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Abstract

We study the rank of complex sparse matrices in which the supports of different columns
have small intersections. The rank of these matrices, called design matrices, was the focus
of a recent work by Barak et. al. [BDWY11] in which they were used to answer questions
regarding point configurations. In this work we derive near-optimal rank bounds for these
matrices and use them to obtain asymptotically tight bounds in many of the geometric
applications. As a consequence of our improved analysis, we also obtain a new, linear
algebraic, proof of Kelly’s theorem, which is the complex analog of the Sylvester-Gallai
theorem.

1 Introduction

The classical Sylvester-Gallai (SG) Theorem states the following: Given any finite set of points
in the Euclidean plane, not all on the same line, there exists a line passing through exactly
two of the points. This result was first conjectured by Sylvester in 1893 [Syl93] and then
proved independently by Melchior in 1940 [Mel40] and Gallai in 1943 (in an answer to the
same question independently posed by Erdos [Erd43]). The following complex variant of the
Sylvester-Gallai Thoerem was proved by Kelly [Kel86] in response to a question of Serre:
Given any finite set of points in Cd, not all on the same complex two-dimensional plane,
there exists a line passing through exactly two of the points. The above result is tight over
the complex numbers, since there are two-dimensional configurations of points satisfying the
condition on triples. The survey by Borwein and Moser [BM90] gives a very good overview
of the SG Theorem, its proofs and the different variants that have been studied in the past.
One application of our techniques, discussed later, is a new proof of Kelly’s theorem, which is
significantly simpler than Kelly’s original proof and is very different than the recent elementary
proof of [EPS06].

In recent years, variants of the SG theorem have been useful in studying certain structural
questions arising in theoretical computer science. Variants of the SG theorem were useful in
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understanding the structure of low-depth arithmetic circuits [DS06, KS09, SS10]. Quantitative
versions of the SG theorem were shown to be closely linked to the structure of linear Locally
Correctable Codes [BDWY11, BDSS11]. These applications join a growing number of papers
in which geometric theorems regarding point/line arrangements are finding applications in
theoretical computer science. We refer the reader to the recent survey [Dvi12] for an overview
of some of these applications.

1.1 Rank of design matrices

Motivated by the application to point configurations, [BDWY11] studied the rank of certain
matrices, called design matrices, and proved lower bounds on their rank. These bounds were
then used to prove quantitative analogs of the SG theorem. We begin by defining design
matrices formally. For a vector v ∈ Fn, where F is a field, we denote by supp(v) = {i ∈
[n] | vi 6= 0}.

Definition 1.1 (Design matrix). Let A be an m×n matrix over a field F. Let R1, . . . , Rm ∈ Fn
be the rows of A and let C1, . . . , Cn ∈ Fm be the columns of A. We say that A is a (q, k, t)-design
matrix if

1. For all i ∈ [m], |supp(Ri)| ≤ q.

2. For all j ∈ [n], |supp(Cj)| ≥ k.

3. For all j1 6= j2 ∈ [n], |supp(Cj1) ∩ supp(Cj2)| ≤ t.

A ‘typical’ setting of the parameters that often arises in applications is when q is a small
constant, m ≈ n2, k ≈ n and t is a constant. The main result in [BDWY11] is the following
rank bound.

Theorem 1.2 ([BDWY11]). Let A by an m× n matrix. If A is a (q, k, t) design matrix then

rank(A) ≥ n−
(
qtn

2k

)2

For the aforementioned ‘typical’ setting of the parameters, one get a lower bound of n −
O((n/k)2) on the rank. By improving a key lemma in [BDWY11] using a more careful analysis,
we are able to prove the following new bound.

Theorem 1.3. Let A by an m× n matrix. If A is a (q, k, t) design matrix then

rank(A) ≥ n

1 + q(q−1)mt
nk2

≥ n− mtq(q − 1)

k2

As a corollary, we get:

Corollary 1.4. Let A by an m× n matrix. If A is a (q, k, t) design matrix then

rank(A) ≥ n

1 + q(q−1)t
k

≥ n− ntq(q − 1)

k
.
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Proof. If m ≤ nk then we are done (substitute m = nk into the bound in Theorem 1.3).
Otherwise, we can remove rows of A until we are left with a new matrix A′ that has exactly
m′ = nk rows and s.t A′ is also a (q, k, t)-design matrix (as long as m > nk there has to be
a row we can remove and maintain that each column has at least k non zeros). Now, apply
Theorem 1.3 on A′ and use the fact that rank(A) ≥ rank(A′).

Here, for the ‘typical’ setting, we get a rank bound of n−O(n/k), which is asymptotically
better then the one obtained in Theorem 1.2.

We also prove a variant of Theorem 1.3 in which q does not appear. Note that if each
column of A has support of size exactly k, then the total number of nonzero entries in A is nk.
Thus the average size of the support of a row would be nk/m. In general it can be shown that
replacing q with nk/m in Theorem 1.3 would give a false statement. However, we show that
we can replace q with O(nt/k). This is exactly the average row-support when m = O(k2/t)
and, in this regime, the bound on the rank (which is now independent of q) is tight1.

Theorem 1.5. Let A by an m× n matrix. If A is a (q, k, t) design matrix with k ≤ nt then

rank(A) ≥ n− 6mn2t3

k4
.

As before, by replacing m with nk we get the following corollary.

Corollary 1.6. Let A by an m× n matrix. If A is a (q, k, t) design matrix with k ≤ nt then

rank(A) ≥ n− 6n3t3

k3
.

Related work: The problem of bounding the rank of matrices with certain patterns of zeros
and non-zeros is not new, and has been studied in the past in a variety of contexts. One line of
research comes from Hamada’s conjecture [Ham73, JT09, BIW07]. In this setting however, the
notion of being a design is stricter than the notion we use in this paper. Another line of research
that studies the zero-nonzero patterns of matrices and their ranks has many applications to
graph theory[FH07]. Rank bounds on matrices with ‘sign patterns’ of positive and negative
entries have also received a great deal of attention in recent years [RS08, For02], and it would
be interesting to see if our techniques can say anything meaningful in this setting.

1.2 Square design matrices and monotone rigidity

Theorem 1.5, which removes the dependence on q, allows us to get meaningful lower bounds
on the rank of square design matrices. The results of [BDWY11] did not give anything for such
matrices. Let A be an n × n matrix such that every column has support of size k ≈

√
n and

such that for every two columns, the size of the intersection of the supports of the two columns
t is O(1). For instance, the zero-nonzero pattern of the projective plane incidence matrix has

1Observe that for an m × n matrix that is a (q, k, t) design, if n = Ω(k/t), then m = Ω(k2/t). This follows
by a simple inclusion-exclusion argument on the union of the supports of any Ω(k/t) columns of A.
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this structure. In this case we can obtain a bound of Ω(n) on the rank of such a matrix - not
by applying our rank bound directly but by applying Theorem 1.5 to the matrix after deleting
a linear number of columns.

A simple consequence of this result, proved in Section 4, is that, if one takes the n × n
incidence matrix of the projective plane and changes a small number of 1’s in the matrix to
arbitrary values, then the resulting matrix has high (linear in n) rank. This can be viewed
as a restricted model of the matrix rigidity problem of Valiant [Val77]. A matrix is rigid if
changing a small number of its positions cannot decrease its rank by much. Valiant showed
that a linear circuit computing a transformation given by a rigid matrix cannot have linear
size and logarithmic depth. Hence, the problem of finding an explicit rigid matrix will imply
circuit lower bounds that are beyond our reach at this point. Our restricted model allows one
to only change positions in the matrix that are non-zero. Even though this result does not
yield any interesting result on circuit lower bounds, we find it encouraging in that it gives a
way to control rank under some type of perturbations. The full details are given in Section 4.

1.3 Configurations with many collinear triples

Given a set of points v1, . . . , vn ∈ Cd, we call a line that passes through exactly two of the
points of the set an ordinary line. A line passing through at least three points is called special.
We will use dim(v1, . . . , vn) to denote the dimension of the linear span of v1, . . . , vn and by
affine-dim(v1, . . . , vn) the dimension of the affine span of v1, . . . , vn (i.e., the minimum r such
that v1, . . . , vn are contained in a shift of a linear subspace of dimension r).

The main geometric application studied in [BDWY11] was to extend the SG theorem to
configurations of points termed δ-SG configurations.

Definition 1.7 (δ-SG configuration). We say that a set of points v1, v2, . . . , vn ∈ Cd is a δ-SG
configuration if for every vi, i ∈ [n], at least δ(n − 1) of the remaining points lie on special
lines through vi.

Setting δ = 1 we can state the original SG theorem as saying that any 1-SG configuration
v1, . . . , vn (over R) has affine-dim(v1, . . . , vn) ≤ 1 (i.e., is contained in a line). Kelly’s theorem
[Kel86] obtains the bound affine-dim(v1, . . . , vn) ≤ 2 for 1-SG configurations over C (the bound
2 is tight in this case). The following theorem, proved in [BDWY11] gives a generalization of
Kelly’s theorem to δ-SG configurations.

Theorem 1.8 ([BDWY11]). Let V = {v1, . . . , vn} ⊂ Cd be a δ-SG configuration. Then

affine-dim(v1, . . . , vn) ≤ 13/δ2.

When δ = 1 one gets a bound of 9 on the affine dimension.

There are two shortcomings of this theorem. The first is the quadratic dependence on δ.
Placing the points on 1/δ lines in general position one can construct a δ-SG configuration with
dimension Ω(1/δ). It was left as an open question in [BDWY11] to close this quadratic gap
between the lower and upper bound on the dimension of δ-SG configurations. The second issue
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is that one does not recover Kelly’s theorem from the proof of [BDWY11], but only an inferior
bound of 9 on the dimension. We are able to correct both of these issues.

Theorem 1.9. Let V = {v1, . . . , vn} ⊂ Cd be a δ-SG configuration. Then

affine-dim(v1, . . . , vn) ≤ 12/δ.

When δ = 1 one gets a bound of 2 on the affine dimension.

There are two known proofs of Kelly’s theorem. Kelly’s original proof, answering a question
by Serre, used deep results from algebraic geometry. An elementary proof was recently found
by Elkies, Pretorius and Swanepoel [EPS06]. Our proof is conceptually very different from
both of these and uses only elementary linear algebra.

Theorem 1.9 is proved, as in [BDWY11], by reduction to the rank bound for design matrices.
One constructs a design matrix whose co-rank bounds the dimension of the configuration and
then applies one of the bounds on the rank of these matrices.

Average-case version: A natural variant on the definition of a δ-SG configuration is to
only require the presence of many pairs of points on special lines (instead of requiring each
point to belong to many such pairs). In [BDWY11] it was shown that:

Theorem 1.10 ([BDWY11]). Let V = {v1, . . . , vn} ⊂ Cd be a set of n points such that at least
δn2 (unordered) pairs of them lie on special lines. Then there exists a subset V ′ ⊂ V such that
|V ′| ≥ (δ/6)n and so that V ′ is a δ-SG configuration.

Combining this result with our improved bound on the dimension of δ-SG configurations
we get the following improvement to a theorem from [BDWY11].

Corollary 1.11. Let V = {v1, . . . , vn} ⊂ Cd be a set of n distinct points. Suppose that there
are at least δn2 unordered pairs of points in V that lie on a special line. Then there exists a
subset V ′ ⊂ V such that |V ′| ≥ (δ/6)n and affine-dim(V ′) ≤ O(1/δ).

1.4 Flats of higher dimension

A k-flat is an affine subspace of dimension k. Let fl(v1, . . . , vk) denote the flat spanned by these
k points (it can have dimension at most k − 1). We call v1, . . . , vk independent if their flat is
of dimension k − 1, and say that v1, . . . , vk are dependent otherwise. Considering some fixed
finite subset V ⊂ Cd of size n we call a k-flat ordinary if its intersection with V is contained in
the union of a (k−1)-flat and a single point (this agrees with the definition of an ordinary line
when k = 1). A k-flat is elementary if its intersection with V has exactly k+ 1 points. Notice
that for k = 1 (when flats are lines) the two notions of ordinary and elementary coincide.

The next definition generalizes the notion of a δ-SG configuration for higher dimensional
flats in two different ways (using ordinary/elementary flats). For k = 1 both definitions
coincide.
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Definition 1.12 (δ-SGk, δ-SG∗k). The set V is a δ-SG∗k configuration if for every independent
v1, . . . , vk ∈ V there are at least δn points u ∈ V such that either u ∈ fl(v1, . . . , vk) or the
k-flat fl(v1, . . . , vk, u) contains a point w outside fl(v1, . . . , vk) ∪ {u}. The set V is a δ-SGk

configuration if for every independent v1, . . . , vk ∈ V there are at least δn points u ∈ V such
that either u ∈ fl(v1, . . . , vk) or the k-flat fl(v1, . . . , vk, u) is not elementary. Notice that a
δ-SG∗k configuration is also a δ-SGk configuration and that for k = 1 both are the same.

In [BDWY11], the following theorem was proved.

Theorem 1.13 ([BDWY11]). Let V and V ∗ be a δ-SGk and a δ-SG∗k configurations respectively
in Cd. Then:

1. affine-dim(V ∗) ≤ O
(
(k/δ)2

)
.

2. affine-dim(V ) ≤ 2C
k
/δ2, where C > 0 is a universal constant.

Prior to this result, the only known bound for configurations with many special k-flats
was a result proved by Hansen and Bonnice-Edelstein [Han65, BE67] which gives a bound of
O(k) on the dimension of a 1-SGk (or 1-SG∗k) configuration over the reals. Since Theorem 1.13
is proved in a black-box manner using the result for δ-SG configurations we can plug-in our
improvement, given in Theorem 1.9, to obtain the following.

Theorem 1.14. Let V and V ∗ be a δ-SGk and a δ-SG∗k configurations respectively in Cd.
Then:

1. affine-dim(V ∗) ≤ O (k/δ).

2. affine-dim(V ) ≤ Ck/δ, where C > 0 is a universal constant.

Notice that, whereas the improvement for δ-SG∗k configurations is only quadratic, the im-
provement for δ − SGk configurations is exponential (this is due to the way the basic bound
is amplified in the induction on k). The proof of this theorem is identical to the proof of
Theorem 1.13 appearing in [BDWY11], only with Theorem 1.8 replaced by Theorem 1.9. For
completeness, we give the details in Section 5.2.

1.5 A variation on Freiman’s Lemma

Consider a finite set A in some abelian group. One can define the sumset A + A = {a1 +
a2 | a1, a2 ∈ A} in a natural way. A well-known result in additive combinatorics is the following
lemma, known as Freiman’s lemma, which derives structural information on A, given bounds
on the size of A+A.

Lemma 1.15 (Freiman’s lemma. See [TV06]). Let A be a finite subset of Rd and suppose
|A+A| ≤ K|A|. Then A is contained in a linear subspace of dimension at most bK − 1c.

Clearly, the condition |A+A| ≤ K|A| can be replaced by |{(a1+a2)/2 | a1, a2 ∈ A}| ≤ K|A|,
where we replace sums with mid-points. Surprisingly enough, the original proof of this lemma
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works also when we replace mid points with any point on the line segment connecting the two
points. More formally, for two sets A,B ⊂ Rd and any function f : A × B 7→ Rd we can
define A+f B = {f(a, b) | a ∈ A, b ∈ B}. Then, as long as f(a, b) is on the line segment
connecting a, b (and is different from a, b) we get the same conclusion as in Lemma 1.15,
assuming |A+f B| ≤ K|A|.

Intuitively, our results for δ-SG configurations are of a similar flavor since the assumption
of Freiman’s Lemma (in its generalized form just stated) implies the existence of many pairs
of points on special lines. We are able to use our techniques to derive the following theorem
(whose proof appears in Section 6).

Theorem 1.16. Let A be a finite subset of Cd and let f : A × A 7→ Cd be any function
such that for all a1 6= a2 ∈ A we have f(a1, a2) = αa1 + (1 − α)a2 for some α = α(a1, a2) :
A×A 7→∈ C \ {0, 1} (i.e., f(a1, a2) is on the line passing through a1, a2 minus the two points
a1, a2). Suppose that

|A+f A| ≤ K ·A.

Then dim(A) ≤ O(K2)

This theorem relaxes the conditions of Freiman’s lemma by allowing (a) points in complex
space and (b) the value of f(a1, a2) to be outside the convex hull of a1, a2. On the other hand,
we get a worse bound of O(K2) instead of O(K). We do not know if this quadratic loss is
needed or not.

1.6 Organization

In Section 2 we introduce some preliminaries related to the technique of matrix scaling. In
Section 3 we prove Theorem 1.3 and Theorem 1.5. The rank bound for square design matrices
and the application for monotone linear circuits is given in Section 4. In Section 5 we prove
our main application, Theorem 1.9. In Section 5.2 we prove the high dimensional variant. In
Section 6 we prove Theorem 1.16.

2 Preliminaries – Matrix Scaling

One of the most important ingredients in the proof of the rank bound for design matrices is
the notion of matrix scaling. Informally, the matrix scaling theorem states that if a matrix
does not have any large zero sub-matrices, then one can multiply the rows and columns of the
matrix by non-zero scalars so that all the row sums are equal and all the column sums are
equal (assuming the entries are non-negative).

The technique of matrix scaling originated in a paper of Sinkhorn [Sin64] and has been
widely studied since then (see [LSW00] for more background). It was used in [BDWY11] for
the first time to study design matrices, and we build upon their work and extend it.

We first set up some notation. For a complex matrix X, we let X∗ denote the matrix X
conjugated and transposed. Also we let Xij denote the (i, j) entry of X. For two complex
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vectors u, v ∈ Cm, we denote their inner product by 〈u, v〉 =
∑m

i=1 ui ·vj and let ‖u‖ =
√
〈u, u〉

denote the `2 norm of the complex vector u.

Definition 2.1. [Matrix scaling] Let A be an m × n complex matrix. Let ρ ∈ Cm, γ ∈ Cn be
two complex vectors with all entries non-zero. We denote by

SC(A, ρ, γ)

the matrix obtained from A by multiplying the (i, j)’th element of A by ρi · γj. We say that
two matrices A,B of the same dimensions are a scaling of each other if there exist non-zero
vectors ρ, γ such that B = SC(A, ρ, γ). It is easy to check that this is an equivalence relation.
We refer to the elements of the vector ρ as the row scaling coefficients and to the elements of
γ as the column scaling coefficients. Notice that two matrices which are a scaling of each other
have the same rank and the same pattern of zero and non-zero entries.

Below we define a property of matrices that gives sufficient conditions for finding a scaling
of a matrix which has certain row and column sums.

Definition 2.2 (Property-S). Let A be an m × n matrix over some field. We say that A
satisfies Property-S if for every zero sub-matrix of A of size a× b it holds that

a

m
+
b

n
≤ 1. (1)

For example, a square matrix has Property-S if is has a non-zero generalized diagonal.
Also, notice that this property is maintained under concatenation (say, putting two matrices
with the same number of columns one under the other). The following theorem is the main
tool we will use. Its proof uses ideas from convex optimization but we will only need to use it
as a black box.

Theorem 2.3 (Matrix scaling theorem, Theorem 3 in [RS89] ). Let A be an m×n real matrix
with non-negative entries which satisfies Property-S. Then, for every ε > 0, there exists a
scaling A′ of A such that the sum of each row of A′ is at most 1 + ε and the sum of each
column of A′ is at least m/n − ε. Moreover, the scaling coefficients used to obtain A′ are all
positive real numbers.

In our proof will use the following easy corollary of the above theorem that appeared
in [BDWY11]. This corollary is obtained by applying the matrix scaling theorem to the matrix
obtained by squaring all entries of the original matrix.

Corollary 2.4 (Corollary from [BDWY11]). Let A = (aij) be an m×n complex matrix which
satisfies Property-S. Then, for every ε > 0, there exists a scaling A′ of A such that for every
i ∈ [m] ∑

j∈[n]

|aij |2 ≤ 1 + ε

and for every j ∈ [n] ∑
i∈[m]

|aij |2 ≥ m/n− ε.
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3 Proof of the rank bound

In this section we will present the proofs for Theorem 1.3 and Theorem 1.5. The proof follows
the same general outline as the one appearing in [BDWY11]:

Step 1 – Scaling: Given the design matrix A, we construct a scaling A′ of A where every
column has large `2 norm and every row has small `2 norm. Since A need not satisfy Property-
S, we are not be able to apply Corollary 2.4 directly. Instead we first find a matrix B whose
rows are chosen from the rows of A, with repetitions, such that no row is chosen too many
times. If each row of A occurs a maximum of c times in B, then we call B a c-cover of A. We
can then apply Corollary 2.4 to get a scaling of B with equal row norms and equal column
norms, and then use the scaling of B to derive a scaling of A with the desired properties.
In [BDWY11] B is taken to be a q-cover of A.

Step 2 – Obtaining a diagonal dominant matrix: Given the scaling A′ of A we consider
the matrix M = A′∗A′. Clearly all the diagonal entries of M , which correspond to the squared
`2 norms of the columns of A′, are large. We use the design properties of A, as well as the
properties of the scaling to show that the sum of square of the off-diagonal entries of M is
small. Matrices such as M are called ‘diagonal dominant’ and bounding their rank can be
done in various ways (see e.g., [Alo09]). In this step, our calculation gives a tighter analysis
of the bounds of the entries of M and we are hence able to obtain the stronger rank bounds
compared to [BDWY11].

3.1 Covering lemmas

The following lemma is implicit in [BDWY11] and shows how one can find a cover of a matrix
A that satisfies Property-S. Recall that a matrix B is a c-cover of A if each row of B is a row
of A and each row of A appears at most c times in B.

Lemma 3.1. Let A by an m × n matrix over C that is a (q, k, t) design matrix. Then there
exists an nk × n matrix B that is a q-cover of A, and such that B satisfies Property-S.

Proof sketch. B is constructed as follows: for each i ∈ [n], we let Bi be a k × n submatrix of
A which has no zeros in the i’th column. Let B be the nk × n matrix which is composed of
the concatenation all matrices Bi, i ∈ [n].

We now prove a variant of Lemma 3.1 where every row of A appears at most 6nt/k times
in B. In some settings 6nt/k might be smaller than q and then this variant might give a
potentially stronger rank bound (as stated in Theorem 1.5). Observe that this rank bound is
independent of the parameter q.

Lemma 3.2. Let A by an m×n matrix over C that is a (q, k, t) design. Suppose k ≤ nt, then
there exists an nk × n matrix B that is a 6nt/k-cover of A, and that satisfies Property-S.
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Proof. We split the set of n columns of A into ` sets, where ` ≤ d2nt/ke, each of size at most
k/2t. Call these sets S1, S2, . . . , S`. For each Si, we will first construct a matrix Bi which is
an (|Si| · k) × n matrix that will be composed of the rows of A, where each row appears at
most 2 times. The matrix B will be an nk × n matrix which is composed of all the matrices
Bi, 1 ≤ i ≤ `. In other words the set of rows of B is the multi-set obtained by taking all the
rows of all the Bi.

The matrix Bi is constructed as follows. For each column in Si, there are at least k/2 rows
such that none of the other columns in Si has a nonzero entry in that row. This is because the
intersection of the support of any two columns has size at most t, and there are at most k/2t
columns in Si. Thus the support of each column can intersect the union of the support of all
other columns in Si in at most k/2 locations. For each column of Si, pick some k/2 rows such
that none of the other columns in Si has support which intersects that row, and add 2 copies
of each of those rows to the matrix Bi. Do this for each column in Si. It follows immediately
from construction that each row of A appears at most two times in each Bi.

Since each row of A appears at most two times in each Bi, and B is composed of ≤ d2nt/ke
such matrices Bi, thus each row of A appears at most 2d2nt/ke ≤ 4nt/k + 2 ≤ 6nt/k times in
B (using the bound k ≤ nt).

To see that B satisfies property-S, observe that B can be written as the union of k square
n×n matrices each with nonzero entries on the main diagonal. For each of the n×n matrices,
we would take |Si| rows per set Si, where each row corresponds to one of the columns in Si,
such that none of the other columns in Si have a nonzero entry in that row.

The next lemma shows the one can use a cover of A to find a good scaling of A. This
lemma is also implicit in [BDWY11] and we give the proof sketch only for completeness.

Lemma 3.3. Let A by an m×n matrix over C, and let B be an nk×n matrix that is a c-cover
of A, and such that B satisfies Property-S. Then, for every ε > 0, there exists a scaling A′ of
A in which each row of A′ has `2 norm at most

√
1 + ε and each column of A′ has `2 norm at

least
√

(k − ε)/c.

Proof sketch. Fix ε > 0 and apply Corollary 2.4 on B to obtain a scaling B′ of B such that
the `2 norm of each column is at least

√
k − ε, and the `2 norm of each row is at most

√
1 + ε.

We now use this scaling B′ of B to obtain the scaling A′ of A. The scaling of the columns
used to get A′ is the same as the scaling coefficients for the columns of B′. We pick the scaling
coefficients of the rows of A′ as follows: for each row R that appears in A, we look at the
occurrences R1, R2, . . . , Ri of the same row in B and look at the scaling coefficients for those
rows in B′. Say the coefficients are s1, s2, . . . , si (i ≤ c), then we take max{s1, . . . si} to be the
scaling coefficient of row R. If the row R does not appear in B at all, then we pick the scaling
coefficient to be such that the final `2 norm of the row is 1. One can easily verify that A′ is a
scaling of A with each row of A′ having `2 norm at most

√
1 + ε and each column having `2

norm at least
√

(k − ε)/c.
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3.2 Proof of Theorem 1.3 and Theorem 1.5

Before proving the theorems we prove two more lemmas. The first lemma is the main new
ingredient in our proof enables us to get a tighter bound on the entries of the diagonal dominant
matrix M (see proof outline above).

Lemma 3.4. Let A be an m×n matrix over C. Suppose that each row of A has `2 norm < α
and suppose that the supports of every two columns of A intersect in at most t locations. Let
M = A∗A. Then ∑

i 6=j
|Mij |2 ≤ tmα4.

Moreover if we know that the size of the support of every row in A is at most q, then∑
i 6=j
|Mij |2 ≤

(
1− 1

q

)
tmα4.

Proof. For 1 ≤ i ≤ n, Let Ci denote the ith column of A. Then∑
i 6=j
|Mij |2 =

∑
i 6=j
|〈Ci, Cj〉|2

=
∑
i 6=j

∣∣∣∣∣
m∑
k=1

AkiAkj

∣∣∣∣∣
2

≤
∑
i 6=j

t

m∑
k=1

|Aki|2|Akj |2

≤ t
m∑
k=1

(
n∑
i=1

|Aki|2
)2

≤ tmα4.

When there are at most q nonzero entries per row, we have

t
m∑
k=1

∑
i 6=j
|Aki|2|Akj |2 = t

m∑
k=1

(
n∑
i=1

|Aki|2
)2

− t
m∑
k=1

(
n∑
i=1

|Aki|4
)

≤ t
m∑
k=1

(
n∑
i=1

|Aki|2
)2

− t
m∑
k=1

1

q

(
n∑
i=1

|Aki|2
)2

=

(
1− 1

q

)
t
m∑
k=1

(
n∑
i=1

|Aki|2
)2

≤
(

1− 1

q

)
tmα4.

11



The second lemma is a variant of a folklore lemma on the rank of diagonal dominant
matrices (see, e.g., [Alo09]).

Lemma 3.5. Let M be an n× n Hermitian matrix such that for each i ∈ [n], Mii ≥ L, where
L is some positive real number. Then,

rank(M) ≥ n2L2

nL2 +
∑

i 6=j |Mij |2
.

Proof. First, note that, w.l.o.g, we can assume Mii = L for all i ∈ [n]. If not, we can replace
M with a scaling M ′ of M defined as M ′ij = L√

MiiMjj
·Mij . Since all scaling coefficients are at

most 1 we have ∑
i 6=j
|M ′ij |2 ≤

∑
i 6=j
|Mij |2

and both matrices M and M ′ have the same rank. To bound the rank of M (assuming all
diagonal elements are equal to L) we denote its (real) non-zero eigenvalues by λ1, λ2, . . . , λr,
where r = rank(M). Then

n2L2 = tr(M)2 =

(
r∑
i=1

λi

)2

≤ r
r∑
i=1

λ2i = r
n∑

i,j=1

|Mij |2

= r

nL2 +
∑
i 6=j
|Mij |2

 .

Rearranging, we get the required bound on r.

Proof of Theorem 1.3. Let A be an (q, k, t) design matrix and fix some ε > 0. Using Lem-
mas 3.1 and 3.3, we obtain a scaling A′ of A where each row of A′ has `2 norm at most

√
1 + ε

and each column has `2 norm at least
√

(k − ε)/q. Let M = A′∗A′. Then Mii ≥ (k− ε)/q and,

by Lemma 3.4,
∑

i 6=j |Mij |2 ≤
(

1− 1
q

)
tm(1 + ε)2. Applying Lemma 3.5 to M we get that

rank(M) ≥
n2
(
k−ε
q

)2
n
(
k−ε
q

)2
+
(

1− 1
q

)
tm(1 + ε)2

.

Taking ε to zero and simplifying, we get

rank(M) ≥ n

1 + q(q−1)mt
nk2

≥ n−mtq(q − 1)/k2

where the second inequality follows from the fact that 1/(1 + x) ≥ 1 − x for all x. Since
rank(A) = rank(A′) ≥ rank(M), Theorem 1.3 follows.
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Proof of Theorem 1.5. The only change in the proof of Theorem 1.5 is that instead of Lemma 3.1
we use Lemma 3.2. By Lemmas 3.1 and 3.3, we get a scaling A′ of A where each row of A′ has `2
norm at most

√
1 + ε and each column has `2 norm at least

√
(k − ε)k/6nt. Letting M = A′∗A′

as before, we have Mii ≥ (k − ε)k/6nt and, by Lemma 3.4,
∑

i 6=j |Mij |2 ≤
(

1− 1
q

)
tm(1 + ε)2.

Applying Lemma 3.5 as before we get

r ≥ n

1 + 6mnt3

k4

≥ n− 6mn2t3/k4.

Tight examples for Theorem 1.3: One might hope that the bound of tm in the The-
orem 1.3 (where t is the maximum intersection of any two columns) can be replaced by t̄m,
where t̄ is some kind of average of intersections of all pairs of columns. One attempt towards
showing such a statement would be by introducing another Cauchy-Schwarz after the one used
in the proof of Lemma 3.4. However, this does not seem to help. The resulting bound after

the second Cauchy-Schwarz seems to give a bound of
√∑

i 6=j t
2
ijm, which is worse than tm.

To see why max t should not be replaceable with average t in the final statement of the rank
bound is by the example of a square n × n matrix A with n/s blocks of size s × s arranged
along the diagonal. These blocks have all entries equal to 1, and 0 elsewhere. Then the rank
of this matrix is n/s. Now, max t equals s. If n is much larger than s, then average t is much
smaller than 1. Now take this matrix A and randomly pick n/100 columns of A and call this
new matrix A′. Then we can still have that average t < 1, k = s and q = s/100. Plugging
it into our rank bound for design matrices (with max t replaced by average t) will give us a
lower bound of Ω(n) on the rank of A′, whereas we know that rank of A′ is at most n/s.

4 Rank bound for square design matrices

We start by deriving an easy corollary that bounds the rank of square design matrices.

Theorem 4.1. Let A be an n × n matrix that is a (q, k, t) design matrix. Then rank(A) =
Ω(k4/nt3).

Proof. Delete any n−k4/10nt3 columns of A to get a new matrix A′. Then A′ is a n×k4/10nt3

matrix that is also a (q, k, t) design. Applying Theorem 1.5 to A′, and doing the calculation,
we get that rank(A′) ≥ k4/10nt3 − k4/20nt3). Thus rank(A) = Ω(k4/nt3).

Note that the incidence matrix of the projective plane of order p is a (p2+p+1)×(p2+p+1)
matrix which is a (p, p, 1) design. Thus any square matrix that has the same zero-nonzero
pattern as the incidence matrix of the projective plane must have linear rank. Such a result
was known for the 0 − 1 valued incidence matrix of the projective plane matrix using the
argument by Alon [Alo09]. However the result above allows us to get a bound on the rank
with just the information of the zero-nonzero pattern. In contrast, over finite fields, the rank
of the projective plane incidence matrix is sub-linear in n.
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4.1 Monotone rigidity

One of the motivation for proving rank bounds for matrices, using only information on their
support, comes from a longstanding open problem in complexity theory, known as matrix
rigidity. Informally, a matrix is rigid if one cannot reduce its rank by much by changing a
small number of its entries in each column. More formally, we have:

Definition 4.2 (Matrix rigidity [Val77]). Let A be an n× n matrix over some field. We say
that A is (r, s)-rigid if A cannot be written as A = L+ S with

1. L a matrix of rank at most r and

2. S a matrix with at most s non zeros per column.

In [Val77], Valiant showed that if A is (nα, αn)-rigid (for some constant α > 0) than a
linear circuit (a circuit with fan-in 2 gates, each computing a linear combination of previously
computed gates) computing the mapping x 7→ xtA cannot have both O(n) size and O(log(n))
depth. Since proving such lower bounds is beyond the reach of current techniques, constructing
explicit rigid matrix (over any field) has become a much sought after goal. We refer the reader
to the survey [Lok09] for more background on this longstanding open problem.

Using our results on design matrices, we can construct an explicit matrix that is highly
rigid, as long as one only changes its non-zero entries.

Definition 4.3 (Monotone rigidity). Let A be an n× n matrix over some field. We say that
A is (r, s)-monotonically rigid if A cannot be written as A = L+ S with

1. L a matrix of rank at most r,

2. S a matrix with at most s non zeros per column and

3. The support of S is contained in that of A (that is, Sij 6= 0 implies Aij 6= 0).

The following is an immediate corollary of Theorem 4.1.

Corollary 4.4. Let A be an n×n matrix with non-negative real entries that is a (q, k, t)-design
matrix with k ≥ Ω(

√
n) and t ≤ O(1). Then A is (α

√
(n), αn)-monotonically rigid for some

α > 0. For example, one can take A to be the projective plane incidence matrix.

We observe that this result can be used to derive super linear lower bounds (via Valiant’s
argument) for monotone circuits, which are circuits that can use linear combinations with non
negative coefficients only. Such lower bounds, however, can be achieved using much simpler
arguments (in fact, much stronger lower bounds of the form ≈ n1.5). We are not aware,
however, of a simple way to construct monotonically rigid matrices.

5 Proof of Theorem 1.9

We first prove the general bound for δ > 0 (later we will analyze the δ = 1 case). Suppose
v1, . . . , vn ∈ Cd are a δ-SG configuration. Let V be the n × d matrix whose ith row is the
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vector vi. By shifting the points so that vi 6= 0 for all i ∈ [n] we have

affine-dim{v1, . . . , vn} = dim{v1, . . . , vn} − 1 = rank(V )− 1.

(The difference of 1 between affine and linear dimension will only matter in the δ = 1 case.)

Thus we want to upper-bound the rank of V . To do so, we will construct an m×n design-
matrix A so that AV = 0. Then we will use the design properties of A to argue that the rank
of A must be high, which in turn implies that the rank of V must be small. The following
lemma is implicit in [BDWY11] and we include its proof sketch here for completeness.

Lemma 5.1. Let v1, v2, . . . , vn be a δ-SG configuration. Let V be the n× d matrix whose i’th
row is the vector vi. Then there exists an m × n matrix A such that A is a (3, 3k, 6)-design
matrix with k = dδ(n−1)e, every row of A has support of size exactly 3, and such that AV = 0.

Proof sketch. A result of [Hil73] on the existence of diagonal Latin squares implies that for all
r ≥ 3 there exists a set T ⊂ [r]3 of r2 − r triples that satisfies the following properties:

1. Each triple (t1, t2, t3) ∈ T is of three distinct elements.

2. For each i ∈ [r] there are exactly 3(r − 1) triples in T containing i as an element.

3. For every pair i, j ∈ [r] of distinct elements there are at most 6 triples in T which contain
both i and j as elements.

Let L denote the set of all special lines in the configuration. Let Li be a subset of L
containing lines passing through vi. For each ` ∈ L let V` denote the set of points in the
configuration which lie on the line `. Then |V`| ≥ 3 and we can assign to it a family of triples
T` ⊂ V 3

` satisfying the three properties above. We now construct the matrix A by going over
all special lines ` ∈ L and for each triple t = (i, j, k) ∈ T` adding as a row of A a vector with
three non-zero coefficients in positions i, j, k, corresponding to the linear dependency among
the collinear vectors vi, vj , vk so that we have AV = 0. We now argue that the matrix A
is a (3, 3k, 6)-design matrix as follows. The number of non-zeros in each row is exactly 3 by
construction. For each vi, there are at least k = dδ(n − 1)e points (other than vi) on special
lines through vi. Summing over all of these lines we get that vi appears in at least 3k triples and
so the i’th column of A will contain at least 3k non-zeros. Every distinct pair of points vi, vj
determine a unique line and so, by construction, can appear in at most 6 triples together.

Given this lemma and our rank bounds from the previous section, the proof of Theorem 1.9
follows quite easily.

Proof of Theorem 1.9. By Corollary 1.4,

rank(A) ≥ n

1 + q(q−1)t
k

≥ n

1 + 3·2·6
3dδ(n−1)e

≥ n

1 + 12
δn−1

.

Now,
n

1 + 12
δn−1

= n− 12n

δn+ 9
> n− 12

δ
.
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Hence,

affine-dim{v1, v2, . . . , vn} = rank(V )− 1 ≤ n− rank(A) <
12

δ
.

5.1 The case of δ = 1: Kelly’s Theorem

We now describe how to obtain the tight bound of 2 on the affine-dimension when δ = 1. In
this scenario, every pair of points is on a special line. We start with the following simple claim.

Claim 5.2. Let A be an m× n matrix so that A is a (q, k, t) design matrix and such that the
support of each row in A is exactly q. Then m

(
q
2

)
≤
(
n
2

)
t

Proof. We count the number of pairs of locations in the matrix which are in the same row and
are both nonzero. Counting once by rows we get that this quantity is equal to m

(
q
2

)
. On the

other hand, counting by columns (going over all pairs of columns) we get an upper bound of(
n
2

)
t since two columns intersect in at most t places.

Applying Lemma 5.1 we get an m × n matrix A which is a (3, 3(n − 1), 6)-design matrix.
By the above claim we have that m ≤ n(n− 1). Using Theorem 1.3 we get that

rank(A) ≥ n

1 + 3·2·n(n−1)·6
n(3(n−1))2

=
n

1 + 4
n−1

=
n(n− 1)

n+ 3
> n− 4.

Hence,
rank(V ) ≤ n− rank(A) < 4.

Thus
dim{v1, v2, . . . , vn} = rank(V ) ≤ 3,

and
affine-dim{v1, v2, . . . , vn} ≤ 2.

5.2 Proof of high dimensional variant

Fix some point v0 ∈ V . By a normalization w.r.t. v0 we mean an affine transformation
N : Cd 7→ Cd which first moves v0 to zero, then picks a hyperplane H s.t. no point in V
(after the shift) is parallel to H (i.e., has inner product zero with the orthogonal vector to H)
and finally multiplies each point (other than zero) by a constant s.t. it is in H. It is easy to
see (see [BDWY11]) that, for such a mapping N , we have that v0, v1, . . . , vk are dependent iff
N(v1), . . . , N(vk) are dependent.

We now prove Theorem 1.14 in two parts (corresponding to the two cases of V and V ∗). We
denote by f(δ, k) the maximum d such that there exists a δ-SG∗k configuration of dimensions d.
We denote by g(δ, k) the maximum d such that there exists a δ-SGk configuration of dimensions
d.
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Proof for δ-SG∗k configurations: The proof is by induction on k. For k = 1 we know f(δ, 1) ≤
c/δ with c > 1 a universal constant. Suppose k > 1. We separate into two cases. The first
case is when V ∗ is a (δ/(2k))-SG1 configuration and we are done using the bound on k = 1.
In the other case there is some point v0 ∈ V ∗ s.t. the size of the set of points on special lines
through v0 is at most δ/(2k). Let S denote the set of points on special lines through v0. Thus
|S| < δn/(2k). Let N : Cd 7→ Cd be a normalization w.r.t. v0. Notice that for points v 6∈ S
the image N(v) determines v. Similarly, all points on some special line map to the same point
via N .

Our goal is to show that V ′ = N(V ∗ \{v0}) is a ((1−1/(2k))δ)-SG∗k−1 configuration (after
eliminating multiplicities from V ′). This will complete the proof since dim(V ∗) ≤ dim(V ′) + 1.
Indeed, if this is the case we have

f(δ, k) ≤ max{2c(k/δ), f((1− 1/(2k))δ, k − 1) + 1}.

and, by induction, we have f(δ, k) ≤ 4c(k/δ).

Fix v′1, . . . , v
′
k−1 ∈ V ′ to be k − 1 independent points (if no such tuple exists then V ′ is

trivially 1-SG∗k−1 configuration). Let v1, . . . , vk−1 ∈ V ∗ be (necessarily independent) points
s.t. N(vi) = v′i for i ∈ [k − 1]. Thus, there is a set U ⊂ V ∗ of size at least δn s.t. for
every u ∈ U either u ∈ fl(v0, v1, . . . , vk−1) or the k-flat fl(v0, v1, . . . , vk−1, u) contains a point w
outside fl(v0, v1, . . . , vk−1) ∪ {u}.

Let Ũ = U \ S so that N is invertible on Ũ and

|Ũ | ≥ |U | − |S| ≥ (1− 1/(2k))δn.

Suppose u ∈ Ũ and let u′ = N(u). If u ∈ fl(v0, v1, . . . , vk−1) then u′ is in fl(v′1, . . . , v
′
k−1).

Otherwise, fl(v0, v1, . . . , vk−1, u) contains a point w outside fl(v0, v1, . . . , vk−1) ∪ {u}. Let
w′ = N(w). We will show that w′ is (a) contained in the (k − 1)-flat fl(v′1, . . . , v

′
k−1, u

′)
and (b) is outside fl(v′1, . . . , v

′
k−1) ∪ {u′}. Property (a) follows since v0, v1, . . . , vk−1, u,w are

dependent and so v′1, . . . , v
′
k−1, u

′, w′ are also dependent. To show (b) observe first that the
points v′1, . . . , v

′
k−1, u

′ are independent (since v0, v1, . . . , vk−1, u are independent) and so u′ is
not in fl(v′1, . . . , v

′
k−1). We also need to show that w′ 6= u′ but this follows from the fact that

u 6= w and so w′ = N(w) 6= N(u) = u′ since N is invertible on Ũ and u ∈ Ũ . Since

|N(Ũ)| = |Ũ | ≥ (1− 1/(2k))δn ≥ (1− 1/(2k))δ|V ′|

the proof is complete.

We now prove the second part of Theorem 1.14.

Proof for δ-SGk configurations. The proof follows by induction on k (the case k = 1 is given
by Theorem 1.9). Suppose k > 1. Suppose that dim(V ) > g(δ, k). We want to show that there
exist k independent points v1, . . . , vk s.t. for at least 1 − δ fraction of the points w ∈ V we
have that w is not in fl(v1, . . . , vk) and the flat fl(v1, . . . , vk, w) is elementary (i.e., does not
contain any other point).
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Let k′ = g(1, k− 1). Since we are trying to show by induction that g(δ, k) ≤ Ck/δ for some
absolute constant C, we can pick C so that g(δ, k) > f(δ, k′+ 1). Therefore, we can find k′+ 1
independent points v1, . . . , vk′+1 s.t. there is a set U ⊂ V of size at least (1− δ)n s.t. for every
u ∈ U we have that u is not in fl(v1, . . . , vk′+1) and the (k′+1)-flat fl(v1, . . . , vk′+1, u) contains
only one point, namely u, outside fl(v1, . . . , vk′+1).

We now apply the inductive hypothesis on the set V ∩fl(v1, . . . , vk′+1) which has dimension
at least k′ = g(1, k−1). This gives us k independent points v′1, . . . , v

′
k that define an elementary

(k− 1)-flat fl(v′1, . . . , v
′
k). (Saying that V is not 1-SGk−1 is the same as saying that it contains

an elementary (k−1)-flat). Joining any of the points u ∈ U to v′1, . . . , v
′
k gives us an elementary

k-flat and so the theorem is proved.

6 Proof of the variation on Freiman’s Lemma

In this section we prove Theorem 1.16. Let A and f : A × A 7→ Cd be as in the statement of
the theorem. The proof is divided into two claims.

Claim 6.1. There exists a subset A′ ⊂ A with |A| ≥ Ω(|A|/K) and dim(A′) ≤ O(K2).

Proof. Let B = A+f A so that for every pair (a, a′) ∈ A × A there exists some point b ∈ B
such that f(a, a′) = b. Thus, on average, a point b ∈ B has |A|2/|B| pairs of A × A mapping
to it via the function f . Let B1 be the set of all points in B that have at least |A|2/10|B| pairs
that map to it. Let S′ be the set of pairs of A × A that map to some element of B1. Then
|S′| > |A|2/2. Consider B2 = B1 ∪ A and observe that |B2| ≤ O(K|A|). Now, each pair in S′

is on a special line determined by B2. Thus, by Corollary 1.11, for α = |S′|/|B2|2, we get that
there is a subset BLD ⊂ B2 of dimension at most O(1/α) = O(K2) and size bounded by

|BLD| ≥ Ω(α|B2|) ≥ Ω(|A|2/|B2|) ≥ Ω(|A|/K).

If |BLD ∩A| ≥ |BLD|/2, then take A′ = BLD ∩A and the claim is proved. Otherwise, consider
the set B′LD = BLD \ A ⊂ B1 so that |B′LD| ≥ |BLD|/2. Each point of B′LD has at least
|A|2/10|B| pairs of A×A that map to it via the function f . For a ∈ A we denote

M(a) = {a′ ∈ A | f(a, a′) ∈ B′LD}.

Then the average of |M(a)| (taken over all a ∈ A) is at least

1

|A|
∑
a∈A
|M(a)| ≥

|B′LD| · |A|2

10|B| · |A|
= Ω(|A|/K2).

Call a point a ∈ A a heavy point if

|M(a)| ≥
|B′LD| · |A|

100|B|
≥ Ω(|A|/K2).

Case (1): Some point a∗ ∈ A has

|M(a′)| ≥
K|B′LD| · |A|

100|B|
= Ω(|A|/K).
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In this case, consider the set B′′LD = B′LD ∪ {a∗}. Clearly this set has dimension at most
dim(B′LD) + 1 = O(1/α) + 1 = O(K2). Also, the span of B′′LD contains the set M(a∗). Thus,
there are Ω(A/K) points of A that are contained in a set of dimension O(K2). This completes
the proof of this case.

Case (2): In this case we have that

|M(a)| ≤
K|B′LD| · |A|

100|B|

for all a ∈ A and, in particular, for all heavy points. Therefore, there must be at least Ω(|A|/K)
heavy points (otherwise, the average of |M(a)| would be too small). Call the set of heavy points
H, so that |H| ≥ Ω(|A|/K). Pick a1 ∈ H and consider R1 = span(B′LD ∪ {a1}) ∩A. Then R1

contains M(a1), which has size Ω(|A|/K2), and has dimension at most dim(B′LD)+1 = O(K2).
If H 6⊂ R1, we can pick some a2 ∈ H \ R1 and define R2 = span(B′LD ∪ {a1, a2}) ∩ A. The
dimension of R2 is at most dim(B′LD) + 2, and its size is at least |R1| + Ω(|A|/K2), since
M(a2)∩M(a1) = ∅, or else a2 would be in the span of B′LD ∪{a1}. Continuing in this manner
(i.e., picking a3, a4, . . .) for at most K steps or until we run out of elements of H (which has size
Ω(|A|/K)) we obtain a subset A′ ⊂ A of dimension at most O(K2) + K = O(K2) containing
at least Ω(A/K) elements. This completes the proof of the claim.

Claim 6.2. We have dim(A) ≤ O(K2).

Proof. Let A′ ⊂ A be a subset of size Ω(|A|/K) and dimension O(K2) given by the previous
claim. Let T be a minimal set in A \ A′ for which span(T ∪ A′) contains A. Notice that this
implies that the points in T are linearly independent and that

dim(A′ ∪ T ) = dim(A′) + |T |.

Observe that for every a1 6= a2 ∈ T , there do not exist a′1 6= a′2 ∈ A′ and b ∈ B such that

f(a1, a
′
1) = f(a2, a

′
2) = b.

This is because otherwise {a1, a2} ⊆ span(A′ ∪ {b}), which means that dim({a1, a2} ∪ A′) ≤
dim(A′) + 1, which violates the properties of T . Therefore,

|T | · |A′| ≤ |B|.

This gives |T | ≤ O(K2) and so dim(A) ≤ dim(A′) + T = O(K2).

Corollary 6.3. If a set A ⊂ Rn defines at most K|A| directions then dim(A) ≤ O(K2)

Proof. Notice that the proof of the above theorem works also if the function f is allowed to take
values in projective space. Since the point at infinity on the line through a, b is the direction
a− b we get the required consequence.
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