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Abstract

Koiran’s real τ -conjecture asserts that if a non-zero real polynomial
can be written as f =

Pp
i=1

Qq
j=1 fij , where each fij contains at most k

monomials, then the number of distinct real roots of f is polynomial in
pqk. We show that the conjecture implies quite a strong property of the
complex roots of f : their arguments are uniformly distributed except for
an error which is polynomial in pqk. That is, if the conjecture is true, f
has degree n and f(0) 6= 0, then for every 0 < α− β < 2π

|Nα,β(f)− (α− β)

2π
n| ≤ (pqk)c ,

where c is an absolute constant and Nα,β(f) is the number of roots of f of
the form reiφ, with r > 0 and α < φ < β, counted with multiplicities. In
particular, if the real τ -conjecture is true it also true when multiplicities
of real roots are included.

1 Introduction

Schub-Smale τ -conjecture [10, 11] is a conjecture in arithmetic circuit com-
plexity, asserting that a polynomial which is computable by a small arithmetic
circuit has a small number of integer roots. If true, it gives a lower bound
on the circuit complexity of the permanent polynomial. One drawback of the
conjecture is that, by referring to integer roots, it leads one to the area of num-
ber theory which is notorious for its hard problems. It would be desirable to
have a hypothesis relating circuit complexity and the number of real, or even
complex, roots. Such a conjecture was put forward by Koiran [5], who calls it
“real τ -conjecture”. Since τ -conjecture is false when we merely replace “integer
root” by “real root”, the real τ -conjecture counts the number of real roots of
a polynomial computed by a restricted circuit. As such, if true, it gives circuit
lower bounds for circuits of restricted form. In Section 4 we will mention at
least one generalisation which implies general circuit lower bounds.
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The real τ -conjecture can be stated without reference to circuits or compu-
tation. Let us call a real (or later complex) polynomial

∑n
i=0 aix

i k-sparse if at
most k of the coefficients a0, . . . , an are non-zero. Let f be a polynomial of the
form

f =
p∑
i=1

q∏
j=1

fij , where each fij is k-sparse . (1)

Conjecture 1 (The real τ -conjecture). Let f be a non-zero polynomial as in (1)
with every fij ∈ R[x]. Then the number of distinct real roots of f is polynomial
in pqk.

Apart from the absence of a counterexample, the conjecture’s motivation is
the following corollary of Descartes’ rule of signs:

Theorem 1 (Weak rule of signs). A non-zero k-sparse polynomial has at most
k − 1 positive real roots.

In particular, Conjecture 1 is true if p = 1 and in general, f has at most pkq

roots. A remarkable aspect of the weak rule of signs is that the number of real
roots can be bounded by the number of terms of a polynomial, rather than the
degree. This suggests that in the real setting, sparsity of a polynomial has a
role similar to the notion of degree in the complex setting. Indeed, this analogy
was developed by Khovanskii in his theory of fewnomials [4]. Most notably,
he gives a real version of Bezout’s theorem where the number of solutions of a
system of polynomial equations is bounded by a function of the number of terms
in the equations. It is an intriguing question whether the quantitative bounds
Khovanskii obtains are asymptotically tight and hence how far can the analogy
between degree and the number of terms be pushed. In this perspective, the
real τ -conjecture is an interesting question from a purely mathematical point of
view.

It is the author’s conviction that if real τ -conjecture is true, it is true by
virtue of some deeper phenomenon pertaining to the structure of complex roots.
This is because complex roots give a complete description of a polynomial (up to
a multiplicative factor), and complex analysis provides a more powerful perspec-
tive of the world of the reals. Certainly, the real τ -conjecture as stated above
has a rather arbitrary feeling about it. As an extension of the weak rule of signs,
it could apparently state much more. The rule holds also when multiplicities of
non-zero real roots are included. Moreover, it implies that the multiplicity of
every non-zero complex root is at most k − 1, and the rule is also valid when
we consider polynomials with complex coefficients ... In a less direct manner,
it can be shown (see [7, 3]) that the rule applies also to the number of complex
roots lying close to the real axis.

An interesting generalisation of the weak rule of signs, which subsumes the
above observations, is the following. Let α, β be real numbers such that 0 <
α − β < 2π, and let f be a complex polynomial. Denote Nα,β(f) the number
of complex roots lying in the sector defined by the angles α, β: i.e., let

2



S(α, β) := {reıφ ∈ C : r > 0 and β < φ < α}
Nα,β(f) := the number of roots of f in S(α, β) counted with multiplicities.

Then Hayman [2], see also Proposition 11.2.4 in [8], shows:

Theorem 2 (Hayman). Let f be a complex k-sparse polynomial of degree n
with f(0) 6= 0. Then for every 0 < α− β < 2π

|Nα,β(f)− α− β
2π

n| ≤ k − 1 .

The term (α − β)n/(2π) denotes the number number of roots in the sector
S(α, β), assuming the arguments of the roots are distributed uniformly. So the
theorem says that the angles of roots of f are distributed uniformly except for
an error which depends linearly on the number of terms of f . The motivating
example is of course f = xn − 1, where the roots are perfectly spread on the
unit circle. Theorem 2 gives, for example, that every sector with α − β >
2π(k − 1)/n contains a root of f . Also, one obtains the weak rule of signs by
letting α→ 0+, β → 0−. One can compare Hayman’s theorem with the Erdös-
Turán theorem [1] which estimates the distribution of roots in terms of the sizes
of coefficients of f , rather than their number.

In this note, we apparently strengthen Conjecture 1 so that, instead of count-
ing the number of real roots, we measure the discrepancy from uniformity á la
Theorem 2. This is done only to show that the two versions of the conjecture are
actually equivalent. That is, if the real τ -conjecture is true then the arguments
of the complex roots of a polynomial f are uniformly distributed with an error
polynomial in pqk. In particular, if the conjecture is true, it is also true when
the multiplicities of the non-zero roots are included.

Of course, the real τ -conjecture may turn out to be false. This note can
also be used to extend the sphere of possible counterexamples. In order to
disprove Conjecture 1, it is now enough to construct a polynomial f which
can be succinctly written as (1) but whose all roots lie in the negative half-
plane; or to construct such an f which has a complex root with multiplicity
superpolynomial in pqk – perhaps already (x+ 1)n is a good candidate.

2 Modifications of the conjecture

An apparent detail is whether Conjecture 1 should refer to the number of dis-
tinct roots, or to the number of non-zero roots including their multiplicities.
Arguments can be made in both directions. The originial Schub-Smale conjec-
ture is inevitably about the number of distinct integer roots, and this suggests
to also exclude multiplicities in Conjecture 1. Several applications of Khovan-
skii’s theory require counting distinct roots – let us mention Risler’s theorem
[9], which relates the number of real roots of a polynomial and the number of
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addition gates needed to compute it. Koiran himself seems to believe that it is
important to exclude multiplicities: in [6], Koiran et al. consider polynomials
of the form

f =
p∑
i=1

q∏
j=1

f
nij

ij .

They give an upper-bound on the number of real roots of f which is independent
on the exponents nij . They call it a ”step towards the real τ -conjecture”, which
makes sense only if multiplicities are ignored. On the other hand, we note in
Observation 9 that if the polynomial (x + 1)n can be written as (1) with pqk
small then Conjecture 1 is false. This suggests that multiplicities of non-zero
roots cannot be neglected and that counting roots with multiplicities is indeed
the correct way of counting:

Conjecture 2. Let f be a non-zero polynomial as in (1) with every fij ∈ R[x].
Then the number of non-zero real roots of f , counted with multiplicities, is
polynomial in pqk.

Another detail is whether it is important for the polynomial f in Conjecture
1 to be real. This will be dealt with in Corollary 5. Finally, inspired by the
generalisation of the weak rule of signs given in Theorem 2, let us consider the
following:

Conjecture 3. Let f be a polynomial as in (1) with every fij ∈ C[x]. Assume
that f has degree n and f(0) 6= 0. Then for every 0 < α− β < 2π

|Nα,β(f)− (α− β)
2π

n| ≤ (pqk)c ,

where c is an absolute constant.

Note that if f(0) = 0 and 0 is a root of multiplicity m, Conjecture 3 implies

|Nα,β(f)− (α− β)
2π

(n−m)| ≤ O((pqk)c) (2)

This is seen by considering the polynomial f + ε for a small enough ε: the n−m
non-zero roots of f change only slightly, whereas the zero root of f splits into m
distinct roots of f + ε, and those roots are almost uniformly distributed around
a circle of radius O(ε1/m).

Each conjecture 1- 3 seems to be strictly stronger than the previous one.
However, we show that this is in fact not the case:

Theorem 3. Conjectures 1-3 are equivalent.

This allows one to formulate the following consequences of the real τ -conjecture.
Each of them can be potentially used to construct a counterexample.

Corollary 4. Assume Conjecture 1. Let f be a complex polynomial as in (1)
with s := kpq. Then
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(i). the multiplicity of every non-zero root of f is polynomial in s.

(ii). if <(x) < 0 for every root of f (such an f is called Hurwitz polynomial)
then s = Ω(nc), for a constant c > 0.

Corollary 5. If Conjecture 1 is true then both Conjecture 1 and 2 are true even
when we allow the fij in (1) to be complex (while still counting real roots).

3 Proof of Theorem 3

The proof has two simple parts. The first, Proposition 6, is a general statement
about angular distribution of roots. The second, Proposition 8, is a property of
depth-three arithmetic circuits which allows to efficiently compute the real part
of a complex polynomial f , provided f itself can be so computed.

For a complex polynomial f =
∑n
i=0 aix

i, let

<(f) =
n∑
i=0

<(ai)xi , =(f) =
n∑
i=0

=(ai)xi ,

where <(a), =(a) are the real and the imaginary part of the complex number a.
If <(a0) 6= 0 and α ∈ R, let Mα(f) be the number of distinct positive roots of
the real polynomial fα(x) := f(xeiα). Furthermore, let

M(f) := max
α∈[0,2π)

Mα(f) .

Proposition 6. Let f be a complex polynomial of degree n with <(f(0)) 6= 0.
Then for every 0 < α− β < 2π

|Nα,β(f)− (α− β)
2π

n| ≤M(f) + 1/2 .

Proof. This follows from Theorem 11.2.1 in [8] where the quantity Nα,β(f) is
determined exactly. The regularity assumption of the Theorem can always be
guaranteed by considering S(α′, β′) with α′, β′ ε-close to α, β.

The proof of Theorem 11.2.1 itself relies chiefly on the argument principle,
which relates the number of roots of f inside a domain with the behaviour of
f on its boundary. For the sake of a reader who is either curious, or does not
want to look for [8], let us give a sketch of an independent proof of Proposition
6. Consider the family of polynomials f + ıt, where t ≥ 0 is a real parameter.
The main point is that the n complex roots of f + it depend continously on t.
If t is sufficiently large, f + ıt has n distinct roots which are almost completely
uniformly distributed around the circle with radius O(t1/n). Hence the sector
S(α, β) contains (α−β)n/2π+c roots, with |c| < 1. As t decreases, the only way
how the number of roots in S(α, β) can change, is that the roots pass through
the boundary of the sector. Hence one must estimate the number of roots of
the form x = reıφ, with r > 0 and φ ∈ {α, β}, which are roots of f + ıt for
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some t ≥ 0. If reıφ is a root of f(x) + ıt then r is a root of <(f(xeıφ) + ıt).
However, <(f(xeıφ) + ıt) = <(f(xeıφ)) does not depend on t and has Mφ(f)
positive roots. So we have reached

|Nα,β(f)− (α− β)n
2π

| ≤Mα(f) +Mβ(f) + 1 ≤ 2M(f) + 1 .

There are few details to correct. First, since Mα(f) counts distinct roots, one
should better assume that neither fα nor fβ have multiple real roots – but this
can always be achieved by changing α, β by a small ε. Second, we have missed
the bound of Proposition 6 by a factor of two – which can be improved by
considering the direction in which the roots pass through the boundary of the
sector.

For the purpose of the following lemma, we extend the definition of <(f) to
the case when f is a multivariate complex polynomial, in the obvious way.

Lemma 7.

<(
n∏
i=1

(xi + ıyi)) =
n+1∑
j=1

bj

n∏
i=1

(xi + ajyi) ,

where the aj , bj are some real constants.

Proof. This is a standard interpolation argument. Introduce a new variable
z and consider the polynomial f(z) =

∏n
i=1(xi + zyi)), which is now a real

polynomial in 2n+ 1 variables. Then

f(z) = f0 + f1z + . . . fnz
n ,

where the polynomials fi do not depend on z. Choosing n + 1 distinct real
numbers a1, . . . , an+1, we obtain

f(ai) = f0 + f1ai + . . . fna
n
i , i ∈ {1, . . . , n+ 1} ,

which can be written as

(f(a1), . . . , f(an+1))t = V (a1, . . . , an+1) · (f0, . . . , fn)t ,

where V (a1, . . . , an+1) is (n+ 1)× (n+ 1) Vandermonde matrix. The matrix is
invertible and hence the polynomials f0, . . . , fn are real linear combinations of
the polynomials f(a1) . . . f(an+1). Finally,

<(
n∏
i=1

(xi + ıyi)) =
∑

2j∈{0,...,n}

(−1)jf2j

and so <(
∏n
i=1(xi + ıyi)) = b1f(a1) + · · ·+ bn+1f(an+1) for some b1, . . . , bn+1 ∈

R.
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Proposition 8. Let f =
∑p
i=1

∏q
j=1 fij where each fij is a complex k-sparse

polynomial. Then

<(f) =
p(q+1)∑
i=1

q∏
j=1

gij ,

where each gij is a real k-sparse polynomial.

Proof. Write

<(f) =
p∑
i=1

<(
q∏
j=1

(<(fij) + ı · =(fij)))

and apply the previous lemma to <(
∏q
j=1(<(fij) + ı · =(fij))) for each i ∈

{1, . . . , p}. Note that if fij is complex k-sparse then a · <(fij) + b · =(fij) is real
k-sparse for any a, b ∈ R.

Let us note that Proposition 8 by itself implies:

Observation 9. Assume that f(x) = (x+ 1)n can be written as
∑p
i=1

∏q
j=1 fij

where fij are complex k-sparse polynomials. If Conjecture 1 is true then pqk =
Ω(nc) for some c > 0.

This is because the complex polynomial

f(ıx) + f(−ıx) = (ıx+ 1)n + (−ıx+ 1)n

has at least n−1 distinct real roots, which are consequently the roots of the real
polynomial <(f(ıx) + f(−ıx)). Conjecture 1 in conjunction with Proposition 8
hence implies that n = O((pqk)c) for some constant c > 0.

Proof of Theorem 3. Clearly, Conjecture 2 implies Conjecture 1. To see that
Conjecture 3 implies Conjecture 2, it is enough to apply (2) to the two sectors
S(α,−α) and S(π + α, π − α) with α = π/n .

It remains to prove Conjecture 3 assuming Conjecture 1. Let f be a complex
polynomial as in Conjecture 3. We have f(0) 6= 0 and we can also assume that
<(f(0)) 6= 0 – otherwise multiply f by ı. By Proposition 6, we have

|Nα,β(f)− (α− β)
2π

n| ≤M(f) + 1/2 ,

where M(f) is the maximum number of distinct positive roots of <(f(xeiφ)),
for φ ∈ [0, 2π). Proposition 8 gives that for a fixed φ

<(f(xeiφ)) =
p′∑
i=1

q∏
j=1

gij ,

where all of gij are real k-sparse and p′ = p(q+1). Conjecture 1 then implies that
the number of positive roots of <(f(xeiφ)) is polynomial in p′qk = O((pqk)2)
and so Conjecture 3 follows by taking c large enough.
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4 A comment about the proof

The proof of Theorem 3 relies mainly on the fact that if a complex polynomial f
can be succinctly represented as (1) then so can <(f), and the Theorem will go
through for any computational model with this property. For example, consider
the following strengthening of the real τ conjecture:

Conjecture 4. Let A(x1, . . . , xn) be an arithmetic formula of size s over R.
Let f ∈ R[x] be the polynomial computed by A(xk1 , . . . , xkn) where k1, . . . , kn
are some natural numbers. If f is non-zero then the number of distinct real
roots of f is polynomial in s.

The author is not aware of a counterexample to this statement, and at
the same time Conjecture 4 implies an exponential lower bound on the size of
unrestricted arithmetic circuits computing the permanent. As in Theorem 3,
one can show:

Let f be as above but with A allowed to use complex numbers. If f(0) 6= 0 and
Conjecture 4 is true then for every 0 < α− β < 2π

|Nα,β(f)− (α− β)
2π

n| ≤ O(sc) ,

with an absolute constant c.
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