ⊆ V (G)dominating set

such that for all v ∈ V (G), either v ∈ X or there is a u ∈ X such that
{v, u} ∈ E(G). The dominating set problem is defined as

Dominating Set
Input: A graph G and k ∈ N.

Problem: Decide if G contains a dominating set of size k.
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3. A k-colouring of a graph G is a function f : V (G) → {1, . . . , k} such that
f(u) 6= f(v) for all {u, v} ∈ E(G). Of particular interest for this paper is the
problem to decide if a graph can be coloured by three colours.

3-Colouring
Input: A graph G.

Problem: Decide if G has a 3-colouring.

⊣

It is well known that all three problems in the previous example are NP-
complete. Furthermore, we have already seen that the dominating set problem
can be reduced to first-order model-checking MC(FO). Hence, the latter is NP-
hard as well. However, as the following lemma shows, MC(FO) is (presumably)
even much harder than Dominating Set.

Lemma 2.8 (Vardi [88]) MC(FO) and MC(MSO) are Pspace-complete.

Proof (sketch). It is easily seen that MC(MSO), and hence MC(FO) is in Pspace:
given A and ϕ ∈ MSO, simply try all possible interpretations for the variables
quantified in ϕ. This requires only polynomial space.

Hardness of MC(FO) follows easily from the fact that QBF, the problem to
decide whether a quantified Boolean formula is satisfiable, is Pspace-complete.
Given a QBF-formula ϕ := Q1X1 . . . QkXkψ, where ψ is a formula in propo-
sitional logic over the variables X1 . . . Xk and Qi ∈ {∃,∀}, we compute the
first-order formula ϕ′ := ∃t∃f(t 6= f ∧ Q1x1 . . . Qkxkψ′), where ψ′ is obtained
from ψ by replacing each positive literal Xi by xi = t and each negative literal
¬Xi by xi = f . Here, the variables t, f represent the truth values true and false.
Clearly, for every structure A with at least two elements, A |= ϕ′ if, and only if,
ϕ is satisfiable. ¤

An immediate consequence of the proof is that MC(FO) is hard even for very
simple structures: they only need to contain at least two elements. An area of
computer science where evaluation problems for logical systems have intensively
been studied is database theory, where first-order logic is the logical foundation
of the query language SQL. A common assumption in database theory is that
the size of the query is relatively small compared to the size of the database.
Hence, giving the same weight to the database and the query may not truthfully
reflect the complexity of query evaluation. It has therefore become standard to
distinguish between three ways of measuring the complexity of logical systems:

– combined complexity : given a structure A and a formula ϕ as input, what is
the complexity of deciding A |= ϕ measured in the size of the structure and
the size of the formula?

– data complexity : fix a formula ϕ. Given a structure A as input, what is the
complexity of deciding A |= ϕ measured in the size of the structure only?

– expression complexity : fix a structure A. Given a formula ϕ as input, what is
the complexity of deciding A |= ϕ measured in the size of the formula only?
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As seen in Lemma 2.8, the combined complexity of first-order logic is Pspace-
complete. Furthermore, the proof shows that even the expression complexity is
Pspace-complete, as long as we fix a structure with at least two elements. On
the other hand, it is easily seen that for a fixed formula ϕ, checking whether
A |= ϕ can be done in time |A|O(|ϕ|). Hence, the data complexity of first-order
logic is in Ptime.

Besides full first-order logic, various fragments of FO have been studied in
database theory and finite model theory. For instance, the combined complexity
of the existential conjunctive fragment of first-order logic – known as conjunctive
queries in database theory – is NP-complete. And if we consider the bounded
variable fragment of first-order logic, the combined complexity is Ptime [89].

Much of this paper is devoted to study model-checking problems for a logic
L on restricted classes C of structures or graphs, i.e. to study the problem

MC(L, C)
Input: A ∈ C and ϕ ∈ L.

Problem: Decide A |= ϕ.

In Example 2.2, we have already seen that 3-colourability is definable by a
fixed sentence ϕ ∈ MSO. As the problem is NP-complete, this shows that the
data-complexity of MSO is NP-hard. In fact, it is complete for the polynomial
time hierarchy. There are, however, interesting classes of graphs on which the
data-complexity of MSO is Ptime. One example is the class of trees, another
are classes of graphs of bounded tree-width.

For first-order logic there is not much to classify in terms of input classes C,
as the combined complexity is Pspace-complete as soon as we have at least one
structure of size ≥ 2 in C and the data complexity is always Ptime. Hence, the
classification into expression and data complexity is too coarse for an interesting
theory. However, polynomial time data complexity is somewhat unsatisfactory,
as it does not tell us much about the degree of the polynomials. All it says
is that for every fixed formula ϕ, deciding A |= ϕ is in polynomial time. But
the running time of the algorithms depends exponentially on |ϕ| – and this is
unacceptably high even for moderate formulas. Hence, the distinction between
data and expression complexity is only of limited value for classifying tractable
and intractable instances of the model checking problem.

A framework that allows for a much finer classification of model-checking
problems is parameterized complexity, see [36, 46, 69]. A parameterized problem
is a pair (P, χ), where P is a decision problem and χ is a polynomial time com-
putable function that associates with every instance w of P a positive integer,
called the parameter. Throughout this paper, we are mainly interested in param-
eterized model-checking problems. For a given logic L and a class C of structures
we define2
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MC(L, C)
Input: Given A ∈ C and ϕ ∈ L.

Parameter: |ϕ|.
Problem: Decide A |= ϕ.

A parameterized problem is fixed-parameter tractable, or in the complexity class
FPT, if there is an algorithm that correctly decides whether an instance w is in FPT

P in time

f(χ(w)) · |w|O(1),

for some computable function f : N → N. An algorithm with such a running
time is called an fpt algorithm. Sometimes we want to make the exponent of the fpt algorithm

polynomial explicit and speak of linear fpt algorithm, if the algorithm achieves
a running time of f(χ(w)) · |w|, and similarly for quadratic and cubic fpt algo-
rithms. We will sometimes relax the definition of parameterized problems slightly
by considering problems (P, χ) where the function χ is no longer polynomial time
computable, but is itself fixed-parameter tractable. For instance, this will be the
case for problems where the parameter is the tree-width of a graph (see Sec-
tion 3.1), a graph parameter that is computable by a linear fpt-algorithm but
not in polynomial time (unless Ptime =NP). Everything we need from parame-
terized complexity theory in this paper generalises to this parametrization also.
See [46, Chapter 11.4] for a discussion of this issue.

In the parameterized world, FPT plays a similar role to Ptime in classical
complexity – a measure of tractability. Hence, much work has gone into classi-
fying problems into those which are fixed-parameter tractable and those which
are not, i.e. those that can be solved by algorithms with a running time such as
O(2k2

n2) and those which require something like O(nk), where k is the param-
eter. Running times of the form O(nk) yield the parameterized complexity class
XP, defined as the class of parameterized problems that can be solved in time XP

O(nf(k)), for some computable function f : N → N.
In terms of model-checking problems, a model-checking problem MC(L, C) is

in XP if, and only if, the data complexity of L on C is Ptime. Obviously, FPT
⊆ XP and this inclusion is strict, as can be proved using the time hierarchy
theorem. If FPT is the parameterized analogue of Ptime then XP can be seen
as the analogue of Exptime. And again, similar to classical complexity, there are
hierarchies of complexity classes in between FPT and XP. For our purpose, the
most important class is called W[1], which is the first level of the W-hierarchy W[1]

formed by classes W[i], for all i ≥ 1. We refrain from giving the precise definition W-hierarchy

of W[1] and the W-hierarchy and refer the reader to the monograph [46]. For
our purposes, it suffices to know that FPT, XP and the W[i]-classes form the
following hierarchy

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ XP.

2 We abuse notation here and also refer to the parameterized problem as MC(L, C). As
we will not consider the classical problem anymore, there is no danger of confusion.
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In some sense, W[1] plays a similar role in parameterized complexity as NP
in classical complexity, in that it is generally believed that FPT 6= W[1] (as
far as these beliefs go) and proving that a problem is W[1]-hard establishes
that it is unlikely to be fixed-parameter tractable, i.e. efficiently solvable in the
parameterized sense. The notion of reductions used here is fpt-reduction. Again,
we refer to [46].

We close the section by stating the parameterized complexity of some prob-
lems considered in this paper.

Definition 2.9 1. The p-Dominating Set problem is the problem, given a
graph G and k ∈ N, to decide whether G contains a dominating set of size
k. The parameter is k.

2. The p-Independent Set problem is the problem, given a graph G and k ∈
N, to decide whether G contains an independent set of size k. The parameter
is k.

3. The p-Clique problem is the problem, given a graph G and k ∈ N, to decide
whether G contains a clique of size k. The parameter is k.

In the sequel, we will usually drop the prefix p− and simply speak about the
Dominating Set problem. It will always be clear from the context whether we
are referring to the parameterized or the classical problem.

Lemma 2.10 (Downey, Fellows [34, 35]) 1. p-Dominating Set is W[2]-com-
plete (see [34]).

2. p-Independent Set is W[1]-complete (see [35]).
3. p-Clique is W[1]-complete (see [35]).

We have already seen that dominating and independent sets of size k can
uniformly be formalised in first-order logic. Hence MC(FO) is W[2]-hard as well.
In fact, it is complete for the parameterized complexity class AW[∗], which con-
tains all levels of the W-hierarchy and is itself contained in XP. Finally, as
3-colourability is expressible in MSO, MSO model-checking is not in XP unless
NP=Ptime.

3 Monadic Second-Order Logic on Tree-Like Structures

It is a well-known fact, based on the close relation between monadic second-order
logic and finite tree- and word-automata (see e.g. [9, 31, 85, 86, 10, 46, 63]), that
model-checking and satisfiability for very expressive logics such as MSO becomes
tractable on the class of finite trees. At the core of these results is the observation
that the validity of an MSO sentence at the root of a tree can be inferred from
the label of the root and the MSO-types realised by its successors. There are
various ways in which this idea can be turned into a proof or algorithm: we can
use effective versions of Feferman-Vaught style theorems (see e.g.[64]) or we can
convert formulas into suitable tree-automata and let them run on the trees. The
aim of the following sections is to extend the results for MSO and FO from trees
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to more general classes of graphs. The aforementioned composition methods will
in most cases provide the key to obtaining these stronger results.

In this section we generalise the results for MSO model-checking and satisfi-
ability from trees to graphs that are no longer trees but still tree-like enough so
that model-checking and satisfiability testing for such graphs can be reduced to
the case of trees.

3.1 Tree-Width

The precise notion for “tree-likeness” we use is the concept of tree-width. We
first introduce tree-decompositions, establish some closure properties and then
comment on algorithmic problems in relation to tree-width.

Tree-Decompositions

Definition 3.1 A tree-decomposition of a graph G is a pair T := (T, (Bt)t∈V (T )) tree-decomposition

consisting of a tree T and a family (Bt)t∈V (T ) of sets Bt ⊆ V (G) such that

1. for all v ∈ V (G) the set B−1(v)

B−1(v) := {t ∈ V (T ) : v ∈ Bt}

is non-empty and connected in T and
2. for every edge e ∈ E(G) there is a t ∈ V (T ) with e ⊆ Bt.

The width w(T ) of T is w(T ) := {|Bt| − 1 : t ∈ V (T )} and the tree-width of G tree-width, w(T )

is defined as the minimal width of any of its tree-decompositions.

We refer to the sets Bt of a tree-decomposition as bags. For any edge e := bags

{s, t} ∈ E(T ) we call Bs ∩ Bt the cut at or along the edge e. (The reason for cut

this will become clear later. See Lemma 3.13.)

Example 3.2 Consider the graph in Figure 3 a). A tree-decomposition of this
graph is shown in Figure 3 b). ⊣

Example 3.3 Trees have tree-width 1. Given a tree T , the tree-decomposition
has a node t for each edge e ∈ E(T ) labelled by Bt := e and suitable edges
connecting the nodes. ⊣

Example 3.4 The class of series-parallel graphs (G, s, t) with source s and sink series-parallel

t is inductively defined as follows.

1. Every edge {s, t} is series-parallel.
2. If (G1, s1, t1) and (G2, s2, t2) are series parallel with V (G1) ∩ V (G2) = ∅,

then so are the following graphs:
a) the graph (G, s, t) obtained from G1 ∪ G2 by identifying t1 and s2 and

setting s = s1 and t = t2 (serial composition).
b) the graph (G, s, t) obtained from G1 ∪ G2 by identifying s1 and s2 and

also t1 and t2 and setting s = s1 and t = t2 (parallel composition).
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Fig. 3. Graph and tree-decomposition from Example 3.2

The class of series-parallel graphs has tree-width 2. Following the inductive defi-
nition of series-parallel graphs one can easily show that every such graph (G, s, t)
has a tree-decomposition of width 2 containing a node labelled by {s, t}. This is
trivial for edges. For parallel and serial composition the tree-decompositions of
the individual parts can be glued together at the node labelled by the respective
source and sink nodes. ⊣

The final example shows that grids have very high tree-width. Grids play
a special role in relation to tree-width. As we will see later, every graph of
sufficiently high tree-width contains a large grid minor. Hence, in this sense,
grids are the least complex graphs of high tree-width.

Lemma 3.5 For all n > 1, the n × n-grid Gn,n has tree-width n.

In the remainder of this section we will present some basic properties of
tree-decompositions and tree-width.

Closure Properties and Connectivity. It is easily seen that tree-width is preserved
under taking subgraphs. For, if (T, (Bt)t∈V (T )) is a tree-decomposition of width
w of a graph G, then (T, (Bt ∩ V (H))t∈V (T )) is a tree-decomposition of H of
width at most w. Further, if G and H are disjoint graphs, we can combine tree-
decompositions for G and H to a tree-decomposition of the disjoint union G∪̇H
by adding one edge connecting the two decompositions.

Lemma 3.6 Let G be a graph. If H ⊆ G, then tw(H) ≤ tw(G).
Further, if C1, . . . , Ck are the components of G, then

tw(G) = max{tw(Ci) : 1 ≤ i ≤ k}.

To state the next results, we need further notation. Let G be a graph and
(T, (Bt)t∈V (T )) be a tree-decomposition of G.
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1. If H ⊆ G we define B−1(H) := {t ∈ V (T ) : Bt ∩ V (H) 6= ∅}. B−1(H)
2. Conversely, for U ⊆ T we define B(U) :=

⋃

t∈V (U) Bt. B(U)

Occasionally, we will abuse notation and use B,B−1 for sets instead of sub-
graphs. The next lemma is easily proved by induction on |H| using the fact that
for each vertex v ∈ V (G) the set B−1(v) is connected in any tree-decomposition
T of G and that edges {u, v} ∈ E(G) are covered by some bag Bt for t ∈ V (T ).
Hence, B−1(u) ∪ B−1(v) is connected in T for all {u, v} ∈ E(H).

Lemma 3.7 Let G be a graph and T := (T, (Bt)t∈V (T )) be a tree-decomposition
of G. If H ⊆ G is connected, then so is B−1(H) in T .

Small tree-decompositions. A priori, by duplicating nodes, tree-decompositions
of a graph can be arbitrarily large (in terms of the number of nodes in the
underlying tree). However, this is not very useful and we can always avoid this
from happening. We will now consider tree-decompositions which are small and
derive various useful properties from this.

Definition 3.8 A tree-decomposition (T, (Bt)t∈V (T )) is small, if Bt 6⊆ Bu for small

tree-decompositionsall u, t ∈ V (T ) with t 6= u.

The next lemma shows that we can easily convert every tree-decomposition
to a small one in linear time.

Lemma 3.9 Let G be a graph and T := (T, (Bt)t∈V (T )) a tree-decomposition of

G. Then there is a small tree-decomposition T ′ :=
(

T ′, (B′
t)t∈V (T ′))

)

of G of the
same width and with V (T ′) ⊆ V (T ) and B′

t = Bt for all t ∈ V (T ′).

Proof. Suppose Bs ⊆ Bt for some s 6= t. Let s = t1 . . . tn = t be the nodes of the
path from s to t in T . Then Bs ⊆ Bt2 , by definition of tree-decompositions. But
then, (T ′, (Bt)t∈V (T ′)) with V (T ′) := V (T ) \ {s} and

E(T ′) :=

(

E(T ) \ {{v, s} : {v, s} ∈ E(T )}
)

∪
{{v, t2} : {v, s} ∈ E(T ) and v 6= t2}.

is a tree-decomposition of G with V (T )′ ⊂ V (T ). We repeat this until T is small.
¤

A consequence of this is the following result, which implies that in measuring
the running time of algorithms on graphs whose tree-width is bounded by a
constant k, it is sufficient to consider the order of the graphs rather than their
size.

Lemma 3.10 Every (non-empty) graph of tree-width at most k contains a ver-
tex of degree at most k.

Proof. Let G be a graph and let T := (T, (Bt)t∈V (T )) be a small tree-decomposi-
tion of G of width k := tw(G). If |T | = 1, then |G| ≤ k + 1 and there is nothing
to show. Otherwise let t be a leaf of T and s be its neighbour in T . As T is
small, Bt 6⊆ Bs and hence there is a vertex v ∈ Bt \ Bs. By definition of tree-
decompositions, v must have all its neighbours in Bt and hence has degree at
most k. ¤
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Corollary 3.11 Every graph G of tree-width tw(G) ≤ k has at most k · |V (G)|
edges, i.e., for k > 0, ||G|| ≤ k · |G|.

Separators. We close this section with a characterisation of graphs of small
tree-width in terms of separators. This separation property allows for the afore-
mentioned applications of automata theory or Feferman-Vaught style theorems.

Definition 3.12 Let G be a graph.

(i) Let X,Y ⊆ V (G). A set S ⊆ V (G) separates X and Y, or is a separator
for X and Y , if every path containing a vertex of Y and a vertex of Zseparator

also contains a vertex of S. In other words, X and Y are disconnected in
G − S.

(ii) A separator of G is a set S ⊆ V (G), so that G − S has more than one
component, i.e. there are sets X,Y ⊆ V (G) such that S separates X and
Y and X \ S 6= ∅ and Y \ S 6= ∅.

Lemma 3.13 Let (T, (Bt)t∈V (T )) be a small tree-decomposition of a graph G.

(i) If e := {s, t} ∈ E(T ) and T1, T2 are the components of T −e, then Bt∩Bs

separates B(T1) and B(T2).
(ii) If t ∈ V (T ) is an inner vertex and T1, . . . , Tk are the components of T − t

then Bt separates B(Ti) and B(Tj), for all i 6= j.

Proof. Let e := {s, t} ∈ E(T ) and let T1, T2 be the components of T − e. As T
is small, X := B(T1) \ B(T2) 6= ∅ and Y := B(T2) \ B(T1) 6= ∅. Suppose there
was an X − Y -path P in G not using any vertex from Bt ∩ Bs. By Lemma 3.7,
B−1(P ) is connected and hence there is a path in T from T1 to T2 not using the
edge e (as V (P ) ∩ Bt ∩ Bs = ∅), in contradiction to T being a tree.

Part (ii) can be proved analogously. ¤

Recall from the preliminaries that for an edge e := {s, t} ∈ E(T ) we refer to
the set Bs∩Bt as the cut at the edge e. The previous lemma gives justification to
this terminology, as the cut at an edge separates the graph. A simple consequence
of this lemma is the following observation, that will be useful later on.

Corollary 3.14 Let G be a graph and T := (T, (Bt)t∈V (T )) be a tree-decompo-
sition of G. If X ⊆ V (G) is the vertex set of a complete subgraph of G, then
there is a t ∈ V (T ) such that X ⊆ Bt.

Proof. By Lemma 3.9, there is a small tree-decomposition T ′ := (T ′, (B′
t)t∈V (T ′))

such that V (T ′) ⊆ V (T ) and B′
t = Bt for all t ∈ V (T ′). Hence, w.l.o.g. we may

assume that T is small.
By Lemma 3.13, every cut at an edge e ∈ E(T ) is a separator of the graph

G. Hence, as G[X] is complete, if e ∈ E(T ) and T1, T2 are the two components
of T − e, then either X ⊆ B(T1) or X ⊆ B(T2) but not both. We orient every
edge e ∈ E(T ) so that it points towards the component of T − e containing
all of X. As T is acyclic, there is a node t ∈ V (T ) with no outgoing edge. By
construction, X ⊆ Bt. ¤

Corollary 3.15 tw(Kk) = k − 1 for all k ≥ 1.
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Algorithms and Complexity The notion of tree-width has been introduced
by Robertson and Seymour as part of their proof of the graph minor theorem.
Even before that, the notion of partial k-trees, broadly equivalent to tree-width,
had been studied in the algorithms community. The relevance of tree-width for
algorithm design stems from the fact that the tree-structure inherent in tree-
decompositions can be used to design bottom-up algorithms on graphs of small
tree-width to solve problems efficiently which in general are NP-hard. A key step
in designing these algorithms is to compute a tree-decomposition of the input
graph. Unfortunately, Arnborg, Corneil, and Proskurowski showed that deciding
the tree-width of a graph is NP-complete itself.

Theorem 3.16 (Arnborg, Corneil, Proskurowski [3]) The following problem is
NP-complete.

Tree-Width
Input: Graph G, k ∈ N.

Problem: tw(G) = k?

However, the problem becomes tractable if the tree-width is not a part of the
input, i.e. if we are given a constant upper bound on the tree-width of graphs
we are dealing with.

A class C of graphs has bounded tree-width, if there is a k ∈ N such that bounded tree-width

tw(G) ≤ k for all G ∈ C. In [6] Bodlaender proved that for any class of graphs
of bounded tree-width tree-decompositions of minimal width can be computed
in linear time.

Theorem 3.17 (Bodlaender [6]) There is an algorithm which, given a graph G
as input, constructs a tree-decomposition of G of width k := tw(G) in time

2O(k3) · |G|.

The algorithm by Bodlaender is primarily of theoretical interest. We will see
later that many NP-complete problems can be solved efficiently on graph classes
of bounded tree-width. For these algorithms to work in linear time, it is essential
to compute tree-decompositions in linear time as well. From a practical point
of view, however, the cubic dependence on the tree-width in the exponent and
the complexity of the algorithm itself poses a serious problem. But there are
other simpler algorithms with quadratic or cubic running time in the order of
the graph but only linear exponential dependence on the tree-width which are
practically feasible for small values of k.

3.2 Tree-Width and Structures

So far we have only considered graphs and their tree-decompositions. We will do
so for most of the remainder, but at least want to comment on tree-decompositions
of general structures. We first present the general definition of tree-decompositions
of structures and then give an alternative characterisation in terms of the Gaifman-
or comparability graph.
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Definition 3.18 Let σ be a signature. A tree-decomposition of a σ-structure A
is a pair T := (T, (Bt)t∈V (T )), where T is a tree and Bt ⊆ V (A) for all t ∈ V (T ),
so that

(i) for all a ∈ V (A) the set B−1 := {t ∈ V (T ) : a ∈ Bt} is non-empty and
connected in T and

(ii) for every R ∈ σ and all (a1, . . . , aar(R)) ∈ R(A)ar(R) there is a t ∈ V (T )
such that {a1, . . . , aar(R)} ⊆ Bt.

The width w(T ) is defined as max{|Bt| − 1 : t ∈ V (T )} and the tree-width of A
is the minimal width of any of its tree-decompositions.

The idea is the same as for graphs. We want the tree-decomposition to contain
all elements of the structure and at the same time we want each tuple in a
relation to be covered by a bag of the decomposition. It is easily seen that the
tree-decompositions of a structure coincide with the tree-decompositions of its
Gaifman graph, defined as follows.

Definition 3.19 (Gaifman-graph) Let σ be a signature. The Gaifman-graph
of a σ-structure A is defined as the graph G(A) with vertex set V (A) and anG(A)

edge between a, b ∈ V (A) if, and only if, there is an R ∈ σ and a ∈ R(A) with
a, b ∈ a.

The following observation is easily seen.

Proposition 3.20 A structure has the same tree-decompositions as its Gaifman-
graph.

So far we have treated the notion of graphs informally as mathematical struc-
tures. As a preparation to the next section, we consider two different ways of
modelling graphs by logical structures. The obvious way is to model a graph
G as a structure A over the signature σGraph := {E}, where V (A) := V (G)σGraph

and E(A) := {(a, b) ∈ V (A) × V (A) : {a, b} ∈ E(G)}. We write A(G) for thisA(G)

encoding of a graph as a structure and refer to it as the standard encoding.
Alternatively, we can model the incidence graph of a graph G defined as theincidence graph

graph GInc with vertex set V (G) ∪ E(G) and edges E(GInc) := {(v, e) : v ∈
V (G), e ∈ E(G), v ∈ e}. The incidence graph gives rise to the following encoding
of a graph as a structure, which we refer to as the incidence encoding.

Definition 3.21 Let G := (V,E) be a graph. Let σinc := {PV , PE , I), where
PV , PE are unary predicates and I is a binary predicate. The incidence struc-
ture AI(G) is defined as the σinc-structure A := AI(G) where V (A) := V ∪ E,
PE(A) := E, PV (A) := V and

I(A) := {(v, e) : v ∈ V, e ∈ E, v ∈ e}.

The proof of the following lemma is straightforward but may be a good
exercise.

Theorem 3.22 tw(G) = tw(AI(G)) for all graphs G.

22



It may seem to be a mere technicality how we encode a graph as a structure.
However, the precise encoding has a significant impact on the expressive power
of logics on graphs. For instance, the following MSO[σinc]-formula defines that a
graph contains a Hamilton-cycle using the incidence encoding, a property that
is not definable in MSO on the standard encoding (see e.g. [37, Corollary 6.3.5]).

∃U ⊆ PE∀v“v has degree 2 in G[U ]” ∧ ϕconn(U),

where ϕconn is a formula saying that the subgraph G[U ] induced by U is con-
nected. Clearly, it is MSO-definable that a vertex v is incident to exactly two
edges in U , i.e. has degree 2 in G[U ]. The formula says that there is a set U of
edges so that G[U ] is connected and that every vertex in G[U ] has degree 2. But
this means that U is a simple cycle P in G. Further, as all vertices of G occur
in P, this cycle must be Hamiltonian.

Hence, MSO is more expressive over incidence graphs than over the standard
encoding of graphs. It is clear that MSO interpreted over incidence graphs is
the same as considering the extension of MSO by quantification over sets of
edges (rather than just sets of vertices) on the standard encoding. This logic is
sometimes referred to as MSO2 in the literature. A more general framework are MSO2

guarded logics, that allow quantification only over tuples that occur together in
some relation in the structure. On graphs, guarded second-order logic (GSO) is GSO

just MSO2. As we will not be dealing with general structures in the rest of this
survey, we refrain from introducing guarded logics formally and refer to [2, 51]
and references therein instead.

3.3 Coding tree-decompositions in trees

The aim of the following sections is to show that model-checking and satisfiabil-
ity testing for monadic second-order logic becomes tractable when restricted to
graph classes of small tree-width. The proof of these results relies on a reduction
from graph classes of bounded tree-width to classes of finite labelled trees. As
a first step towards this we show how graphs of tree-width bounded by some
constant k can be encoded in Σk-labelled finite trees for a suitable alphabet Σk

depending on k. We will also show that the class of graphs of tree-width k, for
some k ∈ N, is MSO-interpretable in the class of Σk-labelled trees.

A tree-decomposition (T, (Bt)t∈V (T )) of a graph G is already a tree and we
will take T as the underlying tree of the encoding. Thus, all we have to do is to
define the labelling. Note that we cannot simply take the bags Bt as labels, as
we need to work with a finite alphabet and there is no a priori bound on the
number of vertices in the bags. Hence we have to encode the vertices in the bags
using a finite number of labels. To simplify the presentation we will be using
tree-decompositions of a special form.

Definition 3.23 A leaf-decomposition of a graph G is a tree-decomposition leaf-decomposition
T := (T, (Bt)t∈V (T )) of G such that all leaves of V (T ) contain exactly one vertex
and every v ∈ V (G) is contained in exactly one leaf of T .
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In other words, in leaf-decompositions there is a bijection ρ between the set
of leaves of the decomposition and the set of vertices of the graph and the bag
Bt of a leaf t contains exactly its image ρ(t). It is easily seen that any tree-
decomposition can be converted into a leaf-decomposition of the same width.

Lemma 3.24 For every tree-decomposition T of a graph G there is a leaf-
decomposition T ′ of G of the same width and this can be computed in linear
time, given T .

To define the alphabet Σk, we will work with a slightly different form of tree-
decompositions where the bags are no longer sets but ordered tuples of vertices.
It will also be useful to require that all these tuples have the same length and
that the tree underlying a tree-decomposition is a binary directed tree.3

Definition 3.25 An ordered tree-decomposition of width k of a graph G is
a pair (T, (bt)t∈V (T )), where T is a directed binary tree and bt ∈ V (G)k, so
that (T, (Bt)t∈V (T )) is a tree-decomposition of G, with Bt := {b0, . . . , bk} for

bt := b0, . . . , bk.

An ordered leaf-decomposition is the ordered version of a leaf-decomposition.

Example 3.26 Consider again the graph from Example 3.2. The following shows
an ordered leaf-decomposition obtained from the tree-decomposition in Exam-
ple 3.2 by first adding the necessary leaves containing just one vertex and then
converting every bag into an ordered tuple of length 4.

(1,3,11,1)

(1,1,1,1) (11,11,11,11)

(1,3,6,11) (1,3,4,11) (4,4,4,4)

(1,6,9,11) (3,4,7,11) (1,2,3,4)

(1,5,6,9) (6,9,10,11) (4,7,8,11) (2,2,2,2) (3,3,3,3)

(5,5,5,5) (6,6,6,6) (9,9,9,9) (10,10,10,10) (7,7,7,7) (8,8,8,8)

The graph G together with this leaf-decomposition induces the following Σ3-
labelled tree:

3 Note that, strictly speaking, to apply the results on MSO on finite trees we have to
work with trees where an ordering on the children of a node is imposed. Clearly we
can change all definitions here to work with such trees. But as this would make the
notation even more complicated, we refrain from doing so.
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t1

t2 t3

t4 t5 t6

t7 t8 t9

t10 t11 t12 t13 t14

t15 t16 t14 t15 t16 t16

where, for instance, λ(t4) :=
(

eq(t4), overlap(t4), edge(t4)
)

, with

– eq(t4) := ∅,
– overlap(t4) := {(0, 0), (0, 3), (1, 1), (3, 2)}, and
– edge(t4) := {(0, 1), (1, 2), (1, 3), (2, 3)} ∪ {(1, 0), (2, 1), (3, 1), (3, 2)}.

eq(t4) := ∅, as all positions of bt4 correspond to different vertices in G. On the
other hand, eq(t15) := {(i, j) : i, j ∈ {0, . . . , 3}}, as all entries of b15 refer to the
same vertex 5. ⊣

It is easily seen that every tree-decomposition of width k can be converted
in linear time to an ordered tree-decomposition of width k. Combining this
with Bodlaender’s algorithm (Theorem 3.17) and Lemma 3.24 above yields the
following lemma.

Lemma 3.27 There is an algorithm that, given a graph G of tree-width ≤ k,
constructs an ordered leaf-decomposition of G of width tw(G) in time 2O(k3) · |G|.

Now let G be a graph and L := (T ′, (bt)t∈V (T ′)) be an ordered leaf-decomposi-
tion of G of width k. We code L in a labelled tree T := (T, λ), so that L and G
can be reconstructed from T , and this reconstruction can even be done by MSO

formulas.
The tree T underlying T is the tree T ′ of L. To define the alphabet and the

labels of the nodes let t ∈ V (T ) and let bt := b0, . . . , bk.
We set λ(t)

λ(t) := (eq(t), overlap(t), edge(t))

where eq(t), overlap(t), edge(t) are defined as follows:

– eq(t) := {(i, j) : 0 ≤ i, j ≤ k and bi = bj}. eq(t)

– If t is the root of T , then overlap(t) := ∅. Otherwise let p be the predecessor
of t in T and let bp := a0, . . . , ak. We set overlap(t)

overlap(t) := {(i, j) : 0 ≤ i, j ≤ k and bi = aj}.

– Finally, edge(t) := {(i, j) : 0 ≤ i, j ≤ k and {bi, bj} ∈ E(G)}. edge(t)
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For every fixed k, the labels come from the finite alphabetΣk

Σk := 2{0,...,k}2 × 2{0,...,k}2 × 2{0,...,k}2

.

We write T (G,L) for the labelled tree encoding a leaf-decomposition L of aT (G,L)

graph G. Note that the signature depends on the arity k of the ordered leaf-
decomposition L, i.e. on the bound on the tree-width of the class of graphs we
are working with.

The individual parts of the labelling have the following meaning. Recall that
we require all tuples bt to be of the same length k + 1 and therefore they may
contain duplicate entries. eq(t) identifies those entries in a tuple relating to the
same vertex of the graph G. The label overlap(t) takes care of the same vertex
appearing in tuples of neighbouring nodes of the tree. As we are working with
directed trees, every node other than the root has a unique predecessor. Hence
we can record in the overlap-label of the child which vertices in its bag occur at
which positions of its predecessor. Finally, edge encodes the edge relation of G.
As every edge is covered by a bag of the tree-decomposition, it suffices to record
for each node t ∈ V (T ) the edges between elements of its bag bt.

The labels eq(t), overlap(t) and edge(t) satisfy some obvious consistency
criteria, e.g. eq(t) is an equivalence relation for every t, eq(t) is consistent
with edge(t) in the sense that if two positions i, i′ refer to the same vertex,
i.e. (i, i′) ∈ eq(t) and (i, j) ∈ edge(t) then also (i′, j) ∈ edge(t), and likewise for
eq(t) and overlap(t). We refrain from giving all necessary details. Note, though,
that any Σk-labelled finite tree that satisfies these consistency criteria does en-
code a graph of tree-width at most k. Furthermore, the criteria as outlined above
are easily seen to be definable in MSO, in fact even in first-order logic. Again
we refrain from giving the exact formula as its definition is long and technical
but absolutely straightforward. Let ϕcons be the MSO-sentence true in a Σk-ϕcons

labelled tree if, and only if, it satisfies the consistency criteria, i.e. encodes a
tree-decomposition of a graph of tree-width at most k.

Of course, to talk about formulas defining properties of Σk-labelled trees we
first need to agree on how Σk-labelled trees are encoded as structures. For k ∈ N

we define the signatureσk

σk := {E} ∪ {eqi,j , edgei,j , overlapi,j : 0 ≤ i, j ≤ k},

where eqi,j , overlapi,j , and edgei,j are unary relation symbols. The intended
meaning of eqi,j is that in a σk-structure A an element t is contained in eqi,j(A)
if (i, j) ∈ eq(t) in the corresponding tree. Likewise for overlapi,j and edgei,j .
σk-structures, then, encode Σk-labelled trees in the natural way. In the sequel,
we will not distinguish notationally between a Σk-labelled tree T and the cor-
responding σk-structure AT . In particular, we will write T |= ϕ, for an MSO-
formula ϕ, instead of AT |= ϕ.

Clearly, the information encoded in the Σk-labelling is sufficient to recon-
struct the graph G from a tree T (G,L), for some ordered leaf-decomposition
of G of width k. Note that different leaf-decompositions of G may yield non-
isomorphic trees. Hence, the encoding of a graph in a Σk-labelled tree is not

26



unique but depends on the decomposition chosen. For our purpose this does not
pose any problem, though.

The next step is to define an MSO-interpretation

Γ := (ϕuniv(x), ϕvalid, ϕE(x, y)) Γ

of the class Tk of graphs of tree-width at most k in the class TΣk
of Σk-labelled

finite trees. To state the interpretation formally, we need to define the three
formulas ϕuniv(x), ϕvalid, and ϕE(x, y). Recall that in a leaf-decomposition L
there is a bijection between the leaves of T and the vertices of the graph that is
being decomposed. Hence, we can take ϕuniv(x) to be the formula

ϕuniv(x) := ∀y¬Exy

saying that x is a leaf in T .
Let G be a graph and L := (T, (bt)t∈V (T )) be an ordered leaf-decomposition

of G of width k. Suppose we are given two leaves tu, tv of L containing u and v
respectively and we want to decide whether there is an edge between u and v.
Clearly, if e := {u, v} ∈ E(G), then e must be covered by some bag, i.e. there
are a node t in L with bag bt := b0 . . . bk and i 6= j such that bi = u and bj = v
and (i, j) ∈ edge(t) in the tree T := T (G,L). Further, u occurs in every bag on
the path from t to tu and likewise for v. Hence, to define ϕE(x, y), where x, y
are interpreted by leaves, we have to check whether there is such a node t and
paths from x and y to t as before. For this, we need an auxiliary formula which
we define next.

Recall that each position i in a bag bt corresponds to a vertex in G. Hence, we
can associate vertices with pairs (t, i). In general, a vertex can occur at different
positions i and different nodes t ∈ V (T ). We can, however, identify any vertex
v with the set

Xv := {(t, i) : t ∈ V (T ) and v occurs at position i in bt }. Xv

We call Xv the equivalence set of v. If t ∈ V (T ) and 0 ≤ i ≤ k, we define the
equivalence set of (t, i) as the equivalence set of bi, where bt := b0, . . . , bk.

Clearly, this identification of vertices with sets of pairs and the concept of
equivalent sets extends to the labelled tree T := T (G,L), as T and L share the
same underlying tree.

To define sets Xv in MSO, we represent Xv by a tuple X := (X0, . . . ,Xk) of
sets Xi ⊆ V (T ), such that for all 0 ≤ i ≤ k and all t ∈ V (T ), t ∈ Xi if, and only
if, (t, i) ∈ Xv.

We are going to describe an MSO-formula ψ(X0, . . . ,Xk) that is satisfied by
a tuple X if, and only if, X is the equivalence set of a pair (t, i), or equivalently
of a vertex v ∈ V (G). To simplify notation, we will say that a tuple X contains
a pair (t, i) if t ∈ Xi. Consider the formulas

ψeq(X0, . . . ,Xk) :=
∧

i

∀t ∈ Xi

(

∧

j 6=i

eqi,j(t) → t ∈ Xj

)
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and

ψoverlap(X0, . . . ,Xk) := ∀s∀t
∧

i,j

(

E(s, t) ∧ t ∈ Xi ∧ overlapi,j(t)
)

→ s ∈ Xj .

ψeq(X) says of a tuple X that X is closed under the eq-labels and ψoverlap(X)
says the same of the overlap-labels. Now let ψ(X) := ψeq∧ψoverlap. ψ is satisfied
by a tuple X if whenever X contains at a pair (t, i), then it contains the complete
equivalence set of (t, i). Now, consider the formulaϕvertex

ϕvertex(X0, . . . ,Xk) := ψ(X) ∧ X 6= ∅ ∧ ∀X
′ 6= ∅

(

X
′
( X → ¬ψ(X

′
)
)

where “X 6= ∅” defines that at least one Xi is non-empty and “X
′
( X” is an

abbreviation for a formula saying that X ′
i ⊆ Xi, for all i, and for at least one i

the inclusion is strict.
ϕvertex(X) is true for a tuple if X is non-empty, closed under eq and overlap,

but no proper non-empty subset of X is. Hence, X is the equivalence set of a
single vertex v ∈ V (G). The definition of ϕvertex(X) is the main technical part
of the MSO-interpretation Γ := (ϕuniv(x), ϕvalid, ϕE(x, y)).

We have already defined ϕuniv(x) := ∀y¬Exy. For ϕvalid, recall from above
the formula ϕcons true in a Σk-labelled tree T if, and only if, T encodes a tree-
decomposition of a graph G of tree-width at most k. To define ϕvalid we need
a formula that not only requires T to encode a tree-decomposition of G but a
leaf-decomposition.

To force the encoded tree-decomposition to be a leaf-decomposition, we fur-
ther require the following two conditions.

1. For all leaves t ∈ V (T ) and all i 6= j, (i, j) ∈ eq(t).
2. For all t ∈ V (T ) and all 0 ≤ i ≤ k the equivalence set of (t, i) contains

exactly one leaf.

Both conditions can easily be defined by MSO-formulas ϕ1 and ϕ2, respectively,
where in the definition of ϕ2 we use the formula ϕvertex defined above.

Hence, the formula
ϕvalid := ϕcons ∧ ϕ1 ∧ ϕ2ϕvalid

is true in a Σk-labelled tree T (or the corresponding σk-structure) if, and only
if, T encodes a leaf-decomposition of width k.

Finally, we define the formula ϕE(x, y) saying that there is an edge between
x and y in the graph G encoded by a Σk-labelled tree T := (T, λ). Note that
there is an edge in G between x and y if, and only if, there is a node t ∈ V (T )
and 0 ≤ i 6= j ≤ k such that (i, j) ∈ edge(t) and x is the unique leaf in the
equivalence set of (t, i) and y is the unique leaf in the equivalence set of (t, j).
This is formalised by

ϕE(x, y) := ∃t
∨

i6=j

(

edgei,j(t) ∧ ∃X∃Y ϕvertex(X) ∧ ϕvertex(Y ) ∧
X1(x) ∧ Y1(y) ∧ Xi(t) ∧ Yj(t)

)

.

This completes the definition of Γ . Now, the proof of the following lemma is
immediate.
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Lemma 3.28 Let G be a graph of tree-width ≤ k and L be a leaf-decomposition
of G of width k. Let T := T (G,L) be the tree-encoding of L and G. Then
G ∼= Γ (T ).

Further, by the interpretation lemma, for all MSO-formulas ϕ and all Σk-
trees T |= ϕvalid,

T |= Γ (ϕ) ⇐⇒ Γ (T ) |= ϕ.

3.4 Courcelle’s Theorem

In this section and the next we consider computational problems for monadic
second-order logic on graph classes of small tree-width. The algorithmic the-
ory of MSO on graph classes of small tree-width has, essentially independently,
been developed by Courcelle, Seese and various co-authors. We first consider the
model-checking problem for MSO and present Courcelle’s theorem. We then state
a similar theorem by Arnborg, Lagergreen and Seese concerning the evaluation
problem of MSO. In the next section, we consider the satisfiability problem and
prove Seese’s theorem.

Theorem 3.29 (Courcelle [13]) The problem

MC(MSO, tw)
Input: Graph G, ϕ ∈ MSO

Parameter: |ϕ| + tw(G)
Problem: G |= ϕ?

is fixed parameter tractable and can be solved in time f(|ϕ|) + 2p(tw(G)) · |G|, for
a polynomial p and a computable function f : N → N.

That is, the model-checking problem for a fixed formula ϕ ∈ MSO can be
solved in linear time on any class of graphs of bounded tree-width.

Proof. Let C be a class of bounded tree-width and let k be an upper bound for
the tree-width of C. Let ϕ ∈ MSO be given.

On input G ∈ C we first compute an ordered leaf-decomposition L of G of
width k. From this, we compute the tree T := T (G,L). We then check whether
T |= Γ (ϕ), where Γ is the MSO-interpretation of the previous section.

Correctness of the algorithm follows from Lemma 3.28. The time bounds
follow from Lemma 3.24 and the fact that MSO model-checking is in linear time
(for a fixed formula) on the class of trees (see e.g. [63, Chapter 7] or [46, Chapter
10]). ¤

We will see a different proof of this theorem using logical types later when we
prove Lemma 7.12. The result immediately implies that parametrized problems
such as the independence set or dominating set problem or problems such as
3-colourability and Hamiltonicity are solvable in linear time on classes of graphs
of bounded tree-width.
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Without proof we state the following extension of Courcelle’s theorem which
essentially follows from [4]. The proof uses the same methods as described above
and the corresponding result for trees.

Theorem 3.30 (Arnborg, Lagergreen, Seese [4]) The problem

Input: Graph G, ϕ(X) ∈ MSO, k ∈ N.
Parameter: |ϕ| + tw(G).

Problem: Determine whether there is a set S ⊆ V (G) such that
G |= ϕ(S) and |S| ≤ k and compute one if it exists.

is fixed-parameter tractable and can be solved by an algorithm with running time
f(|ϕ|)+2p(tw(G)) · |G|, for a polynomial p and a computable function f : N → N.

Recall that by the results discussed in Section 3.2 the previous results also
hold for MSO on incidence graphs, i.e. MSO2 where quantification over sets of
edges is allowed also.

Corollary 3.31 The results in Theorem 3.29 and 3.30 extend to MSO2.

3.5 Seese’s Theorem

We close this section with another application of the interpretation defined in
Section 3.3. Recall that MSO2 has set quantification over sets of vertices as well
as sets of edges and corresponds to MSO interpreted over the incidence encoding
of graphs.

Theorem 3.32 (Seese [81]) Let k ∈ N be fixed. The MSO2-theory of the class
of graphs of tree-width at most k is decidable.

Proof. Let Γ := (ϕuniv, ϕvalid, ϕE) be the interpretation defined in Section 3.3.
On input ϕ we first construct the formula ϕ∗ := Γ (ϕ). Using the decidability
of the MSO-theory of finite labelled trees, we then test whether there is a Σk-
labelled tree T such that T |= ϕvalid ∧ ϕ∗.

If there is such a tree T , then, as T |= ϕvalid, there is a graph G of tree-width
at most k encoded by T which satisfies ϕ. Otherwise, ϕ is not satisfiable by any
graph of tree-width at most k. ¤

Again without proof, we remark that the following variant of Seese’s theorem
is also true.

Theorem 3.33 (Adler, Grohe, Kreutzer [1]) For every k it is decidable whether
a given MSO-formula is satisfied by a graph of tree-width exactly k.

We remark that there is a kind of converse to Seese’s theorem which we will
prove in Section 6 below.

Theorem 3.34 (Seese [81]) If C is a class of graphs with a decidable MSO2-
theory, then C has bounded tree-width.

The proof of this theorem relies on a result proved by Robertson and Seymour
as part of their proof of the graph minor theorem. We will present the graph
theory needed for this in Section 5 and a proof of Theorem 3.34 in Section 6.
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4 From Trees to Cliques

In the previous section we considered graphs that are sufficiently tree-like so
that efficient model-checking algorithms for monadic second-order logic can be
devised following the tree-structure of the decomposition. On a technical level
these results rely on Feferman-Vaught style results allowing to infer the truth of
an MSO sentence in a graph from the MSO types of the smaller subgraphs it can
be decomposed into. In this section we will see a different property of graphs
that also allows for efficient MSO model-checking. It is not based on the idea of
decomposing the graph into smaller parts of lower complexity, but instead it is
based on the idea of the graphs being uniform in some way, i.e. not having too
many types of its vertices.

As a first example let us consider the class {Kn : n ∈ N} of cliques. Obvi-
ously, these graphs have as many edges as possible and cannot be decomposed in
any meaningful way into parts of lower complexity. However, model-checking for
first-order logic or monadic second-order logic is simple, as all vertices look the
same. In a way, a clique is no more complex than a set: the edges do not impose
any meaningful structure on the graph. This intuition is generalised by the notion
of clique-width of a graph. It was originally defined in terms of graph grammars
by Courcelle, Engelfriet and Rozenberg [17]. Independently, Wanke introduced
k-NLC graphs, a notion that is equivalent to Courcelle et al.’s definition up to a
factor of 2. The term clique-width was introduced in [19]. Clique-decompositions
(or k-expressions as they are called) are useful for the design of algorithms, as
they again provide a tree-structure along which algorithms can work. However,
until recently algorithms using clique-decompositions had to be given the de-
composition as input, as no fixed-parameter algorithms were known to compute
the decomposition.

In 2006, Oum and Seymour [71] introduced the notion of rank-width and
corresponding rank-decompositions, a notion that is broadly equivalent to clique-
width in the sense that for every class of graphs, one is bounded if, and only if,
the other is bounded. Rank-decompositions can be computed by fpt-algorithms
parametrized by the width and from a rank-decomposition a clique-decomposition
can be generated. In this way, the requirement of algorithms being given the de-
composition as input has been removed. But rank-decompositions are also in
many other ways the more elegant notion.

We first recall the definition of clique-width in Section 4.1. In Section 4.2, we
then introduce general rank-decompositions of submodular functions, of which
the rank-width of a graph is a special case. As a side effect, we also obtain the
notion of branch-width, which is another elegant characterisation of tree-width.
Model-checking algorithms for MSO on graph classes of bounded rank-width are
presented in Section 4.3, where we also consider the satisfiability problem for
MSO and a conjecture by Seese.
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4.1 Clique-Width

Definition 4.1 (k-expression) Let k ∈ N be fixed. The set of k-expressions isk-expression

inductively defined as follows:

(i) i is a k-expression for all i ∈ [k].
(ii) If i 6= j ∈ [k] and ϕ is a k-expression, then so are edgei−j(ϕ) and

renamei→j(ϕ).
(iii) If ϕ1, ϕ2 are k-expressions, then so is (ϕ1 ⊕ ϕ2).

A k-expression ϕ generates a graph G(ϕ) coloured by colours from [k] as
follows: The k-expression i generates a graph with one vertex coloured by thei

colour i and no edges.
The expression edgei−j is used to add edges. If ϕ is a k-expression generat-edgei−j

ing the coloured graph G := G(ϕ) then edgei−j(ϕ) defines the graph H with
V (H) := V (G) and

E(H) := E(G) ∪
{

{u, v} : u has colour i and v has colour j
}

.

Hence, edgei−j(ϕ) adds edges between all vertices with colour i and all vertices
with colour j.

The operation renamei→j(ϕ) recolours the graph. Given the graph G gen-renamei→j(ϕ)

erated by ϕ, the k-expression renamei→j(ϕ) generates the graph obtained from
G by giving all vertices which have colour i in G the colour j in H. All other
vertices keep their colour.

Finally, if ϕ1, ϕ2 are k-expressions generating coloured graphs G1, G2 respec-
tively, then (ϕ1 ⊕ ϕ2) defines the disjoint union of G1 and G2.

We illustrate the definition by an example.

Example 4.2 Consider again the graph from Example 3.2 depicted in Figure 3.
For convenience, the graph is repeated below. We will show how this graph can

1 2

3 4

5

6 7 8

9

10 11

Fig. 4. Graph from Example 3.2

be obtained by a 6-expression.
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Consider the expression ϕ0 in Figure 5, which generates the graph in Figure 6
a). The labels in the graph represent the colours. Here we use obvious abbrevia-
tions such as edgei−j,s−t to create edges between i and j as well as edges between
s and t in one step.

edge
2 − 3
4 − 5
2 − 4

⊕

edge2−5 edge3−4

⊕ ⊕

2 5 3 4

Fig. 5. The 6-expression ϕ0 generating the graph in Fig. 6 a)

The vertices generated so far correspond to the vertices 5, 6, 9, 10 of the graph
in Figure 4. Note that we have already created all edges incident to vertex 9.
Hence, in the construction of the rest of the graph, the vertex 9 (having colour
2) does not have to be considered any more. We will use the colour 0 to mark
vertices that will not be considered in further steps of the k-expression. Let ϕ1 :=
rename2→0(ϕ0) be the 6-expression that generates the graph in Figure 6 a), but
where the vertex with colour 2 now has colour 0.

The next step is to generate the vertex 11 of the graph. This is done by the

expression ϕ2 := rename5→0

(

edge1−5,1−4

(

1 ⊕ ϕ1

)

)

. We proceed by adding the

vertices 1 and 3 and the appropriate edges. Let

ϕ3 := rename3→0,4→0edge2−3,4−5,1−5

(

ϕ2 ⊕
(

edge2−5(2 ⊕ 5)
)

)

This generates the graph depicted in Figure 6 b). The next step is to add the
vertices 7 and 8. Let

ϕ4 := rename1→0edge1−3,1−4,3−5

(

ϕ3 ⊕ edge3−4(3 ⊕ 4)
)

Finally, we add the vertex 2 and rename the colour of the vertex 2 to 0, i.e. es-
sentially remove the colour, and rename all other colours to 1.

ϕ5 := rename2→0,5→1,3→1,4→1edge1−2,1−5(1 ⊕ ϕ4)

This generates the graph in Figure 6 c).
Finally, we add the vertex 4 and edges to all other vertices marked by the

colour 1.
The complete expression generating the graph is therefore edge1−2(2 ⊕ ϕ5).

⊣
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3

4

2

5

2

5

0

0

0

0 1

0 1

1

0

0 1 1

0

0 0
a) G(ϕ1) b) G(ϕ3) c) G(ϕ5)

Fig. 6. Graphs generated by the 6-expressions in Example 4.2

It is easily seen that every finite graph can be generated by a k-expression
for some k ∈ N. Just choose a colour for each vertex and add edges accordingly.

Lemma 4.3 Every finite graph can be generated4 by a k-expression for some
k ∈ N.

Hence, the following concepts are well defined.

Definition 4.4 The clique-width cw(G) of a graph G is defined as the leastclique-width

k ∈ N such that G can be generated by a k-expression. A class C of graphs has
bounded clique-width if there is a k ∈ N such that cw(G) ≤ k for all G ∈ C.

We give a few more examples.

Example 4.5 1. The class of cliques has clique-width 2. (Clique-width 2, as
the edgei,j operator requires i 6= j to avoid self-loops).

2. The class of all trees has clique-width 3. By induction on the height of the
trees we show that for each tree T there is a 3-expression generating this tree
so that the root is coloured by the colour 1 and all other nodes are coloured
by 0. This is trivial for trees of height 0. Suppose T is a tree of height n + 1
with root r and successors v1, . . . , vk of r. For 1 ≤ i ≤ k let ϕi be a 3-
expression generating the subtree of T rooted at vi. Then T is generated by
the expression

rename2→1rename1→0edge2−1(2 ⊕ ϕ1 ⊕ · · · ⊕ ϕk).

3. It can be shown that the clique-width of the (n × n)-grid is Ω(n). (This
follows, for instance, from Theorem 4.7 below). ⊣

The next theorem due to Wanke and also Courcelle and Olariu relates clique-
width to tree-width.

Theorem 4.6 ([91, 19]) Every graph of tree-width at most k has clique-width at
most 2k+1 + 1.

4 By “generating” we always mean up to isomorphism. That is, a graph G is generated
by an expression ϕ if ϕ defines a graph isomorphic to G.
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As the examples above show, there is no hope to bound the tree-width of
a graph in terms of its clique-width. Hence, clique-width is more general than
tree-width in the sense that more graph classes have bounded clique-width than
bounded tree-width. Gurski and Wanke [55] established the following relation
between clique-width and tree-width in terms of complete bipartite subgraphs.

Theorem 4.7 (Gurski, Wanke [55]) Let G be a graph of clique-width5 k such
that for some n > 1 the complete bipartite graph Kn,n is not a subgraph of G.
Then tw(G) ≤ 3k(n − 1) − 1.

Another interesting relation between clique-width and tree-width follows
from a connection, due to Oum [70], between the branch-width of a graph and the
rank-width of its incidence graph which we will present at the end of Section 4.2.

As seen in the previous section, the notion of tree-width is preserved by taking
subgraphs, induced subgraphs, minors, and other transformations. Clique-width
is less robust. It is easily seen that clique-width is preserved under taking induced
subgraphs. But it is not preserved under taking arbitrary subgraphs and hence
not preserved under taking minors. For instance, cliques have clique-width 2 but
every graph is a subgraph of a clique and we know that there are graphs of
arbitrarily high clique-width.

Proposition 4.8 (i) If G is a graph and H is an induced subgraph of G,
then cw(H) ≤ cw(G).

(ii) Clique-width is not preserved under taking subgraphs and hence not pre-
served under taking minors. That is, there are graphs G and H ⊆ G with
cw(H) > cw(G) and the difference can be arbitrarily large.

We close this section with a negative result concerning the complexity of
deciding clique-width and related measures. Gurski and Wanke showed that
deciding the NLC-width of a graph is NP-complete. For clique-width, this was
shown by Fellows, Rosamond, Rotics and Szeider.

Theorem 4.9 1. Given a graph G and an integer k, the problem to decide
whether G has NLC-width at most k is NP-complete (see [56]).

2. Given a graph G and an integer k, the problem to decide whether G has
clique-width at most k is NP-complete (see [42]).

However, as we will see in the next section, there are FPT-algorithms, para-
metrized by the clique-width, to compute an approximate clique-decomposition
of a given graph.

Finally, we mention a result by Espelage, Gurski and Wanke [41], that the
clique-width of a graph can be computed in linear time on graph classes of
bounded tree-width.

5 In [91] Wanke introduced the notion of k-node label controlled graphs (k-NLC).
They are defined by similar operations as in k-expressions and for every graph G we
have cw(G) ≤ nlc(G) ≤ 2 · cw(G), where nlc(G) denotes the NLC-width. The result
in [55] is actually stated and proved in terms of NLC-width.
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4.2 Rank-Width

In this section we consider an alternative characterisation of graph classes of
bounded clique-width – the rank-width of a graph. Rank-width is a special case
of abstract branch-decompositions of connectivity functions which we present
first. Another special case of this abstract notion is the branch-width of graphs,
a notion that is equivalent up to a small constant factor to tree-width.

Branch-decompositions of connectivity functions Let M be a finite non-
empty set and f : 2M → R be a function. A branch-decomposition of the pairabstract

branch-decomposition (M,f) is a pair (T, β) consisting of a binary tree T and a bijection β : L(T ) → M
from the set L(T ) of leaves of T to M . We inductively define a map β∗ : V (T ) →
2M by setting

β∗(t) :=

{

{β(t)} if t is a leaf

β∗(t1) ∪ β∗(t2) if t is an inner node with successors t1 ∪ t2.

The width of (T, β) is defined as max{f(β∗(t)) : t ∈ V (T )} and the branch-widthwidth of (T, β)

of (M,f) is defined as the minimal width of any of its branch-decompositions.abstract branch-width

If M is empty, we define the branch-width of M to be f(∅). Note that in this
case, (M,f) does not have a branch-decomposition, as a tree, being connected,
cannot be empty.

Of particular interest are branch-decompositions of connectivity functions
f which are integer valued, symmetric and submodular. A function f : 2M →
R is symmetric if f(A) = f(M \ A) for all A ⊆ M and it is submodular if

symmetric
submodular

f(A)+f(B) ≥ f(A∩B)+f(A∪B) for all A,B ⊆ M . Submodular and symmetric
connectivity functions are algorithmically particularly well-behaved. Note that if
f is symmetric we can take the tree T of a branch-decomposition of (M,f) to be
undirected and cubic (i.e. every vertex has degree 1 or 3). We will occasionally
do so, for instance in Figure 7 below.

In [71], Oum and Seymour showed that optimal branch-decompositions of
submodular, symmetric, and integer valued connectivity functions can be ap-
proximated up to a factor 3 by an fpt-algorithm. Before we can state the result
we need to define how the input to such an algorithm is represented. Let M be
a class of pairs (M,f), where f : 2M → N is symmetric and submodular. M is a
tractable class of connectivity functions if there is a representation of the pairstractable class

(M,f) ∈ M such that, given the representation of a pair (M,f), the underlying
set M and the values f(A) can be computed in polynomial time for all A ⊆ M .

We are primarily interested in certain connectivity functions naturally asso-
ciated with graphs and in this case the graph itself will be the representation.

Theorem 4.10 (Oum, Seymour [71]) Let M be a tractable class of connectivity
functions. Then there is an fpt-algorithm that, on input (the representation of)
(M,f) and a parameter k, computes a branch-decomposition of (M,f) of width
at most 3k provided that the branch-width of (M,f) is at most k. If the branch-
width of (M,f) is greater than k, then the algorithm may halt without output or
still compute a branch-decomposition of (M,f) of width ≤ 3k.
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As a first example of abstract branch-decompositions we consider the branch-
width of graphs.

Branch-Width of Graphs Let G be a graph. The boundary ∂F of a set boundary, ∂F

F ⊆ E(G) is defined as the set of vertices incident to an edge in F and also an
edge in E(G) \ F .

We define a function bG : 2E(G) → N by bG(F ) := |∂F | for all F ⊆ E(G).
The function bG is symmetric and submodular. A branch-decomposition of G is a branch-decomposition

branch-decomposition of (E(G), bG) and the branch-width bw(G) of G is defined branch-width

as the branch-width of (E(G), bG).

Example 4.11 Figure 7 shows a graph and its branch-decomposition of width
2. For example, β∗(d) =

{

{1, 5}, {3, 5}
}

and ∂β∗(d) = {1, 3}, as the vertex 5 has
no edge to a vertex other than 1, 3. Similarly, ∂β∗(b) = ∂β∗(e) = ∂β∗(e) = {1, 3}
and ∂β∗(f) = {3, 4}.

4 1

6

3 2

5

a

b c

d e f {1, 4}

{3, 5} {1, 5} {3, 2} {2, 1} {6, 4} {3, 6}
a) Graph G b) Branch-decomposition of G of width 2.

Fig. 7. Branch-decomposition of width 2

⊣

Example 4.12 (Robertson, Seymour [75]) 1. For every n ≥ 3, the n-clique
Kn has branch-width 2

3 · n.
2. For all n ≥ 2, the n × n-grid has branch-width n.
3. A graph has branch-width 0 if, and only if, it has maximal degree at most 1.
4. Trees and cycles have branch-width at most 2. ⊣

As the following theorem shows, the branch-width of a graph is equivalent
to its tree-width up to a small constant factor.

Theorem 4.13 (Robertson, Seymour [75]) For all graphs G

bw(G) ≤ tw(G) + 1 ≤ max{2,
3

2
bw(G)}.

Proof. To show bw(G) ≤ tw(G)+1, let T := (T, (Bt)t∈V (T )) be a tree-decomposi-
tion of G of width k := tw(G), such that T is a binary tree and every edge of
G is covered by exactly one leaf of T . Clearly, given a tree-decomposition of
G we can easily find one of the same width with this additional property. We
define a branch-decomposition B := (T ′, β) of G as follows: T ′ = T and for a
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leaf t ∈ L(T ) of T we set β(t) := e, where e is the (unique) edge covered by Bt.
We define β∗ : V (T ) → 2E(G) as before. It is easily seen that for all t ∈ V (T ),
∂β∗(t) ⊆ Bt and hence the width of B is at most k + 1.

Conversely, let B := (T, β) be a branch-decomposition of G of width bw(G).
For each t ∈ V (T ) we define Bt ⊆ V (G) as follows. If t is a leaf of T define
Bt := β(t). Now let t be an inner node with children t1, t2. For i = 1, 2 let
Fi := β∗(ti) and let F3 :=

(

E(G) \ β∗(t)
)

=
(

E(G) \ (F1 ∪ F2)
)

. We define
Bt := ∂F1 ∪ ∂F2 ∪ ∂F3.

By construction, |Fi| ≤ bw(G). We claim that for all v ∈ V (G), if v occurs
in some ∂Fi then it also occurs in ∂Fj for some j 6= i. For, if v ∈ ∂Fi then there
must be edges e ∈ Fi and e′ ∈ E(G) \ Fi with v ∈ e and v ∈ e′. Hence, e′ ∈ Fj

for some j 6= i and therefore v ∈ ∂Fj . If follows that |Bt| ≤ max{2, 3
2 bw(G)}.

Now let T := (T, (Bt)t∈V (T )). It is easily verified that T is indeed a tree-
decomposition of G.6 Hence, we obtain a tree-decomposition of G of width ≤
max{2, 3

2 bw(G)} − 1. ¤

In principle one can use the general algorithm from Theorem 4.10 to compute
approximate branch-decompositions of graphs. However, as for the case of tree-
width, better algorithms are known.

Theorem 4.14 (Bodlaender, Thilikos [7]) There is an algorithm that, given a
graph G and k ∈ N, computes a branch-decomposition of G of width at most k,
if it exists, in time f(k) · |G|, for some computable function f : N → N.

Clique- and Rank-Width We now turn back to the original goal of giving
a different characterisation of clique-width of a graph in terms of its rank-width.
Recall that the branch-width of a graph is based on a decomposition of its edge
set. For rank-width we decompose its vertex set.

Let G be a graph. For U,W ⊆ V (G) we define a |U |× |W |-matrix MG(U,W )
with entries mu,w for u ∈ U and w ∈ W , whereMG(U, W )

mu,w :=

{

1 if {u,w} ∈ E(G)

0 otherwise.

Note that MG(V (G), V (G)) is the adjacency matrix of G. For all U,W ⊆ V (G)
let rk

(

MG(U,W )
)

be its row rank when viewed as a matrix over GF(2). Thisrk
`

MG(U, W )
´

induces the following connectivity function rG : 2V (G) → N defined as

rG(U) := rk
(

MG(U, V (G) \ U)
)

for U ⊆ V (G). Obviously, rG is symmetric, as the row and column rank of the
matrix coincide. It is left as an exercise to show that it is also submodular.

Definition 4.15 A rank-decomposition of a graph G is a branch-decomposition
of the pair (V (G), rG). The rank-width of G, in terms rw(G), is the minimalrank-width, rw(G)

width of any of its rank-decompositions.

6 At least if G has no isolated vertices. If it does, add a bag for each isolated vertex.
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Example 4.16 Consider again the graph G from Example 3.2 depicted in Fig-
ure 3. The following is a rank-decomposition of G of width 3.

•
a b

c d

• • • • •
9 10 5 6 1 3 7 8 11 4 2

The relevant matrices determining the width of the decomposition are the matri-
ces Ma, . . . ,Md at the nodes a, . . . , d.

Mc := MG

(

{5, 6, 9, 10}, {1, 2, 3, 4, 7, 8, 11}
)

=









1 0 0 0 0 0 0
0 0 1 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 1









Md := MG

(

{7, 8, 11}, {1, 2, 3, 4, 5, 6, 9, 10}
)

=





0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 1





Ma := MG

(

{1, 3, 5, 6, 9, 10}, {2, 4, 7, 8, 11}
)

=

















1 0 0 0 0
1 1 1 0 1
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 1

















Mb := MG

(

{2, 4, 7, 8, 11}, {1, 3, 5, 6, 9, 10}
)

=













1 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 1 0 1













Obviously, rk(Ma) = rk(Mb) = rk(Mc) = 3 and this is the maximal rank occur-
ring in the decomposition. Hence, the decomposition has width 3. ⊣

It is not too hard to see that the rank-width of a graph can be bounded in
terms of its branch-width and hence its tree-width. The following theorem due
to Oum gives an exact bound.

Theorem 4.17 (Oum [70]) rw(G) ≤ max{1,bw(G)} for all graphs G.

It is easily seen that the rank of width a complete graph is 1 (all entries in
all matrices are 1). Hence, there can be an arbitrarily large difference between
the rank-width and the branch-width of a graph. On the other hand, Oum [70]
proved that if I(Kn) denotes the incidence graph of the n-clique Kn, then for
all n ≥ 3 with n = 0, 1 mod 3 we have rw(I(Kn)) = bw(I(Kn)) = ⌈ 2

3 · n⌉.
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Another example of graphs of high tree- and high rank-width are n×n-grids,
whose rank-width has been shown by Jeĺınek [58] to be n.

An fpt-algorithm for computing rank-decompositions follows from Theo-
rem 4.10 but more efficient algorithms are known.

Theorem 4.18 (Hlineny, Oum [40]) There is an algorithm that, given a graph
G and k ∈ N, computes a rank-decomposition of G of width at most k, provided
rw(G) ≤ k, in time f(k) · |G|3, for some computable function f : N → N.

Oum and Seymour [71] established the following connection between rank-
width and clique-width:

rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1.

In particular, a class of graphs has bounded clique-width if, and only if, it has
bounded rank-width (see [71]). Together with Theorem 4.18 this yields a param-
eterized algorithm for computing approximate clique-decompositions of graphs.

We have already seen that clique-width and tree-width and hence branch-
width of graphs can differ arbitrarily and this clearly extends to rank-width.
However, Oum [70] established the following relation between the branch-width
of a graph and the rank-width of the incidence graph.

bw(G) − 1 ≤ rw(I(G)) ≤ bw(G)

4.3 Monadic Second-Order Logic and Bounded Clique-Width

In this section we aim at extending Courcelle’s and Seese’s theorems from tree-
width to clique-width. As in Section 3, we will do so by a reduction to MSO

model-checking and satisfiability on trees. In particular, we show next that for
each k the class of graphs of clique-width k can be interpreted in the class of
coloured trees for a suitable set of colours depending on k. The idea is simple: the
class of graphs of clique-width k is the class of graphs generated by k-expressions
whose syntax trees will be the class of trees we are looking for. Hence, let

Σk := {0, . . . ,k − 1,⊕, edgei,j , renamei→j : 0 ≤ i 6= j < k}

be the symbols used in k-expressions and let TΣk
be the class of all Σk-labelled

directed trees. Obviously, not every Σk-labelled tree is the syntax tree of a k-
expression. However, every Σk-labelled directed tree such that the symbol ⊕
occurs precisely at the nodes with two successors, no node has more than two
successors and the leaves are precisely the nodes labelled by a symbol from
{0, . . . ,k − 1} are syntax trees of k-expressions. These conditions are easily ex-
pressed by an MSO-sentence ϕvalid. Hence, for all T ∈ TΣk

, T |= ϕvalid if, and
only if, T is the syntax tree of a k-expression. The formula ϕvalid is one part of
an interpretation Γk :=

(

ϕuniv, ϕvalid, ϕE(x, y)
)

from Σk-labelled trees to graphs
of clique-width at most k.

The formula ϕuniv(x) defining the universe of a graph generated by a k-
expression coded in a tree T is trivial: ϕuniv(x) just defines the set of leaves.

40



Finally, we have to define the formula ϕE(x, y) such that for all T ∈ TΣ with
T |= ϕvalid and all leaves u, v ∈ V (T ) we have T |= ϕE(u, v) if, and only if, there
is an edge between u and v in the graph G generated by T . Note that such an
edge exists if, and only if, there is a common ancestor t of u and v in T labelled
by edgei−j , for some 0 ≤ i 6= j < k, so that at the node t, one of u, v has colour
i and the other the colour j. To check this, we only need to look at the unique
path from t to u (and v respectively) and keep track of how the colour of u
(resp. v) changes along this path. This can easily be formalised in MSO by a
formula ϕE(x, y) as required. Hence, the triple Γk := (ϕuniv(x), ϕvalid, ϕE(x, y))
is an interpretation from σk-structures to graphs, where σk := {E} ∪ Σk is the
signature of Σk-labelled trees.

The interpretation is the key to tractability results for MSO model-checking
and satisfiability. We consider model-checking first and prove the following ex-
tension of Courcelle’s theorem. It was first proved by Courcelle in terms of certain
graph grammars (see [12, 14]) and then by Courcelle, Makowski and Rotics for
graph classes of bounded clique-width.

Theorem 4.19 (Courcelle, Makowski, Rotics [18]) Let C be a class of graphs of
bounded clique-width. Then the model-checking problem for MSO on C is fixed-
parameter tractable.

Proof. Let ϕ ∈ MSO be fixed and let k be an upper bound for the clique-width of
the graphs in C. Given a graph G we first compute a k-expression ϑ generating G.
This can be done in polynomial time (see Section 4.2). Let T be the Σk-labelled
syntax tree of ϑ. We can now test whether T |= Γk(ϕ). ¤

We now consider the satisfiability problem for monadic second-order logic.

Theorem 4.20 For every k, the MSO-theory of the class CWk of graphs of
clique-width at most k is decidable.

Proof. Let ϕ ∈ MSO[{E}] be given. By the interpretation lemma, ϕ is valid in
CWk if, and only if, Γk(ϕ) ∈ MSO[σk] is valid in the class {T ∈ TΣ : T |= ϕvalid}
if, and only if, Γk(ϕ)∧ϕvalid is valid in the class of finite Σk-trees. The latter is
well known to be decidable [31, 85]. ¤

Seese conjectured a kind of converse to the theorem, the famous Seese con-
jecture [81].

Conjecture 4.21 (Seese’s conjecture) Every class C of structures with de-
cidable MSO1-theory has bounded clique-width.

This conjecture can be rephrased in terms of MSO-interpretations using the
following result due to Engelfriet and V. van Oostrom and also Courcelle and
Engelfriet.

Lemma 4.22 ([39, 16]) A class of graphs has bounded clique-width if, and only
if, it is interpretable in the class of coloured trees for some suitable set of colours.
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Note that these papers use so-called MSO-transductions instead of interpreta-
tions. An MSO-transduction is essentially the same as an interpretation except
that the formulas are allowed to have free second-order variables, the parameters.
A graph is then interpretable in a tree if there is an interpretation of the pa-
rameters by sets of tree-nodes satisfying the formulas in the MSO-transduction.
Hence, the parameters play exactly the same role as the colours of the trees
we use here. As the colours/parameters in our context are the symbols of k-
expressions, we prefer to have them as labels of the syntax trees rather than as
free variables in the interpretation.

Using the previous lemma we can rephrase Seese’s conjecture as follows:

Conjecture 4.23 (Seese’s conjecture) Every class C of structures with de-
cidable MSO1-theory is MSO-interpretable in the class of coloured trees for some
set of colours.

In [20], Courcelle and Oum prove the following weakening of the conjecture.
Let C2MSO be the extension of MSO by atoms Even(X), where X is a monadic
second-order variable, stating that the interpretation of X has even cardinality.
Hence, C2MSO extends MSO by counting modulo 2.

Theorem 4.24 (Courcelle, Oum [20]) Every class of graphs with a decidable
C2MSO theory has bounded clique-width, i.e. is interpretable in a class of coloured
trees.

Note that the theorem is weaker than Seese’s conjecture as there are less classes
of graphs whose C2MSO theory is decidable than there are classes of graphs with
a decidable MSO-theory.

4.4 MSO Model-Checking Beyond Tree- and Clique-Width

In the previous section we showed that the model-checking problem for monadic
second-order logic is fixed-parameter tractable on classes of graphs with bounded
tree- or clique-width. There is not much hope for extending these results to other
or larger classes of graphs such as planar graphs or graphs of bounded degree.
This follows immediately from the following theorem by Garey, Johnson and
Stockmeyer and the fact that 3-colourability is MSO-definable.

Theorem 4.25 (Garey,Johnson, Stockmeyer [49]) 3-colourability is NP-comple-
te on the class of planar graphs of degree at most 4.

We will see much stronger intractability results for MSO2 in Section 8 below.
However, first-order logic is tractable on many more classes of graphs. For in-
stance, Seese [82] showed that first-order logic admits linear time model-checking
(for a fixed formula) on any class of graphs of bounded degree. The same com-
plexity bound was later obtained by Frick and Grohe [47] for planar graphs and
classes of graphs of bounded local tree-width, a notion that properly extends both
planarity and bounded degree (see below).
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The most general results in this respect are fixed-parameter algorithms for
first-order model-checking on H-minor free graphs and an extension thereof,
called locally excluded minors. These results make heavy use of concepts and
results developed by Robertson and Seymour in their celebrated proof of the
graph minor theorem. In the next section, we will therefore give a brief overview
of the relevant concepts of the graph minor theory used in the proofs. One such
theorem, the excluded grid theorem, will be used later to prove the converse of
Seese’s theorem mentioned above. This will be the topic of Section 6. We return
to first-order model-checking in Section 7.

5 Graph Minors

In this section we present relevant terminology and results from graph minor
theory used later in the paper. Most of the results were developed in Robertson
and Seymour’s celebrated proof of the graph minor theorem (Theorem 5.2 below)
presented in a series [76] of 23 papers, with additions and improvements by other
authors.

5.1 Minors and Minor Ideals

Let G be a graph and e := {v, w} ∈ E(G) be an edge. The graph G/e obtained G/e

from G by contracting the edge e is the graph obtained from G by removing contraction

e, identifying its two endpoints, and possibly removing parallel edges. Formally,
G/e is defined by

V (G/e) := V (G) \ {v, w} ∪ {xe},
where xe is a new vertex, and

E(G/e) :=

(

E(G) \
{

{u, u′} : {u, u′} ∩ e 6= ∅
})

∪
{

{u, xe} : u ∈ V (G/e) and{u, v} ∈ E(G) or {u,w} ∈ E(G)
}

.

Figure 8 illustrates edge contraction.

Fig. 8. Contracting an edge

A graph H is a minor of a graph G if H can be obtained from G by deleting minor

vertices and edges and contracting edges. We write H 4 G to denote that H is
isomorphic to a minor of G.
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An alternative definition of minors is in terms of minor maps. A minor map
from H to G is a function µ that associates with every vertex v ∈ V (H) a
connected subgraph µ(v) ⊆ G and with every edge e ∈ E(H) an edge µ(e) ∈
E(G) such that

– if u, v ∈ V (H) and u 6= v then µ(v) and µ(u) are vertex disjoint and
– if e := {u, v} ∈ E(H) then µ(e) := {u′, v′} for some u′ ∈ V (µ(u)) and

v′ ∈ V (µ(v)).

The subgraph Gµ ⊆ G with

V (Gµ) :=
⋃

{

V (µ(v)) : v ∈ V (H)
}

and
E(Gµ) :=

⋃

{

E(µ(v)) : v ∈ V (H)} ∪ {µ(e) : e ∈ E(H)
}

is called a model or image of H in G. In graph theory literature, the term modelmodel, image

is commonly used. We prefer the name image here to avoid confusion with logical
models. Figure 9 illustrates an image of K5 in a graph G.

Fig. 9. Image of K5 in a graph G

It is easily seen that we can always choose an image of H in G so that each
vertex is represented by a tree in G.

Let G,H be graphs. G is a subdivision of H if H can be obtained from G bysubdivision

replacing some edges in G by paths which are pairwise internally vertex disjoint,
i.e. H can be constructed from G by repeatedly subdividing edges. If a subgraph
of G is isomorphic to a subdivision of H, then H is called a topological minor
of G. Now suppose H 4 G and H has maximal degree 3. Let µ be a minor maptopological minor

from H into G so that the image of all vertices of H are trees in G. Then each
of these trees has at most 3 leaves and hence at most one vertex of degree more
than two. It follows that every graph H of maximal degree ≤ 3 that is a minor
of G also is a topological minor of G.

Lemma 5.1 Let H,G be graphs. If ∆(H) ≤ 3 and H 4 G, then H is a topolog-
ical minor of G.
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If H 64 G, we say that H is a forbidden minor of G, or that G excludes H. For excluded minor

any graph H let Excl(H) := {G : H 64 G} be the class of graphs not containing Excl(H)

H as a minor. Analogously, if H is a set of graphs, then Excl(H) :=
⋂

{

Excl(H) : Excl(H)

H ∈ H} is the class of graphs not containing any member of H as a minor.
A class C of graphs is a minor ideal if for all G ∈ C and H 4 G also H ∈ C. minor ideal

It is proper if it is not the class of all graphs. proper minor ideal

A class C is characterised by a class F of graphs if C = Excl(F). Note
that any minor ideal C can be characterised by a class of excluded minors,
e.g. C = Excl(Graphs \ C). As the main result of their fundamental work on
graph minors, Robertson and Seymour proved that any minor ideal can in fact
be characterised by a finite set of forbidden minors.

Theorem 5.2 (Robertson, Seymour [80]) For every minor ideal C there is a fi-
nite set F of graphs such that C = Excl(F).

There are many natural examples of minor ideals.

– Every cycle can be contracted to a triangle. Hence, Excl(K3) is the class of
acyclic graphs.

– Kuratowski’s theorem [61] (or rather a variant established by Wagner [90])
implies that planar graphs are characterised by excluding K3,3 and K5.

– Series-parallel graphs and outerplanar graphs exclude K4. It can be shown
that Excl(K4) is the class of subgraphs of series-parallel graphs and the
class of outerplanar graphs is characterised by Excl(K4,K2,3). (See e.g. [30,
Exercises 7.32 and 4.20].)

– The class of graphs not having k vertex disjoint cycles, for any fixed k ∈ N.
For k ∈ N let Tk be the graph consisting of k disjoint copies of a triangle.
Clearly, every graph containing k vertex disjoint cycles contains Tk as a
minor. Conversely, every graph containing Tk as a minor also contains k
vertex disjoint cycles. Hence the class Ck of graphs not having k disjoint
cycles is characterised by Tk.

It is easily seen that for each k ∈ N the class Tk of graphs of tree-width at
most k and the class Bk of graphs of branch-width at most k are minor ideals
and so is the class of graphs of genus at most k. Finally, let us mention another
famous example of a minor ideal: the class of knotlessly embeddable graphs.

On the other hand, the class of graphs of clique-width at most k is not minor
closed and hence not a minor ideal. Also, the class of graphs of crossing number
k ≥ 1 is not minor closed.

Robertson and Seymour also proved that for any fixed graph H, testing if a
graph G contains H as a minor can be done in cubic time (we will say more about
this later in this section). Hence, combining this minor test with Theorem 5.2
implies that every minor-ideal can be decided in cubic time.

Corollary 5.3 Every minor ideal can be decided in cubic time.

The various concepts and results developed in the course of the proof of
Theorem 5.2 have sparked of a rich algorithmic theory of graphs based on struc-
tural restrictions of instances. We have already hinted at the algorithmic theory
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of graphs of bounded tree-width. However, the algorithmic applications of the
graph minor theory developed by Robertson and Seymour extend far beyond
tree-like graphs. In the following two sections we present some of the results and
methods with implications for algorithms and model-checking on graphs.

However, the following can only give a glimpse into the deep results under-
lying the proof of the graph minor theorem – we will not even be able to state
the relevant results in full detail let alone attempt to prove them. While we are
trying to give an intuitive account of the results and proof methods, we will nec-
essarily have to be brief and the presentation may not always reflect the actual
proofs.

5.2 Disjoint Paths and the Trinity Lemma

Let us try to prove Theorem 5.2. Clearly, the statement of the theorem is equiv-
alent to the statement that in every infinite class of finite graphs one graph is a
minor of another. Let C := {H,G1, G2, . . . } be an infinite class of finite graphs.
If H is a minor of some Gi, then the claim is trivially satisfied by H. Hence, the
only interesting case is when no Gi ∈ C contains H as a minor. For this reason,
much of the theory developed by Robertson and Seymour deals with graphs not
containing another fixed graph H as a minor. We refer to such graphs as H-
minor free. Clearly, if G is H-minor free, then G also excludes a clique Kk as aH-minor free

minor, for instance taking k := |V (H)|. Let us fix k for the rest of the section.
The key to studying the structure of Kk-minor free graphs is the following

theorem, proved by Robertson and Seymour in [74]. Recall from Section 2 that
Gk×k denotes the k × k-grid.

Theorem 5.4 (Excluded Grid Theorem [74]) There is a computable func-
tion f : N → N such that every graph of tree-width at least f(k) contains Gk×k

as a minor.

We refer to [30] for a proof of this theorem. As every planar graph is a minor
of a suitably large grid, the theorem implies – is equivalent, in fact – to the
following statement.

Corollary 5.5 For all H, the class Excl(H) of H-minor free graphs has bounded
tree-width if, and only if, H is planar.

The function f in the original proof of Theorem 5.4 was huge. In [73], Robert-

son, Seymour and Thomas significantly improved the bounds on f to 202k5

.
However, no matching lower bounds have been established and it is conjectured
that the actual bound may be as small as polynomial in k. For planar graphs G
a much better bound can be obtained.

Theorem 5.6 (Robertson, Seymour, Thomas [73]) Every planar graph with no
k × k-grid minor has tree-width ≤ 6k − 5.

For branch-width a slightly tighter bound has been established: every planar
graph of branch-width at least 4k − 3 contains a k × k-grid minor (see [73]).
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Whereas it is still open whether optimal tree-decompositions of planar graphs
can be computed in polynomial time, in [84] Seymour and Thomas proved that
optimal branch-decompositions of planar graphs can be computed in time O(n4).
This has later been improved to O(n3) by Gu and Tamaki [54]. It should be noted
that these algorithms do not contain any large hidden constants and perform
reasonably well in practise. Optimal branch-decompositions of planar graphs
with up to 50.000 edges have been computed by actual implementations of the
algorithms (see e.g. [5]).

To give an application of the grid-theorem on planar graphs, we note that

it implies an 2O(
√

k) · nc algorithm, for some c ∈ N, for deciding whether a
planar graph has a path of length k. For this, use an O(n3) algorithm for testing
whether a given planar graph G has branch-width at most 4

√
k−3. If so, then one

can compute a suitable branch-decomposition and use dynamic programming to
decide whether a path of length k exists. Otherwise, the planar grid theorem
tells us that the graph contains a

√
k ×

√
k grid as a minor and hence a path

of length at least k following the grid structure. A similar algorithmic idea has
found numerous applications, for instance on H-minor free graphs, in the form of
bidimensionality theory. See e.g. [25, 32, 27, 33, 24, 26, 28] and references therein.

For the rest of this section we will work with a somewhat simpler structure
than grids, called walls. wall

b b

bb

b b b b b
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b b b b b
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Fig. 10. Elementary walls of height 1–4

An elementary wall is a graph as displayed in Figure 10. A wall of height h
is a subdivision of an elementary wall of height h. See Figure 11 for a wall of
height 4. The induced cycles of a wall, i.e. the cycles of length 6 in an elementary
wall or their subdivisions in general walls, are called the bricks of the wall. We brick

assign coordinates (i, j) = (row, col) to the bricks of a wall. The brick in the
lower left corner is assigned (1, 1), its neighbour to the right (1, 2), the brick just
above it (2, 1) and so on. The central brick of H is the brick with coordinates central brick

(⌈h/2⌉ , ⌈h/2⌉). A central vertex of a wall is a vertex contained in the central central vertex

brick but not in its neighbours to the left or right.
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The outermost (non-induced) cycle of a wall W is called its perimeter .perimeter
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Fig. 11. A wall of height 4

Clearly, every large grid contains a large wall as a subgraph and conversely
every large wall contains a large grid as a minor. The main advantage of working
with walls rather than grids is that if G contains an elementary wall as a minor
then, by Lemma 5.1, it contains a wall of the same height as a subgraph.

Let us come back to the analysis of the structure of graphs. Let t be a bound
on the tree-width we want to consider. If G has tree-width at most t, then it is
sufficiently tree-like and its structure is well understood. So suppose G has large
tree-width. By the Excluded Grid Theorem 5.4, we know that G contains a large
wall W as a subgraph. We can use W as a drawing board on which we draw the
rest of the graph G. Clearly, as G is not required to be planar, this “drawing” will
not necessarily be plane, i.e. edges may cross. In particular, edges or paths may
span over different bricks of the wall. This is called a “crossing”. More formally,
a crossing consists of two pairwise vertex-disjoint paths with endpoints v1, v3

and v2, v4 such that v1, v2, v3, v4 occur clockwise in this order on some cycle of
the grid. Figure 12 illustrates the concept of crossings.

Crossings are important for our purpose. For, if G contains many crossings
which, in addition, are sufficiently far apart from each other on the wall used to
draw G, then we can use the crossings to find a large clique minor of the graph.
To see this, take a large clique and draw it “flat” on the wall W . Necessarily
(unless your clique has less than five vertices) some of the edges in the clique
will cross each other. However, if the wall W is large enough and there are
sufficiently many crossings far apart from each other, then we can replace the
edges of the clique by disjoint paths in G so that edges that cross are replaced by
disjoint paths that cross each other using a “crossing” in the drawing of G. The
following Figure 13 illustrates this with K5 and one crossing. The grey areas are
(essentially) the parts that are being contracted for each vertex in the clique.

Hence, if W is large enough and there are many crossings pairwise far apart
in W , then G contains a large clique minor. So, how does a graph G drawn on
a large wall look like if it does not contain a large clique minor?
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Fig. 12. Crossings in a graph

Fig. 13. A K5-minor in a wall with one crossing

As explained before, all but a small number of crossings must be grouped
together in a bounded number of small parts of the wall. These regions with
many crossings are called vortices. Further, there can be some vertices which vortex

are very well connected to the rest of the graph, i.e. a set X of vertices that have
edges to arbitrary vertices in the graph, where edges can be replaced by paths
of arbitrary length. The vertices in X are called apices (see Figure 14). apex

However, any such well-connected vertex in X can be used as a crossing and
hence, if G excludes Kk, there are either at most |X| ≤

(

k
2

)

such elements, or
their connections to the wall are concentrated on a small part of the wall W
(and hence they are part of the vortices) so that the crossings cannot be used to
route the edges of a Kk-minor. In this case, we will find a subwall of W which
is still “large” and is connected only to a subset of X of size ≤

(

k
2

)

. Hence, we
can continue the discussion with the subwall W ′ where we do not have vortices
and only a bounded number of apices.

49



Fig. 14. Vortices and apices in a graph drawn on a wall

Besides the apices, there can be other parts of the graph with direct con-
nections to the interior of the wall,7 which do not induce any further crossings.
We call these extensions. Essentially, an extension is a subgraph D of G that
is connected to the wall only within a brick and only with at most 3 vertices.
This is important as with three vertices the extensions cannot induce further
crossings in the wall.

Furthermore, we can assume that the tree-width of any such extension is
bounded, as otherwise we could forget about the rest of the graph and do the
same analysis within the extension, either producing a large clique minor or a
large wall with vortices, apices and extensions. Note, though, that the apices
may have connections to the extensions. See Figure 15 for an illustration.

The discussion so far presents the main ideas in the proof of the next lemma,
one of the important results in the Graph Minor Series. To state it precisely, we
need some further notation.

For a subgraph D of a graph G, we let ∂GD be the set of all vertices of D
that are incident with an edge in E(G) \ E(D). In the following, let W be a
wall of height at least 2 in a graph G and let P be the perimeter of W , i.e. the
boundary cycle of W . Let K ′ be the unique connected component of G \P that
contains W \ P . The graph K = K ′ ∪ P is called the compass of W in G. A
layout of K (with respect to the wall W in G) is a family (C,D1, . . . ,Dm) of
connected subgraphs of K such that:

1. K = C ∪ D1 ∪ . . . ∪ Dm,
2. W ⊆ C and there is no separation (X,Y ) of C of order ≤ 3 with V (W ) ⊆ X

and Y \ X 6= ∅,

7 There may also be parts of the graph connected to the wall only through its perime-
ter. These parts are not relevant here but we come back to this in the next section.
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Fig. 15. Apices, extensions and connections within the subwall W ′

3. ∂GDi ⊆ V (C) for all i ∈ {1, . . . ,m},
4. |∂GDi| ≤ 3 for all i ∈ {1, . . . ,m},
5. ∂GDi 6= ∂GDj for all i 6= j ∈ {1, . . . ,m}.

We let C be the graph obtained from C by adding new vertices d1, . . . , dm

and, for 1 ≤ i ≤ m, edges between di to the vertices in ∂GDi and edges between
all vertices in ∂GDi. Hence, for each i ∈ {1, . . . ,m}, the vertex di together with
the (at most 3) vertices in ∂GDi form a clique. We call C the core of the layout
and D1, . . . ,Dm its extensions. The layout (C,D1, . . . ,Dm) is flat if its core C is
planar. Note that this implies that the core has an embedding in the plane that
extends the “standard planar embedding” of the wall W (as shown in Figure 10),
because the wall W has a unique embedding into the sphere. We call the wall
W flat (in G) if the compass of W has a flat layout.

The following lemma, which we refer to as the trinity lemma, is (essentially)
Lemma 9.8 of [78]. Concerning the uniformity, see the remarks at the end of [78]
(on page 109).

Lemma 5.7 (Trinity Lemma [78]) There are computable functions f, g : N2 →
N and an algorithm A that, given a graph G and non-negative integers k, h, com-
putes either

1. a tree-decomposition of G of width f(k, h),
2. a Kk-minor of G, or
3. a subset X ⊆ V (G) with |X| <

(

k
2

)

, a wall W of height h in G \ X, and
a flat layout (C,D1, . . . ,Dm) of the compass of W in G \ X such that the
tree-width of each of the extensions D1, . . . ,Dm is at most f(k, h).
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Furthermore, the running time of the algorithm is bounded by g(k, h) · |V (G)|2.

Using the trinity lemma, we can now sketch the proof of the following theorem
due to Robertson and Seymour [78].

Theorem 5.8 (Robertson, Seymour [78]) The following problem is fixed-para-
meter tractable with a cubic fpt algorithm.

p-Disjoint-Paths
Input: Graph G, s1, . . . , sk, t1, . . . , tk ∈ V (G).

Parameter: k.
Problem: Are there k vertex disjoint paths connecting

si and ti, 1 ≤ i ≤ k?

The idea of the algorithm is as follows. Apply the trinity lemma on G for
suitable values of k and h. If G has tree-width ≤ f(k, h), then the disjoint paths
problem can be solved by standard techniques using dynamic programming (or
by formalising the problem in MSO and using Courcelle’s theorem). Otherwise,
if G contains a large clique minor (say at least K3k), then we can do the fol-
lowing. To simplify the presentation, let us assume that G actually contains
the 3k-clique as a subgraph. If there are 2k vertex disjoint paths connecting
{s1, . . . , sk, t1, . . . , tk} to the clique, then these paths together with the edges of
the clique yield the k vertex-disjoint paths connecting si, ti as desired. Other-
wise, by Menger’s theorem, there is a separator X ⊆ V (G) of size at most 2k
separating the clique and (part of) the {si, ti : 1 ≤ i ≤ k}. But now, the prob-
lem can be reduced to a constant number of disjoint paths problems on smaller
subgraphs, trying to connect si, ti with all possible combinations of elements in
the separator.

If G does not contain the clique as a subgraph but as a minor, then the
argument becomes considerably more complicated, but can still be done. Hence,
the case where G contains a large enough clique minor can be solved efficiently.

Finally, consider the third case of the trinity lemma, where G contains a large
wall W and we are given a flat layout of W , its extensions and the apices. This
is the tricky bit. However, one can show that if W is large enough, then it must
contain a subwall W ′, which is still large, does not contain any of the si’s or
ti’s and is “homogeneous” with respect to the apices. Informally, homogeneous
means that every type of a small part of the wall with respect to the apices
is realised sufficiently often all over the subwall W ′. In [78], Robertson and
Seymour show how such a homogeneous subwall can be constructed efficiently.
To simplify the presentation, assume that W ′ has actually no direct connection
to the apices (other than those using vertices of W \ W ′). Now suppose there
are k vertex-disjoint paths connecting si and ti, 1 ≤ i ≤ k. Some of these paths
may use parts of W ′. As none of the endpoints si, ti is in W ′, the paths merely
cross W ′, although they may do so in a rather irregular and complicated way.
However, it can be shown that if W ′ is homogeneous and large enough, then any
such set of paths can be rerouted so as to avoid a central vertex v of the wall
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(recall from above that the central vertices are those in the middle of the wall).
This implies, that k vertex-disjoint paths connecting si, ti exist in G if, and only
if, such paths exist in G−v. Hence, we can remove the central vertex v and start
the whole procedure again on the smaller graph.

It seems intuitively obvious that on a very large wall, everything that can
be routed through the wall can be routed without using the central vertex. A
formal proof of this is extremely complicated and uses a major part of the deep
structure theory developed in the graph minor series.

As mentioned above, the solution to the disjoint paths problem was given by
Robertson and Seymour in [78]. In fact, they solve the following more general
problem. A rooted graph (G, v1, . . . , vk) is a graph G together with vertices vi ∈
V (G). A rooted graph (H, t1, . . . , tk) is a minor of (G, v1, . . . , vk), if there is a
minor map µ from H to G such that vi ∈ µ(ti) for all 1 ≤ i ≤ k.

Theorem 5.9 (Robertson, Seymour [78]) The following problem is fixed-para-
meter tractable with a cubic fpt algorithm.

p-Rooted-Minor
Input: Rooted graphs (G, v1, . . . , vk), (H, t1, . . . , tk).

Parameter: k.
Problem: Is (H, t1, . . . , tk) a minor of (G, v1, . . . , vk)?

Clearly, this implies Theorem 5.8 and also Corollary 5.3. This is a truly
remarkable consequence of the proof of the graph minor theorem. Note, however,
that the statement is purely existential. For every minor ideal there is a finite
set of excluded minors and for each member H of the set we can decide in cubic
time, whether a graph G contains H as a minor. The theory does not yield
an algorithm to compute a set of excluded minors and hence it only states the
existence of a polynomial time membership test but not an actual algorithm. We
come back to this in Section 5.4 where we consider ways in which to overcome
this non-constructive element in the theory.

5.3 The Structure of H-Minor Free Graphs

The proof of the graph minor theorem relies on a structure theory for graphs G
excluding a fixed graph H as a minor. We have already seen some of the results
developed in the proof. In this section we focus on describing the structure of
graphs in terms of simple building blocks into which they can be decomposed.

The key to the decomposition theorem we are going to describe is once again
the grid theorem, or in this case the trinity lemma as described in the previous
section. Clearly, as G excludes a fixed graph H as a minor, it is obvious that, if
we choose the values for k and h correctly, of the three cases of the trinity lemma,
the second is impossible: if G excludes H it cannot contain a large clique minor.
Further, if G has small tree-width, then it can be decomposed into subgraphs
of constant size. Hence, we primarily have to deal with the third case, where G
has large tree-width but does not contain a large clique minor.
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Recall our exploration of the trinity lemma in the previous section. Let us
assume that G is highly connected. If not, we first decompose it into parts that
are highly connected. We will come back to this later.

As G has high tree-width it must contain a large wall as a subdivision. This
wall may contain “crossings”, in particular there may be a bounded number of
apices and vortices. As explained before, apart from the vortices and the apices,
the rest of the graph, the extensions, must fit nicely into the planar structure
of the wall, i.e. they fit into the individual bricks. So far, however, we only have
discussed the interior of the wall. There may be more to the graph, which is
connected to the wall only through the perimeter. These connections cannot be
too wild, though, as otherwise we would again find a large clique minor.

We can now subdivide the exterior cycle of the wall into a bounded number
of regions and glue some of them together. In this way we obtain a graph that
can be embedded into a surface of bounded genus: any such surface can be
obtained from a convex polygon in the plane by gluing some edges together.
Hence, after removing a bounded number of apices and vortices we obtain a
graph that can be embedded into a surface of bounded genus. We say that G
has almost bounded genus. Recall that we assumed that G is highly connected. If
it is not, then we can decompose it into pieces with this property. This realisation
is the main structural theorem in Robertson and Seymour’s proof of the graph
minor theorem: if C is a class of graphs excluding a fixed minor H, then every
graph G ∈ C can be decomposed into graphs that have almost bounded genus.

We still have to make precise what we mean by “decomposing a graph”.
Intuitively, we recursively find a small separator in the graph and split the graph
along the separator until the remaining graph is highly connected, and hence no
such separators can be found. However, by doing so some information is lost. Let
G be a graph and X be a small separator. We want to decompose the graph into
subgraphs each containing X and a component of G − X. Clearly, in a graph
obtained from X and a component C of G \X, we lose the connections between
elements of X through the other components of G \ X. In particular, elements
of X which are far apart in X ∪ C can be close together in other components
and hence in G. This loss of information in the decomposition process needs to
be avoided. A rather drastic approach, which we take here, is to add all possible
edges between elements of the separator X, i.e. to turn X into a clique.

Let T := (T, (Bt)t∈V (T )) be a tree-decomposition of a graph G and let t ∈
V (T ) be a node with neighbours t1, . . . , tk. The torso [Bt] of the bag Bt is definedtorso, [Bt]

as G[Bt] ∪
⋃k

i=1 K
[

Bti

]

, where K
[

Bti

]

is the complete graph on the vertex set
Bti

. The tree-decomposition T of G is over a class C of graphs if the torsi of alltree-decomposition

over C bags in T belong to C.

Example 5.10 Figure 5.10 shows a tree-decomposition of a graph over the class
of triangles. Part b) shows the tree-decomposition and Part c) the corresponding
torsi.
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Fig. 16. Tree-Decomposition over the class of triangles

A graph G is called decomposable over a class C if it has a tree-decomposition
over C. For every class C we denote the class of graphs decomposable over C by
D(C). It is not hard to see that if C is minor closed then so is D(C). D(C)

Example 5.11 Let Ck+1 be the class of graphs of order at most k + 1 and let
Tk be the class of graphs of tree-width at most k. Then Tk = D(Ck+1). ⊣

Robertson and Seymour’s structure theorem for classes of graphs excluding
a minor can now be reformulated as follows.

Theorem 5.12 (Robertson, Seymour [79]) For every minor ideal D there is a
class C of graphs of almost bounded genus such that D ⊆ D(C).

We will not make the notion of “almost bounded genus” precise here and
instead refer to [79] or to [30, Chapter 12] which contains a more elaborate
introduction to the theory. For the applications we have in mind, we do not have
to work with almost bounded genus graphs, vortices and apices directly but
can use a simpler version of the structure theorem. This relies on the following
lemma, proved by Grohe in [52].

The local tree-width is the function ltw : Graphs × N → N defined as local tree-width

ltw(G, r) := max
{

tw
(

G
[

Nr(v)
])

: v ∈ V (G)
}

,

where Nr(v) is the r neighbourhood of v, i.e. the set of vertices of distance at most
r from v. That is, the local tree-width of a graph assigns to every radius r ∈ N

the maximal tree-width of an r-neighbourhood in the graph G. See Section 7.3
for more on local tree-width.

Lemma 5.13 (Grohe [52]) Let S be a surface. Then the class of all minors of
graphs almost embeddable into S has linear local tree-width.
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For all λ, µ ≥ 1 define

L(λ) := {G : ltw(H, r) ≤ λ · r for all H 4 G}

and

L(λ, µ) := {G : there is X ⊆ V (G), |X| ≤ µ s.th. G \ X ∈ L(λ)}.

Then, the previous lemma implies the following simpler structure theorem that
will be used in later sections.

Theorem 5.14 For every minor ideal D there exist λ, µ ≥ 1 such that D ⊆
D(L(λ, µ)).

Furthermore, Grohe proves the existence of an algorithm for computing the
decompositions over L(λ, µ), based on the following lemma.

Lemma 5.15 (Grohe [52]) Let C be a minor closed class of graphs. Then there
is a polynomial-time algorithm that, given a graph G, either computes a tree-
decomposition of G over C or rejects G, if no such decomposition exists.

Taking C to be L(λ, µ), the lemma implies the existence of an algorithm for
computing tree-decompositions over L(λ, µ). However, the algorithm outlined in
[52] uses non-constructive elements of the graph minor theory and hence, while
proving the existence of an algorithm, does not actually state one.

In [29], Demaine, Hajiaghayi and Kawarabayashi proved that the decompo-
sitions as guaranteed by Theorem 5.12 can be computed in polynomial time for
every fixed class of graphs excluding at least one minor H.

Theorem 5.16 (Demaine, Hajiaghayi, Kawarabayashi [29]) For every fixed H,
there is a polynomial-time algorithm for computing the decompositions of H-
minor free graphs as stated in Theorem 5.12.

From this, for each fixed H, a polynomial time algorithm which computes a
tree-decomposition of an H-minor free graph G over L(λ, µ), for suitable values
of λ, µ, can easily be derived.

One may wonder why we only considered classes L(λ) of linear local tree-
width instead of classes of graphs where the local tree-width is bounded by a
polynomial p(r) or even worse. In [24], Demaine and Hajiaghayi showed that
minor closed classes of bounded local tree-width always have linear local tree-
width. Hence, there is no need to consider non-linear local tree-width here, as
all classes L(λ) are minor-closed.

5.4 Computing Excluded Minor Characterisations

Recall from Section 5.1 that every minor ideal can be characterised by a finite
set of excluded minors (Theorem 5.2) and that for each fixed H it is decidable
in cubic time whether a graph G contains H as a minor (Theorem 5.9). As
a consequence we obtain Corollary 5.3 stating that every minor ideal can be
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decided in cubic time. Note that the result contains a non-constructive element
as it does not give a way to compute the excluded minors for a minor ideal. For
instance, while we know that the class of knotlessly embeddable graphs can be
decided in cubic time, no algorithm for doing so is actually known.

This naturally raises the question whether this non-constructive element can
be removed from the proof, i.e. whether characterisations of minor ideals in
terms of their excluded minors can be computed. Clearly, to state this precisely,
we have to specify how we want to represent a minor ideal as an input to an
algorithms and also what exactly we want to understand by a characterisation
of a minor ideal in terms of excluded minors.

Let C be a minor ideal. A graph H is an obstruction for C if H is an excluded obstruction

minor of C but for all H ′ 4 H with H ′ 6= H we have H ′ ∈ C. Hence, obstructions
are minimal excluded minors. We denote the set of obstructions of C by O(C). O(C)

It is easily seen that for all minor ideals C, O(C) is unique up to isomorphism
and it is finite by the Graph Minor Theorem. We will therefore take O(C) as the
characterisation of minor ideals we want to compute.

This leaves us with the question how to specify a minor ideal as an input for
algorithms. A natural choice is to provide a Turing-machine deciding the ideal
and use this as input. However, Fellows and Langston [44] observed that there is
no algorithm which, given a Turing-machine deciding a minor ideal C, computes
the set O(C). Later, Courcelle, Fellows and Langston [15] showed that there is
no algorithm which, given an MSO-sentence defining a minor ideal C, computes
O(C).

On the other hand, it is known that obstructions can be computed for a
number of natural minor ideals. For instance, for all k ≥ 1 the obstructions can
be computed for the class Tk of all graphs of tree-width ≤ k (see [62]), for the
class Bk of all graphs of branch-width ≤ k (see [50]) and for the class Gk of
graphs of genus ≤ k (this follows from [83] or a combination of [87] and [43]).

Fellows and Langston were the first to study algorithmic issues related to
the graph minor theorem and ways to overcome its non-constructiveness. In
[43], they propose a general method for computing obstruction sets based on a
generalisation of the Myhill-Nerode theorem of formal language theory to “graph
languages”. Adler, Courcelle, Grohe and Kreutzer8 present a similar method for
computing obstruction sets based on definability in monadic second-order logic
(see [1]). We will give a brief presentation of this method and illustrate it by an
example. For all minor ideals C and D, their union C ∪ D is minor closed and
hence a minor ideal. We will show below that the set of obstructions for C ∪ D
can be computed from O(C) and O(D).9 The proof of this result also contains a
nice application of the Trinity Lemma 5.7.

We first establish some lemmas which are all easily proved using well-known
results from automata theory and the connection between monadic second-order
logic on trees and tree-automata (see e.g. [86, 10]).

8 The proof presented here follows a suggestion by Bruno Courcelle simplifying the
original proof of the result in [1].

9 Note that the analogous problem for C ∩ D is trivial.
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Lemma 5.17 There is an algorithm which, given a formula ϕ ∈ MSO defining
a minor ideal C, computes a formula ψ ∈ MSO defining O(C).

Proof. A graph H is an obstruction for C if H 6∈ C but H − v ∈ C,H − e ∈ C and
H/e ∈ C for all v ∈ V (H) and e ∈ E(H). Given the formula ϕ defining C, this
can be easily be formalised in MSO. ¤

The next lemma is based on a pumping lemma for tree-automata (see [10]).

Lemma 5.18 There is an algorithm which, given a formula ϕ ∈ MSO so that
the class Mod(ϕ) := {H : H |= ϕ} is finite (up to isomorphism) and a k ∈ N

such that tw(H) ≤ k for all H ∈ Mod(ϕ), computes Mod(ϕ).

Proof (sketch). Suppose ϕ has only finitely many models each of tree-width ≤ k.
As we are given k explicitly, we can use the interpretation defined in Section 3.3
to encode the models of ϕ as coloured trees over a suitable alphabet and reduce
the problem of computing the models of ϕ to the problem of computing the
corresponding tree-encodings. An upper bound for the size of these models can
then be derived from a version of the pumping lemma of formal language theory
for classes of trees definable by tree-automata. From this bound on the size, the
actual models of ϕ can easily be computed. ¤

The previous lemmas together with the Graph Minor Theorem immediatly
imply the following corollary which is the basis of the method for computing
obstruction sets proposed in [1].

Corollary 5.19 There is an algorithm which, given a formula ϕ ∈ MSO defining
a minor ideal C and a k ∈ N such that tw(H) ≤ k for all H ∈ O(C), computes
the set O(C).

As an application of the result we show that the obstructions for the union
C ∪ D of minor ideals C,D can be computed from the sets O(C) and O(D). For
this, we have to show that C ∪ D is MSO-definable and to establish an upper
bound on the tree-width of its obstructions.

It is easily seen that for any fixed graph H there is an MSO-formula ϕH

which is true in a graph G if, and only if, H 4 G. This follows immediately
from the definition of minors in terms of minor maps and images as presented
in Section 5.1. To define C ∪ D in MSO note that G ∈ C ∪ D if, and only if,
G either excludes a minor from O(C) or a minor from O(D). As we have seen,
this is MSO-definable and a corresponding formula can easily be computed. It
remains to establish a bound on the tree-width of the obstructions.

Lemma 5.20 Let C and D be minor ideals and let U := C ∪ D. There is an
algorithm which, given O(C) and O(D) as input, computes a number k ∈ N such
that tw(H) ≤ k for all H ∈ O(U).

Proof (sketch). Suppose G ∈ O(U). Hence, G 6∈ U but G − v ∈ U for all
v ∈ V (G). It follows that there are H ∈ O(C) and I ∈ O(D) such that H 4 G
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and I 4 G. Let k := max{|H|, |I|} + 1 and choose h “large enough”, where the
meaning of large enough will become clear later.

By the Trinity Lemma 5.7, either a) tw(G) ≤ f(k, h) for some computable
function f , or b) Kk 4 G or c) there is a subset X ⊆ V (G) with |X| <

(

k
2

)

, a
wall W of height h in G \ X, and a flat layout of the compass of W in G \ X.

Suppose c) applies. It follows from a result by Robertson and Seymour in
[78] that if h is chosen large enough then there is a vertex v in the wall W (the
middle vertex) such that G − v still contains H and I as minors, contradicting
the minimality of the obstruction G. Hence, case c) is impossible. The idea to
choose the middle vertex is same as in the proof of Theorem 5.8 described in
Section 5.2.

For b), if G contains a Kk minor then there is a strict subgraph G′ ( G
containing a Kk−1 minor. Hence, by the choice of k, G′ contains H and I as
minors, contradicting the minimality of G. Thus, case b) is impossible as well.

Finally, in a) the tree width of G is bounded by a computable function in h
and k and we have found a uniform upper bound for the tree-width of G which
concludes the proof. ¤

Corollary 5.21 ([1]) For all minor ideals C,D the set O(C ∪ D) is computable
from the sets O(C) and O(D).

Using a similar approach it was shown in [1] that obstructions can be com-
puted for other natural minor ideals. In particular, if C is a minor ideal whose
obstructions are known, then the obstructions can be computed for the class
Capex of apex graphs over C, defined as

Capex := {G : there is v ∈ V (G) such that G − v ∈ C}.

However, there remain interesting open problems.

Open Problem 5.22 1. Is there an algorithm which, given λ ≥ 0, computes
the obstructions O(L(λ))? See Section 5.3 for a definition of L(λ) and L(λ, µ).
Note that, by using the computability of O(Capex) from O(C), the set O(L(λ, µ))
can be computed from O(L(λ)), for all µ ≥ 0.

2. If C is a minor ideal whose obstructions are given, can we compute the ob-
structions of the class D(C) of graphs tree-decomposable over C?

A solution for both open problems would be particularly interesting as every
minor ideal is a subclass of a class D(L(λ, µ)) for some λ, µ ≥ 0.

6 Monadic Second-Order Logic Revisited

Recall from Section 3.5 that for each k, the MSO2-theory of the class Tk of graphs
of tree-width at most k is decidable. The aim of this section is to prove a kind
of converse, also due to Seese.

Theorem 6.1 (Seese [81]) If C is a class of graphs with decidable MSO2-theory,
then C has bounded tree-width.
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The proof of the theorem crucially relies on the excluded grid theorem (The-
orem 5.4) and the fact that the MSO-theory of grids is undecidable. The latter
can easily be established using tiling systems or by a direct encoding of the run
of Turing-machines using MSO-formulas (see e.g. [8]).

Suppose C has a decidable MSO2-theory but unbounded tree-width. Then,
by the excluded grid theorem, for all n ≥ 1, there is a graph Gn ∈ C containing
Gn×n as a minor. The key to the theorem is to show that grid minors can be
defined in MSO2. Hence, the (undecidable) MSO-theory of grids can be reduced
to the MSO-theory of C contradicting the assumption that the latter is decidable.

We start by showing how walls can be formalised in MSO2. The extension to
grids follows easily. Let G be a graph and consider an MSO2-formula formalising
the following.

1. There are two sets H and V of edges, each of which induces a set of pairwise
vertex disjoint paths (which we will think of as horizontal and vertical paths
in a wall).

2. For all P ∈ H and Q ∈ V, P ∩ Q is a subpath of both, P and Q. Further,
V (P ∩ Q) ∩ V (H) = ∅ for all H ∈ (V ∪H) \ {P,Q}.

3. There is a path L ∈ V such that the intersection of L with each Q ∈ H
contains an endpoint of Q (L is the left-most vertical path in the wall).
Once we have L, we can give the horizontal paths P ∈ H a direction, where
we say that p ∈ V (P ) is to the left of p′ ∈ V (P ), if the subpath of P
containing p′ and a vertex in L also contains p.

4. There is a path T ∈ H such that the intersection of T with each P ∈ V
contains an endpoint of P (T is the top-most horizontal path in the wall).
As with horizontal paths, we can now use T to give the vertical paths P ∈ V
a direction and say that p ∈ V (P ) is above p′ ∈ V (P ).

5. For each path P ∈ V except L there is a path P ′ ∈ V (the path immediately
to the left of P ) such that for all Q ∈ H: if p ∈ V (P ∩Q) and p′ ∈ V (P ′∩Q)
are vertices in the intersection of Q and P , P ′, then p′ is to the left of p in
Q and there is no S ∈ H such that any s ∈ V (S ∩ Q) lies in the subpath of
Q between p and p′.

6. The analogue condition for horizontal paths.

Clearly, the various conditions are MSO2-definable. Now, if V and H satisfy
the conditions above, then they generate a wall in G and conversely, the disjoint
horizontal and vertical paths in a wall satisfy the conditions. Finally, it is easily
seen that the class of grids can be defined in the class of walls and hence grid
minors are MSO2-definable in graphs.

Note that here we crucially use the fact the we are working with MSO2-
formulas and hence can quantify over the edge sets of disjoint paths. In MSO1 we
could only try to quantify over the vertex set of disjoint paths. However, if there
are sufficiently many edges between these vertices, there is no way we can give
the paths an orientation, e.g. define paths being to the left of others. And clearly,
we cannot expect clique-minors to be definable in MSO1 as, by Theorem 4.20,
the MSO1-theory of graph classes of bounded clique-width is decidable and hence
there are classes with decidable MSO1-theory but unbounded tree-width.
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7 First-Order Model-Checking

In Section 3.4 and 4.3 we showed that the model-checking problem for variants
of monadic second-order logic is solvable in linear time for any fixed formula
on classes of graphs of bounded tree- or clique-width. As we have argued in
Section 4.4 and will explore further in Section 8 below, there is not much hope
for extending these results to other or larger classes of graphs. However, first-
order logic is tractable on much larger classes of graphs and in this section
we will present tractability results for first-order logic on several special classes
of graphs. The important property of first-order logic that makes these results
possible is locality.

The section is structured as follows. In Section 7.1 we introduce the concept
of locality and present Gaifman’s theorem. In Section 7.2 we apply locality to
obtain fixed-parameter algorithms for first-order model-checking on graph classes
of bounded degree. The algorithms developed in this section can be applied in a
much more general context using the concept of localisation of graph invariants.
This will be formally defined in Section 7.3. In Section 7.4 we present fixed-
parameter algorithms for first-order model-checking on H-minor free graphs.

7.1 Locality of First-Order Logic

Let G be a graph. Recall that the distance dG(u, v) between two vertices u, v ∈
V (G) is the length of the shortest path from u to v or ∞ if there is no such path.
Further, for every v ∈ V (G) and r ∈ N we define the r-neighbourhood of v in G
as the set

NG
r (v) := {w ∈ V (G) : dG(v, w) ≤ r}

of vertices of distance at most r from v. For a set W ⊆ V (G) we set NG
r (W ) :=

⋃

v∈W NG
r (v). We omit the index ·G whenever G is clear from the context.

If σ is a signature and A is a σ-structure, we define the distance dA(a, b)
and the r-neighbourhood NA

r (a) in terms of the Gaifman-graph G(A) of A,10

i.e. NA
r (a) is the set of elements of distance at most r from a in the Gaifman-

graph.
It is easily seen that for any fixed r ∈ N “distance at most r” is first-order

definable, that is, for every r ∈ N there is a formula dist≤r(x, y) such that for
all structures A and all u, v ∈ V (A)

A |= dist≤r(u, v) iff dA(u, v) ≤ r.

Similarly, there are formulas dist>r(x, y) and dist<r(x, y) defining distance > r
and < r respectively. To improve readability we will write dist(x, y) ≤ r instead
of dist≤r(x, y) and likewise for the other formulas.

A first-order formula ϕ(x) is r-local if for every structure A and all a ∈ V (A)

A |= ϕ(a) iff A
[

NA
r (a)

]

|= ϕ,

10 See Section 2 for a definition of Gaifman-graphs.
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where A
[

NA
r (a)

]

denotes the substructure of A induced by NA
r (a). Hence, truth

of an r-local formula at an element a in a structure only depends on its r-
neighbourhood. A formula ϕ(x) is local if it is r-local for some r ∈ N.

A basic local sentence is a first-order sentence of the form

∃x1 . . . ∃xk

(

∧

1≤i<j≤k

dist(xi, xj) > 2r ∧
k

∧

i=1

ϑ(xi)
)

where ϑ(x) is local. In 1981, Gaifman showed that every first-order sentence is
equivalent to a Boolean combination of basic local sentences.

Theorem 7.1 (Gaifman [48]) Every first-order sentence is equivalent to a Bool-
ean combination of basic local sentences. Furthermore, there is an algorithm that,
given a first-order formula as input, computes an equivalent Boolean combination
of basic local sentences.

A first-order formula is in Gaifman Normal Form (GNF), if it is a Boolean
combination of basic local sentences. Gaifman’s original proof is by an explicit
translation of first-order formulas into formulas in GNF. A proof sketch along this
lines can also be found in the survey paper [53]. A different, model-theoretical
proof can be found in [37, Section 2.5].

The translation of formulas into Gaifman normal form is effective. However, it
has recently been shown [23] that this translation may involve a non-elementary
blow-up in the size of the sentence.

Theorem 7.2 (Dawar, Grohe, Kreutzer, Schweikardt [23]) Let σ := {E} be the
signature of graphs. For every h ≥ 1 there is an FO[σ]-sentence ϕh of size O(h4)
such that every FO[σ]-sentence in Gaifman normal form that is equivalent to ϕh

on the class of finite trees has size at least tower(h), where tower(h) denotes a
tower of 2s of height h.

From a practical point of view, this renders algorithms using Gaifman’s the-
orem useless, no matter what their theoretical complexity might be.

Example 7.3 Recall that a dominating set X in a graph G is a set X ⊆ V (G)
such that for all v ∈ V (G), v ∈ X or there is a u ∈ X and {u, v} ∈ E(G). For
k ∈ N, the formula

ϕk := ∃x1 . . . ∃xk∀y
(

∨

1≤i≤k

(

xi = y ∨ Eyxi

)

)

is true in a graph G if, and only if, G has a dominating set of size at most k.
To convert this into an equivalent sentence in Gaifman normal form, we

first observe that no connected graph of diameter at least 3k + 1 can have a
dominating set of size at most k. Here, the diameter of a graph is the maximum
of the distance between any two vertices.

Hence, on connected graphs, the formula ϕk above is equivalent to the con-
junction of the basic local sentence

ψ := ¬∃x1∃x2dist(x1, x2) > 3k + 1,
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saying that the diameter of G is greater than 3k +1, and the basic local sentence
∃xχ(x), where χ(x) is the 3k + 1-local formula

∃y1 ∈ N3k+1(x) . . . ∃yk ∈ N3k+1(x)∀z ∈ N3k+1(x)
∨

1≤i≤k

(

yi = z ∨ Ezyi

)

.

Note that this formula correctly defines the existence of a dominating set of size
k only in connected graphs, as in graphs with more than one component there
may exist a dominating set of size k even though there are vertices x1, x2 of
distance greater than 3k + 1. Adapting the formula to this case requires a little
more effort. ⊣

7.2 First-Order Logic on Graphs of Bounded Degree

As a first application of the use of Gaifman’s locality theorem for algorithmic
meta theorems we consider graph classes of bounded degree.

Definition 7.4 A class C of graphs has bounded degree if there is a d ∈ N such
that ∆(G) ≤ d for all G ∈ C.

In 1996, Seese [82] showed that model-checking for a fixed first-order sentence
can be done in linear time on graph classes of bounded degree.

Theorem 7.5 (Seese [82]) For any class C of graphs of bounded degree and any
fixed first-order sentence it can be decided in linear time whether G |= ϕ for a
graph G ∈ C. In other words, first-order model-checking on C is fixed-parameter
tractable by a linear fpt algorithm.

Proof. The proof method we use here is essentially the method used by Frick
and Grohe to show a similar result for planar graphs.

Let ϕ and G ∈ C be given. We first convert ϕ into Gaifman normal form,
i.e. into a Boolean combination of basic local sentences. As Boolean combinations
are easy to deal with, we only need to consider basic local sentences of the form

ψ := ∃x1 . . . ∃xk

(

∧

1≤i<j≤k

dist(xi, xj) > 2r ∧
k

∧

i=1

ϑ(xi)
)

where ϑ(x) is r-local for some r ∈ N.
To check whether ψ is true in G we proceed in two steps. First, we test for

all v ∈ V (G) if G
[

NG
r (v)

]

|= ϑ. As G has degree bounded by some constant d,
the size of NG

r (v) is constant and hence this can be decided in constant time.
Colour all vertices v red for which G

[

NG
r (v)

]

|= ϑ and let Q be the set of red
vertices. Now, G |= ψ if Q contains k vertices of pairwise distance > 2r.

In the second step we search for k such vertices. For this, we use the greedy
algorithm shown in Figure 17. The algorithm proceeds as follows. In lines 2–6 of
the algorithm, we try to choose k red vertices of pairwise distance > 2r greedily.
If we succeed, i.e. if the set L contains k elements, then we are done and accept G.
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1: L := ∅

2: while Q 6= ∅ do

3: choose v ∈ Q arbitrarily
4: L := L ∪ {v}
5: Q := Q \ N2r(v)
6: end while

7: if |L| ≥ k then

8: accept G
9: else

10: if G
ˆ

N2r(L)
˜

|= ∃x1 . . . xk(
V

i6=j
dist(xi, xj) > 2r ∧

V

i
“xi is red”

´

then

11: accept G
12: else

13: reject G
14: end if

15: end if

Fig. 17. Algorithm to find k vertices of pairwise distance > 2r

Otherwise, we know that L contains fewer than k vertices which are all red and
of pairwise distance > 2r and also that any other red vertex is within distance
≤ 2r of an element of L (otherwise we could add the vertex to L). Hence, all red
vertices of G are contained in the 2r-neighbourhood N := N2r[L] of L. Again, N
is of constant size and hence we can check in constant time whether N contains k
red vertices of pairwise distance > 2r. This is done in line 12 by testing whether
the graph induced by the neighbourhood satisfies the first-order formula stating
that there are k distinct red vertices of pairwise distance > 2r. ¤

The previous theorem gives a simple example how locality can be used to
obtain efficient model-checking algorithms for first-order logic. As it turns out,
a similar scheme can be employed in many cases.

Theorem 7.6 Let C be a class of graphs such that the following problem is
fixed-parameter tractable:

Input: ϕ ∈ FO, graph G ∈ C, v1, . . . , vk ∈ V (G) and r ∈ N.
Parameter: r + k + |ϕ|.

Problem: Decide G
[

NG
r (v1, . . . , vk)

]

|= ϕ.

Then model-checking for first-order logic is fixed-parameter tractable on C.

Proof. We proceed as in the proof of Theorem 7.5. By Gaifman’s theorem, we
may assume that ϕ is a basic local sentence ∃x1 . . . ∃xk

(
∧

i6=j dist(xi, xj) > 2r∧
∧

i ϑ(xi)
)

, where ϑ(x) is an r-local formula for some r ∈ N.
In the first step, we compute the set Q of vertices v ∈ V (G) such that

G
[

Nr(v)
]

|= ϑ(v). By assumption, for each v ∈ V (G) this can be done in time

f(r + 1 + |ϑ|) · |G|O(1), for some computable function f : N → N, and hence the
total running time is f(r + 1 + |ϑ|) · |G|O(1).

64



In the second step we aim to find k vertices in Q whose distance is pairwise
> 2r. Using the algorithm of Figure 17 this can be done in time f(2r ·k+O(k)) ·
|G|O(1). Hence, the total running time is f(2r · k + O(k)) · |G|O(1). ¤

While this theorem may appear somewhat artificial, we will see a number
of interesting applications of it by considering localisations of graph invariants
such as tree-width or rank-width.

7.3 Localisation of graph invariants

Let Graph denote the class of all finite graphs.

Definition 7.7 A graph invariant is a function f : Graph → N. For every
graph invariant f we define its localisation locf : Graph × N → N as locf (G, r)

locf (G, r) := max
{

f
(

G
[

Nr(v)
]

)

: v ∈ V (G)
}

.

A class C of graphs has bounded local f , if there is a computable11 function
h : N → N such that locf (G, r) ≤ h(r) for all G ∈ C and r ∈ N.

That is, to compute locf (G, r) we compute the r-neighbourhoods N := Nr(v)
of all vertices v ∈ V (G) and for each such N the value f(N). locf (G, r) is then the
maximum of these values. In particular, if the problem: given G and k, where
k is the parameter, to decide whether f(G) ≤ k is fixed-parameter tractable,
then so is the problem: given G, r, k, where r + k is the parameter, to decide if
locf (G, r) ≤ k.

Example 7.8 Of particular interest is the localisation of tree-width, called local
tree-width (see also the discussion at the end of Section 5.3). There are a number
of interesting examples for graph classes with bounded local tree-width.

1. Every graph class of bounded tree-width also has bounded local tree-width
(bounded by a constant).

2. The class of planar graphs has bounded local tree-width. More precisely,
Robertson and Seymour [77] showed that every planar graph of radius r has
tree-width ≤ 3r + 1.

3. Any class of graphs of bounded degree. This is easily seen as the r-neighbour-
hoods of graphs of degree at most d contain < dr+1 vertices. ⊣

Similar to local tree-width we can define local rank-width or clique-width,
where we take f : Graph → N to be the function assigning to each graph its
rank- or clique-width.

11 As we are asking for h to be computable, we should call this effectively bounded local
f . But this would make the notation even more clumsy and we therefore refrain from
mentioning effectiveness in the sequel.
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Another interesting example is the localisation of the following graph invari-
ant. Let mec : Graph → N (minimal excluded clique) be the function assigningmec(G)

to each graph G the minimal order of a clique that is not a minor of G, i.e.

mec(G) := min{k : Kk 64 G}.

Graph classes with locally bounded mec are called graph classes with locally
excluded minors and have been studied by Dawar, Grohe and Kreutzer in [21].
Clearly, every graph class C with an excluded minor H also locally excludes
H, i.e. has bounded local mec. The converse fails, though, as is witnessed by
the following class of graphs. For k ∈ N let Sk be the graph obtained from Kk

by replacing all edges by internally vertex disjoint paths of length k. Now take
C := {Sk : k ∈ N}. Obviously, the minor closure of C is the class of all graphs,
i.e. C does not exclude a minor. However, it locally excludes minors, as every
k-neighbourhood of graphs G ∈ C excludes Kk. Hence, f : Graph × N → N

defined as f(G, r) := r dominates the local mec of C.
Note, that C has bounded local tree-width and hence also provides an example

separating proper minor ideals and graph classes of bounded local tree-width. It
is easily seen that every class of graphs of bounded local tree-width also locally
excludes minors. The converse fails again, as not even every minor ideal has
bounded local tree-width. This is witnessed by the class of apex graphs defined
as

Capex := {G : there is v ∈ V (G) such that G − v is planar}.
In particular, this class contains all grids with one additional vertex adjacent to
every vertex in the grid. Hence, Capex has unbounded local tree-width but clearly
excludes K6.

Lemma 7.9 The concept of locally excluded minors strictly generalises both ex-
cluded minors and bounded local tree-width. That is, every class of graphs that
excludes a minor or has bounded local tree-width, also locally excludes minors.
The converse fails in both cases.

The aim of this section is to prove the following theorem.

Theorem 7.10 Let f be a graph invariant such that the following is fixed-
parameter tractable.

MC(FO, f)
Input: Graph G and ϕ ∈ FO.

Parameter: f(G) + |ϕ|.
Problem: Decide whether G |= ϕ.

Then for every class C of locally bounded f , the problem MC(FO, C) is fixed-
parameter tractable.

Proof. Let g : N → N be a bound for locf (G, ·) for all G ∈ C. We first suppose
that f is induced subgraph monotone, i.e. f(H) ≤ f(G) for all H,G such that
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H is an induced subgraph of G, and further has the property that if G1, G2 are
vertex disjoint graphs, then f(G1 ∪ G2) ≤ max{f(Gi) : i = 1, 2}. Note that
graph invariants such as tree-width, branch-width, clique-width and rank-width
all have these properties.

Then the result follows from Theorem 7.6 as follows. Given ϕ ∈ FO, G ∈ C,
v1, . . . , vk ∈ V (G) and r ∈ N, we first compute H := G

[

NG
r (v1, . . . , vk)

]

in
polynomial time. Clearly, every component of H has radius at most k · r and
hence f(H) ≤ locf (G, k ·r) ≤ g(k ·r). The assumptions of this lemma then imply
that the assumptions of Theorem 7.6 are satisfied and thus we can decide H |= ϕ
by fpt-algorithms.

If f does not have the properties above, we can no longer apply Theorem 7.6
directly. Instead, we have to repeat its proof. We leave the details to the reader.

¤

Corollary 7.11 First-order model-checking is fixed-parameter tractable on graph
classes of

– bounded local tree-width
– bounded local rank- or clique-width.

In the next section we will show that first-order model-checking is fixed-
parameter tractable on graph classes excluding at least one minor. We will later
consider localisation in this context and show an analogous result for graph
classes locally excluding a minor.

7.4 First-Order Logic on H-Minor Free Graphs

The aim of this section is to show that first-order model-checking is fixed-
parameter tractable on every class C of graphs excluding at least one minor
H. If we take |ϕ| as the parameter, this was first shown by Flum and Grohe
[45] in 2001. That is, for every fixed H, the problem is tractable under the
parametrization |ϕ|. However, the exponential of the polynomials occurring in
the running time analysis can depend on H. As it turns out, this parametriza-
tion is not strong enough to apply our method of localisation to the problem.
In [21], therefore, Dawar, Grohe and Kreutzer consider the problem under the
parametrization |ϕ| + |H| and show fixed-parameter tractability for this case.

Let us first consider the case where H is fixed and |ϕ| is the parameter.
In the light of the previous sections, the proof of the theorem seems rather
straightforward: given G ∈ C, Theorem 5.14 tells us that there are λ, µ ≥ 1
such that G has a tree-decomposition over L(λ, µ), i.e. a tree-decomposition
such that the torsi of its bags have bounded local tree-width after removal of
a few elements, and Theorem 5.16 tells us how to compute the decomposition
in polynomial time. Furthermore, we already know how to deal with graphs
in L(λ) of bounded local tree-width and extending this to graphs in L(λ, µ)
poses no real problem. And indeed, this is the general idea to show that FO

model-checking is FPT on H-minor free graphs, although formally implementing
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the idea requires some care and additional lemmas. To make this precise it is
convenient to introduce further notation.

A graph G is the clique sum of graphs G1 and G2, denoted G = G1 ⊕ G2,clique sum, ⊕

if G1 ∩ G2 is a complete graph and G is obtained from G1 ∪ G2 by possibly
deleting some edges from E(G1∩G2). Formally, V (G) = V (G1)∪V (G2), G1∩G2

is a clique and there is a (possibly empty) set X ⊆ E(G1 ∩ G2) such that
E(G) = E(G1 ∪ G2) − X. We write G = G1 ⊕v G2 to indicate that G is the⊕v

clique-sum of G1 and G2 and that V (G1 ∩ G2) = v.
Recall that a tree-decomposition of a graph G is over a class C of graphs if the

torsi [Bt] of all its bags belong to C, where the torso of a bag Bt is obtained from
G[Bt] by turning the intersections of Bt with neighbouring bags Bs into cliques.
Hence, the graph G is obtained as the clique-sum of its bags, an observation that
we will use in the following proofs.

We begin by proving an extension of Courcelle’s theorem, this time not by
a reduction to trees but by computing MSO-types directly. Recall the definition
of MSO and FO q-types and the Feferman-Vaught theorem from Section 2.3.

Lemma 7.12 Let tpq be one of tpFO
q and tpMSO

q . The following problem is fixed-
parameter tractable: given

– a labelled graph G of tree-width ≤ k,
– tuples vi ∈ V (G)ri , 0 ≤ i ≤ m for some m, such that G

[

vi

]

is a clique, and
– q-types Θ1, . . . , Θm,

compute tpq(G, v0) for all graphs G′ = G ⊕v1 H1 ⊕v2 · · · ⊕vm
Hm such that

tpq(Hi, vi) = Θi. The parameter is q + k.

Proof. Given G, we first compute an ordered tree-decomposition (T, (bt)t∈V (T ))
of G of width at most k (see Definition 3.25). Note that, as the vi induce cliques
in G, for each i there is at least one ti such that vi ⊆ bti

. Hence, we can assume
that for each 0 ≤ i ≤ m there is a leaf t ∈ V (T ) such that vi = bt and that no
other leaf contains a vertex from any of the vi for 1 ≤ i ≤ m.

For each t ∈ V (T ), let Tt be the subtree of T rooted at t and let Bt be
the set Bt :=

⋃

s∈V (Tt)
bs. Beginning from the leaves we inductively compute

tpq(G
[

Bt

]

, btv0) for each node t ∈ V (T ). Here, the notation tpq(G
[

Bt

]

, btv0)

indicates that in G
[

Bt

]

we compute the type of bt and all vertices of v0 contained

in Bt. For leaves t with bt = vi, for some 1 ≤ i ≤ m, we can infer the type
tpq(G

[

bt

]

, btv0) from Θi. For other leaves we can compute their types directly,
as they only contain at most k + 1 elements. For inner nodes t with children
t1, t2 we apply Lemma 2.3. ¤

As the previous lemma applies to MSO-types, Courcelle’s theorem is clearly a
special case of it. Hence, the proof here provides an alternative way of establish-
ing Courcelle’s theorem. While the two approaches may seem to be somewhat
different, the underlying principle is the same. Recall that in our original proof
of Courcelle’s theorem, we encoded graphs G of tree-width ≤ k in labelled trees
T and then rewrote the formula ϕ on G to a new formula ϕ′ on T such that
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G |= ϕ if, and only, if T |= ϕ′. On the tree-encoding, we then applied results from
automata theory which establish that MSO model-checking is fixed-parameter
tractable on trees. More specifically, the MSO-formula ϕ′ is translated into an
automaton Aϕ which accepts T if, and only if, T |= ϕ′. Although it is not usually
proved this way, essentially the automaton has a state for each possible q-type
and its transition relation combines types similar to what is done in Lemma 2.3.

But back to first-order model-checking on graph classes excluding a minor.
Essentially the previous lemma allows us to deal with tree-decompositions over
graphs of bounded tree-width, which clearly is not enough for our purposes.

Lemma 7.13 Let tpq denote tpFO
q . The following problem is fixed-parameter

tractable for all λ, µ: given

– a labelled graph G ∈ L(λ, µ),
– tuples vi ∈ V (G)ri , 0 ≤ i ≤ m for some m, such that G

[

vi

]

is a clique, and
– q-types Θ1, . . . , Θm,

compute tpq(G, v0) for all graphs G′ = G ⊕v1
H1 ⊕v2

· · · ⊕vm
Hm such that

tpq(Hi, vi) = Θi. The parameter is q.

Proof. The proof is by induction on µ. For µ = 0, we adapt the proof of Theo-
rem 7.6 using Lemma 7.12 locally. Now let µ > 0 and let G ∈ L(λ, µ), vi, Θi be an
instance of the problem. By definition, G contains a vertex v ∈ V (G) such that
G \ v ∈ L(λ, µ − 1). Note that for all λ′, µ′, L(λ′, µ′) is a minor ideal and hence
has a cubic time membership test by Corollary 5.3. Thus, in time O(|G|4) we can
find such a vertex v. Let G2 be the coloured graph obtained from G by introduc-
ing a new colour C by which we label all neighbours of v and then eliminating v
from G. By construction, G2 ∈ L(λ, µ−1). Furthermore, it is an easy exercise to
translate first-order formulas ϕ over G to formulas ϕ′ over G2 such that G |= ϕ
if, and only if, G2 |= ϕ′. Hence, the q-type of G′ = G ⊕v1

H1 ⊕v2
· · · ⊕vm

Hm

can be recovered from the q-type of G′
2 = G2 ⊕v1

H1 ⊕v2
· · · ⊕vm

Hm, and the
latter is computable by the induction hypothesis. ¤

The previous two lemmas are the main ingredients for the proof of the fol-
lowing theorem.

Theorem 7.14 (Flum, Grohe [45]) Let C be a class of graphs excluding at least
one minor. Then the following problem is fixed-parameter tractable.

MC(FO, C)
Input: G ∈ C, ϕ ∈ FO.

Parameter: |ϕ|.
Problem: Decide G |= ϕ.

Proof. Let G and ϕ be given and let q be the quantifier-rank of ϕ. Using The-
orem 5.16, we first compute a tree-decomposition (T, γ) of G over L(λ, µ), for
some λ, µ. We view T as a directed tree with root r.
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For each t ∈ V (T ), t 6= r, with parent s ∈ V (T ), let vt := Bt∩Bs. Recall that
in the torsi of Bt and Bs, vt induces a clique. For the root r we define vr as the
empty tuple. Furthermore, for each t ∈ V (T ) let Tt be the subtree of T rooted
at t and let Bt :=

⋃

s∈V (Tt)
Bs. Finally, for t ∈ V (T ) let Gt := G

[

Bt

]

∪ K[vt].

Note that for all t ∈ V (T ), vt ≤ k, where k := λ + µ, as vt induces a clique in
the torso [Bt] of Bt. As [Bt] ∈ L(λ, µ) and graphs in L(λ, µ) cannot contain a
clique of order > λ + µ we obtain |vt| ≤ k. Hence, as λ, µ only depend on the
excluded minor of C and therefore are fixed, we obtain a fixed upper bound for
the size of vt, t ∈ V (T ).

To decide G |= ϕ, we aim at computing the type tpq(G, vr). We can then
simply check whether ϕ ∈ tpq(G, vr). Towards this aim, starting at the leaves
and proceeding bottom-up, we apply Lemma 7.13 at each node to compute the
type tpq(Gt, vt). ¤

The previous theorem shows that for every fixed graph H, first-order model-
checking is fixed-parameter tractable, with parameter |ϕ|, on every class of
graphs excluding H. However, the algorithm as described above is not fixed-
parameter tractable in the parameter |H| + |ϕ| as we use a non-constructive
approach in Lemma 7.13 and also the algorithm described in [29] seems to use
the minor H in an inappropriate way for parameterized complexity.

We therefore turn to a different parametrization of the problem, where we
take the parameter to be |ϕ|+ |H|. This problem was studied by Dawar, Grohe
and Kreutzer in [21]. The approach taken there is similar to the method outlined
above. However, instead of using tree-decompositions over L(λ, µ), [21] uses a
slightly weaker form of decompositions, called weak decompositions over L(λ, µ).
The main result in [21] is that for every H, every graph excluding H has a
weak decomposition over some L(λ, µ) (which is relatively straightforward to
show) and that these decompositions can be computed by an fpt-algorithm with
parameter H (which requires considerably more work). Once this is shown, the
proof method outlined above can be adapted to weak decompositions yielding
the following result.

Theorem 7.15 (Dawar, Grohe, Kreutzer [21]) The following problem is fixed-
parameter tractable.

p-MC(FO)
Input: G,H such that H 64 G, ϕ ∈ FO.

Parameter: |ϕ| + |H|.
Problem: Decide G |= ϕ.

An immediate consequence of the theorem is the following. Recall from Sec-
tion 7.3 the definition of the minimum excluded clique number mec(G) of a graph
G and of locally excluded minors. For any function f : N → N let Cf be the class
of graphs G such that mec(G) ≤ f(|G|).
Corollary 7.16 There is an unbounded function f : N → N such that MC(FO, Cf )
is fixed-parameter tractable.
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Another consequence of the theorem is that it allows us to apply the frame-
work of localisation as developed in Section 7.3 to obtain the following result.

Corollary 7.17 Let C be a class of graphs locally excluding a minor. Then the
problem

MC(FO, C)
Input: G ∈ C, ϕ ∈ FO.

Parameter: |ϕ|.
Problem: Decide G |= ϕ.

is fixed-parameter tractable.

The previous result has a number of algorithmic applications.

Corollary 7.18 1. The following problem is fixed-parameter tractable.

p-Dominating Set
Input: Given graphs G,H such that H 64 G and k ∈ N.

Parameter: k + |H|.
Problem: Decide whether G contains a dominating set of size ≤ k.

Analogous results hold for all other first-order definable parameterized prob-
lems, such as Independent Set and Clique and also for problems such
as deciding for a fixed graph G′ whether G′ has a homomorphism into G, or
G′ is an (induced) subgraph of G, where here the parameter can be taken to
be |H| + |G′|.

2. Let C be a class of graphs locally excluding a minor. Then problem such as
Dominating Set, Independent Set etc. are fixed-parameter tractable on
C. Furthermore, the problem, given graphs H and G such that G ∈ C, to
decide whether H is homomorphic to G or H is an (induced) subgraph of G
can be decided by fpt algorithms with parameter |H|.

8 Characterising Logical Complexity under Structural

Restrictions

The results presented in the previous sections have focussed primarily on meth-
ods to establish tractability results of logics on special classes of structures. The
aim was to exhibit more and more general classes of structures on which first-
order or monadic second-order model-checking becomes tractable. As we have
seen in Section 2.4, first-order model checking is not fixed-parameter tractable in
general (unless FPT = AW[∗]) and hence somewhere there must be a tractabil-
ity border for the model-checking problem of these logics. Previous research has
mostly approached this border from below by establishing tractability results.
Quite as important is to establish intractability results, i.e. to approach this
tractability border from above. This has so far been studied much less in the
literature and the aim of this section is to survey some of the results that have
been obtained in this direction.
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8.1 Classifying Logical Tractability with Respect to Structural
Restrictions

In the previous sections we have seen various examples for classes of graphs or
structures on which model-checking for first- or monadic second-order logic be-
comes tractable. The picture described there (and illustrated in Figure 18 below)
is as yet far from being complete and in particular it is not known whether any
of the tractability results are actually strict. Surprisingly, not even for Cour-
celle’s celebrated theorem it is known whether it can be extended to classes of
unbounded tree width.

We therefore propose a research program which aims at providing a refined
analysis of the complexity of logical formula evaluation with respect to specific
classes of structures. More precisely, for the most commonly used logics we aim
at identifying a property that precisely captures tractability of the logic in the
sense that the logic is tractable on a class of structures if, and only if, the class
has this particular property.

Such a classification would give completely new insights into the complexity
of the logics and would provide researchers designing new query or specification
languages based on these logics with valuable information for designing languages
tailored towards their specific application areas.

It may not always be possible to find such a property that excactly charac-
terises tractability of a logic within all classes of structures and possibly we will
need to further restrict the admissible classes of structures, such as to classes
closed under substructures. For instance, for first-order logic we conjecture that
model-checking of FO on a class of structures closed under substructures is
tractable if, and only if, the class is nowhere dense (see below).

There are two different, and somewhat complementary aspects to the results
we envisage. The first aspect are tractability results as we have presented them in
the previous sections. The other aspect are intractability results where we show
that evaluation of formulas is hard whenever a class of structures does not have a
particular property. In this context, this aspect has virtually not been studied in
the literature before. We will present some recent and new intractability results
in the following subsections.

8.2 Limits to Monadic Second-Order Model-Checking

Recall Courcelle’s theorem (see Theorem 3.29 and Corollary 3.31) which states
that MSO2-model checking is fixed-parameter tractable on every class of struc-
tures of bounded tree-width. We will see in this section that in this generality,
Courcelle’s theorem can not be extended much beyond bounded tree-width.

The following result by Garey, Johnson and Stockmeyer and the fact that
3-colourability is MSO-definable immediately imply that MSO-model checking is
not fixed-parameter tractable on the class of planar graphs.

Theorem 8.1 (Garey,Johnson, Stockmeyer [49]) 3-colourability is NP-comple-
te on the class of planar graphs of degree at most 4.
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However, the class of planar graphs is a very specific class and this result
does not rule out that Courcelle’s theorem could possibly be extended to classes
of unbounded but slowly growing tree-width. To show intractability results for
MSO2-model checking on classes of graphs of unbounded tree-width we first need
to classify the degree of “unboundedness”.

Definition 8.2 Let f : N → N be a non-decreasing function. A class C of graphs
has f-bounded tree width if tw(G) ≤ f(|G|) for all G ∈ C.

Hence, Courcelle’s theorem applies to f -bounded classes of graphs for con-
stant functions f . We will particularly be interested in classes of graphs whose
tree width grows logarithmically in the size of the graphs and aim at proving that
if the tree width C is not bounded logarithmically then MSO2 model-checking is
not tractable on C. A first step towards this direction appeared in [59, 60] where
such a result was proved for classes of coloured graphs which we define next.

Let Σ := {B1, . . . , Bk, C1, . . . , Cl} be a set of colours, where the Bi are
colours of edges and the Ci are colours of vertices. A Σ-coloured graph, or
simply Σ-graph, is an undirected graph G where edges may be coloured by
B1, . . . , Bk and vertices may be coloured by C1, . . . , Ck. We do not require any
additional conditions such as edges having endpoints coloured in different ways,
i.e. we do not require the colouring to be proper in the graph theoretical sense. To
obtain logical structures, we let σ := {E,B1, . . . , Bk, C1, . . . , Cl} be the signature
containing binary relations E,B1, . . . , Bk for edges and their colours and unary
relations C1, . . . , Cl for vertex colours.

Definition 8.3 A class C of Σ-graphs is said to be closed under Σ-colourings
if whenever G ∈ C and G′ is obtained from G by recolouring, i.e. the underlying
un-colored graphs are isomorphic, then G′ ∈ C.

A class C of σ-structures is closed under colourings if there is a class C′ of
(uncoloured) graphs such that C is the class of all σ-structures whose Gaifman-
graphs are in C′.

We aim at showing that if C is a class of graphs closed under colourings
whose tree width is not bounded by a log-function then MSO2-model checking is
fixed-parameter intractable on C. The proof of this result relies on a reduction
from an NP-complete problem to MC(MSO2, C) and for this to work it is not
enough for the tree-width of C not to be bounded by a log-function f : N → N,
we must also be able to compute witnesses for this large tree-width efficiently.
This leads to the following definition of effectively unbounded tree-width.

Definition 8.1. The tree-width of a class C of graphs is effectively unbounded
by a function f : N → N if there is a polynomial p(x) such that for all n

1. there is a graph G ∈ C of tree-width between n and p(n) whose tree-width is
not bounded by f(|G|) and

2. given n, Gn can be constructed in time 2nε

, for some ε < 1.

The tree-width of C is effectively unbounded poly-logarithmically if it is effec-
tively unbounded by logc n, for all c.
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We will particularly be interested in classes effectively unbounded by a func-
tion f(n) := logc n for some small constant c. For such a function the second
condition just says that we can compute witnesses for the high tree-width of C
in time polynomial in their size, which is what we need for the reduction of an
NP-complete problem to work. The first condition says that there are enough
witnesses for the large tree-width of C so that there are actually enough graphs
to reduce the problem to. The following result was proved in [60] (see also [59]).

Theorem 8.4 Let Σ be a non-empty set of colours including at least one edge
and two vertex colours. Let C be any class of Γ -coloured graphs closed under
colourings.

1. If the tree-width of C is effectively unbounded poly-logarithmically then MC(MSO, C)
is not in XP, and hence in particular not fixed-parameter tractable, unless
all problems in NP (in fact, all problems in the polynomial-time hierarchy)
can be solved in sub-exponential time.

2. If the tree-width of C is effectively unbounded by log48 n then MC(MSO, C) is
not in XP unless Sat can be solved in sub-exponential time.

The theorem together with Courcelle’s theorem has the following corollary,
as in the classes Cf colours can easily be replaced by suitable gadgets. Note,
however, that the corollary also has a much simpler direct proof.

Corollary 8.5 For any non-decreasing function f : N → N let Cf := {G :
tw(G) ≤ f(|G|)}.

1. If f(n) > log48 n for all n greater than some n0 ∈ N, then MC(MSO2, Cf ) 6∈
XP unless SAT can be solved in sub-exponential time.

2. If f is constant, then MC(MSO2, Cf ) ∈ FPT.

Theorem 8.4 gives a classification of tractability of MSO2 on classes of coloured
graphs. The restriction to coloured graphs is somewhat artificial as coloured
graphs do not naturally occur very often. It does show, however, that Courcelle’s
theorem cannot be extended in full generality beyond logarithmic tree-width.

A much more natural result would be if closure under colours could be re-
placed by closure under subgraphs. I believe this is possible but it will require
much more involved algorithmic techniques.

8.3 Limits to First-Order Model-Checking

In this section we will summarise some intractability results for first-order logic.
As before, ideally we would like to completely classify the classes C of struc-
tures into those where MC(FO, C) is FPT and where it is not. However, with
the graph structure properties studied so far, it is unlikely that we can fully
explore tractability for first-order model-checking as FO-model-checking is pre-
served under interpretations whereas properties such as excluding a minor or
bounded tree-width are not.
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Lemma 8.6 If C is a class of graphs such that MC(FO, C) is fixed-parameter
tractable and D is a class of graphs first-order interpretable in C as described in
Section 2.3, then first-order model-checking is fixed-parameter tractable on D.

Corollary 8.7 If MC(FO, C) is fixed-parameter tractable then so is MC(FO,D)
for the class D := {G := (V, V 2 \ E) : (V,E) ∈ C} of graphs whose complements
are in C.

Hence, if there is a graph property that precisely describes when FO model-
checking is tractable, it has to be closed under edge-complementation or more
generally under first-order interpretations. Note that the analogous result does
not hold for MSO2, as in general MSO2 formulas on a graph cannot be rewritten
to work on the complement graph instead.

In addition to studying further classes of graphs obtained from graph in-
variants it may therefore be beneficial to consider constructions that allow us
to construct new classes C of graphs with tractable model-checking from other,
known classes of graphs. For instance, one could try to generalise the construc-
tions using tree-decompositions over classes of graphs. It is easily seen that if
C is a class of graphs for which the appropriate version of Lemma 7.13 holds,
then first-order model-checking is also tractable on the class of graphs that can
efficiently be tree-decomposed over C. We refrain from giving a formal defini-
tion of this as, so far, its only application seems to be Theorem 7.14. Tree-
decompositions are a special case where Feferman-Vaught style theorems can be
applied. It may be worthwhile to consider further constructions that allow us to
define new tractable model-checking intances from the classes we already know.

The previous lemma also has interesting consequences in its negative form,
that is, it can be used to show intractability results as demonstrated in the next
lemma.

Lemma 8.8 For k ∈ N let ADk be the class of graphs of maximum average
degree at most k, where the maximum average degree of a graph G is the maxi-
mum of the average degrees of all subgraphs of G. For k ≥ 4, MC(FO,ADk) is
AW[∗]-hard, i.e. fixed-parameter intractable.

Proof. Recall from Section 2.4 that MC(FO,Graph), the model-checking prob-
lem for FO on the class of all finite graphs, is AW[∗]-complete. Further, FO

model-checking on the class of all graphs G can easily be reduced to FO model-
checking on the class of incidence graphs I(G). As incidence graphs have maxi-
mum average degree at most 4, the result follows immediately. ¤

Hence, graph classes of bounded maximum average degree provide a first
non-trivial upper bound for parameterized tractability of FO model-checking.

Towards another graph property that may yield fixed-parameter algorithms
for first-order logic, consider again the proof of the previous lemma. Essentially,
given a graph G we subdivide every edge once to obtain the incidence graph. For
first-order logic, this does not pose much of a problem as we can easily rewrite
the formula to deal with the subdivision. Similarly, if we replace every edge by a
path of length k, i.e. subdivide a bounded number of times, then again we obtain
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small maximum average degree but we can easily rewrite first-order formulas to
deal with these paths of fixed length.

Note that this essentially means that we replace every vertex by a graph
of fixed radius, e.g. in the case of k = 3 we replace every vertex by a star.
Hence, if we are interested in paramaterized tractability, then we should require
our graphs to have bounded maximum average degree even after we contract
neighbourhoods of a fixed radius. This idea is formalised in the notion of bounded
expansion introduced by Nešetřil and Ossona de Mendez in [65–67].

An even more general concept of graphs is the concept of graph classes which
are nowhere dense, introduced by Nešetřil and Ossona de Mendez in [68].

We say that H is a minor at depth r of G (and write H 4r G) if H is a
minor of G and this is witnessed by a minor map µ of H into G so that every
vertex v ∈ V (H) is mapped to a subgraph µ(v) ⊆ G which induces a graph of
radius at most r. That is, for each v ∈ V (H), there is a w ∈ V (µ(v)) such that

µ(v) ⊆ N
µ(v)
r (w).

Definition 8.2 ([68]). A class of graphs C is said to be nowhere dense if for
every r ≥ 0 there is a graph Hr such that Hr 64r G for all G ∈ C.

Conversely, if a class C of graphs is not nowhere dense then there is a radius
r such that every graph H is a depth r minor of some graph GH ∈ C. If,
furthermore, C is closed under taking subgraphs, then the depth-d image IH of
H in GH is itself a graph in C. Note that the size of IH is polynomially bounded
in H (for fixed r). Classes which are not nowhere dense are called somewhere
dense in [68]. Let us call a class effectively somewhere dense if, given a graph H,
a depth-d image IH ∈ C of H in a graph GH ∈ C can be computed in polynomial
time.

As the following lemma shows, in terms of sparse classes of graphs, nowhere
dense classes are the natural border for tractability of first-order logic.

Theorem 8.3. If C is effectively somewhere dense and closed under taking sub-
graphs, then MC(FO, C) is not fixed-parameter tractable unless FPT = AW[∗].

The proof relies on the fact that we can interpret the class of all graphs in any
effectively somewhere dense class of graphs which is closed under subgraphs, as
every graph occurs as a depth d minor of a member of C and the depth-d image
of this is itself a graph in C. Sub-divisions of a fixed length can be defined in
first-order logic and hence model checking for first-order logic on the class of
all graphs can be reduced to FO-model-checking on any effectively somewhere
dense class of graphs which is closed under subgraphs.

Furthermore, it seems likely that on every nowhere dense class of graphs,
first-order model checking is fixed-parameter tractable.

Conjecture 8.4. If C is nowhere dense then MC(FO, C) ∈ FPT.

If this conjecture could be proved then on subgraph closed classes of graphs,
the property of being nowhere dense would exactly characterise the tractable
cases.
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9 Conclusion

This paper gives an overview of algorithmic meta-theorems developed in recent
years. See Figure 18 for a diagrammatic summary of the results presented in this
paper.
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Fig. 18. Summary of results

As we have seen, first-order model-checking is fixed-parameter tractable on
a wide range of graph classes defined by standard graph invariants such as tree-
width or excluded minors. By localising these invariants we obtained even further
tractable classes. However, we are still very far from a clear picture of where
first-order model-checking is tractable and where it is not. Further research, in
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particular into intractability results is needed before we can hope for a clean and
smooth theory.
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tor, Logic and Automata – History and Perspectives. Amsterdam University Press,
2007.

54. Q-P. Gu and H. Tamaki. Optimal branch-decomposition of planar graphs in O(n3)
time. In Proc. of the 32nd International Colloquium on Automata, Languages and
Programming (ICALP), pages 373–384, 2005.

80



55. F. Gurski and E. Wanke. The tree-width of clique-width bounded graphs without
kn, n. In Proc. of the 27th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG), volume 1928 of Lecture Notes in Computer Science,
pages 196–205, 2001.

56. F. Gurski and E. Wanke. Minimizing NLC-width is NP-complete. In Proc. of the
31st International Workshop on Graph-Theoretic Concepts in Computer Science
(WG), pages 69–80, 2005.

57. W. Hodges. A shorter model theory. Cambridge University Press, 1997.
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