
Query Complexity and Error Tolerance of
Witness Finding Algorithms

Akinori Kawachi, Benjamin Rossman, and Osamu Watanabe

Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology

E-mail: watanabe(at)is.titech.ac.jp

Abstract

We propose an abstract framework for studying search-to-decision reductions for NP.

Specifically, we study the following witness finding problem: for a hidden nonempty set

W ⊆ {0, 1}n, the goal is to output a witness in W with constant probability by making

randomized queries of the form “is Q ∩W nonempty?” where Q ⊆ {0, 1}n. Algorithms for

the witness finding problem can be seen as a general form of search-to-decision reductions

for NP. This framework is general enough to express the average-case search-to-decision

reduction of Ben-David et al., as well as the Goldreich-Levin algorithm from cryptography.

Our results show that the witness finding problem requires Ω(n2) non-adaptive queries

with the error-free oracle, matching the upper bound of Ben-David et al. We also give a new

witness finding algorithm that achieves an improved error tolerance of O(1/n) with O(n2)

non-adaptive queries. Further, we investigate a list-decoding version of the witness finding

problem, where a witness is unique, i.e., |W | = 1, and answers from the oracle may contain

some errors. For this setting, it has been known that an improved version of the Goldreich-

Levin algorithm with O(n/ε2) non-adaptive queries and O(1/ε2) list size solves the problem

with any (1/2− ε)-error bounded oracle. We show that this query complexity is optimal up

to a constant factor (if we want to keep the list size polynomially bounded) even if queries

are adaptive.

1 Introduction

We propose an abstract framework for studying the relationship between the search and decision

versions of NP problems. As a generalization of search-to-decision reductions, we study the

following witness finding problem: for a hidden nonempty subset W of {0, 1}n, the goal is to

produce an element in W by asking NP-type queries of the form “is Q ∩W nonempty?” where

Q ⊆ {0, 1}n. Algorithms solving the witness finding problem can be seen as generic search-

to-decision reductions that apply to any NP problem. This witness finding problem is also

relevant to cryptography. The algorithms of Ben-David, Chor, Goldreich, and Luby (hereafter,

Ben-David et al.) [BCGL92] and Goldreich and Levin [GL89] can be seen as witness finding

algorithms. We discuss the query complexity of these algorithms. We also consider the situation

where queries may be answered incorrectly, and we study witness finding algorithms from the

perspective of error tolerance as well.

The complexity class NP is characterized as the class of sets with a polynomial-size and

polynomial-time checkable witness system. That is, for any set L ⊆ {0, 1}∗, it is in NP if and

only if it is characterized by

L = { x | ∃w such that |w| ≤ q(|x|) and R(x,w) }

with some polynomial q and some polynomial-time computable predicate R. For any set L ∈ NP,

a pair (q,R) characterizing L as above is called a witness system, and for any x ∈ L, a string

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 2 (2012)

w satisfying |w| ≤ q(|x|) ∧ R(x,w) is called a witness (for x ∈ L). The decision problem for L

is the task of deciding, for a given x ∈ {0, 1}n, whether there exists some witness w for x ∈ L.

The search problem for L is the task of producing a witness for a given x ∈ L.

The relationship between decision and search problems has been investigated in several

contexts. In order to be specific, let us consider the 3SAT problem and the standard witness

system that uses, for any 3CNF formula ϕ, a satisfying assignment as a witness for ϕ ∈ 3SAT.

Here the search problem is the task of finding a satisfying assignment for a given ϕ ∈ 3SAT.

A question that has been often asked is how to compute one of the satisfying assignments of ϕ

by asking queries to 3SAT. It is easy to obtain a satisfying assignment for ϕ ∈ 3SAT (e.g. the

lexicographically first one) deterministically by asking queries to 3SAT adaptively. That is, the

search problem for 3SAT is PNP-computable. On the other hand, Ben-David et al. [BCGL92]

used the “isolation technique” to give a randomized algorithm that solves this NP-type search

problem in polynomial-time by asking queries to 3SAT nonadaptively; that is, the witness finding

problem for 3SAT is ZPPNP
|| -computable. In this paper, we focus on the query complexity of

such computations. Consider any ϕ ∈ 3SAT with n variables. Then a witness, i.e. satisfying

assignment, can be expressed as a binary string of length n. For computing such a witness, the

above mentioned PNP-algorithm can be implemented with n adaptive queries, whereas O(n2)

nonadaptive queries are needed in the ZPPNP
|| -algorithm. We investigate in this paper whether

this difference in query complexity is inherent between the adaptive and nonadaptive ways of

asking queries.

As an abstract framework for discussing this type of query complexity, we introduce the

witness finding problem, a problem of searching for a witness in an unknown set W ⊆ {0, 1}n

(as a generic NP-type search problem) by using queries of the form “is Q ∩ W nonempty?”

for some Q ⊆ {0, 1}n (as instances of a generic NP-type decision problem). Here the set W is

called a witness set and every w ∈ W is regarded as a witness; on the other hand, the set Q is

regarded as a specification of a query. A randomized algorithm for solving the witness finding

problem in this abstract setting is a pair (Q,F), where Q is a procedure to generate queries

Q1, Q2, ..., Qm (either adaptively or nonadaptively) and F : {0, 1}m → {0, 1}n is a procedure

to give a witness in W based on answers to these queries. Let AW : 2{0,1}
n → {0, 1} denote

the oracle answering decision queries. An algorithm is successful if it produces a witness in W

with constant probability for every witness set W . That is, W (or more precisely, the oracle

AW) is considered as a blackbox. By contrast, an algorithm for solving a concrete NP-type

search problem only needs to succeed on a specific class of witness sets. However, even in

our abstract setting, both the standard PNP-algorithm and the ZPPNP
|| -algorithm of Ben-David

et al. succeed in solving the witness finding problem every witness set W . In particular, the

PNP-algorithm uses only n queries whereas the ZPPNP
|| -algorithm uses O(n2) queries. On the

other hand, we prove that any randomized nonadaptive query algorithm that solves the witness

finding problem for every W ⊆ {0, 1}n (with probability Ω(1)) needs to ask Ω(n2) queries. That

is, in this abstract framework, we show that the nonadaptive query complexity for the witness

finding problem is Θ(n2) and illustrate the difference between adaptive and nonadaptive query

complexity.

Valiant and Vazirani [VV86] gave a procedure, known as the “isolation technique”, to modify

a given NP instance to some other NP instance that reduces the number of witnesses to exactly

one with a certain probability. To be specific, consider 3SAT. The isolation technique of

2

Valiant-Vazirani is a randomized reduction fiso from 3SAT to Liso with the following property:

each instance φ ∈ 3SAT (that may have more than one satisfying assignment) is reduced to

ψ = fiso(φ) such that, with a certain probability, ψ ∈ Liso and this is witnessed by exactly

one satisfying assignment of ψ. Recently, Dell, Kabanets, van Melkebeek, and Watanabe [?]

showed the optimality of the isolation technique of Valiant-Vazirani. They showed that the

“isolation probability”, i.e. the probability of a unique satisfying assignment, is at most O(1/n)

by any randomized reduction under a certain blackbox computation model. While the isolation

technique of Valiant-Vazirani is a many-one reduction, the witness finding algorithm of Ben-

David et al. [BCGL92] can be regarded as a more general truth-table reduction, and by this

generalized reduction, we can achieve 1 − o(1) isolation probability. On the other hand, in

Section 3 we show a limitation of this type of isolation by proving under a similar blackbox

model that any truth-table reduction type isolation needs Ω(n2) queries. This can be viewed as

a multi-query version of the result of Dell et al. [?], which discussed the success probability of

black-box isolation with a single query. In fact, it is easy to see that the isolation probability

upper bound of [?] follows from our Ω(n2) query lower bound.

We also consider the situation where queries may be answered incorrectly. In fact, the

motivation of Ben-David et al. was to solve a given witness finding problem on average by using

a polynomial-time algorithm A that solves the corresponding NP-type decision problem with

high probability on random instances. The algorithm A can be seen as an erroneous oracle;

on the other hand, the algorithm of Ben-David et al. is tolerant against a small fraction of

errors and solves the witness finding problem with high probability by using A as an oracle. We

investigate the question of whether the algorithm of Ben-David et al. is optimal also in terms of

its error tolerance. For this, we extend our abstract framework to include a notion of “ε-error

tolerance.” The algorithm of Ben-David et al. is O(1/n2)-error tolerant in our framework. In

Section 3 we show how to improve this error tolerance parameter by presenting a randomized

nonadaptive algorithm that is O(1/n)-error tolerant while still making only O(n2) queries.

Finally, in Section 4 we consider the setting where the witness is unique, that is, the witness

set consists of one element. This situation is typical for solving decoding problems. For example,

for analyzing the hardcore property of one-way functions, Goldreich and Levin gave a randomized

polynomial-time algorithm that solves the unique witness finding problem by using some NP

oracle; see, e.g., [AB09, Gol01]. For any singleton witness set W = {w}, the Goldreich-Levin

algorithm gives a list of candidates for this witness w by making queries to an erroneous oracle

whose error probability is bounded by 1/2 − ε. This may be regarded as a “list decoding

algorithm” where the unique witness w is a “message” and the erroneous oracle is a “corrupted

codeword”. We again would like to discuss the limitation of such algorithms. For this, we relax

our notion of an abstract witness finding algorithm to allow the output to be a list of candidate

witnesses. It is easy to see that, for any ε = n−O(1), the Goldreich-Levin algorithm achieves

(1/2 − ε)-error tolerance with O(n2/ε2) query complexity and O(n/ε2) list size. We first show

that these complexity parameters can be improved (though its polynomial-time computability

is not guaranteed) to O(n/ε2) query complexity and O(1/ε2) list size. Then we show that this

query complexity is close to the optimal in the following sense: There exists some small c1 > 0

such that for any ε = n−O(1), no randomized query algorithm (even an adaptive one) exists

with c1n/ε
2 query complexity that has (1/2− ε)-error tolerance and polynomially bounded list

size. This can be also interpreted as a lower bound of the query complexity for list decoding

3

algorithms.

2 Preliminaries

We use standard notions and notations in computational complexity theory; see e.g. [AB09]

for definitions. Throughout this paper, we assume strings are encoded in {0, 1}∗, and we use

Ωn = {0, 1}n (or more simply Ω when n is clear by the context) to denote the universe of

witnesses for a given length parameter n. For any set X and any distribution D on X, by

“Prx:D[Φ(x)]” we mean the probability that Φ(x) holds when x is chosen under the distribution

D. When D is the uniform distribution on X, we simply write it as “Prx:X [Φ(x)].”

Definition 1. A witness set is a nonempty subset of Ωn denoted by W , and each element of

W is a witness. A query is a set Q ⊆ Ωn interpreted as the question “is Q ∩W nonempty?”

Let AW (Q) ∈ {0, 1} denote the answer from the (error-free) oracle to the query Q; that is,

AW (Q) = 1 if and only if Q ∩W 6= ∅.

The witness finding problem is the problem of obtaining any one of the witnesses in W by

asking queries and using oracle answers to those queries. Here we define the following abstract

notion of “algorithm” for this task.

Definition 2. A randomized witness finding query algorithm (hereafter, we omit “randomized”

and “query” for simplicity) is a pair (Q,F) of randomized algorithms where, for every witness

length n and random seed s ∈ {0, 1}r(n), Q produces a sequence of queries Q1, . . . , Qm(n) ⊆ Ωn

(where Qi may depend on the oracle answers to queries Q1, . . . , Qi−1) and F outputs an element

in Ωn based on the answers to queries Q1, . . . , Qm(n). For a witness setW , the algorithm succeeds

with respect to W whenever F correctly outputs an element of W . The success probability of

the algorithm is the probability Prs:{0,1}r(n) [F(s, ÃW (Q)) succeeds] for the worst witness set.

Parameters r(n) and m(n) are called the seed length and query complexity.

We may sometimes use the term “success probability” in more general way meaning the

probability Pr[F(s, ÃW (Q)) succeeds] under some distribution defined in each context. An

algorithm is said to be nonadaptive if the distribution of queries Q1, . . . , Qm does not depend

on the answers to these queries; otherwise, the algorithm is adaptive.

When n is fixed, we write simply r and m. We write AW (Q) as a shorthand for the sequence

AW (Q1), . . . , AW (Qm) of answers to queries Q1, . . . , Qm issued by Q, and we write F(AW (Q))

for the output of F . This notation suppresses the random seed s; to make this dependence

explicit, we write F(s,AW (Q)).

This abstract definition of witness finding algorithm is suitable for our information-theoretic

lower bounds. Of course, we should consider more concrete algorithms for our upper bounds,

including an appropriate definition of polynomial-time computability.

Definition 3. A witness finding algorithm (Q,F) is polynomial-time if the seed length r(n) is

bounded by a polynomial in n, and Q and F are polynomial-time algorithms taking (1n, s) as

input where s ∈ {0, 1}r(n); Q outputs a sequence of Boolean circuits C1, . . . , Cm such that Ci

computes a function {0, 1}n×{0, 1}i−1 → {0, 1} with Qi = {x | Ci(x,AW (Q1), . . . , AW (Qi−1)) =

1}, and F outputs a Boolean circuit computing F(AW (Q)) as a function {0, 1}m → {0, 1}n.

4

Remark 1. In many situations, a witness set W is determined by an “input” x to a witness

finding algorithm. In the case of 3SAT, for example, x is a satisfiable 3CNF formula and Wx is

the set of its satisfying assignments. However, it is not essential to consider such inputs in our

abstract framework, so we omit specifying inputs to witness finding algorithms.

Remark 2. In actual witness finding algorithms for NP sets, we may relax some of the above

conditions. For example, we may allow queries of the form “|W ∩ Q| ≥ k?” for some k that is

polynomially bounded by n. The following discussion does not change much if such generalized

queries are allowed. Our lower bound results essentially hold, and hence, we may not be able

to improve our upper bound results by using such queries. Another relaxation is to allow an

algorithm to output a list of polynomially many candidate witnesses; the algorithm succeeds if

W contains any element in this list. We call an algorithm of this type a witness-list finding

algorithm, and for any witness-list finding algorithm, we write `(n) to denote its list size, a

function bounding the number of elements in the list that the algorithm produces for any witness

set in Ωn. For the search version of an NP problem, this relaxation does not make any difference

since one can check the correctness of a witness candidate in polynomial-time.

We now give a framework for discussing error tolerance.

Definition 4. For a witness finding algorithm (Q,F), we denote by Dom ⊆ {0, 1}n the set of

queries produced by Q for all possible random seeds and oracle answers. (For a polynomial-time

algorithm, note that |Dom| is bounded 2poly(n).) For a witness set W and distribution D on

Dom, a function ÃW : Dom→ {0, 1} is ε-error bounded if its error probability is at most ε when

queries are chosen uniformly from Dom; that is,

Pr
Q:Dom

[ÃW (Q) 6= AW (Q)] < ε

holds. For an algorithm (Q,F) with random seed length r, its success probability with ε-

error bounded oracle is the probability Prs:{0,1}r [F(s, ÃW (Q)) succeeds] with the worst ε-error

bounded oracle for the worst witness set. An algorithm (Q,F) is ε-error tolerant it has Ω(1)

success probability.

Remark. For measuring the oracle’s error probability, we assume a certain distribution D
over Dom instead of the distribution of queries made by the witness finding algorithm. This is

because the error model is usually given independently from algorithms. In fact, in the context

of using the Goldreich-Levin algorithm, the uniform distribution is used to measure oracle’s

error probability that is different from the distribution of queries of the algorithm. Throughout

this paper, we consider the case where D is the uniform distribution over Dom, and we omit

specifying it.

3 Witness Finding for Isolation

In this section we consider nonadaptive algorithms for the general witness finding problem. As

mentioned in Section 1, these algorithms can be regarded as truth-table type witness isolation

reductions.

5

We first state the algorithm of Ben-David et al. in our framework. Here we consider the

error-free oracle AW (we will consider error tolerance later in this section). See Example 1 in

the Appendix for the explanation.

Proposition 1. There is a polynomial-time nonadaptive witness finding algorithm (QBD,FBD)

with Ω(1) success probability and O(n2) query complexity.

Our first result shows that (QBD,FBD) is optimal in terms of query complexity.

Theorem 2. There is no nonadaptive witness finding algorithm with Ω(1) success probability

and o(n2) query complexity.

Proof. Consider any nonadaptive witness finding algorithm (Q,F) which makes m = o(n2)

queries. We will show that there exists a witness set W such that Prs:{0,1}r [F(s,AW (Q)) ∈
W] = o(1). For our analysis, we use Yao’s principle [Yao77]. That is, we have

min
W

Pr
s:{0,1}r

[F(s,AW (Q)) ∈W] ≤ max
ρ

min
W

Pr
s:ρ

[F(s,AW (Q)) ∈W]

= min
W

max
s∈{0,1}r

Pr
W :W

[F(s,AW (Q)) ∈W]

≤ max
s∈{0,1}r

Pr
W :W∗

[F(s,AW (Q)) ∈W],

where W is any witness set, ρ is any distribution on {0, 1}r, W is any distribution on witness

sets (i.e., on nonempty subsets of Ω), and W∗ is a particular distribution on witness sets that

we define below. Note that the lefthand term of the first inequality is what we would like to

estimate. To prove the theorem, we need to show that PrW :W∗ [F(s,AW (Q)) ∈ W] = o(1) for

any fixed s ∈ {0, 1}r.
Our distribution W∗ on witness sets is defined by the following procedure to generate a

witness set W : first we choose K uniformly at random from [n], then we define W by including

each w ∈ Ω in W independently with probability 2−K . A small technicality is that W may

possible be the empty set; however, since W = ∅ occurs with probability o(1) for W : W∗, we

can ignore this degenerate case.1 Note that, for k ∈ [n], the expected size of W conditioned on

K = k is 2n−k. Below we keep using K and W to denote these random variables.

We now fix an arbitrary seed s ∈ {0, 1}r. Let Q1, . . . , Qm be the queries given by Q(s),

and let f be the function from {0, 1}m to Ω given by F(s, · · ·) (which attempts to output a

witness in W given the answers to queries Q1, . . . , Qm). For i ∈ [m], let Ai = AW (Qi). That is,

Ai ∈ {0, 1} is the indicator random variable for the event that Qi ∩W 6= ∅.
Below by Pr[· · ·], we mean PrW :W∗ [· · ·]. Then Pr[f(A1, . . . , Am) ∈W] is the success proba-

bility of the algorithm (Q,F) for the random seed s. Our goal is to show that Pr[f(A1, . . . , Am) ∈
W] = o(1). Toward that end, we view f(A1, . . . , Am) as a random variable over Ω and estimate

its entropy. Below we use the standard notations for discussing entropy.2

1Precisely speaking, we should consider a distribution W ′
∗ conditioned that the empty set is never obtained.

But the difference, which is negligible, is ignored here.

2For discrete random variables X and Y , H(X) =
∑

x −Pr[X = x] log Pr[X = x] and H(X|Y) =
∑

y Pr[Y =

y]H(X|Y = y), where H(X|Y = y) =
∑

x −Pr[X = x|Y = y] log Pr[X = x|Y = y]. For a sequence of random

variables X1, . . . , Xj , H(X1, . . . , Xj) is the entropy of the joint distribution (X1, . . . , Xj).

6

Claim 1. H(f(A1, ..., Am)) ≤ log n+O(m/n).

Proof. We have

H(f(A1, ..., Am)) ≤ H(A1, ..., Am)

≤ H(A1, ..., Am,K) = H(K) + H(A1, ..., Am | K)

≤ log n+
m∑
i=1

H(Ai | K) = log n+
1

n

m∑
i=1

n∑
k=1

H(Ai | K = k).

To finish the proof of the claim, we show that
∑n

k=1H(Ai|K = k) = O(1) for all i ∈ [m]

(where O(1) is some universal constant). Fix arbitrary i ∈ [m]. For k ∈ [n], let pk = Pr[Ai =

1|K = k] (= Pr[Qi ∩W 6= ∅|K = k]). We have H(Ai|K = k) = H(pk) where H : [0, 1] → [0, 1]

is the binary entropy function H(p) = −p log p− (1− p) log(1− p). Note the inequality

min(p, 1− p) ≤ q ≤ 1/2 =⇒ H(p) ≤ −2q log q.

We use this inequality to bound H(pk).

Let λ = log |Qi|. We consider three cases depending on k ∈ [n]:

• If k ≤ λ− 1, then we have 1− pk = (1− 2−k)|Qi| ≤ e−2λ−k
(< 1/2). Hence,

H(pk) ≤ −2 ln(e−2λ−k
)e−2λ−k

= 2λ−k+1−log(e)2λ−k
= 2−Ω(2λ−k).

• If λ− 1 < k < λ+ 1, then H(pk) ≤ 1 (this case applies to at most two k’s in [n]).

• If k ≥ λ+ 1, then pk ≤ |Qk|2−k = 2λ−k (≤ 1/2). Hence, H(pk) ≤ (k − λ)2λ−k+1.

Now it follows that

n∑
k=1

H(Ai | K = k) <
n∑

k=1

H(pk) =

bλ−1c∑
k=1

2−Ω(2λ−k) + 2 +
n∑

k=dλ+1e

(k − λ)2λ−k+1

< O

 ∞∑
j=1

2−Ω(2j)

+ 2 +O

 ∞∑
j=1

j2−j

 = O(1).
tu Claim 1

Using this entropy bound, we now show that Pr[f(A1, ..., Am) ∈ W] = o(1). Fix an

arbitrary constant ε > 0. For w ∈ Ω, let p(w) denote the probability that f(A1, ..., Am) takes

value w. Let U = {w | p(w) ≥ 2−εn} and note that |U | ≤ 2εn. For all w /∈ U , we have

− log p(w) > εn and thus (by Claim 1)

Pr[f(A1, ..., Am) /∈ U] =
∑
w/∈U

p(w) ≤
∑
w/∈U

−p(w) log p(w)
εn

≤ H(f(A1, ..., Am))

εn
≤ log n+O(m/n)

εn
= o(1).

Next we have

Pr[U ∩W 6= ∅] ≤ Pr[K ≤ 2εn] + Pr[U ∩W 6= ∅ | K > 2εn]

≤ 2ε+
∑
u∈U

Pr[u ∈W | K > 2εn]

< 2ε+ |U |2−2εn ≤ 2ε+ 2−εn = 2ε+ o(1).

7

Combining these inequalities, we have

Pr[f(A1, ..., Am) ∈W] ≤ Pr[f(A1, ..., Am) /∈ U ∨ U ∩W 6= ∅]
≤ Pr[f(A1, ..., Am) /∈ U] + Pr[U ∩W 6= ∅] ≤ 2ε+ o(1).

Since ε can be taken arbitrarily small, it follows that Pr[f(A1, ..., Am) ∈W] = o(1). tu

Next we consider error tolerance. Note that the algorithm (QBD,FBD) is automatically

O(1/n2)-error tolerant since it makes only O(n2) queries. Here we present a new polynomial-

time algorithm based on some standard error-correcting code that has a better O(1/n)-error

tolerance while still making only O(n2) queries. (Note that in our framework we do not assume

any error-free checking procedure for the obtained witnesses, as in [BT06]. One interesting

point in the following algorithm is that we can indeed implement the checking procedure with

erroneous oracles.)

Theorem 3. There is a polynomial-time, nonadaptive, and O(1/n)-error tolerant witness find-

ing algorithm with O(n2) query complexity.

Proof. We first prepare some polynomial-time encodable and decodable code with some specific

property suitable for our usage. Below for any binary strings x and y, we denote by |x| the
Hamming weight of x and by dist(x, y) the Hamming distance between x and y.

Lemma 4. There exists a polynomial-time encodable and decodable code with the following

property for some constants c > 1 and δ > 0: For any n, let C ⊆ {0, 1}2cn denote the set of

codewords encoding messages in {0, 1}n. Then we have (i) |y| = cn for all y ∈ C, and for all

distinct y, y′ ∈ C, we have (ii) dist(y, y′) ≥ 2δcn, and (iii) |y∨y′| = cn+ 1
2dist(y, y

′) ≥ (1+ δ)cn,

where y ∨ y′ is the bit-wise OR of y and y′. Below we use C also to denote a function mapping

any message in {0, 1}n to the corresponding codeword in {0, 1}cn.

Proof. First consider any polynomial-time encodable and decodable binary code of some con-

stant rate 1/c and constant relative minimum distance δ. That is, for each n, every message in

y ∈ {0, 1}n is encoded by some codeword ŷ ∈ {0, 1}cn, and we have dist(ŷ, ŷ′) ≥ δcn for any two

distinct codewords ŷ, ŷ′ ∈ {0, 1}cn. For example, Justesen code satisfies all these requirements

(see, e.g., [Rot06]). Now for any x ∈ {0, 1}n, our C(x) is defined by

C(x) = (ŷ1, ..., ŷcn, 1− ŷ1, ..., 1− ŷcn),

where ŷ = Ĉ(x). It is easy to see that C satisfies properties (i), (ii) and (iii) of the lemma.

tu Lemma 4

We present our algorithm (Q,F) as a modification of the algorithm of Ben-David et al.

[BCGL92] by using this code. For this, we recall their algorithm first. The key tool of their

algorithm is the isolation technique of Valiant and Vazirani [VV86]. In the abstract setting,

their technique is a polynomial-time algorithm QVV that generates/recognizes a random subset

QVV(s) of Ω (= {0, 1}n) from a random seed s ∈ {0, 1}riso for some polynomial riso (again we

write simply riso for riso(n)); the important property here is that for any W ⊆ Ω, we have

|QVV(s) ∩ W | = 1 with probability ≥ 1
4n [VV86]. For QVV(s) that achieves isolation (i.e.,

8

|QVV(s) ∩W | = 1), we can ask each bit of the unique witness w ∈ QVV(s) ∩W nonadaptively.

In our framework, this is implemented by asking queries { v | v ∈ QVV(s) ∧ vi = 1 } for all

i ∈ [n]. The algorithm of Ben-David et al. asks a set of these n queries for 4n random seeds

for s to achieve Ω(1) success probability. Clearly, in order for the algorithm to work, no error

should occur for these O(n2) queries, and for this, we need an O(1/n2)-error bounded oracle.

In our algorithm, instead of asking for each bit of the isolated witness directly, we ask for

bits of the codeword of the isolated witness. That is, for each s ∈ {0, 1}riso , we consider queries

Qs,j = { v | v ∈ QVV(s) ∧ C(v)j = 1 }

for all j ∈ [2cn]. Again, to achieve Ω(1) success probability, the query algorithm Q asks a set

of these 2cn queries for 4n independent random seeds s1, . . . , s4n ∈ {0, 1}riso . Thus, Q is an

algorithm that takes random seeds s1, . . . , s4n ∈ {0, 1}riso , and asks queries Qsk,j for all k ∈ [4n]

and j ∈ [2cn]. Hence, the algorithm makes 8cn2 nonadaptive queries. Let Dom denote the set

{Qs,j | s ∈ {0, 1}riso , j ∈ [4cn]} of all such queries.

For explaining the algorithm F , we first see answers we can expect from an erroneous oracle.

Let ÃW : 2Ω → {0, 1} be any δ
32n -error bound oracle for some unknown witness set W . That is,

we assume that

Pr
Q:Dom

[ÃW (Q) 6= AW (Q)] (= Pr
s:{0,1}r,j:[2cn]

[ÃW (Qs,j) 6= AW (Qs,j)]) ≤ δ

32n
.

For s ∈ {0, 1}riso , we define

α(s) =
1

2cn

∑
j∈[2cn]

AW (Qs,j) and α̃(s) =
1

2cn

∑
j∈[2cn]

ÃW (Qs,j).

Let Good(s) be the event that |α(s)− α̃(s)| < δ/4. By Markov’s inequality we have

Pr
s
[¬Good(s)] = Pr

s
[Pr

j
[ÃW (Qs,j) 6= AW (Qs,j)] ≥ δ/4]

≤ Es[Prj [ÃW (Qs,j) 6= AW (Qs,j)]]

δ/4

=
Prs,j [ÃW (Qs,j) 6= AW (Qs,j)]

δ/4
≤ 1

8n
. (1)

Let Isolated(s) be the event that |QVV(s) ∩W | = 1.

Claim 2. If Good(s) holds, then Isolated(s) ⇔ |12 − α̃(s)| <
δ
4 . Moreover, if Good(s)∧ Isolated(s)

holds, then given ÃW (Qs,1), . . . , ÃW (Qs,2cn), the unique element inQVV(s)∩W can be computed

in polynomial-time.

Proof. The claim follows from the properties of C. If Good(s), then

|QVV(s) ∩W | = 0 ⇒ α(s) = 0 ⇒ α̃(s) <
δ

4

(
<

1

2
− δ

4

)
,

|QVV(s) ∩W | = 1 ⇒ α(s) =
1

2
⇒ 1

2
− δ

4
< α̃(s) <

1

2
+
δ

4
,

|QVV(s) ∩W | ≥ 2 ⇒ α(s) ≥ 1

2
+
δ

2
⇒ α̃(s) >

1

2
+
δ

4
.

9

Thus, Good(s) implies Isolated(s) ⇔ |12 − α̃(s)| < δ
4 . In the event that both Good(s) and

Isolated(s) hold, we can decode (ÃW (Qs,1), ..., ÃW (Qs,2cn)) ∈ {0, 1}2cn in polynomial-time to

recover the original message w ∈ {0, 1}n; this w is then the unique element of QVV(s) ∩W .

tu Claim 2

Now the following description of algorithm F is clear from this claim: For given answers

from the oracle, compute α̃(si) for all i ∈ [4n]. If there exists i ∈ [4n] such that |12 − α̃(si)| < δ
4 ,

then for the first such i, output the unique element of QVV(si)∩W according to Claim 2 under

the (possibly false) assumption that Good(si) holds. (If |12 − α̃(si)| ≥ δ
4 for all i ∈ [4n], the

algorithm simply fails.)

To analyze its success probability, note that it successfully outputs a witness inW whenever∧
i∈[4n] Good(si) ∧

∨
i∈[4cn] Isolated(si) holds. Using the bound (1) and the fact that

Prs:{0,1}riso [Isolated(s)] ≥ 1
4n , we have

Pr
s1,...,s4n

[∧
i∈[4n] Good(si) ∧

∨
i∈[4n] Isolated(si)

]
≥ 1− Pr

s1,...,s4n

[∨
i∈[4n] ¬Good(si)

]
− Pr

s1,...,s4n

[∧
i∈[4n] ¬Isolated(si)

]
≥ 1− 4nPr

s
[¬Good(s)]−

(
1− Pr

s
[¬Isolated(s)]

)4n
≥ 1− 1

2
− 1

e
> 0.13.

Therefore, the algorithm succeeds with constant probability > 0.13 for any δ
32n -error bounded

oracle. tu

4 Witness Finding for Decoding

We consider the case where a witness set is restricted to a singleton set, the situation typical for

decoding problems. Throughout this section, we consider only singleton witness sets, and the

conditions of, e.g., Definition 2 are modified for this restriction. Also, since our target witness

set is singleton, we specify the target by a witness w ∈ Ω instead of a witness set W = {w}
in the following. Throughout this section, we use ε to denote any function on N such that

0 < ε(n) < 1/2 holds for any n.

First we state the algorithm of Goldreich-Levin in our framework.

Proposition 5. There is a polynomial-time, nonadaptive, and (1/2− ε)-error tolerant witness-
list finding algorithm (QGL,FGL) with O(n2/ε2) query complexity and O(n/ε2) list size.

Let us call the parameter ε above advantage. The algorithm of Goldreich-Levin achieves

n−O(1) advantage within polynomially bounded query complexity and list size. As we will

see below, n−ω(1) advantage is impossible within polynomially bounded query complexity and

list size, and in this sense, the Goldreich-Levin algorithm is optimal. On the other hand, the

tradeoff between advantage and query complexity can be improved as follows. It should be

noted, however, that the algorithm given below is not polynomial-time as it is, and showing a

similar relation by some polynomial-time algorithm is open.

Theorem 6. There is a deterministic, nonadaptive, and (1/2 − ε)-error tolerant witness-list

finding algorithm with O(n/ε2) query complexity and O(1/ε2) list size.

10

Proof. The proof is almost trivial from the following lemma, which provides an optimal list-

decodable code.

Lemma 7. ([Eli91, GHSZ02]) For some m = O(n/ε2), there exists a set C ⊆ {0, 1}m of size

2n such that for every v ∈ C, we have |B(1/2 − ε, v) ∩ C| = O(1/ε2), where B(γ, v) ⊆ {0, 1}m

denotes the Hamming ball of radius γm centered at v.

We use this lemma to design our algorithm. Consider any ε and fix any n. Let C be the set

given in Lemma 7. We associate every witness w ∈ Ω (= {0, 1}n) with an element in C in any

one-to-one manner. Denote by C(w) an element in C corresponding to w ∈ Ω. Our algorithm is

deterministic and works as follows: The i-th query is given by Qi = {v : C(v)i = 1}, where C(v)i
denotes the ith bit of C(v) ∈ {0, 1}m. Namely, the query “{w}∩Qi 6= ∅?” asks whether the i-th

bit of C(w) is 1 or not. On the answers Ãw(Q1), ..., Ãw(Qm), the algorithm outputs a list of all

the elements of {v|C(v) ∈ B(1/2 − ε, α̃w) ∩ C}, where α̃w := (Ãw(Q1), ..., Ãw(Qm)) ∈ {0, 1}m.

Note that we do not know an efficient way for enumerating these elements and thus the algorithm

makes such a list by brute force.

From a coding-theoretic viewpoint, w is an n-bit message, C(w) is its codeword of m-bit

length, and α̃w is an corrupted codeword. Hence, if Ãw makes at most (1/2− ε)m errors, then

we have the target witness in {v|C(v) ∈ B(1/2 − ε, α̃w) ∩ C}. Clearly, the algorithm makes m

queries and it follows from Lemma 7 that the list size is O(1/ε2). tu

We show the tightness of this tradeoff in the next theorem. In fact, if we require both

constant success probability and polynomially bounded list size, then the next theorem shows

that m > c1n/ε
2 queries are necessary while the above theorem shows that m = ĉ1n/ε

2 is

sufficient for some constants c1 < ĉ1.

Theorem 8. Consider any witness-list finding algorithm with seed length r, query complexity

m, and list size `. For any sufficiently small ε > 0, let α denote its success probability with

(1/2 − ε)-error bounded oracle. Then for some constants c1 > 0, if m ≤ c1n/ε
2, then we have

α = O(`2−Ω(n)/ε). (In the proof below, we use c1 = 1/640.)

Proof. Consider any witness-list finding algorithm (Q,F) with random seed length r, query

complexity m, and list size `. Also consider any ε > 0 for the advantage parameter. We may

assume that ε < 1/4. As usual, fix sufficiently large n, and consider the problem of finding a

given witness w ∈ Ω = {0, 1}n; from now on, r, m, `, and ε are some numbers determined by n.

In particular, let us fix the query number bound m to m = c1n/ε
2 for c1 = 1/640.

Let Dom be the set of all possible queries made by Q with any random seed and any oracle

answers. We consider two cases depending on D := |Dom|; the case (a) where D ≤ d1ε
−2

for some sufficiently large constant d1 (that will be specified later), and the case (b) where

D > d1ε
−2.

Case (a): We list all possible queries in Dom under some ordering, and let Q1, ..., QD be this

list. Oracle answers to these queries can be specified naturally by a string a ∈ {0, 1}D. For

any a ∈ {0, 1}D and w ∈ Ω, we say that a and w are (1/2 + ε)-consistent if the Hamming

distance between a and Aw(Q1)Aw(Q2) · · ·Aw(QD) is ≤ D′ := (1/2 − ε)D. Note that each

w ∈ Ω has
(
D
D′

)
strings that are (1/2 + ε)-consistent with w; hence, the total number of pairs

11

(a,w) that are (1/2+ ε)-consistent is at least 2n
(
D
D′

)
. Thus, there exists some a0 ∈ {0, 1}D that

is (1/2 + ε)-consistent with at least

2n
(
D
D′

)
2D

≥ 2ncstr2
D

2D
√
D exp(4ε2D)

≥ cstr2
n

√
D exp(4d1)

= O (ε2n)

witnesses, where we use the bound given by Claim 3 below for
(
D
D′

)
. Let W0 denote the set of

such witnesses.

Now we again follow Yao’s principle and consider some distribution on witnesses while we

fix a random seed used by (Q,F) to any s in {0, 1}r. Our distribution is simply the uniform

distribution on W0. Note that a0 is (1/2 − ε)-error bounded for any witness w ∈ W0. Thus,

for any w ∈ W0, we consider the execution of the algorithm with random seed s and oracle

answers specified by a0. Then the output, i.e., the list of ` candidates for w, is fixed, and it

can be correct for at most ` witnesses w ∈ W0. Hence, under the uniform distribution on W0,

the success probability of our algorithm (with respect to s and a0) is at most `
W0

= O (`2−n/ε),

which can be used as an upper bound for the success probability of the algorithm in the worst

case by Yao’s principle.

Case (b): Consider the case (b), i.e., the case where Dom is sufficiently large. Let OKw

denote the set of all oracles that are (1/2−ε)-error bounded. Our goal is to estimate the success

probability α defined by

α = min
w∈Ω

min
Ãw∈OKw

Pr
s:{0,1}r

[F(s, Ãw(Q)) 3 w].

Again by using Yao’s principle, we consider some distributions on w ∈ Ω and on Ãw ∈ OKw,

and discuss the probability of F(s, Ãw(Q)) 3 w under these distributions while any s ∈ {0, 1}r

is fixed.

More precisely, we will bound α by

α = min
w∈Ω

min
Ãw∈OKw

Pr
s:{0,1}r

[F(s, Ãw) = w] ≤ max
ρ

min
w∈Ω

min
Ãw∈OKw

Pr
s:ρ

[F(s, Ãw) = w]

= min
µ1

min
µ2

max
s∈{0,1}r

Pr
w:µ1,Ãw:µ2

[F(s, Ãw) = w] ≤ max
s∈{0,1}r

Pr
w:Ω′,Ãw:OK′

w

[F(s, Ãw) = w],

where ρ, µ1, and µ2 are distributions on {0, 1}r, Ω, and OKw respectively, and we use Ω′ and

OK′
w to denote also some distributions on Ω and OKw that are defined below.

For the distribution of witnesses, we consider the uniform distribution on Ω; the symbol Ω is

used also for denoting this distribution. For defining a distribution on OKw and for analyzing the

adaptive query computation of the algorithm, we use a folklore argument attributed to Rudich

(see, e.g., [GNW95]). We use, as a “noise function”, a random function ∆ defined on Dom;

∆ takes, for each Q ∈ Dom independently, value 0 with probability 1/2 + 2ε and value 1 with

probability 1/2− 2ε. Then we assume that our oracle is generated by Ãw(Q) = Aw(Q)⊕∆(Q);

this is our distribution3 on OKw, which is again denoted by OKw.

3Note that under this distribution some Ãw may not be (1/2 − ε)-error bounded although this probability

is small since |Dom| ≥ d1ε
−2 and d1 is sufficiently large. Thus, precisely speaking, the distribution that we

should consider is the one that defines oracles by using ∆ satisfying the condition that |{Q ∈ Dom|∆(Q) = 1}| ≤
(1/2− ε)|Dom|. But the difference is within at most constant factor, and we argue here by using the distribution

OKw defined above.

12

Now we fix an arbitrary random seed s ∈ {0, 1}r. Since s is fixed, the computation of the

algorithm and the produced list of witness candidates are determined by a sequence of answers

from oracle Ãw that is determined by w and ∆. We use a string a ∈ {0, 1}m to denote this

answer sequence that can be also regarded as a computation path of the algorithm. (If the

number of queries is smaller than m on some path, then a prefix a′ of a is used to determine

the computation. That is, in this case, we consider that a′u yields the same answer for any

u ∈ {0, 1}m−|a′|; for the sake of the following analysis, we regard the case ui = 1 as the case

that the oracle makes an error.) Note that, no matter which w is given, every answer sequence

a occurs depending on ∆, and that the algorithm behaves in the same way on the same answer

sequence. On the other hand, depending on w, the probability that each a occurs may differ.

For each w ∈ Ω and a ∈ {0, 1}m, let Ea,w denote the event that the algorithm receives this

answer sequence a with respect to w, and let #1(a,w) denote the number of queries Q such that

∆(Q) = 1. Then the probability p(a,w) that this event holds is

p(a,w) =

(
1

2
− 2ε

)#1(a,w)(1

2
+ 2ε

)m−#1(a,w)

. (2)

Here we assume, without loss of generality, that all queries on each computation path are different

and hence errors occur independently along each computation path.

We fix any w ∈ Ω and discuss the algorithm’s success probability αw. We say that an answer

sequence is good (with respect to w) if it yields a list containing w. Though Ea,w and Ea′,w may

be correlated, they are disjoint; hence, we have

αw =
∑

a:good

p(a,w) =
∑

a:good

(
1

2
− 2ε

)#1(a,w)(1

2
+ 2ε

)m−#1(a,w)

.

We would like to express the numberMw of good answer sequences in terms of this αw. Consider

the ordering of sequences a with respect to p(a,w). Note thatMw is minimized if the set of good

sequences consists of the first Mw sequences in this ordering. For the case where αw < 1/2, let

δw be the smallest number satisfying

αw ≤
kw∑
i=0

(
m

i

)(
1

2
− 2ε

)i(1

2
+ 2ε

)m−i

, (3)

where kw = b(1/2−2ε−δw)mc. Then we have δw > 0, and by the Hoeffding bound the righthand

side is bounded as

kw∑
i=0

(
m

i

)(
1

2
− 2ε

)i(1

2
+ 2ε

)m−i

≤ 1

2
exp(−2δ2wm).

Hence,

αw ≤ 1

2
exp(−2δ2wm). (4)

On the other hand, for the case where αw ≥ 1/2, we simply set kw = b(1/2− 2ε)mc. Then from

the above observation (by letting δw = 0 if αw ≥ 1/2), we have

Mw ≥
kw−1∑
i=0

(
m

i

)
≥
(
m

kw

)
≥ cstr2

m

√
m

exp(−4(2ε+ δw)
2m), (5)

13

where the last bound is from Claim 3 below.

Now we bound Mw by αw. First consider the special case where 0 < ε ≤ δw. In this case,

we have αw < 1/2, and from (4), we immediately have 2αw ≤ exp(−2δ2wm) ≤ exp(−2ε2m) ≤
exp(−2c1n) = 2Ω(−n), which leads to our desired bound. Thus, in the following, we consider

the case δw ≤ ε. Recall that m = c1n/ε
2 for c1 = 1/640. Then from (4) and (5) (and using the

bound αw ≤ 1 for the case αw ≥ 1/2), we have, for some constant d2 > 0, that

Mw ≥ cstr2
m

√
m

exp(−4(2ε+ δw)
2m)

=
cstr2

m

√
m

exp(−16ε2m) exp(−16εδwm) exp(−4δ2wm)

≥ cstr2
m

√
m

exp(−32ε2m) exp(−4δ2wm) ≥ cstr2
m

√
m

exp(−32c1n)(2αw)
2

≥ d22
m2−n/10

√
m

α2
w, (6)

where the last bound follows from our choice of c1 = 1/640.

Note that each answer sequence cannot be good for more than ` witnesses, and that there

are 2m answer sequences. Hence, we have
∑

w∈ΩMw ≤ `2m, and thus from (6) we have
∑

w∈Ω α
2
w

≤ `
√
m2n/10

d2
. Then by the Cauchy-Schwartz inequality, we have(∑
w∈Ω

αw

)2

≤

(∑
w∈Ω

α2
w

)
·

(∑
w∈Ω

1

)
≤ `

√
m2n/102n

d2
=

`
√
m211n/10

d2
.

Thus, we have

Pr
w:Ω, Ãw:OKw

[F(s, Ãw) = w] =
1

2n

∑
w∈Ω

αw ≤
√
`
√
m2−9n/20

√
d2

= O
((
`ε−1

)1/2
2−Ω(n)

)
= O

(
`2−Ω(n)

ε

)
.

Since this holds for all s ∈ {0, 1}r, by Yao’s principle, we have the desired bound for α. tu

Claim 3. By the Stirling bound, for some constant cstr > 0 and for any ε ≤ 1/4, we have(
u

(12 − ε)u

)
≥ cstr2

u

√
u

exp(−4ε2u).

Proof. We use the following approximation by Stirling: For some constants clow and cup and

for any n ≥ 1, we have

clow
√
n
(n
e

)n
< n! < cup

√
n
(n
e

)n
.

Let β = 1/2− ε. Then for some constant d > 0, we have(
u

βu

)
=

u!

((1− β)u)!(βu)!
≥ d√

β(1− β)u
· uu

((1− β)u)(1−β)u(βu)βu

=
d√

β(1− β)u
· (1− β)−(1−β)uβ−βu.

14

This can be modified further to(
u

βu

)
≥ d√

(1/4− ε2)u
·
(
1

2
− ε

)−(1/2−ε)u(1

2
+ ε

)−(1/2+ε)u

=
d√

(1/4− ε2)u
·
(
1

4
− ε2

)−u/2+εu(1

2
+ ε

)−2εu

≥ d√
(1/4− ε2)u

· 4u/2−εu22εu(1 + 2ε)−2εu

=
d2u√

(1/4− ε2)u
· (1 + 2ε)−2εu ≥ cstr2

u

√
u

· exp(−4ε2u).
tu

Recall that the algorithm given in Theorem 6 outputs a list of size O(1/ε2) even with the

optimal query complexity. In fact, this list size is optimal up to a constant factor subject to

achieving constant success probability. More precisely, we have the following bound.

Theorem 9. Consider any witness-list finding algorithm with list size `, and for any sufficiently

small ε > 0, let α be its success probability with (1/2− ε)-error bounded oracle. Then for some

constants c2 > 0, if n > c2 log(1/ε)/ε
2, then we have α = O(`ε2).

Proof. The proof follows immediately from the lemma stated below, which is a special case of

the result of Guruswami and Vadhan [GV10] on a lower bound of list size for list-decoding, and

the outline of Case (a) in the proof of Theorem 8 with Yao’s principle.

Lemma 10. ([GV10]) For some constants d1, d2 > 0, the following holds: For any integer

D > 0 and any C ⊆ {0, 1}D, if ε < d1 and |C| > 2d2/2ε
2 log(1/ε), then there exists some

a0 ∈ {0, 1}D such that |C ∩B(1/2− ε, a0)| = Ω(ε−2).

Consider any witness-list finding algorithm (Q,F). Consider any advantage ε, 0 < ε < d1,

and let c2 be the constant d2 specified in Lemma 10. Let D = |Dom|, and we list all possible

queries Q1, ..., QD in Dom under some ordering. We view C in Lemma 10 as the set of oracle

answers Aw(Q1), ..., Aw(QD) to these queries for some w ∈ Ω (= {0, 1}n). We may assume that

|C| ≥ 2n/2; since otherwise, there are large number of w’s with the same oracle answers, and

the success probability α becomes small and the desired upper bound for α can be shown rather

easily (by using the condition that n > c2/ε
2 log(1/ε)). Thus, the condition |C| > 2d2/2ε

2 log(1/ε)

of the lemma is satisfied if n > c2/ε
2 log(1/ε). Then by Lemma 10, there exists a0 ∈ {0, 1}D

that is (1/2+ε)-consistent with Ω(ε−2) witnesses. Let W0 be the set of such witnesses. Now, we

again follow Yao’s principle, and by the same reasoning of Case (a) in the proof of Theorem 8,

the desired upper bound `/|W0| = O(`ε2) for α is derived. tu

Acknowledgements. We thank Valentine Kabanets for fruitful discussions, and Oded Goldre-

ich for helpful comments. AK was supported by the Ministry of Education, Science, Sports and

Culture, Grant-in-Aid for Scientific Research (B) No.21300002.

15

References

[AB09] S. Arora and B. Barak, A Computational Complexity: A Modern Approach, Cam-

bridge Univ. Press, 2009.

[BCGL92] S. Ben-David, B. Chor, O. Goldreich, and M. Luby, On the theory of average-case

complexity, Journal of Computer and System Sciences, 44(2):193–219, 1992.

[BT06] A. Bogdanov and L. Trevisan, On worst-case to average-case reductions for NP

problems, SIAM J. Comput., 36(4):1119–1159, 2006.

[Eli91] P. Elias, Error-correcting codes for list decoding, IEEE Transactions on Information

Theory, 37(1):5–12, 1991.

[Gol01] O. Goldreich, Foundations of Cryptography, Basic Tools, Cambridge Univ. Press,

2001.

[GL89] O. Goldreich and L. Levin, Hard-core predicates for any one-way function, in Proc.

21st ACM Sympos. on the Theory of Comput., 25–32, 1989.

[GNW95] O. Goldreich, N. Nisan, and A. Wigderson, On Yao’s XOR-lemma, Technical Report

TR95-050, ECCC Report, 1995.

[GHSZ02] V. Guruswami, J. H̊astad, M. Sudan, and D. Zuckerman, Combinatorial bounds for

list decoding, IEEE Transactions on Information Theory, 48(5):1021–1035, 2002.

[GV10] V. Guruswami and S. Vadhan, A lower bound on list size for list decoding, IEEE

Transactions on Information Theory, 56(11):5681–5688, 2010.

[KW11] V. Kabanets and O. Watanabe, Is the Valiant-Vazirani isolation lemma improvable?,

Technical Report TR11-151, ECCC Report, 2011.

[MVV87] K. Mulmuley, U. Vazirani, and V. Vazirani, Matching is as easy as matrix inversion,

Combinatorica, 7(1):105–113, 1987.

[Rot06] R.M. Roth, Introduction to Coding Theory. Cambridge Univ. Press, 2006.

[VV86] L. Valiant and V. Vazirani, NP is as easy as detecting unique solutions, Theoretical

Computer Science, 47:85–93, 1986.

[Yao77] A.C. Yao, Probabilistic computations: toward a unified measure of complexity, Proc.

of the 18th IEEE Sympos. on Foundations of Comput. Sci., IEEE, 222–227, 1977.

Appendix: Related Work

We state algorithms studied in related work by using our framework, thereby showing how they

are related to our investigation.

Example 1. (Islolation Technique and the Algorithm of Ben-David et al.)

16

Valiant and Vazirani [VV86] gave a reduction fiso from, e.g., 3SAT to some NP problem Liso,

which has been called an “isolation technique” or an “isolation reduction.” The reduction fiso is

a randomized function, and for any φ ∈ 3SAT with n variables, it yields an instance fiso(φ) for

the problem Liso that has the following properties with reasonable probability: (1) fiso(φ) ∈ Liso,

and (2) it is witnessed (for Liso’s witness system) by a unique witness w ∈ {0, 1}n that is indeed

one of the satisfying assignments of φ. We say that fiso(φ) succeeds the isolation if both (1)

and (2) hold. It is shown that fiso(φ) succeeds the isolation with probability Ω(1/n) for any

φ ∈ 3SAT with n variables. They used this reduction to show that a (promised) UniqueSAT

problem is hard for NP. Since then the technique has been used as a key tool in computational

complexity theory.

Ben-David et al. [BCGL92] used this technique to define a randomized algorithm solving

an NP-type search problem by using some NP set as an oracle. Here we state one variation of

their algorithm for the problem of searching a satisfying assignment of 3SAT instances. For any

n, and let 3SATn denote the set of 3SAT formulas with n variables. Consider any φ ∈ 3SATn;

its satisfying assignments are strings in {0, 1}n, and let Wφ denote the set of all satisfying

assignments of φ. Their algorithm asks O(n2) queries to some oracle set D in NP, which consists

of O(n) sets of the following queries: (y, i, 0) and (y, i, 1) for all i ∈ [n], where y = fiso(φ). For

each query (y, i, b), the NP oracle answers ‘yes’ iff there is some witness of Liso for y such that

its i-th bit is b. That is, our oracle set D is defined by

D = { (y, i, b) | ∃w [w is a witness for y ∈ Liso and wi = b] },

where by “wi” we mean the i-th bit of w. It is easy to see that D is in NP. Furthermore, if

y = fiso(φ) succeeds the isolation, then y has a unique witness w inWφ and exactly one of (y, i, 0)

or (y, i, 1) gets ‘yes’ answer for all i ∈ [n]; hence, in this case, this w can be constructed from these

answers, and one can be sure that w is the correct satisfying assignment of φ. Since the isolation

succeeds with probability Ω(1/n), by asking the above set of queries for cison independent values

of fiso(φ) (for some constant ciso) and then by choosing one set of queries where the isolation

succeeds, the algorithm obtains some satisfying assignment of φ with probability, say, > 1/3.

It is easy to see that this algorithm fits into our framework. To be specific, we explain a bit

more on the reduction fiso and the set Liso defined in [VV86]. For a given φ with n variables,

fiso uses a random seed s of length riso(n) for some polynomial riso to define intuitively some

set Cs (which is independent from φ) and ask Liso whether there exists a satisfying assignment

for φ in Cs. More precisely, the value of fiso(φ) is simply (φ, s), and L is the set of pairs (φ, s)

such that there exists some element in Cs∩Wφ, where Cs ⊆ {0, 1}n is a certain polynomial-time

recognizable set parameterized by s. Hence, D defined above is restated as

D = { (φ, s, i, b) | ∃w [w ∈ Cs ∩Wφ and wi = b] }, (7)

Now we can state the algorithm of Ben-David et al. in our framework follwing Definition 2

and Definition 3. We use (QBD,FBD) to denite a witness finding algorithm implementing the

algorithm of Ben-David et al. Fix any n. It asks m := cison
2 queries and uses a random seed of

length r := cison · riso(n). A random seed s ∈ {0, 1}r is considered as a concatenation of cison

random seeds s1, ..., scison of length riso(n). For each k, i, b, such that 1 ≤ k ≤ cison, 1 ≤ i ≤ n,

and b ∈ {0, 1}, machine QBD with a random seed s produces a query set Qs,k,i,b that is defined

17

by

Qs,k,i,b = { v | v ∈ Csk ∧ vi = b },

and asks an oracle whether Qs,k,i,b∩W 6= ∅. (Precisely speaking, QBD produces a circuit Cs,k,i,b

that accepts Qs,k,i,b and pass this circuit to the oracle as its (k, i, b)-th query.) In particular,

when W =Wφ for a given φ ∈ 3SATn, then this query is the same as asking a query (φ, sk, i, b)

to the oracle set D. Then FBD is a machine that produces some w ∈W (if it exists) by using the

answers from the oracle AW to queries Qs,k,1,0, Qs,k,1,1, ..., Qs,k,n,0, Qs,k,n,1 for some k such that

the isolation succeeds on W with the random seed sk. (Note that the success of the isolation

can be determined easily by looking at the answers on these queries.) It is easy to see that the

success probability of this algorithm (QBD,FBD) for randomly chosen s is Ω(1) for any nonemtpy

witness set W ⊆ Ω, including Wφ for any φ ∈ 3SATn.

Note that an oracle answering the above queries is in NP (if a witness set is Wφ for some

φ ∈ 3SAT). Hence, this witness finding algorithm can be regarded as as an isolation algorithm

asking queries to some NP oracle. While the isolation technique of Valiant-Vazirani is a many-one

reduction, the above algorithm (or the algorithm of Ben-David et al.) is regarded as a truth-table

reduction. Recently, Kabanets and Watanabe [KW11] discussed the limitation of the isolation

technique of many-one reduction type in some blackbox framework. Our query lower bound

result can be interpreted as the limitation of the truth-table reduction type isolation technique

in a similar blackbox framework.

Example 2. (Decision vs. Search in Some Average-Case Scenario)

The motivation of the algorithm of Ben-David et al. is to show the relation between the average-

case hardness of NP-type decision and search problems. With their algorithm, they showed

roughly that if the NP set D defined by (7) is solvable in polynomial-time on average, then

we can construct some polynomial-time algorithm that computes a satisfying assignment of

formulas in 3SAT on average. More precisely, for the statements (a) and (b) defined under the

following average-case scenario, they showed that (a) ⇒ (b) holds4.

(a) For any d > 0, some polynomial-time algorithm decides (φ, s, i, b) ∈ D correctly with

probability 1 − n−d when (φ, s, i, b) is taken uniformly random, φ from 3SATn, s from

{0, 1}riso(n), i from [n], and b from {0, 1};
(b) Some polynomial-time algorithm computes a satisfying assignment of φ with probability

1− o(1) when φ is taken uniformly random from 3SATn.

Again we can explain this fact in our framework. First we show that the algorithm (QBD,FBD)

is O(1/n2)-error tolerant, or more specifically 1/(10cison
2)-error tolerant. Fix any n and any

witness set W ⊆ Ω, and consider any 1/(10cison
2)-error bounded oracle ÃW . Here the set Dom

of Definition 4 is

Dom = { Qs,k,i,b | s ∈ {0, 1}r, k ∈ [cison], i ∈ [n], b ∈ {0, 1} }.

Then by the standard averaging argument, we can show that for at least 4/5 fraction of s ∈
{0, 1}r, ÃW gives a correct answer to Qs,k,i,b for all k ∈ [cison], i ∈ [n], and b ∈ {0, 1}. Recall

4The statement (b) is slightly weaker than the one stated in [BCGL92]; but it is easy to modify our argument

to derive the original statement.

18

that there at least 1/3 fraction of s ∈ {0, 1}r for which the algorithm succeeds to obtain some

witness if all queries of type Qs,k,i,b are answered correctly (Example 1). Hence, the success

probability of the algorithm when using ÃW is at least 4/5 + 1/3 − 1 = Ω(1). This proves the

1/(10cison
2)-error tolerance of the algorithm.

Next we give a 1/(10cison
2)-error tolerant oracle based on the assumption (a). Fix any n,

and consider the set 3SATn of all 3SAT formulas with n variables. Suppose that (a) holds;

then we have some polynomial-time algorithm A that decides (φ, s, i, b) ∈ D correctly with

probability 1− n−3 when (φ, s, i, b) is given uniformly at random. Then again by the averaging

argument, we can show that the proportion of “good” φ in 3SATn satisfying

Pr
s:{0,1}r, k:[cison], i:[n], b:{0,1}

[A decides (φ, sk, i, b) ∈ D correctly] ≥ 1− 1

10cison2

is 1− o(1). Thus, for such a good φ, this A can be used as a 1/(10cison
2)-error bounded oracle

ÃWφ
. Then by using the error tolerance property we just shown, the desired statement (b) is

shown by the combined algorithm, i.e., (QBD,FBD) using A as an oracle.

Example 3. (The Algorithm of Goldreich-Levin)

A one-way function is a polynomial-time computable function that is hard to invert. Consider

any one-to-one5 one-way function f . For simplicity, let us assume that f is a permutation

on {0, 1}n for each n; that is, f is a one-to-one function mapping every element in {0, 1}n to

some in {0, 1}n. For a given y ∈ {0, 1}n, computing the preimage f−1(y) of y, namely, w such

that f(w) = y, is an NP-type search problem and w is regarded as the unique witness for

y ∈ Range(f). Thus, we consider here the case where a witness set W is a singleton.

In order to show the “hard-core” property of some predicate, Goldreich and Levin [GL89]

constructed an algorithm for computing f−1(y) by asking queries to some oracle set in NP.

They also showed that the algorithm has a certain error tolerance property. We state their

algorithm and their analysis in our framework. Below we sometimes regard a string in {0, 1}n

as a 0,1-vector with n coordinates, and for any u, v ∈ {0, 1}n, by u+ v and u� v, we mean their

addition and inner product computed under modulo 2. For each i ∈ [n], let ei denote a string

(or a vector) in {0, 1}n that has 1 only at the i-th bit from the left (and the other bits are all 0).

First we recall the algorithm of Goldreich-Levin, see, e.g., [AB09, Gol01]. Consider any

n > 0. For any y ∈ {0, 1}n, Goldreich-Levin algorithm computes w = f−1(y) by asking queries

to the following NP set E.

E = { (y, u) | ∃w [y = f(w) ∧ u� w = 1] }.

For each i ∈ [n], note that 0 (‘no’) or 1 (‘yes’) answer to the query “(y, ei) ∈ E?” is nothing but

wi, the i-th bit of w. Thus, by asking these queries, we can get w. In order to be tolerant against

errors, Goldreich-Levin algorithm uses some random set U ⊆ {0, 1}n of m′ elements (where m′

is some odd number specified later) and asks queries “(y, u+ei) ∈ E?” for all u ∈ U and i ∈ [n].

5The one-to-oneness is not necessary for the original result of Goldreich and Levin. But in our framework,

even if a given function f is many-to-one, we need to use a singleton set for answering queries; that is, in our

framework, the algorithm of Goldreich-Levin is for singleton sets. Thus, for simplifying the following explanation,

we consider here only one-to-one functions.

19

Let a(u, i) denote the 0,1-answer to the query “(y, u + ei) ∈ E?” Suppose also that we have

some list ` : U → {0, 1}n of answers to the queries “(y, u) ∈ E?”; that is, `(u) is 1 if (y, u) ∈ E

and 0 otherwise. Then we have wi = a(u, i)⊕ `(u). With an erroneous oracle, we may get some

answer α̃(u, i) for a(u, i) with some errors. The algorithm computes wi as the majority vote of

α̃(u, i)⊕ `(u) for all u ∈ U , thereby fixing such errors. But how do we get the list `? Thanks to

the specific way that the algorithm generates U , some m′ candidates `1, ..., `m′ for this list are

obtained, for which we can guarantee that the correct list always exists among them. Thus, the

algorithm uses all `j ’s for `, yielding m
′ candidates for w.

Now we follow Definition 2 to define a witness-list finding algorithm (QGL,FGL) implement-

ing the algorithm of Goldreich-Leving for inverting f . Fix any n and consider any singleton set

Wy = {w|f(w) = y}; our problem here is to compute the unique witness w ∈ Wy. We use a

random seed of length r(n) for some polynomial r. For a given random seed s ∈ {0, 1}r, machine

QGL generates U of m′ elements and asks the following query Qu for each u ∈ U and i ∈ [n].

Qu,i = { x | (u+ ei)� x = 1] }.

Note that AWy(Qu,i) = 1 ⇔ Qu,i∩Wy 6= ∅ ⇔ (y, u+ei) ∈ E ⇔ a(u, i) = 1. Thus, asking a query

Qu,i in our framework is equivalent to asking a query (y, u+ ei) to E in the original algorithm.

We then define FGL as an algorithm that uses the lists {`1, ..., `m′} explained above (that are

polynomial-time computable from the seed s) to generate a list of candidates for w ∈ Wy as

explained above. That is, for each k ∈ [m′], FGL computes the k-th candidate w(k) as follows:

for each i ∈ [n], it first computes bu := ÃWy(Qu,i) ⊕ `k(u) for all u ∈ U based on the answers

from (possibly erroneous) oracle ÃWy , and then it computes the i-th bit of w(k) as the majority

value of (bu)u∈U .

The algorithm of Goldreich-Levin runs in polynomial-time and computes the inverse of

f with probability Ω(1) by using any algorithm that solves E correctly with probability 1/2 +

1/nO(1) under the uniform distribution. Here we explain this by showing a version of (QGL,FGL)

with O(n2/ε(n)2) query complexity and O(n/ε(n)2) list size that is in fact (1/2 − ε(n))-error

tolerant. (Then by the averaging argument similar to the one in Example 2, we can derive the

desired success probability of the original algorithm for random y ∈ {0, 1}n.)
Let us fix n and any singleton witness set W = {w}. Precisely speaking, for each ε > 0,

we consider the above (QGL,FGL) defined with query complexity m′n = cGLn
2/ε2 and list size

m′ = cGLn/ε
2 for some constant cGL, and we prove that it is (1/2− ε)-error tolerant.

We first specify our error model. For any i ∈ [n], consider the execution of the algorithm

for computing (candidates for) wi. Restricting on this computation, the set Dom is the family

of query sets Qu,i that are asked for some u ∈ U where U is some set generated by QGL. From

the generation algorithm of U (which we omit in this paper), we know that U can be any

subset of {0, 1}n of m′ elements; hence, any set Ov := {x|x � v = 1} can be used as a query,

and Dom = {Ov}v∈{0,1}n . Since the situation is the same for all i ∈ [n], error probability is

discussed by using the uniform distribution on this Dom.

For any singletonW , consider any (1/2+ε)-error bounded oracle ÃW . That is, for randomly

chosen Ov ∈ Dom, ÃW (Ov) yields the correct answer, i.e., the decision for “Ov ∩W 6= ∅?” with

probability ≥ 1/2+ ε. Consider the execution of the algorithm for computing some i-th bit of w

with this ÃW . For any u ∈ Ω, let Eu denote the event that ÃW (Qu,i)⊕ `(u) = wi holds, where

`(u) := `k(u) with the correct `k in the list used by the algorithm. If u were chosen uniformly

20

at random, then each query Qu,i = Ou+ei would be independent and uniformly distributed in

Dom, and hence, the event Eu holds with probability ≥ 1/2 + ε for each u ∈ Ω independently;

thus, if m′ elements of U were chosen independently, then the majority of ÃW (Qu,i) ⊕ `(u) is

wi with high probability. Although U is generated “pseudo” randomly in the algorithm, due to

its construction and the choice of m′ = cGLn/ε
2, we can still guarantee that Eu holds for the

majority of u ∈ U with probability ≥ α/n for some constant α > 0. That is, with probability

≥ α/n, the majority of the values ÃW (u, i) ⊕ `k(u) is wi. Since this holds for any i ∈ [n], by

the averaging argument, it follows that the majority of the values ÃW (u, i) ⊕ `k(u) is wi for

all i ∈ [n] with probability ≥ α. This proves the algorithm running with ÃW succeeds to get

w ∈W with probability Ω(1) for any W .

21

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

