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Abstract

We study the performance of the Sherali-Adams system for VERTEX COVER on graphs with vector
chromatic number 2 + ε. We are able to construct solutions for LPs derived by any number of Sherali-
Adams tightenings by introducing a new tool to establish Local-Global Discrepancy. When restricted to
Θ(1/ε) tightenings we show that the corresponding LP treats the input graph as a nearly perfect match-
ing. Since there exist graphs with 2+o(1) vector chromatic number but no linear-sized independent sets,
this immediately implies a tight integrality gap for superconstant levels of the Sherali-Adams system.

An important property of our solutions is that they can be slightly perturbed to also satisfy semidef-
inite conditions. In particular, using this approach we prove the first tight integrality gap for non trivial
levels of the Sherali-Adams SDP system. Our argument reduces semidefiniteness to a condition on
the Taylor expansion of a reasonably simple function that we are able to establish up to constant-level
SDP tightenings. We conjecture that this condition holds even for superconstant levels which would
imply that in fact our solution is a valid for superconstant level Sherali-Adams SDPs.

1 Introduction

A vertex cover of a graph G = (V,E) is a subset S of the vertices such that for every edge ij ∈ E at least
one vertex among i, j lies in S. In the MINIMUM VERTEX COVER problem the objective is to find the vertex
cover of minimum size. Determining the approximability of VERTEX COVER is one of the outstanding open
problems in theoretical computer science. While a 2-approximation algorithm is rather straightforward,
considerable efforts have failed to yield any algorithm with approximation ratio 2 − Ω(1). Indeed the best
known approximation algorithm achieves an approximation ratio of 2−O(

√
1/ log n) [Kar09]. On the other

hand, the strongest PCP-based hardness result [DS05] shows that 1.36-approximation of VERTEX COVER

is NP-hard. If one is willing to assume Khot’s Unique Game Conjecture [Kho02] this hardness can be
improved to 2− o(1).

Trying to resolve the true approximability of VERTEX COVER, one could study the behavior of prominent
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algorithmic paradigms, such as Linear Programming (LP) and Semidefinite Programming (SDP) relaxations.
There, the measure of efficiency is the Integrality Gap which sets the approximation limitations of any al-
gorithm based on these relaxations. A number of systematic procedures, known as Lift-and-Project systems
have been proposed to improve the integrality gap of standard relaxations. These systems build strong
hierarchies of either LP relaxations (as in the Lovász-Schrijver and the Sherali-Adams systems) or SDP
relaxations (as in Lovász-Schrijver SDP and the Lasserre systems.) In this work we study the limitations of
strong LP and SDP relaxations that can be derived by the powerful system of Sherali-Adams enhanced by
a positive-semidefiniteness constraint. The performance of the same system has been previously studied for
other combinatorial problems, for example, for Constraint Satisfaction Problems [BGMT10], for Quadratic
Programing and MaxCutGain [BM10], for Maximum Cut and Sparsest Cut [KS09], and for a variety of
different problems in [RS09], but its integrality gap for VERTEX COVER remains open.

The Sherali-Adams system, like all Lift-and-Project systems, can be thought of as being applied in
rounds (also called levels). The bigger the number of rounds used, the more accurate the obtained tightened
relaxation is. In fact, if as many rounds as the number of variables are used, the final relaxation is exact,
all its feasible solutions are distributions over integral solutions, and no integrality gap exists. On the other
hand the size of the derived relaxation grows exponentially with the number of rounds, which implies that
the time one needs in order to solve it also grows accordingly. It is natural then to ask if looking at a modest
number of rounds (say t being a constant, or log logn) will result in an algorithm with approximation factor
better than 2. In this paper we answer the above question in the negative for the Sherali-Adams and the
Sherali-Adams SDP system. That is, we prove that the Sherali-Adams system applied to the canonical
LP and the canonical SDP relaxations of VERTEX COVER have integrality gap 2−o(1) for ω(1) and (some
fixed) constant number of rounds respectively.

Lower bounds in the Lift-and-Project systems amount to showing that the integrality gap remains large
even after many tightenings of the systems. Integrality gaps for ω(1) rounds rule out super polynomial time
algorithms albeit for a restricted model of computation. For VERTEX COVER, considerable effort has been
invested in strong lower bounds for various hierarchies. For LP hierarchies, [STT07] shows an integrality
gap of 2−ε for Ω(n) rounds of the LS system and [CMM09] shows the same integrality gap for the stronger
Sherali-Adams system up to Ω(nδ) rounds (with δ going to 0 together with ε). Both these results study
the system applied to the canonical LP formulation and are not comparable to integrality gaps for even the
standard SDP relaxation. Our contribution for LP hierarchies is as follows.

Theorem 1.1. For every ε, there are graphs on n vertices such that the level-Ω(
√

log n/ log log n) LP
derived by the Sherali-Adams system for VERTEX COVER has integrality gap 2− ε.

Although our integrality gap is weaker than the one of [CMM09] in terms of the number of tightenings,
our result follows as an immediate corollary of a novel construction of feasible solutions for a wide family of
graphs enjoying nice geometric properties,i.e. Borsuk graphs. In particular, part of the novelty is that we are
able to construct solutions for any number of Sherali-Adams tightenings. When the number of tightenings
is large enough, then unavoidably the solution is inside the integral hull. In contrast, when the number of
tightenings is relatively small, then the corresponding LP can be seen to treat the input graph as a nearly
perfect matching, i.e. as a graph where just half the vertices form a vertex cover. In particular, in Section 5
we show that for Borsuk graphs there is always a Sherali-Adams solution where each vertex contributes
almost 1/2, with the above theorem following as a corollary. The reader should also contrast Theorem 1.1
to the result of Vishwanathan [Vis09] which shows that every hard instance of VERTEX COVER (if the true
inapproximability is 2− o(1)) must have large subgraphs that “look like Borsuk graphs”. In fact one could
think of our result as some form of a converse to that of Vishwanathan as far as the Sherali-Adams hierarchy
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is concerned.

For SDP hierarchies, and for the LS+ system which is stronger than both the LS system and the canonical
SDP formulation (but incomparable to Sherali-Adams), [GMPT07] shows an integrality gap of 2 − ε for
Ω(n) levels. The next logical step then is to study the Sherali-Adams SDP system which is also stronger
than the LS system, and a significant step closer to the so-called Lasserre system, for which no known tight
integrality gaps exist for combinatorial problems with hard constraints. We prove the next theorem.

Theorem 1.2. For every ε, there are graphs on n vertices such that the level-6 SDP derived by the Sherali-
Adams SDP system for VERTEX COVER has integrality gap 2− ε.

Theorem 1.2 implies Theorem 1.1 once we transform its solution, so as to make sure that the function
describing its solution has Taylor expansion with positive coefficients, a condition that we prove is sufficient
to satisfy the additional semidefinite constraint. The new solution can be almost trivially seen to satisfy the
level-2 Sherali-Adams SDP(see Section 7), which gives an new alternative proof of the well known tight
integrality gap for the standard VERTEX COVER SDP tightened by the triangle inequality. For a higher level
solution (for which no tight integrality gaps were known prior to this work) we first describe our solution in
terms of a seemingly simple function (depending on the number of tightenings). Next we are able to show
that the function has Taylor expansion with positive coefficients up to level-5. We should point here that we
know empirically that the function maintains positivity in its coefficients even for superconstant tightenings,
however the proof is still eluding us. Finally, if one is content with an integrality gap less than 2, integrality
gaps of 1.36 for up to Ω(nδ) levels [Tul09] and 7/6 for up to Ω(n) levels [Sch08] for the Lasserre system
are known.

It might be tempting to ask whether a negative result concerning Lift-and-Project systems is interesting.
It turns out that the best algorithms known for many combinatorial optimization problems are based on
relaxations weaker than those derived by constant rounds of the Sherali-Adams SDP system which we
study here. Examples include the seminal algorithm of Goemans-Williamson [GW95] for MAX CUT, the
Karloff-Zwick algorithm [KZ97] for MAX-3-SAT, the Arora-Rao-Vazirani algorithm [ARV09] for SPARS-
EST CUT and the best algorithm for VERTEX COVER of Karakostas [Kar09]. Lift-and-Project hierarchies
have been also used recently in designing approximation algorithms with a runtime-approximation ratio
trade off. The list of relevant examples, which includes [dlVKM07] for MAX CUT, [MM09] for VER-
TEX COVER and INDEPENDENT SET in minor-free graphs, [CS08] for INDEPENDENT SET, [BCG09] for
the MaxMin allocation problem, and [KMN11] for KNAPSACK, is continually growing. Finally, for some
particular constraint satisfaction problems, and modulo the UGC, no approximation algorithm can perform
better than the one obtained by Sherali-Adams SDP of a constant number of rounds. In fact, a recent result
of Raghavendra [Rag08] gives strong evidence that algorithms based on the Sherali-Adams SDP system
constitute a strong model of computation.

Outline of the method: To describe the high level idea of our approach let us first give a brief description
of the Sherali-Adams SDP system applied to the VERTEX COVER problem. The Sherali-Adams SDP system
of level t is a Semidefinite program with the following variables. If G is a graph and U is any subset of its
vertices of size at most t the program will have real variables to specify a distributionD(U) over the subsets
of U . Furthermore, the program will have two kinds of constraints. The first kind ensure that any subset of U
that is assigned a positive probability covers all the edges inside U , i.e. the distribution D(U) is over vertex
covers of U . The second kind of constraints ensures that the marginals of the distributions for U1 ⊆ U are
consistent on U1, i.e. any event that only depends on the vertices of U1 has the same probability according
to D(U1) and D(U). The program will also have a semi-definiteness constraint on some of these variables
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which we will skip in the introduction. The objective value of the program is the sum over all vertices v of
the probability that v is in the local vertex covers.

The instances we use for our integrality gap construction are the Frankl-Rödl graphs (which are subgraphs
of Borsuk graphs), parameterized by an integerm and a real parameter γ > 0. The vertex set of these graphs
is {0, 1}m with an edge between two vertices if their Hamming distance is m(1 − γ). A result by Frankl-
Rödl [FR87] shows that if γ is a positive constant, all vertex covers of this graph have size 2m(1 − o(1)).
In fact [GMPT07] show the same holds even when γ is as small as

√
logm/m. A tight integrality gap

therefore calls for a solution in the system of objective value 1/2 + ε for an arbitrary small constant ε > 0.

Here is a simple description of our solution. Notice that a simple vertex cover of this graph is a Hamming
ball (with arbitrary center) with radius more than (1 + γ)m/2. This can be seen by observing that the
diameter of the complement of such set is less than γm and hence it does not contain any edge. A geometric
way to obtain a distribution of (the same) vertex covers would be to imagine the hypercube in Rm with its
center at origin and take a sufficiently large spherical cap centered at a random point on the sphere. Of
course, in doing so we have not achieved much since we are defining a (global) distribution of vertex covers,
and thus each has to be of size 2m(1 − o(1)). It is useful to understand this “obstacle” from a geometric
point of view: the height of the spherical cap must be at least 1 +

√
γ (instead of 1 which would give half a

hyper-sphere) and by concentration of measure on the sphere the area of such a cap is roughly 1/2+
√
mγ of

the whole sphere. Then, by averaging, the probability that an arbitrary point on the sphere (and in particular
a vertex of the hypercube) is in the cap is 1/2 +

√
mγ which is rather large.

The main idea is that if one needs to define probabilities only for small sets (that corresponds to a level-t
Sherali-Adams relaxation for some “small” t), one can first embed these points in a small dimensional
sphere and then repeat the experiment to define a random vertex cover. The spherical caps that are required
in order to cover the edges in these sets have the same height, but now, due to the lower dimension, their
area is greatly reduced! Specifically, if the original set has at most t points the experiment can be performed
in a t-dimensional sphere and if γt = o(1), the probability of a vertex participating in the vertex cover will
be no more than 1/2 + o(1). It is critical, of course, that the obtained distributions are consistent. But this
is “built-in” in this experiment. Indeed, due to spherical symmetry, the probability that a set of points on a t
dimensional sphere belong to a random cap of a fixed radius depends only on t, on the radius of the cap and
on the pairwise Euclidean distances of the points in the set. We should also point out that this construction
would work for any graph with vector chromatic number 2 + o(1). In another words, if G is graph that can
be embedded into the unit sphere so that edges may only appear between vertices whose embedded points
sum to a vector of norm o(1), then there is a sufficiently “low-level” (but non-trivial) Sherali Adams solution
of value (1/2 + o(1))n.

Unfortunately, we cannot show that the above solution satisfies the positive semi-definiteness constraints
of the Sherali-Adams SDP system, instead we change our solution in several ways to attain positive semi-
definiteness. These changes are somewhat technical and we avoid discussing them in detail here. At a
high level the changes are (i) we add a small probability of picking the whole graph as the vertex cover.
(ii) We apply a transformation of the canonical embedding of the cube in the sphere that ensures that the
farthest pairs of vertices are precisely the edges, and also that the inner products have a bias to being positive
(compared to the canonical embedding in which the average inner product is 0).

To get some insight into the rationale of these modification, first note that the matrix whose positive
definiteness we need to prove happens to be highly symmetric. For such symmetric matrices a necessary
condition for positive semi-definiteness is that the average entry is at least as large as the square of the
diagonal entries. Manipulation (i) above is precisely the tool we need to ensure this condition, and has
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no adverse effects otherwise. The second transformation is useful although not clearly necessary. We can,
however, argue that without a transformation of this nature, a good SDP solution is possible also for a graphs
in which edges connect vertices that are at least as far as m(1 − γ) (rather than exactly that distance). The
existence of solutions for such dense graphs seems intuitively questionable. Last, boosting the typical inner
product can be shown to considerably boost the Taylor coefficients of a certain function which we need to
show only has positive Taylor coefficients.

Comparison to other works: More than half-dozen different integrality gap constructions for Vertex
cover in different Lift-and-Project systems are known. Among these, the most relevant to our work is
[CMM09]. In [CMM09], Charikar, Makarychev and Makarychev obtain a Sherali Adams solution that is
based on embedding the vertices of the graph in the sphere. The similarity with our work is that Makarychev
et al. take a special case of caps, i.e. half-spheres, in order to determine probabilities. Consistency of these
distribution is, just as our case, guaranteed by the fact that these probabilities are intrinsic to the local
distances of the point-set in question. However, the reason that these distributions behave differently than a
global distribution (which is essential for an integrality gap construction) is completely different than ours.
It is easy to see that when the caps in the construction are half spheres, the dimension does not play a role at
all. However, in [CMM09] there is no global embedding of the points in the sphere rather only a local one.
In contrast, our distributions can be defined for all dimensions, however as we mentioned we must keep the
dimension reasonably small in order to guarantee small objective value. Another big difference pertains to
the different instances. While our construction may very well be the one (or close to the one) that will give
Lasserre integrality-gap bound, the instances of [CMM09] have no substantial integrality gap even for the
standard SDP.

It is also important to put our work in context with the sequence of results dealing with SDP integrality
gaps of Vertex-Cover [GK98, Cha02, GMPT07, GMT09a]. In these works the solution can be thought of as
an approximation to a very simple set: a dimension cut, that is a face of the cube. This set is not a vertex
cover, but in some geometric sense is close to one. The SDP solutions are essentially averaging of such
dimension-cuts with some carefully crafted perturbations. Using the same language, the solution we present
in the current work is based on Hamming balls of radius m/2 (i.e. translations of the majority function)
rather than dimension-cuts (i.e. dictatorship functions.) The perturbation we apply to make such a solution
valid is simply the small increase in the radius of the Hamming balls.

2 Preliminaries

Definition 2.1. (Borsuk graphs) The Borsuk graph Bm
δ is an infinite graph with vertex set Sm−1. Two

vertices x,y are adjacent if they are nearly antipodal, namely ‖x + y‖ ≤ 2
√
δ.

In the current paper we will study discrete finite subgraphs of Bm
δ .1 Next, note that any perfect matching

is a discrete subgraph of B2
0 . Conversely, any discrete subgraph of Bm

0 is clearly a perfect matching, and
hence, for small values of δ, it is tempting to think of Bm

δ as nearly perfect matchings. In other words, one
might expect that for any discrete subgraph (not necessarily induced) of Bm

δ , for some small value δ, there
exist vertex covers of size almost half the number of vertices. Interestingly, as we shall see in a while, this
is not always the case.

1Note that an alternative characterization of any subgraph of Bmδ is that its vector chromatic number is k = 2 + 2δ
1−2δ

. In other
words, for any two adjacent vertices i, j and their corresponding vector representation zi, zj in Sm−1 we have zi · zj ≤ − 1

k−1
.
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Definition 2.2. (Frankl-Rödl graphs) Fix γ, 0 ≤ γ ≤ 1 and an integer m ≥ 1. The Frankl-Rödl graph
Gmγ is the graph with vertices {−1, 1}m and where two vertices i, j ∈ {−1, 1}m are adjacent if dH(i, j) =
(1− γ)m.

Note that the graph Gmγ can be embedded in Sm−1 by just normalizing the hypercube; the vertices of
Gmγ are unit vectors zi in 1√

m
{−1, 1/}m. For some edge ij, we then have

‖zi + zj‖2 = 2 + 2 zi · zj = 2 + 2(−1 + 2γ) = 4γ,

showing that Gmγ is a subgraph of Bm
γ .

Frankl-Rödl graphs exhibit an interesting “extremal” combinatorial property. From the discussion above,
Gm0 are perfect matchings and so the minimum vertex cover has size half the number of the vertices. A
beautiful theorem by Frankl-Rödl says that by slightly perturbing γ, any vertex cover of the resulting graphs
has size 2m−o(2m). The following slight modification of the original theorem of Frankl and Rödl (Theorem
1.4 in [FR87]) was first proved in [GMPT07].

Theorem 2.3. Let m be an integer and let γ = Θ(
√

logm/m) be a sufficiently small number so that γm
is an even integer. Then there is no independent set in Gmγ of size larger than 2m/m.

Consequently, the minimum fraction of vertices that are required to form a vertex cover in Gmγ , with
γ = Θ(

√
logm/m) is of order 1−o(1). Frankl-Rödl graphs have been used as tight integrality gap instances

in a series of results [GK98, Cha02, GMPT07, GMT08, GMT09a]. In particular, in [Cha02] it is shown that
Gmγ is an induced subgraph ofB2m

γ . In the current paper, we show that all discrete subgraphs (not necessarily
induced) of Bm

γ are treated almost as perfect matchings by a strong family of LPs and SDPs.

Our construction is based on tensored vectors. Recall that the tensor product u ⊗ v of vectors u ∈ Rn

and v ∈ Rm is the vector in Rnm indexed by ordered pairs from n × m and assuming the value uivj
at coordinate (i, j). Define u⊗d to be the vector in Rnd obtained by tensoring u with itself d times. Let
P (x) = c1x

t1 + . . . + cqx
tq be a polynomial with nonnegative coefficients. Then TP is the function that

maps a vector u to the vector TP (u) = (
√
c1u⊗t1 , . . . ,

√
cqu⊗tq). Polynomial tensoring can be used to

manipulate inner products in the sense that TP (u) · TP (v) = P (u · v) and it was used for many integrality
gap results such as [GK98, Cha02, GMPT07, GMT08].

3 Strong relaxations for VERTEX COVER

A standard exact formulation of VERTEX COVER can be obtained as follows. Consider some instance
G = (V,E) of the VERTEX COVER problem. A valid solution, i.e. a vertex cover, is a partition of the
vertices into two sets. We associate every vertex i ∈ V with a variable xi ∈ {0, 1}with the intended meaning
that if a variable is set to 1, then the corresponding vertex will be in the vertex cover. The hard condition
that every edge ij ∈ E needs to be covered by at least one of its endpoints can be clearly formulated as
xi + xj ≥ 1. Then, the objective linear function

∑
i∈V xi counts the size of the vertex cover.

We have argued that that following optimization problem, known as an integer programming problem, is
an exact formulation for VERTEX COVER.

min
∑

i∈V xi
s.t. xi + xj ≥ 1 ∀ij ∈ E

xi ∈ {0, 1} ∀i ∈ V.
(1)
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Integer Programming is an intractable optimization problem. However, the usefulness of the previous
formulation becomes transparent by relaxing the integral condition xi ∈ {0, 1} into xi ∈ [0, 1]. The resulting
LP

min
∑

i∈V xi
s.t. xi + xj ≥ 1 ∀ij ∈ E (Edge constraints)

xi ∈ [0, 1] ∀i ∈ V,
(2)

is known as the standard LP relaxation for VERTEX COVER, and can be solved in polynomial time. Any
such relaxation is inherently associated with what is known as the integrality gap (integrality gap), which
measures how much is the relaxed optimal solution off from the true optimal. Formally, for some instance
graph, the integrality gap of a relaxation is the ratio between the true optimal solution over the optimal
solution of the relaxation. The integrality gap of a relaxation is defined as the supremum of the integrality
gaps over all instances. The integrality gap serves as an important measure of effectiveness, as it bounds the
approximation that any algorithm can achieve that is based on the relaxation.

It is an easy exercise to show that the integrality gap of (2) is at most 2, showing that no (2 − Ω(1))-
approximation algorithm can be based on this LP. The tightness of the integrality gap can be easily shown
by considering a complete graph on n vertices: since the all 1/2 vector is always a solution of (2), the
integrality gap is n−1

0.5 n = 2− 2/n.

Sherali and Adams [SA90] proposed a systematic procedure for tightening 0/1 polytopes. For conve-
nience we will present the definition just for the vertex cover polytope (2). In order to give some motivation
for the Sherali-Adams system, we need some notation. We abbreviate the set {0, 1 . . . , n} by [n]. For
A ⊆ [n] we denote by PA,PAt the powerset of A, and all subsets of A of size at most t respectively. For
y ∈ RP [n]

, t ∈ [n] and U ∈ P [n] we define the matrices

(Mn(y))I,J := yI∪J , ∀I, J ∈ P [n] (3)

(MU (y))I,J := yI∪J , ∀I, J ∈ PU . (4)

We also set y0 = y∅, y{i} = yi, and in general we treat the set {0} as the empty set ∅. From the definitions

above it is clear that Mn(y) = M[n](y). Now, for any A ⊆ [n] we define the “shifting” y+A of y ∈ RP [n]
,

as a vector in RP [n]
, with (y+A)I = yA∪I .

Now consider an integral solution x of (2) for some instance n-vertex graph G = (V,E), and define
y ∈ RP [n]

as yI =
∏
i∈I xi. Then it is easy to check that

M[n](y) � 0, M[n](y+{i} + y+{j} − y) � 0, ∀ij ∈ E. (5)

Generalizing this, one can show that for a global distribution of vertex covers on [n], if we set yI equal to the
probability that all variables in I are set to 1, then y satisfies constraints (5). In fact, it is known [LS91, SA90]
that adding constraints (5) to the LP (2) yields the convex closure of integral solutions of the exact formula-
tion , and therefore the integrality gap is 1. Clearly, the resulting LP has exponentially many constraints. For
this, Sherali and Adams proposed the following relaxation of the vertex cover polytope of some n-vertex
graph G = (V,E), using the linear variables variables y ∈ RP

[n]
t , for some fixed t.

min
∑

i∈V yi

s.t. MU (y+{i} + y+{j} − y) � 0 ∀ij ∈ E, ∀U ∈ P [n]
t−1 (Edge constraints)

MU (y) � 0 ∀U ∈ P [n]
t

yi ∈ [0, 1] ∀i ∈ V,

(6)
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Relaxation (6) is known as the level-t Sherali-Adams relaxation for VERTEX COVER, and more interest-
ingly, it is a linear relaxation in disguise (see [Lau03])! We do not need to take advantage of this nice fact,
as we know of an alternative argument that guarantees that a y ∈ RP

[n]
t is in fact a solution for (6) (the

same argument was first used in [dlVKM07], and later in [CMM09, GM08, GMT09b]). This is based on
the following easy observation.

Fact 3.1. Suppose that we can associate every U ∈ P [n]
t with a distribution D(U) of “local” vertex covers

(namely distribution of 0/1 assignments on U with all local edge constraints satisfied). Suppose also that
the resulting family of distributions is locally consistent, namely, for all U,U ′ ⊆ P [n]

t the distributions

D(U),D(U ′) agree on U ∩ U ′. Define the vector y ∈ RP
[n]
t as yU = PD(U)[U is in the vertex cover]. Then

y satisfies relaxation (6).

The reason is almost self evident. If we have such a family of distributions as described in Fact 3.1, then
for all U ∈ P [n]

t , and for all A ⊆ U , the distributions D(A),D(U) agree on A. Hence, yA can be seen as
the probability of an event defined on U , and therefore all matrices MU (y),MU (y+{i} + y+{j} − y) are
convex combinations of positive semidefinite matrices.

One of the most challenging problems in the area is to prove a tight integrality gap in the so-called
Lasserre system that requires that the matrices Mt(y) are positive semidefinite. An intermediate system of
relaxations between the Sherali-Adams system and the Lasserre system would be to add to the relaxation 6
the level-1 condition of the Lasserre system, namely to require that M1(y) � 0. We refer to the resulting
relaxation (7) as the level-t Sherali-Adams SDP.

min
∑

i∈V yi

s.t. MU (y+{i} + y+{j} − y) � 0 ∀ij ∈ E, ∀U ∈ P [n]
t−1 (Edge constraints)

MU (y) � 0 ∀U ∈ P [n]
t

M1(y) � 0
yi ∈ [0, 1] ∀i ∈ V,

(7)

4 Local Distributions of Vertex Covers for Borsuk Graphs

In this section we study relaxation (6) for discrete subgraphs of Bm
γ on n vertices. In particular, for any

t ≤ n, we show how to find y ∈ RPt that satisfies the level-t Sherali-Adams relaxation (6) of the vertex
cover polytope. Note that in light of Fact 3.1, our problem reduces in associating every set U ⊆ [n] with a
distribution of vertex covers that are locally consistent.

The family of distributions we are looking for arises from the following experiments. For this, we fix
some discrete subgraph G = (V,E) of Bm

δ on n vertices, for which we also consider the representation on
Sm−1 to be known. Note that t can assume any value in [n] but it must be fixed beforehand.

For completeness, we can say that part (a) of Experiment Local-Global can be realized by any orthonor-
mal mapping, and it is possible since |I| ≤ t. For some I , denote the vectors in St−1 as (zi)i∈I . 2 Hence,
according to the distribution D(I), vertices i ∈ I are assigned the value 1 only if w · zi ≤

√
δ‖w‖.

2 Then, (although it is irrelevant to our analysis), step (b) can be achieved as follows. Consider t independent random variables
wi, i = 1, . . . , t, of the normal distribution N(0, 1). It is known that the vector w/‖w‖, where w = (w1, . . . , wt) is distributed
uniformly on St−1.
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Experiment Local-Global

The input is any I ⊆ V , of size at most t, and some
√
δ > 0.

The result of the experiment is a distribution of 0/1 assignments on I .
(a) Embed the I-induced subgraph of G into St−1 preserving all pairwise Euclidean distances.
(b) In St−1 consider the complement C of a random spherical cap of height 1−

√
δ.

(c) Vertices of I are assigned 1 if the lie in the cap C, otherwise they are assigned 0.

We want to use Fact 3.1 now to argue that the vector y ∈ RP
[n]
t , such that

yI = P
w∈St−1

[w · zi ≤
√
δ, ∀i ∈ I] (8)

satisfies the relaxation (6).

Lemma 4.1. For every finite subgraph of Bm
δ on n vertices, the family of distributions D(I), I ∈ P [n]

t , is a
distribution of locally consistent vertex covers, in the context of Fact 3.1.

Proof. Indeed, we can conclude local consistency if we combine the following two observations: i) t is fixed
a priori and it is the same for all I ∈ P [n]

t , ii) the probability in (8) depends only on the pairwise Euclidean
distances of vectors in I .

It therefore remains to argue that D(I) is a distribution of vertex covers. To that end, we need to show
that in the Experiment Local-Global, two adjacent vertices cannot be at the same time outside the random
cap C. This is true, because i, j are outside the cap only if w · zi >

√
δ and w · zj >

√
δ, in which case,

‖zi + zj‖ = ‖w‖ ‖(zi + zj)‖ ≥ w · (zi + zj) > 2
√
δ,

where the penult inequality is given by Cauchy-Schwarz. Since G is a subgraph of Bm
γ , we conclude that ij

cannot be en edge.

5 Nearly Perfect Matchings for the Sherali-Adams System

Roughly speaking, the Sherali-Adams relaxation of the vertex cover polytope treats a graph like an almost
perfect matching, if the contribution of every vertex in the objective function of (6) is 1/2+ε, for some small
ε > 0. We should therefore ask ourselves, what is the probability that in the experiment Local-Global, a
vertex lies in the random cap.

Observe that our goal is to produce distributions of vertex covers such that the marginals on the singletons
are almost 1/2. Note that if in the Experiment Local-Global, the value of t is very large, then from high
dimensional phenomena we will have that the area of the big cap C is very close to that of St−1, making the
probability that a vertex is chosen close to 1. At the same time, if t is relatively small the marginals on the
singletons could be relatively close to 1/2. We make this formal in the next technical lemma. Its proof uses
a simple concentration argument that we present in the Appendix.

Lemma 5.1. For any fixed z ∈ St−1, we have Pw∈St−1 [w · z ≤ η] ≤ 1
2 + η

√
π
8 (t+ 1), where w is

distributed uniformly on St−1.

9



We are ready to show that the Sherali-Adams system treats discrete finite subgraphs of Bm
δ as nearly

perfect matchings.

Theorem 5.2. Let G be a finite subgraph of Bm
δ on n vertices. Then the level-

(
2ε2

π
1
δ − 1

)
Sherali-

Adams relaxation (6) of the vertex cover polytope has objective value (1/2 + ε)n.

Proof. We use Experiment Local-Global with parameters t =
(
2ε2/πδ − 1

)
and
√
δ (so that the excluded

random caps will have height 1−
√
δ), to define a family of local 0/1 distributions. From Lemma 4.1 these are

locally consistent distributions of vertex covers. Then Fact 3.1 gives us a level-tSherali-Adams solution.By
Lemma 5.1, setting η =

√
δ, the contribution of each vertex in the objective function is exactly 1/2 + ε.

As an immediate corollary, we now conclude a tight integrality gap for VERTEX COVER and the Sherali-
Adams system, namely Theorem 1.1.

Proof of Theorem 1.1. We start with the n-vertex Frankl-Rödl graphs Gmδ , n = 2m, which are finite subsets
of the Borsuk graph Bm

δ . We set δ = Θ(
√

logm/m) so as the conditions of Theorem 2.3 to be satisfied,

namely all vertex covers of Gmδ are of size n − o(n). Theorem 5.2 then implies that the level-
(

2ε2

π
1
δ − 1

)
Sherali-Adams relaxation of the vertex cover polytope has integrality gap at least

n− o(n)
(1/2 + ε)n

= 2− 2ε− o(1).

6 Preliminary Observations for the Sherali-Adams SDP Solution

We need the following sufficient condition for a principal submatrix of M1(y) to be positive semidefinite.
For this, it is convenient to denote by M ′1(y) the principal submatrix M1(y) indexed by nonempty sets.
Note also that for the Sherali-Adams we introduced in the previous section, all y{i} attain the same value,
say yR. In that notation, we have

M1(y) =
(

1 1yR
1T yR M ′1(y)

)
, (9)

where by 1 we denote the all 1 vector of appropriate size. Then we have the following easy fact.

Fact 6.1. Suppose that the all 1 vector is an eigenvector for M ′1(y). Then the following are equivalent.
(a) The matrix M1(y) is positive semidefinite.
(b) The matrix M ′1(y) is positive semidefinite and for some j ∈ V , avgi∈V y{i,j} ≥ y2

R.

Proof. It is is to check that M1(y) � 0 if and only if M ′1(y)− y2
RJ � 0, where J is the all 1 matrix. Now,

since the all 1 vector is an eigenvector for bothM ′1(y), J , all other eigenvectors ofM ′1(y) are perpendicular
to the rows of J . By noticing also that this implies that

∑
i∈V y{i,j} does not depend on j ∈ V , we

conclude the claim. In particular, this shows that the value n
(
avgi∈V y{i,j} − y2

R

)
, is an eigenvalue of

M ′1(y)− y2
RJ .

The next Lemma establishes a sufficient condition for solutions fooling SDP relaxations for Borsuk
graphs. The proof uses the standard tool of tensoring.
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Lemma 6.2. Let y be a level-t Sherali-Adams solution for VERTEX COVER for a Borsuk graph with
vector representation ui and suppose that the value y{i,j} can be expressed as a function f(x) of the inner
product ui ·uj = x. Then if f(x) has Taylor expansion with nonnegative coefficients, then the matrixM ′1(y)
is positive semidefinite.

Proof. Consider the Taylor expansion of f(x) =
∑∞

i=0 aix
i, where ai ≥ 0. We map ui ∈ Sm−1 to an

infinite dimensional space as follows
ui 7→ Tf (ui).

Then the vectors Tf (ui) constitute the Cholesky decomposition of M ′1(y), and therefore M ′1(y) � 0.

Now we examine the Sherali-Adams solution of some special case that will be instructive for our general
argument. Consider some n vertex subgraph G = (V,E) of Bm

ρ2 with vector representation zi ∈ Sm−1.
Suppose also that edges ij ∈ E appear exactly when zi · zj = −1 + 2ρ2, and that for all other pairs i, j ∈ V
we have zi · zj ≥ −1 + 2ρ2. Run Experiment Local-Global with parameters t = 2 and δ = ρ2 to define the
level-2 Sherali-Adams solution y

yI = P
w∈S1

[w · zi ≤ ρ, ∀i ∈ I] (10)

for all I of size at most 2, where w is distributed uniformly on the circle.

Claim 6.3. The values y{i,j} of equations (10) depends on the inner product zi · zj = x and the rounding
parameter ρ. As such, its value is given by

f(x, ρ) =


1 , ρ ≥ 1
1− 2θρ

π , 2ρ2 ≥ x+ 1 & ρ ≤ 1
1− θρ

π −
θx
2π , 2ρ2 ≤ x+ 1 & ρ ≤ 1,

(11)

from which we also derive that f(1, ρ) = 1− θρ
π .

Proof. The vector w of (10) can be obtained by taking W1,W2 ∼ N(0, 1) and then normalizing the vector
w = (W1,W2). Next we find an analytic expression for y{i,j} that depends on the inner product zi · zj = x
and the rounding parameter ρ. Since this value depends on x, ρ, we denote it by f(x, ρ). Formally,

f(x, ρ) := P
w∈S1

[w · zi ≤ ρ & w · zj ≤ ρ, with zi · zj = x] (which is also denoted by y{i,j}) (12)

Note that in that language, we have y{i} = f(1, ρ). SinceW1,W2 ∼ N(0, 1), the random variableW 2
1 +W 2

2

follows the chi-square distribution χ2(2) with 2 degrees of freedom. Conditioning onW 2
1 +W 2

2 = w, we can
normalize the expression in (12) by w so that the probability can be expressed as the ratio of arcs of the unit
circle. Call θx the angle between zi, zj , namely θx = arccos(zi · zj) = arccos(x). Set also θρ = arccos(ρ).
In other words, we interpret the event in (12) as saying that two vectors with angle θx remain on the unit
circle after removing a random cap of measure arccos(ρ). Note that when θx ≤ 2 arccos(ρ), namely when
x ≥ 2ρ2 − 1, we have y{i,j} = 1− θρ

π −
θx
2π . In contrast, when x ≤ 2ρ2 − 1, we have y{i,j} = 1− 2 θρπ .

Fact 6.4. If ρ ∈ [0, 1], the function 1− θρ
π −

θx
2π has Taylor expansion with nonnegative coefficients.
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Proof. (of Fact 6.4) We use the Taylor expansion of arccos(x) to write the above functions as

3
4
− arccos(ρ)

π
+

1
2π

∞∑
k=0

(2k)!
22k(k!)2(2k + 1)

x2k+1.

Since ρ > 0, we have arccos(ρ) < π/2 and therefore the constant term above is non negative.

Note here that if we start with a configuration of vectors zi for which zi · zj ≥ −1 + 2ρ2 for all pairs
i, j ∈ V , then the value y{i,j} will be described as a function on the inner product zi · zj = x, and this
function on x will have Taylor expansion with nonnegative coefficients. Unfortunately, for our Sherali-
Adams solution of the previous sections this is not the case. We establish this extra condition in Section 7,
making sure that the principal submatrix M ′1(y) of M1(y) is positive semidefinite. Proving that the matrix
M1(y) is positive semidefinite will require one extra simple argument, which is self evident from fact 6.1.

7 An easy level-2 Sherali-Adams SDP Solution

In this section we apply the techniques we developed in Section 6 to show a tight integrality gap for VERTEX

COVER in the level-2 Sherali-Adams SDP system. This will serve as an instructive example of the general
case, whose proof will be obtained as a smooth generalization of the arguments below. In what follows, we
show that:

Theorem 7.1. For every ε > 0, there exist δ > 0 and sufficiently big m, such that the objective value of
the level-2 Sherali-Adams SDP system for the VERTEX COVER polytope and the family of graphs Gmδ is
2m(1/2 + ε).

As the theorem states, we start with the Frankl-Rödl graph Gmδ = (V,E), which is a subset of Bm
δ , with

vector representation ui. Our goal is to define y in the context of Theorem 5.2, so as the matrix M1(y)
to be positive semidefinite. Our Sherali-Adams solution as it appears in Theorem 5.2 does not satisfy the
constraint M1(y) � 0, for reasons that will be clear shortly. For this, we need to apply the transformation
ui 7→ zi := (

√
ζ,
√

1− ζ TP (ui)), for some appropriate tensoring polynomial P (x), and some ζ > 0 (that
is allowed to be a function of (m, δ)). We will use the following fact, first proved by Charikar [Cha02].

Fact 7.2. There exist a polynomial P (x), with nonnegative coefficients and P (1) = 1, such that for all
x ∈ [−1, 1], we have P (x) ≥ P (−1 + 2δ) = −1 + 2δ0, for some δ0 = Θ(δ). Moreover, for every constant
c > 0 and for every x ∈ (−c/

√
m, c/

√
m), we have |P (x)| = O(

√
1/m).

We use the polynomialP of Fact 7.2 to map the vectors ui to the new vectors zi := (
√
ζ,
√

1− ζ TP (ui)).
Note that with this transformation, for an edge ij ∈ E we have zi · zj = ζ + (1 − ζ)P (−1 + 2δ) =
ζ + (1 − ζ)(−1 + 2δ0) = −1 + 2 (ζ(1− δ0) + δ0) . If we denote

√
ζ(1− δ0) + δ0 by ρ, then the above

transformation maps Gmδ to Gm
′

ρ2 , where m′ is the degree of the polynomial P . We are therefore eligible
to run Experiment Local-Global with parameters t = 2 and ρ2 on the vectors zi = (

√
ζ,
√

1− ζ TP (ui)).
Then Lemma 4.1, together with Fact 3.1, imply that y as defined in (10) is a level-2 Sherali-Adams so-
lution (the parameters δ, ζ will be fixed later). Next we show that for a slightly perturbed y we have that
M1(y) is positive semidefinite.

First we observe that the context of Section 6 is relevant to the current configuration of vectors zi and
to our graph instances, since zi · zj ≥ −1 + 2ρ2. If ui · uj = x, then the value of y{i,j} is exactly
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g(ζ + (1 − ζ)P (x)), where g(x) = 1 − θρ
π −

arccos(x)
2π . By Fact 6.4 we know that the function g(x) has

Taylor expansion with nonnegative coefficients. Since ζ + (1 − ζ)P (x) is a polynomial with nonnegative
coefficients, it follows that g(ζ + (1− ζ)P (x)) has Taylor Expansion with nonnegative coefficients. Hence,
we can apply Lemma 6.2 to obtain that

Lemma 7.3. The matrix M ′1(y) is positive semidefinite.

In what follows we describe a way to extend the positive semidefiniteness of M ′1(y) to that of M1(y).
In fact what we will show is general and holds for any level t. Since the entries of M ′1(y) are a function the
inner product of the corresponding vectors of the hypercube, it follows that the all 1 vector is an eigenvector
for M ′1(y). By Fact 6.1 it follows that we need to show that avgi∈V y{i,j} − y2

{i} ≥ 0. It turns out that this is
not the case, but we can establish a weaker condition (described here in terms of a general sphere dimension
D).

Lemma 7.4. There exist a constant c > 0 (not depending on m, ρ), such that avgi∈V y{i,j} − y2
{i} ≥ −cDρ.

We omit the proof of this lemma from this extended abstract. A rough estimate that suffices is that
whenever two points have positive inner product, the probability that both are in a random cap is at least
1/4. It can be shown that due to the affine transformation, all but exponentially small fraction of the pairs
will have positive inner products, hence we get that the average of y{i,j} is at least 1/4− o(1). On the other
hand, by Section 5 we know that y{i} ≤ 1/2 +O(Dρ).

Boosting: It remains to show how to ”boost” the solution to move from the relaxed condition to the
exact, and necessary one. The idea is simple. Consider a ridiculously wasteful integral solution to Vertex
Cover, namely the solution that takes all vertices. Clearly, if we take a convex combination of this solution
with the existing one we still get a Sherali-Adams solution. If the weight of the integral solution is some
small number ξ > 0 then the objective value increases by no more than ξ/2 which can be absorbed for
arguments to go through as long as ξ ≤ ε. Owing to the strict convexity of the quadratic function, however,
this simple perturbation does allow to improve the bound on averages as we describe now and prove in the
Appendix.

Lemma 7.5. Let y′ be the matrix y′ = (1− ξ)y+ ξJ where J represents the all 1 solution. Also let s = y{i}
and s′ = y′{i}}. Then avgi,jy

′
{i,j} − s

′2 = Ω(ξ).

We are now ready to formally prove Theorem 7.1.

Proof. (of Theorem 7.1) We start with the n-vertex Frankl-Rödl graph Gmδ , with δ = θ(
√

log n/ log log n)
so as to satisfy the conditions of Theorem 2.3. We use the polynomial of Fact 7.2 to obtain the vectors
zi = (

√
ζ,
√

1− ζ TP (ui)), with ζ = δ0 (where δ0 = Θ(δ) by Fact 7.2). We set ρ =
√
ζ(1− δ0) + δ0 =√

Θ(ζ), and we run the Experiment Local-Global on the vectors zi with parameters t = 2 and ρ2, to
obtain the vector y. By Lemma 4.1 and Fact 3.1, we have that y as defined in (10) is a level-2 Sherali-
Adams solution. Note that since δ = o(1) we conclude from Lemma 5.1 that y{i} = 1/2 + Θ(δ) < 2/3.

Next we define y′ as (1 − ξ)y + ξJ . We already argued that M ′1(y′) is positive semidefinite. By the
above discussion (and Lemma 7.5) we conclude that avgi,jy

′
{i,j}− y′

2
{i} ≥ 0. We can therefore use Fact 6.1

to conclude thatM(y′) is positive semidefinite. The last thing to note is that the contribution of every vertex
in the objective value is 1/2 +O(δ)
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8 The level-(t + 2) Sherali-Adams SDP Tight Integrality Gap

For the level-(t + 2) SDP, we start with the n-vertex Frankl-Rödl graphs Gmδ , n = 2m with vector rep-
resentation ui. The value of δ is chosen so as to satisfy Theorem 2.3, namely δ = Θ(

√
logm/m). As

in Section 7 we apply to ui two transformations; one using the tensoring polynomial of Fact 7.2 and one
affine transformation. Then we use the resulting vectors zi = (

√
ζ,
√

1− ζ TP (ui)) to define a level-(t+2)
Sherali-Adams solution that we denote by y.

Our goal is to meet the conditions of Fact 6.1. Namely, the first thing to ensure is that M ′1(y) is positive
semidefinite. In this direction, from Lemma 6.2 it suffices to show that the Taylor expansion of the function
that describes the value of y{i,j}, when ui · uj = u, has Taylor expansion with nonnegative coefficients.
Given that this function at 0 will always represent some probability, the problem is equivalent to showing
that the first derivative of this function has such a good Taylor expansion. Our transformation on the vectors
ui can be thought as mapping their inner product u first to x = P (u), and second x to y(x) = ζ + (1− ζ)x.
Under this notation, we can show the following lemma that involves a number of technical calculations. We
deal with its proof in Appendix B.

Lemma 8.1. The first derivative of the functional description of y{i,j} is

Dζ(x) := −(arccos(y(x)))′
(

1− 2ρ2 + y(x)
1 + y(x)

)t/2
, (13)

where the subscript of Dζ we emphasize that y(x) = ζ + (1− ζ)x.

Therefore, to conclude that M ′1(y) is positive semidefinite it suffices to show the next technical lemma,

Lemma 8.2. Set t = 4 and ρ2 ∈ [ζ, ζ + ζ3]. Then for sufficiently small ζ, the function Dζ(x) as it reads in
Lemma 8.1 has Taylor expansion with nonnegative coefficients.3

whose proof requires arguments along the lines of our proof for Claim 7.3. Due to its technicality,
Lemma 8.2 is proved in Appendix C.

Now we are ready to prove Theorem 1.2. First we obtain a level-(t + 2) Sherali-Adams solution from
the vectors zi = (

√
ζ,
√

1− ζ TP (ui)) (the reader may think of t = 4). We need to set ζ = 3
√
δ0, where

δ0 = (1 + min(P (x))/2. Since the rounding parameter we need is ρ =
√
ζ(1− δ0) + δ0, it is easy to see

that ρ2 = ζ + ζ3 − ζ4. It follows by Lemma 8.2 that the matrix M ′1(y) is positive semidefinite.

Now call c the constant for which avgi∈V y{i,j} − y2
{i} ≥ −ctρ

2. We also know that if tρ2 is no more
than a small constant ε/10, then y{i} ≤ 1/2 + ε. Then define

y′ = (1− 4cε)y + (4cε)1.

As we did for the level-2 Sherali-Adams SDP solution, the vector y′ is a level-(t+ 2) Sherali-Adams so-
lution. Moreover, the matrix M ′1(y′) is positive semidefinite, and avgi∈V y

′
{i,j} − y

′2
{i} ≥ 0. All conditions

of Fact 6.1 are satisfied implying that M1(y′) is positive semidefinite. Finally, note that the contribution of

3We have numerical evidence that the lemma holds true as long as t is a constant and ρ2 < 1.01ζ, however we were not able
to show this stronger version. The specific parameters with which one can prove this lemma sets the restrictions on the rounds of
the Sherali-Adams SDP relaxation to which the integrality gap applies.
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the singletons is no more than 1/2 + Θ(ctρ2). Hence, if we start4 with tρ2 = o(1), the contribution of the
singletons remains 1/2 + o(1). On the other hand, choosing δ = Θ(

√
logm/m) results in graphs Gmδ with

no vertex cover smaller than n− o(n). We should point here that the limitations in the level of our integral-
ity gap are set by the maximum value of t for which Lemma 8.2 holds true. Even for t = 4 Lemma 8.2 is
already messy to prove, however we dare to conjecture that the Lemma holds true for superconstant values
of t, for which we also have numerical evidence. This further allows us to conjecture that the exact same
solution we have can prove that

Conjecture 8.3. For every ε, ε0 > 0 and for any constant t, there exist a family of graphs for which the
level-t Sherali-Adams SDP relaxation for VERTEX COVER has integrality gap 2− o(1).
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A Proofs of Lemmata

Proof of Lemma 5.1. A vector w ∈ St−1 defines the complement of a spherical cap of height 1 − η. We
therefore need to determine the ratio between the measure of a cap over the measure of the t dimensional
sphere.

Denote by µ(St−1
η ) the surface area of a spherical cap of St−1, with height 1− η (as the one defined by

w in the statement of the lemma). Let also

Φt (x, y) :=
∫ y

x
sint−2 rdr,

for which the following bounds hold √
2π
t+ 1

≤ Φt (0, π) ≤
√

2π
t
. (14)

We will need the following fact

µ(St−1
η ) = 2π Φt−2 (0, arccos η)

t−3∏
i=1

Φi (0, π) .

Note that in this language, the surface area of the hypersphere is 2 µ(St−1
0 ). We therefore have

P
w∈St−1

[w · z ≤ η] =
2µ(St−1

0 )− µ(St−1
η )

2µ(St−1
0 )

=
1
2

+
µ(St−1

0 )− µ(St−1
η )

2µ(St−1
0 )

=
1
2

+
Φt−2 (0, π/2)− Φt−2 (0, arccos η)

2Φt−2 (0, π/2)

=
1
2

+
Φt−2 (arccos η, π/2)

Φt−2 (0, π)
(14)
≤ 1

2
+

√
t+ 1
2π

Φt−2 (arccos η, π/2)

≤ 1
2

+

√
t+ 1
2π

(π/2− arccos η). (15)

Now we need the Taylor expansion of arccos η, according to which

arccos η =
π

2
−
∞∑
k=0

(2k)!
22k(k!)2(2k + 1)

η2k+1 ≥ π

2
− η

∞∑
k=0

(2k)!
22k(k!)2(2k + 1)

=
π

2
− ηπ

2
(16)
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We can therefore upper bound (15) by

1
2

+ η
π

2

√
t+ 1
2π

=
1
2

+ η

√
π

8
(t+ 1).

Proof of Lemma 7.5.

avgi,jy
′
{i,j} − s

′2 = (1− ξ)avgi,jy{i,j} + ξ − ((1− ξ)s+ ξ)2

= (1− ξ)avgi,jA{i,j} + ξ − (1− ξ)2s2 − 2(1− ξ)ξs− ξ2

≥ (1− ξ)(avgi,jA{i,j} − s2) + ξ + ξs2 − ξ2s2 − 2ξs− ξ2

≥ −O(Dρ+ ξ2) + (1− s)2ξ
= Ω(ξ)

In the last inequality we use the fact that we only take D so as to make Dρ = O(ε), that ξ is roughly the
same as ε, and that s is bounded away from 1.

B A Functional Description of the Sherali-Adams Solution
(proof of Lemma 8.1)

Our goal is to prove the analog of Theorem 7.1 for a higher level of the Sherali-Adams system, satisfying
the positive semidefinite constraint as well. We start with the configuration of Section 6, namely two vectors
zi, zj having inner product x ≥ −1 + 2ρ2. We now revisit (12) and (10) taking into consideration that
our experiment takes place in St+1, t ≥ 0 (this will give rise to a level-(t + 2) Sherali-Adams solution).
As in the construction of the level-2 Sherali-Adams SDP solution, we give a functional description of the
value of the doubletons y{i,j}. Then we only need to show that the Taylor expansion of this function has
nonnegative coefficients.

Remember that the experiment can be realized by considering t + 2 independent random variables Wi

chosen from the normal distribution. Note that the random variables
∑t

i=3W
2
i := U1 and W 2

1 +W 2
2 := U2

follow the distributions χ2(t) and χ2(2) respectively. We will need the following fact.

Fact B.1. Let U1, U2 be two stochastic independent random variables of the distributions χ2(t) and χ2(2)
respectively. Then the random variable U1/t

U2/2
has probability density function

gt,2(u) =
t

u

√
(tu)t

(tu+ 2)t+2
.

Moreover, the associated distribution is known as the Ft,2-distribution.

Conditioning on U1 = u1, U2 = u2, as in Section 6, we can normalize the events by u2, in which case
we can interpret the probability of the event associated with y{i,j} again in terms of an experiment that takes
place in S1. The difference is that this time, the rounding parameter becomes ρ

√
(1 + u1/u2). We just

showed the following fact.
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Fact B.2. Let y{i1,i2} = Pw∈St+1 [w · zi ≤ ρ, i = 1, 2], namely the values y{i1,i2} are the result of a
random cut that takes place in St+1. The same cut is a distribution of cuts in S1 with rounding parameter
η = ρ

√
1− tu/2. The probability density function of u is the Ft,2-distribution of Fact B.1.

For two vectors with zi · zj = x, we can adjust the notation of (10) so as to define Ft(x, ρ) = y{i,j}.
Using now (11) we have

Ft(x, ρ) =
∫ ∞
u=0

gt,2(u)f(x, ρ
√

1 + tu/2)du. (17)

Now define

C := 2
1− ρ2

tρ2
, h(x) :=

1− 2ρ2 + x

tρ2

emphasizing that C does not depend on x. Then taking advantage of (11), we have

f(x, ρ
√

1 + tu/2) =


1 , u ≥ C

1− 2θ(ρ
√

1+tu/2)

π , h(x) ≤ u ≤ C,

1− θ(ρ
√

1+tu/2)

π − θx
2π , 0 ≤ u ≤ h(x)

(18)

Note that this is well defined, since ρ > 0 and for all x ∈ [−1 + 2ρ2, 1] we have 0 ≤ h(x) ≤ C (recall that
x represents the inner product of unit vectors, that have always angle at most 2 arccos(ρ)).

This allows us to find a nicer expression for (17). For notational simplicity, let η = ρ
√

1 + tu/2). Then,

Ft(x, ρ) =
∫ ∞
u=C

gt,2(u)du+
∫ h(x)

u=0
gt,2(u)

(
1− θη

π
− θx

2π

)
du+

∫ C

u=h(x)
gt,2(u)

(
1− 2θη

π

)
du

= 1− 1
π

∫ C

u=0
gt,2(u)θηdu+

1
2π

(
−θx

∫ h(x)

u=0
gt,2(u)du− 2

∫ C

u=h(x)
gt,2(u)θηdu

)

where the component of Ft(x, ρ) that depends on x now becomes clear.

Next we find the first partial derivative of Ft(x, ρ), with respect to x. For this define

H1(x) := θx

∫ h(x)

u=0
gt,2(u)du, H2(x) :=

∫ C

u=h(x)
gt,2(u)θηdu,

Now observe that

∂

∂x
H1(x) = (arccos(x))′

∫ h(x)

u=0
gt,2(u)du+ arccos(x) gt,2(h(x))

∂h(x)
∂x

and that

∂

∂x
H2(x) = −gt,2(h(x)) arccos

(
ρ

√
1 +

t

2
h(x)

)
∂h(x)
∂x

= −gt,2(h(x)) arccos

(√
1 + x

2

)
∂h(x)
∂x

= −1
2
gt,2(h(x)) arccos(x)

∂h(x)
∂x
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where the last equality follows from the identity arccos
√

(1 + x)/2 = arccos(x)/2. Combining the above,
we conclude that

∂

∂x
Ft(x, ρ) = −(arccos(x))′

∫ h(x)

u=0
gt,2(u)du

= −(arccos(x))′
[(

tu

tu+ 2

)t/2]h(x)
0

= −(arccos(x))′
(

t h(x)
t h(x) + 2

)t/2
= −(arccos(x))′

(
1− 2ρ2 + x

1 + x

)t/2
. (19)

The proof of Lemma 8.1 is now complete.

C Positive coefficients of the Taylor Expansion
(Proving Lemma 8.2 in Three Steps)

Appendix C.1 deals with some preliminary technicalities that are needed in order to prove Lemma 8.2.
Appendix C.2 contains the proofs of claims that appear in Appendix C.1 (and which are mostly exhaustive
calculations). Finally Appendix C.3 concludes with the proof Lemma 8.2.

C.1 Preliminary Technicalities - Preparing the Ground for the proof of Lemma 8.2

We study the Taylor expansion of the function (13), namely

−(arccos(y(x)))′
(

1− 2ρ2 + y(x)
1 + y(x)

)t/2
,

where y(x) = ζ+(1−ζ)x. First note that (arccos(y(x)))′ = (1−ζ)/
√

1− y2(x), that is we need to study
the Taylor expansion of the function

H
(t)
ζ,ρ(x) :=

1√
1− y2(x)

(
1− 2ρ2 + y(x)

1 + y(x)

)t/2
.

In what follows we set T = t/2. First we note that it suffices to show that

∂H
(t)
ζ,ρ(x)

∂x
· 1

H
(0)
ζ,ρ(x)

(20)

has Taylor expansion with positive coefficients, as the function H(0)
ζ,ρ(x) clearly exhibits the same property.

The reader can first verify that (20) equals(
1− 2ρ2 + ζ + (1− ζ)x

)T−1

(1 + ζ + (1− ζ)x)T+1

pζ,ρ(x)
(1− x)

(21)
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where pζ,ρ(x) := ζ + 2Tρ2(1− ζ)− ζ(2ρ2 − ζ) + (1− ζ)(2ζ − 2Tρ2 − 2ρ2 + 1)x+ (1− ζ)2x2.

In order to find the Taylor expansion of (21) we proceed in two steps. First, we find a closed formula
for the coefficients of (21) in the absence of the numerator, which is a bounded degree polynomial. Second,
we would like to convolute the series (for which we know explicitly the coefficients) with the polynomial(
1− 2ρ2 + ζ + (1− ζ)x

)T−1
pζ,ρ(x). The presence of many different parameters complicates the analysis.

We observe however that since parameter ρ2 only appears in the numerator of (21), and since ρ2 ≤ ζ + ζ3

and T is a constant, we may assume that ρ2 = ζ. This is because, if we show that all coefficients of this
“perturbed” rational function are at least Ω(ζ), and that in the absence of the bounded degree polynomial
of the numerator, the Taylor coefficients of the function are bounded in absolute value by O(1/ζ2), then
this will imply positivity for the coefficients of the original function H(t)

ζ,ρ(x) as well. We will make this
argument precise in Appendix C.3, where we actually prove Lemma 8.2.

To summarize, we set ρ2 = ζ in (21). After we factor out the multiplicative constant (1−ζ)T /(1+ζ)T+1,
the function we need to study becomes

(1 + x)T−1

(1 + (1− z)x)T+1

ζ(2T + 1) + (−2Tζ + 1)x+ (1− ζ)x2

(1− x)
(22)

where z= 2ζ/(1 + ζ).

Lemma C.1 below is the main technical argument for showing nonnegativity of the Taylor coefficients
of (22). This will allow us to conclude with the formal proof of Lemma 8.2 which appears in Appendix C.3.
For the sake of exposition, we extract some exhaustive calculations and we turn them into claims which we
prove in Appendix C.2.

Lemma C.1. Fix a sufficiently small ζ > 0, and set T = 2. Then for all N ∈ N, the degree-N Taylor
coefficient of the rational function (22) is at least 25ζ − o(ζ). Here the o(ζ) notation is used for a function
independent of N that goes to 0 faster than linear as ζ goes to zero.

Proof. First we note that

1
1− x

· 1
(1 + (1− z)x)3

=

∑
j≥0

xj

 ·
∑
j≥0

(−1)j
(
j + 2

2

)
(1− z)jxj


=

∑
N≥0

 N∑
j=0

(−1)j
(
j + 2

2

)
(1− z)j

xN

=
∑
N≥0

L z(N)xN ,

where

L z(N) :=
1

(2− z)3

[
1 +

(−1)N (1− z)N+1

2
(
(2− z)2(N + 1)2 + (2− z)(4− z)(N + 1) + 2

)]
. (23)

Next, we need to convolute with the bounded polynomial

(1 + x)(5ζ + (1− 4ζ)x+ (1− ζ)x2) = 5ζ + (1 + ζ)x+ (2− 5ζ)x2 + (1− ζ)x3.
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Claim C.2. The first four terms of the Taylor expansion of (22) read as

5ζ +
(

1−Θ(ζ)
)
x+

(
19ζ −Θ(ζ2)

)
x2 +

(
1−Θ(ζ)

)
x3 + · · ·

Claim C.2, which is shown in Appendix C.2, says that the first 4 terms of the expansion of (22) satisfy
what Lemma C.1 claims to be true. Hence, it remains to focus on higher degree coefficients.

The degree N + 1 coefficient of (22), for N ≥ 2, is

(1− ζ)L z(N − 2) + (2− 5ζ)L z(N − 1) + (1 + ζ)L z(N) + 5ζL z(N + 1). (24)

Thus, we now need to show that expression (24) is at least Ω(ζ).

In Appendix C.2, the reader can verify that

Claim C.3. Expanding (24), and factoring 1
(2− z)3

4
(1+ζ)4

out, results into

(1 + ζ)4 + (−1)N
(

1− ζ
1 + ζ

)N (
10ζ2N2 − 2(6− 18ζ + ζ2)ζN + 1− 20ζ + 36ζ2 − 4ζ3 − ζ4

)
. (25)

Next we study the function

gζ(N) :=
(

1− ζ
1 + ζ

)N (
10ζ2N2 − 2(6− 18ζ + ζ2)ζN + 1− 20ζ + 36ζ2 − 4ζ3 − ζ4

)
and we show that |gζ(N)| < 1 − 48ζ + o(ζ); this suffices for our purposes. To that end, we compute the
extreme points of gζ(N). Note that checking the condition for these extreme points as well the boundary
cases N = 2 and N → ∞ is enough. Luckily, the boundary cases are easy to deal with. Note that
gζ(2) = 1− 48ζ + o(ζ), while gζ(N) clearly goes to 0 as N tends to infinity. Thus, it remains to study the
extreme points of gζ(N).

Claim C.4. gζ(N) attains two local extreme points at N1,2 for which

lim
ζ→0

gζ(N1) ' 0.32,

lim
ζ→0

gζ(N2) ' −0.9898.

Claim C.4, whose proof can be found in Appendix C.2, implies that (25) is at least 52ζ − o(ζ). Recall
from Claim C.3 that we have scaled all coefficients by 1

4(2 − z)3(1 + ζ)4, and thus 25ζ − o(ζ) is a lower
bound for all Taylor coefficients we are looking for.

C.2 Proving Claims that Appear in the Proof of Lemma C.1

This section is devoted into showing all claims that appear in Lemma C.1 which mostly involve brute-force
calculations.

Proof of Claim C.2. Recalling (23), note that

L z(0) = 1 L z(1) = 3 z− 2 L z(2) = 6 z2 − 9 z+ 4 L z(3) = 10 z3 − 24 z2 + 21 z− 6
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This implies that the first 4 coefficients of (22) are,

(22) = 5ζ +
(

1 + ζ + (3 z− 2)5ζ
)
x+

(
2− 5ζ + (3 z− 2)(1 + ζ) + (6 z2 − 9 z+ 4)5ζ

)
x2+(

1− ζ + (3 z− 2)(2− 5ζ) + (6 z2 − 9 z+ 4)(1 + ζ) + (10 z3 − 24 z2 + 21 z− 6)5ζ
)
x3 + · · ·

= 5ζ +
(

1−Θ(ζ)
)
x+

(
2− 5ζ + 3 z− 2 + 3 zζ − 2ζ + 30 z2ζ − 45 zζ + 20ζ

)
x2+(

1− ζ − 4 + 10ζ + 6 z+ 4− 9 z+ 4ζ − 30ζ −Θ(ζ2)
)
x3 + · · ·

= 5ζ +
(

1−Θ(ζ)
)
x+

(
3 z+ 13ζ −Θ(ζ2)

)
x2 +

(
1− 17ζ − 3 z−Θ(ζ2)

)
x3 + · · ·

= 5ζ +
(

1−Θ(ζ)
)
x+

(
19ζ −Θ(ζ2)

)
x2 +

(
1−Θ(ζ)

)
x3 · · ·

Proof of Claim C.3. If we expand (24) and after we factor 1
(2− z)3

4
(1+ζ)4

out we obtain

(1 + ζ)4 +
(1 + ζ)4

8
(−1)N

(
1− ζ
1 + ζ

)N[
(1− ζ)

1 + ζ

1− ζ

(
4

(1 + ζ)2
(N − 1)2 +

2(4 + 2ζ)
(1 + ζ)2

(N − 1) + 2
)

− (2− 5ζ)
(

4
(1 + ζ)2

N2 +
2(4 + 2ζ)
(1 + ζ)2

N + 2
)

+ (1 + ζ)
1− ζ
1 + ζ

(
4

(1 + ζ)2
(N + 1)2 +

2(4 + 2ζ)
(1 + ζ)2

(N + 1) + 2
)

− 5ζ
(1− ζ)2

(1 + ζ)2

(
4

(1 + ζ)2
(N + 2)2 +

2(4 + 2ζ)
(1 + ζ)2

(N + 2) + 2
)]

= (1 + ζ)4 +
1
4

(−1)N
(

1− ζ
1 + ζ

)N[
(1 + ζ)3

(
2(N − 1)2 + (4 + 2ζ)(N − 1) + (1 + ζ)2

)
− (1 + ζ)2(2− 5ζ)

(
2N2 + (4 + 2ζ)N + (1 + ζ)2

)
+ (1 + ζ)2(1− ζ)

(
2(N + 1)2 + (4 + 2ζ)(N + 1) + (1 + ζ)2

)
− 5ζ(1− ζ)2

(
2(N + 2)2 + (4 + 2ζ)(N + 2) + (1 + ζ)2

) ]

= (1 + ζ)4 +
1
4

(−1)N
(

1− ζ
1 + ζ

)N[
2N2

(
(1 + ζ)3 − (1 + ζ)2(2− 5ζ) + (1 + ζ)2(1− ζ)− 5ζ(1− ζ)2

)
+

N
(

(1 + ζ)3(−4 + 4 + 2ζ)− (1 + ζ)2(2− 5ζ)(4 + 2ζ)+

(1 + ζ)2(1− ζ)(4 + 4 + 2ζ)− 5ζ(1− ζ)2(8 + 4 + 2ζ)
)

+
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(1 + ζ)3(2− 4− 2ζ + (1 + ζ)2)− (1 + ζ)2(2− 5ζ)(1 + ζ)2+

(1 + ζ)2(1− ζ)(2 + 4 + 2ζ + (1 + ζ)2)− 5ζ(1− ζ)2(8 + 8 + 4ζ + (1 + ζ)2)

]

= (1 + ζ)4 +
1
4

(−1)N
(

1− ζ
1 + ζ

)N[
40ζ2N2 +N

(
− 8ζ3 + 144ζ2 − 48ζ

)
− 4ζ4 − 16ζ3 + 144ζ2 − 80ζ + 4

]
.

By rearranging the terms in the brackets we obtain (25) as claimed.

Proof of Claim C.4. The function gζ(N) attains its extreme points at the roots of the equation ∂gζ(N)/∂N =
0. It is easy to check that,

∂gζ(N)
∂N

=
(

1− ζ
1 + ζ

)N(
− 12ζ + 36ζ2 − 2ζ3 + (1− 20ζ + 36ζ2 − 4ζ3 − ζ4) ln

1− ζ
1 + ζ

+N

(
20ζ2 + (−12ζ + 36ζ2 − 2ζ3) ln

1− ζ
1 + ζ

)
+ 10ζ2N2 ln

1− ζ
1 + ζ

)
.

The roots of ∂gζ(N)/∂N = 0 are then,

N1,2 :=
1

10ζ

6− 10ζ

ln
(

1−ζ
1+ζ

) + ζ2 − 18ζ ±

√√√√26− 16ζ − 24ζ2 + 4ζ3 + 11ζ4 +
100ζ2

ln2
(

1−ζ
1+ζ

)
 .

It remains to evaluate gζ(N) at the roots N1,2. Notice that both roots are Θ(1/ζ) so we have,

lim
ζ→0

gζ(N1,2) = lim
ζ→0

(
1− ζ
1 + ζ

)N1,2 (
10ζ2N2

1,2 − 2(6− 18ζ + ζ2)ζN1,2 + 1− 20ζ + 36ζ2 − 4ζ3 − ζ4
)

= lim
ζ→0

exp(−2ζN1,2/(1 + ζ))
(
10(ζN1,2)2 − 12ζN1,2 + 1

)
= exp(−2 lim

ζ→0
ζN1,2)

(
10(lim

ζ→0
ζN1,2)2 − 12(lim

ζ→0
ζN1,2) + 1

)
. (26)

But we have,

lim
ζ→0

ζN1,2 = lim
ζ→0

1
10

6− 10ζ

ln
(

1−ζ
1+ζ

) + ζ2 − 18ζ ±

√√√√26− 16ζ − 24ζ2 + 4ζ3 + 11ζ4 +
100ζ2

ln2
(

1−ζ
1+ζ

)


=
1
10

(
6−

(
lim
ζ→0

10ζ
−2ζ/(1 + ζ)

)
±

√
26 + lim

ζ→0

100ζ2

(−2ζ/(1 + ζ))2

)
=

1
10

(6 + 5±
√

26 + 25)

= (11±
√

51)/10.

Plugging this into (26) yields

lim
ζ→0

gζ(N1) = exp(−(11 +
√

51)/5)
(

(11 +
√

51)2/10− 12(11 +
√

51)/10 + 1
)
' 0.32,
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lim
ζ→0

gζ(N2) = exp(−(11−
√

51)/5)
(

(11−
√

51)2/10− 12(11−
√

51)/10 + 1
)
' −0.9898.

C.3 Sum Up - The proof of Lemma 8.2

We are now ready to finish the proof of Lemma 8.2.

Proof of Lemma 8.2. As stated before it is enough to show positivity of all coefficients of the expansion of
(21) for ρ2 ∈ [ζ, ζ + ζ3] and T = 2. Notice that ρ appears only in the denominator of (21) which is a
polynomial of degree 3 in x. First consider the function

1
(1 + ζ + (1− ζ)x)3 (1− x)

=
∑
N≥0

L z(N)xN/(1 + ζ)3

=
∑
N≥0

1
(2− z)3

[
1 +

(−1)N (1− z)N+1

2
(
(2− z)2(N + 1)2 + (2− z)(4− z)(N + 1) + 2

)]
xN/(1 + ζ)3,

where z= 2ζ/(1 + ζ). We argue that for small enough ζ, |L z(N)| ≤ 8/ζ2. Indeed,

|L z(N)| = 1
(2− z)3

[
1 +

(−1)N (1− z)N+1

2
(
(2− z)2(N + 1)2 + (2− z)(4− z)(N + 1) + 2

)]
< 2 + (1− z)N+1(2(N + 1)2 + 4(N + 1)) (27)

≤ 2 + 6(1− z)N+1(N + 1)2.

The second term has only one extreme point atN = 2 ln(1/(1− z)) for which it takes the value 24/(e2 ln2(1− z)).
Thus,

|L z(N)| < 2 + max(6, 4/ ln2(1− z)) ≤ 2 + max(6, 4/ ln2(e− z)) ≤ 2 + max(6, 4/ z2) ≤ 8/ζ2. (28)

In the numerator of (21) we have the following polynomial,(
1− 2ρ2 + ζ + (1− ζ)x

)T−1
pζ,ρ(x)

=
(
1− 2ρ2 + ζ + (1− ζ)x

)
(ζ + 4ρ2(1− ζ)− ζ(2ρ2 − ζ) + (1− ζ)(2ζ − 6ρ2 + 1)x+ (1− ζ)2x2)

= hζ(x) + 2ρ2(2− 3ζ)− 6ρ2(1− ζ)x− 2ρ2pζ,ρ(x), (29)

for some function hζ(x). Note that all the coefficients of pζ,ρ(x) are at most 1 in absolute value, so each
of the three coefficients of the above polynomial in which ρ appear are at most 8ρ2 in absolute value. One
can now combine (28) and (29) to conclude that for all ζ > 0, δ > 0, and n ∈ N, the nth coefficient of
(21) changes by at most 24δ/ζ2 when moving from ρ2 = ζ to ρ2 = ζ + δ. Given that by Lemma C.1 these
coefficients are at least 25ζ − o(ζ) when ρ2 = ζ, they are all strictly positive when ζ is small enough and
ρ2 ∈ [ζ, ζ + ζ3]. This completes the proof.
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For completeness, we conclude the appendix with a short discussion on the convergence of the power
series we are considering. Recall that much of our technical work was devoted into analytic properties of
the function

ft(x, ρ) := P
w∈St

[w · zi ≤ ρ & w · zj ≤ ρ, with zi · zj = x], (30)

In particular, we have shown that its derivative ∂xft(y(x), ρ) agrees with a nonnegative power series
∑

n≥0 cnx
n

in the interval (−1 + 2ρ2, 1). It remains to show that ft(y(x), ρ) itself agrees with the power series

ft(0, ρ) +
∑
n≥0

cn
n+ 1

xn+1 (31)

on the closed interval [−1 + 2ρ2, 1]. This is the case as long as the sum (31) is finite on that interval.

For this, we bound the coefficients cn by O(1/
√
n). This bound follows from the so-called Transfer

Theorem in singularity analysis.

Theorem C.5 (Transfer Theorem, special case of [FS09, Theorem VI.3(i)]). Let g : D \ {1} → C be a
function of complex number. Suppose g is analytic on a disk D around 0 of radius R > 1, except at z = 1
which is a singularity of g. Further assume g(z) = O(1/

√
z − 1) near z = 1. Then the n-th power series

coefficient cn of g is at most O(1/
√
n).

For ζ > 0, the transfer theorem is applicable to g(z) := ∂zf(y(z), ρ) = H
(t)
ζ,ρ(z), because the singulari-

ties of H(t)
ζ,ρ are 1 and −(1 + ζ)/(1− ζ) < −1. Further, we have the bounds

1√
1− y2

= O

(
1√
z − 1

)
and

(
1− 2ρ2

y + 1

)t/2
= O(1)

near z = 1. Hence H(t)
ζ,ρ(z) = O(1/

√
z − 1), as required.
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