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Abstract

In this paper we prove results regarding Boolean functions with small spectral norm (the

spectral norm of f is ‖f̂‖1 =
∑
α |f̂(α)|). Specifically, we prove the following results for functions

f : {0, 1}n → {0, 1} with ‖f̂‖1 = A.

1. There is a subspace V of co-dimension at most A2 such that f |V is constant.

2. f can be computed by a parity decision tree of size nA
2

. (a parity decision tree is a decision
tree whose nodes are labeled with arbitrary linear functions.)

3. If in addition f has at most s nonzero Fourier coefficients, then f can be computed by a
parity decision tree of depth A2 log s.

4. For every 0 < ε there is a parity decision tree of depth A3 log(1/ε) that ε-approximates f .
Furthermore, this tree can be learned, with probability 1−δ, using poly(n,A, 1/ε, log(1/δ))
membership queries.

All the results above also hold (with a slight change in parameters) to functions f : Znp →
{0, 1}.
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1 Introduction

The Fourier transform is one of the most useful tools in the analysis of Boolean functions. It
is a household name in many areas of theoretical computer science: Learning theory (cf. [KM93,
LMN93, Man94]); Hardness of approximation (cf. [H̊as01]); Property testing (cf. [BLR93, BCH+96,
GOS+11]); Social choice (cf. [KKL88, Kal02]) and more. The reader interested in the Fourier
transform and its applications is referred to the online book [O’D12].

A common theme in the study of Fourier transform is the question of classifying all Boolean
functions whose Fourier transforms share some natural property. For example, Friedgut proved that
Boolean functions that have small influence are close to being juntas (i.e. functions that depend
on a small number of coordinates) [Fri98]. Friedgut, Kalai and Naor proved that Boolean functions
whose Fourier spectrum is concentrated on the first two levels are close to dictator functions (i.e.
functions of the form f(x1, . . . , xn) = xi or 1 − xi). In [ZS10, MO09] it was conjectured that
a Boolean function that has a sparse Fourier spectrum (i.e. that has only s nonzero Fourier
coefficients), can be computed by a parity decision tree (for short we denote parity decision tree
by ⊕-DT) of depth poly(log s). Recall that in a ⊕-DT nodes are labeled by linear functions (over
Z2) rather than by variables. It is well known that a function that is computed by a depth d
⊕-DT has sparsity at most exp(d) (see Lemma 2.5), so this conjecture implies a (more or less)
tight result. This conjecture was raised in the context of the log-rank conjecture in communication
complexity and, if true, it would imply that the log-rank conjecture is true for functions of the form
F (x, y) = f(x⊕ y), for some Boolean function f .

In this paper we are interested in the structure of functions that have small spectral norm.
Namely, in Boolean functions f : {0, 1}n → {0, 1} that for some number A satisfy

‖f̂‖1
def
=
∑
α

|f̂(α)| ≤ A , (1)

where A may depend on the number of variables n (for definitions see Section 2). Such functions
were studied in the context of circuit complexity (cf. [Gro97]) and, more notably, in learning the-
ory, where it is one of the most general family of Boolean functions that can be learned efficiently
[KM93, Man94, ABF+08]. In particular, Kushilevitz and Mansour proved that any Boolean func-
tion satisfying (1), can be well approximated by a sparse polynomial [KM93]. This already gives
some rough structure for functions with small spectral norm, however one may ask for a more re-
fined structure that captures the function exactly. Green and Sanders were the first to obtain such
a result (and until this work this was the only such result). They proved that if f satisfies Equa-

tion (1) then it can be expressed as a sum of at most 22
O(A4)

characteristic functions of subspaces,
that is,

f =
22
O(A4)∑
i=1

±1Vi , (2)

where each Vi is a subspace. Thus, when A is constant this gives a very strong result on the
structure of such a function f . This result can be seen as an inverse theorem, as it is well known
and easy to see that the spectral norm of the characteristic function of a subspace is constant. Thus,
[GS08a] show that in general, any function with a small spectral norm is a linear combination of
a (relatively) small number of such characteristic functions. Of course, ideally one would like to
show that the number of functions in the sum is at most poly(A) and not doubly exponential in A,
however, Green and Sanders note that “it seems to us that it would be difficult to use our method
to reduce the number of exponentials below two.”
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It is possible that another classification of Boolean functions with small spectral norm could be
achieved using decision trees, or more generally, parity decision trees. It is not hard to show that if
a Boolean function g is computed by a ⊕-DT with s leaves then the spectral norm of g is at most s
(see Lemma 2.5). Interestingly, we are not aware of any Boolean function that has a small spectral
norm and that cannot be computed by a small ⊕-DT. It is thus an interesting question whether
this is indeed the general case, namely, that any function of small spectral norm can be computed
by a small ⊕-DT. We note that the result of [GS08a] does not yield such a structure. Indeed, if we
were to represent the function given by Equation (2) as a ⊕-DT then, without knowing anything
more about the function, then we do not see a more efficient representation than the brute-force

one that yields a ⊕-DT of size n2
2O(A4)

.
Another interesting question concerning functions with small spectral norm comes from the

learning theory perspective. As mentioned above, Kushilevitz and Mansour proved that for any

Boolean function satisfying Equation (1) there is some sparse polynomial g =
∑A/ε2

i=1 f̂(αi)χαi(x)
(where the coefficients in the summation are the A/ε2 largest Fourier coefficient of f) such that
Prx[f(x) 6= sgn(g(x)] ≤ ε. Thus, their learning algorithm outputs as hypothesis the function
sgn(g(x)). This is the case even if f is computed by a small decision tree or a small ⊕-DT. It would
be desirable to output a hypothesis coming from the same complexity class as f , i.e. to output
a decision tree or a ⊕-DT. However, a hardness result of [ABF+08] shows that under reasonable
complexity assumptions, one cannot hope to output a small decision tree approximating f . So, a
refinement of the question should be to try and output the smallest tree one can find for a function
approximating f . For example, the function

sgn(g) = sgn

A/ε2∑
i=1

f̂(αi)χαi(x)

 (3)

can be computed by a ⊕-DT of depth O(A/ε2) in the natural way. Even when A is a constant and
ε is polynomially small this does not give much information. Thus, a natural question is to try and
find a better representation for such a range of parameters.

1.1 Our results

Our first result identifies a local structure shared by Boolean functions with small spectral norm.

Theorem 1.1. Let f : {0, 1}n → {0, 1} be such that ‖f̂‖1 = A, then, there is an affine subspace
V ⊂ {0, 1}n of co-dimension at most A2 such that f is constant on V .

We note that the proof of [GS08a] does not imply the existence of such an affine subspace V of
such a high dimension. Our next two results (for functions defined over the Boolean cube) follow
easily from this theorem.

Theorem 1.2. Let f : {0, 1}n → {0, 1} be such that ‖f̂‖1 = A, then, f can be computed by a ⊕-DT
of size nA

2
.

In particular, the theorem implies that f =
∑nA

2

i=1 ±1Vi , where each Vi is a subspace.

Another result settles the conjecture of [ZS10, MO09] for the case of sparse Boolean functions
with small spectral norm.

Theorem 1.3. Let f : {0, 1}n → {0, 1} be such that ‖f̂‖1 = A and |{α | f̂(α) 6= 0}| = s. Then f
can be computed by a ⊕-DT of depth A2 log s.
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Thus, if the spectral norm of f is constant (or poly(log s)), Theorem 1.3 settles the conjecture
affirmatively. The conjecture is still open for the case where the spectral norm of f is large.

Our last result (for functions over the Boolean cube) fits into the context of learning theory
and provides a bound on the depth of a ⊕-DT approximating a function with a small spectral
norm. Here, the distance between two Boolean functions is measured with respect to the uniform
distribution, namely, dist(f, g) = Prx∈{0,1}n [f(x) 6= g(x)].

Theorem 1.4. Let f : {0, 1}n → {0, 1} be such that ‖f̂‖1 = A. Then for every δ, ε > 0 there is
a randomized algorithm that, given a query oracle to f , outputs (with probability at least 1 − δ) a
⊕-DT of depth O(A3 log(1/ε)) which computes a Boolean function gε such that dist(f, gε) ≤ ε. The
algorithm runs in polynomial time in n,A, 1/ε and log(1/δ).

Thus, when A is a constant and ε is polynomially small, the depth is only O(log n) which greatly
improves upon the depth of the ⊕-DT obtained from Equation (3).

We also prove analogs of the theorems above for functions f : Znp → {+1,−1} having small
spectral norm. Namely, in the theorems above one could instead talk of f : Znp → {0, 1} and
obtain essentially the same results.1 Theorems 4.5, 4.6, 4.8 and 4.9 are the Zp analogs to Theo-
rems 1.1, 1.2, 1.3 and 1.4, respectively. We note that in [GS08b] Green and Sanders extended their
result to hold for functions mapping an abelian group G to {0, 1}, obtaining the same bound as in
[GS08a], so our result for functions on Znp could be seen as an analog to their result for such groups.

1.2 Comparison with [GS08a]

Comparing Theorem 1.2 to Equation (2) (that was proved in [GS08a]), we note that while Equa-
tion (2) does not involve the number of variables (i.e. the upper bound on the number of subspaces
only involves A), our result does involve n. On the other hand, we give a more refined structure -
that of a parity decision tree - which is not implied by Equation (2) (see also the discussion above).
Moreover, when A = Ω((log log n)1/4), our bound is much better than the one given in Equation (2).

Our proof technique is also quite different than that of [GS08a]. Their proof idea is to represent
f as f = f1 + f2 where the Fourier supports of f1 and f2 are disjoint, and such that f1 and f2 are
close to being integer valued and have a somewhat smaller spectral norm. Then, using recursion,
they represent each fi as a sum of a small number of characteristic functions of subspaces. In par-
ticular, Green and Sanders do not restrict their treatment to Boolean functions but rather study
functions that at every point of the Boolean cube obtain a value that is almost an integer. Thus,
they prove a more general result, namely, that fZ, the integer part of f , can be represented in the
form of Equation (2). We on the other hand only work with Boolean functions, so their result is
stronger from that respect. However, while their proof was a bit involved and required using results
from additive combinatorics, our approach is more elementary and is based on exploiting the fact
that f is Boolean. In particular, our starting point is an analysis of the simple equation f2 = 1
(when we think of f as mapping {0, 1}n to {±1}). Furthermore, we are able to use the fact that
f is Boolean in order to show that it can be computed by a small ⊕-DT, which does not seem to
follow from [GS08a].

Green and Sanders later extended their technique and proved a similar result for functions over
general abelian groups f : G → {0, 1} [GS08b]. Our technique do not extend to general groups,

1Of course, one would have to speak about the analog of a ⊕-DT for the case where the inputs come from Znp .
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but we do obtain results for the case that G = Znp , which again has the same advantages and
disadvantages compared to the result of [GS08b] (although, the simplicity of our approach is even
more evident here).

1.3 Proof idea

As mentioned above, our proof relies on the simple equation f2 = 1 (when we think of f : {0, 1}n →
{±1}). By expanding the Fourier representations (See Section 2 for definitions) of both sides we
reach the identity ∑

γ

f̂(γ)f̂(δ + γ) = 0,

that holds for all δ 6= 0 (See Lemma 3.2). This identity could be interpreted as saying that the
mass on pairs whose product is positive is the same as the mass on pairs whose product is negative.
In particular, if we consider the two heaviest elements in the Fourier spectrum, say, f̂(α) and f̂(β),
and let δ = α+ β, then by restricting f to one of the subspaces χδ(x) = 1 or χδ(x) = −1, we get a
substantial saving in the spectral norm (see Lemma 3.1). This happens since there is a significant
L1 mass on pairs f̂(γ), f̂(δ + γ) that have different signs. By repeating this process we manage to
prove the existence of small ⊕-DT for f .

The argument for functions over Znp is similar, but requires more technical work (in particular,
the proof of Theorem 4.9 requires substantially more work than the proof of Theorem 1.4). For
that reason we decided to give a separate proof for the case of functions over the Boolean cube, and
then, after the ideas were laid out in their simpler form, to prove the results in the more general
case.

1.4 Organization

Section 2 contains the basic background and definitions. In Section 3 we prove our results for
functions f : Zn2 → {+1,−1}. The results for functions on Znp are given in Section 4. Finally, in
Section 5 we discuss problems left open by this work.

2 Notation and Basic Results

It will be more convenient for us to talk about functions f : {0, 1}n → {±1}. Note that if
f : {0, 1}n → {0, 1} then 1− 2f : {0, 1}n → {±1} and 1− 2f and f have roughly the same spectral
norm (up to a multiplicative factor of 2) and the same Fourier sparsity (up to ±1).

2.1 Decision trees and parity decision trees

In this section we define the basic computational models that we shall consider in the paper.

Definition 2.1 (Decision tree). A decision tree is a labeled binary tree T . Each internal node of
T is labeled with a variable xi, and each leaf by a bit b ∈ {+1,−1}. Given an input x ∈ Zn2 , a
computation over the tree is executed as follows: Starting at the root, stop if it’s a leaf, and output
its label. Otherwise, query its label xi. If xi = 0, then recursively evaluate the left subtree, and if
xi = 1, evaluate the right subtree.

A decision tree T computes a function f if for every x ∈ Zn2 , the computation of x over T
outputs f(x). The depth of a decision tree is the maximal length of a path from the root to
a leaf. The decision tree complexity of f , denoted D(f), is the depth of a minimal-depth tree

4



computing f . Since one can always simply query all the variables of the input, it holds that for any
Boolean function f , D(f) ≤ n. A comprehensive survey of decision tree complexity can be found
in [BdW02].

In the context of Fourier analysis, even a function with simple Fourier spectrum, such as the
parity function over n bits, which has only 1 nonzero Fourier coefficient, requires a full binary
decision tree for its computation, and in particular its depth is n. This example suggests that a
more suitable computational model for understanding the connection between the computational
complexity and the Fourier expansion of a function is the parity decision tree model, first presented
by Kushilevitz and Mansour ([KM93]).

Definition 2.2 (⊕-DT). A parity decision tree is a labeled binary tree T , in which every internal
node is labeled by a linear function α ∈ Zn2 , and each leaf with a bit b ∈ {+1,−1}. Whenever a
computation over an input x arrives at an internal node, it queries 〈α, x〉 (where the inner product
is carried modulo 2). If 〈α, x〉 = 0 it recursively evaluates the left subtree, and if 〈α, x〉 = 1, it
evaluates the right subtree. When the computation reaches a leaf it outputs its label.

Namely, a ⊕-DT can make an arbitrary linear query in every internal node (and in particular,
compute the parity of n bits using a single query). Since a query of a single variable is linear, this
model is an extension of the regular decision tree model.

The depth of the minimal-depth parity decision tree which computes f is denoted D⊕(f), thus
D⊕(f) ≤ D(f). As the example of the parity function shows, the parity decision tree model is
strictly stronger than the model of decision trees. We also denote by size⊕(f) the size (i.e. number
of leaves) of a minimal-size ⊕-DT computing f .

As a helpful tool, we extend the parity decision tree model to a functional parity decision tree
model, in which we allow every leaf to be labeled with a Boolean function, rather than only by a
constant. A functional ⊕-DT T then computes a function f if for every leaf ` of T , its label equals
the restriction of f to the affine subspace defined by the constraints that appear on the path from
T ’s root to `.

2.2 Fourier Transform

We represent Boolean functions as functions f : Zn2 → {+1,−1} ⊆ R where −1 represents the
Boolean value “True” and 1 represents the Boolean value “False”. For a vector of n bits α, αi
denotes its i-th coordinate. The set of 2n group characters {χα : Zn2 → {+1,−1} | α ∈ Zn2}, with
χα (x) = (−1)

∑n
i=1 αixi for every α ∈ Zn2 , forms a basis of the vector space of functions from Zn2 into

R. Furthermore, the basis is orthonormal with respect to the inner product2

〈f, g〉 = E
x

[f(x)g(x)]

where the expectation is taken over the uniform distribution over Zn2 . The Fourier expansion of
a function f : Zn2 → {+1,−1} is its unique representation as a linear combination of those group
characters:

f(x) =
∑
α∈Zn2

f̂(α)χα(x).

Two of the basic identities of Fourier analysis, which follow from the orthonormality of the basis,
are:

2Later when we study of functions over Znp we define the inner product to be Ex

[
f(x)g(x)

]
.
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1. f̂(α) = 〈f, χα〉 = Ex [f(x)χα(x)]

2. (Plancherel’s Theorem) 〈f, g〉 = Ex [f(x)g(x)] =
∑

α∈Zn2
f̂(α)ĝ(α).

The case f = g in Plancherel’s theorem is called Parseval’s Identity. Furthermore, when f is
Boolean, f2 = 1, which implies ∑

α∈Zn2

f̂(α)2 = 1. (4)

We define two basic complexity measures for Boolean functions:

Definition 2.3. Let f : Zn2 → {+1,−1} be a Boolean function. The sparsity of f , denoted spar(f),
is the number of non-zero Fourier coefficients, namely

spar(f) = #
{
α ∈ Zn2 | f̂(α) 6= 0

}
.

A function f is said to be s-sparse if spar(f) ≤ s.

Definition 2.4. Let f : Zn2 → {+1,−1} be a Boolean function. The L1 norm (also dubbed the
spectral norm) of f is defined as

‖f̂‖1 =
∑
α∈Zn2

|f̂(α)|.

For every f : Zn2 → {+1,−1} it holds that ‖f̂‖1 ≥ ‖f‖∞ = 1 (where ‖f‖∞ = maxx∈Zn2 |f(x)|).
We later show (Lemma 3.5) that equality is obtained if and only if f = ±χα for some α ∈ Zn2 .

These measure are related to parity decision trees using the following simple lemma. For
completeness we give the proof of the lemma in Appendix A.

Lemma 2.5. Let f : Zn2 → {+1,−1} be a Boolean function computed by a ⊕-DT T of depth k and
size m. Then:

1. spar(f) ≤ m2k ≤ 4k.

2. ‖f̂‖1 ≤ m ≤ 2k.

In the upcoming sections we consider restrictions of Boolean functions to (affine) subspaces
of Zn2 . We denote by f |V the restriction of f to a subspace V ⊆ Zn2 . For any α 6= 0, the set
{x | χα(x) = 1} is a subspace of Zn2 of co-dimension 1. The restriction of f to this subspace
is denoted f |χα=1. Similarly, the set {x | χα(x) = −1} is an affine subspace of co-dimension 1,
and we denote with f |χα=−1 the restriction of f to this subspace. It can be shown (cf. [O’D12],

Chapter 3, Section 3.3) that under such a restriction, the coefficients f̂(β) and f̂(α+ β) (for every
β ∈ Zn2 ) collapse to a single Fourier coefficient whose absolute value is |f̂(β) + f̂(α+ β)|. Similarly,
in the Fourier transform of f |χα=−1, they collapse to a single coefficient whose absolute value is

|f̂(β) − f̂(α + β)|. This in particular implies that ‖f̂‖1 and spar(f) do not increase when f is
restricted to such a subspace. Indeed, both facts follow easily from the representation

f(x) =
∑

β∈Zn2 /〈α〉

(
f̂(β) + f̂(β + α)χα(x)

)
χβ(x) , (5)

where Zn2/〈α〉 denotes the cosets of the group 〈α〉 = {0, α} in Zn2 . When studying a restricted

function, say f ′ = f |χα(x)=1, we shall abuse notation and denote with f̂ ′(β) the term corresponding

to the coset β + 〈α〉. Namely, f̂ ′(β) = f̂(β) + f̂(β + α). (similarly, for f ′′ = f |χα(x)=−1, we shall

denote f̂ ′′(β) = f̂(β)− f̂(β + α).) Thus, in f ′ both f̂ ′(β) and f̂ ′(β + α) refer to the same Fourier
coefficient as we only consider coefficients modulo 〈α〉 (similarly for f ′′).
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3 Boolean functions with small spectral Norm

In this section we prove our main results for functions over the Boolean cube. While many of the
proofs and techniques used for general primes also apply to the case p = 2, we find the case p = 2
substantially simpler, so we present the proofs for this case separately.

3.1 Basic tools

In this section we prove the following lemma, which states that for every Boolean function f : Zn2 →
{+1,−1}, with small spectral norm, there exists a linear function χγ such that both restrictions
f |χγ=1 and f |χγ=−1 have noticeable smaller spectral norms compared to f . In Section 4 we give a
generalization of the lemma for functions f : Znp → {+1,−1} (Lemma 4.1).

Lemma 3.1 (Main Lemma for functions over Zn2 ). Let f : Zn2 → {+1,−1} be a Boolean function.
Let f̂(α) be f ’s maximal Fourier coefficient in absolute value, and f̂(β) be the second largest, and
suppose f̂(β) 6= 0. Let f ′ = f |χα+β=1 and f ′′ = f |χα+β=−1. Then, if f̂(α)f̂(β) > 0 then it holds
that

‖f̂ ′‖1 ≤ ‖f̂‖1 − |f̂(α)| and ‖f̂ ′′‖1 ≤ ‖f̂‖1 − |f̂(β)|.

If f̂(α)f̂(β) < 0 then

‖f̂ ′‖1 ≤ ‖f̂‖1 − |f̂(β)| and ‖f̂ ′′‖1 ≤ ‖f̂‖1 − |f̂(α)|.

The proof of the lemma follows from analyzing the simple equation f2 = 1.

Lemma 3.2. Let f : Zn2 → {+1,−1} be a Boolean function. For all α 6= 0, it holds that∑
γ

f̂(γ)f̂(α+ γ) = 0.

Proof. Since f is Boolean we have that f2 = 1. In the Fourier representation,(∑
γ

f̂(γ)χγ(x)

)∑
β

f̂(β)χβ(x)

 = 1.

Then
∑

γ f̂(γ)f̂(α + γ) is the Fourier coefficient f̂2(α) of the function f2 at α. However, if α 6= 0

then this coefficient equals 0 by the uniqueness of the Fourier expansion of the function f2 = 1.

Proof of Lemma 3.1. Without loss of generality assume that f̂(α)f̂(β) > 0, i.e. they have the same
sign (the other case is completely analogous.) By Lemma 3.2,∑

γ∈Zn2

f̂(γ)f̂(α+ β + γ) = 0. (6)

Let Nα+β ⊆ Zn2 be the set of vectors γ such that f̂(γ)f̂(α+ β + γ) < 0 (Note that by assumption,
α, β 6∈ Nα+β). Switching sides in (6), we get:

2
∣∣∣f̂(α)f̂(β)

∣∣∣ =
∑

γ∈Nα+β

∣∣∣f̂(γ)f̂(α+ β + γ)
∣∣∣− ∑

γ 6∈Nα+β
γ 6=α,β

∣∣∣f̂(γ)f̂(α+ β + γ)
∣∣∣ .
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In particular,

|f̂(α)||f̂(β)| ≤ 1

2

∑
γ∈Nα+β

∣∣∣f̂(γ)f̂(α+ β + γ)
∣∣∣ . (7)

We now use the fact that that f̂(β) is the second largest in absolute value, and f̂(α) does not
appear in the sum, to bound the right hand side:∑

γ∈Nα+β

∣∣∣f̂(γ)f̂(α+ β + γ)
∣∣∣ ≤ |f̂(β)|

∑
γ∈Nα+β

min
{
|f̂(γ)|, |f̂(α+ β + γ)|

}
. (8)

Then (7) and (8) (as well as the assumption |f̂(β)| > 0) together imply

|f̂(α)| ≤ 1

2

∑
γ∈Nα+β

min
{
|f̂(γ)|, |f̂(α+ β + γ)|

}
. (9)

Let f ′ = f |χα+β=1. Then for every γ the coefficients f̂(γ) and f̂(α + β + γ) collapse to a single

coefficient whose absolute value is |f̂(γ) + f̂(α+ β + γ)| (recall Equation (5)). For γ ∈ Nα+β,

|f̂(γ) + f̂(α+ β + γ)| =
∣∣∣|f̂(γ)| − |f̂(α+ β + γ)|

∣∣∣
which reduces the L1 norm of f ′ compared to that of f by at least min(|f̂(γ)|, |f̂(α+ β + γ)|). In
total, since both γ and α+ β + γ belong to Nα+β, we get:

‖f̂ ′‖1 ≤ ‖f̂‖1 −
1

2

∑
γ∈Nα+β

min
{
|f̂(γ)|, |f̂(α+ β + γ)|

}
.

Therefore by (9) we have
‖f̂ ′‖1 ≤ ‖f̂‖1 − |f̂(α)|.

When we consider f ′′ = f |χα+β=−1 we clearly have that for γ = α,

|f̂ ′′(γ)| = |f̂(γ)− f̂(α+ β + γ)| = |f̂(α)| − |f̂(β)|.

Hence,
‖f̂ ′′‖1 ≤ ‖f̂‖1 − |f̂(β)|.

Next, we show that any Boolean function with small spectral norm has a large Fourier coefficient.

Lemma 3.3. Let f : Zn2 → {+1,−1} be a Boolean function. Denote A = ‖f̂‖1, and let f̂(α) be f ’s
maximal Fourier coefficient in absolute value. Then |f̂(α)| ≥ 1/A. Furthermore, let f̂(β) be f ’s
second largest Fourier coefficient in absolute value. Then |f̂(β)| > (1−f̂(α)2)/‖f̂‖1 = (1−f̂(α)2)/A.

Proof. By Parseval’s identity,

1 = E[f2] =
∑
γ

f̂(γ)2.

Now note that
1 =

∑
γ

f̂(γ)2 ≤ |f̂(α)|
∑
γ

|f̂(γ)| ≤ A|f̂(α)|,
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which implies that indeed |f̂(α)| ≥ 1/A. The second statement follows similarly, since

1− f̂(α)2 =
∑
γ 6=α

f̂(γ)2 ≤ |f̂(β)|
∑
γ 6=α
|f̂(γ)| < ‖f̂‖1 · |f̂(β)| = A|f̂(β)|.

Corollary 3.4. Let f : Zn2 → {+1,−1} be a Boolean function such that ‖f̂‖1 = A > 1. Then there

exists γ ∈ Zn2 and b ∈ {+1,−1} such that ‖f̂ |χγ=b‖1 ≤ A− 1/A.

Proof. The assumption A > 1 implies the second largest coefficient, f̂(β), is non-zero, and then the
result is immediate from Lemma 3.1 and Lemma 3.3.

3.2 Proofs of Theorems

We now show how Theorems 1.1,1.2,1.3 and 1.4 follow as simple consequences of Lemma 3.1.

Lemma 3.5. Let f : Zn2 → {+1,−1} be a Boolean function such that ‖f̂‖1 = 1. Then f = ±χα
for some α ∈ Zn2 .

Proof. By Parseval’s identity and the assumption, we get∑
γ

f̂(γ)2 = 1 =
∑
γ

|f̂(γ)|.

For all γ we have that |f̂(γ)| ∈ [0, 1], so |f̂(γ)| < f̂(γ)2 unless |f̂(γ)| = 1 or f̂(γ) = 0, and the
proposition follows.

Corollary 3.4 and Lemma 3.5 imply Theorem 1.1:

Proof of Theorem 1.1. Apply Corollary 3.4 iteratively on f . After less than A2 steps, we are left
with a function g which is a restriction of f on an affine subspace defined by the restrictions so far,
such that ‖ĝ‖1 = 1. By Lemma 3.5, g = ±χα for some α ∈ Zn2 . If α 6= 0 we further restrict g on
χα = 1 to get a restriction of f which is constant.

We note that the proof of Theorem 1.1 actually implies that f is constant on a subspace of
co-dimension at most

(
A+1
2

)
, but we do not make an effort to improve the constants in the exponent.

Proof of Theorem 1.2. Let

L(n,A)
def
= max

f :Zn2→{+1,−1}
‖f̂‖1≤A

size⊕(f).

We show, by induction on n, that L(n,A) ≤ 2nA
2
.

For n = 1 the result is trivial.
Let n > 1 and further assume that A > 1 (if A = 1 then the claim follows from Lemma 3.5). By

Corollary 3.4, there is a linear function γ ∈ Zn2 and b ∈ {+1,−1} such that ‖f̂ |χγ=b‖1 ≤ A− 1/A.
Consider the tree whose first query is the linear function χγ (i.e. we branch left or right according
to the value of 〈x, γ〉). By the choice of γ we obtain the following recursion:

L(n,A) ≤ L(n− 1, A− 1/A) + L(n− 1, A).
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The induction hypothesis then implies (using the assumption that A > 1)

L(n,A) ≤ 2(n− 1)(A−1/A)
2

+ 2(n− 1)A
2

≤ 2(n− 1)A
2−1 (1 + (n− 1))

< 2nA
2
.

It is tempting to try and save something in the argument above, especially as we assume that
we never save anything in the spectral norm when branching according to χγ = −b. However, as
the AND function demonstrates, this argument gives a nearly tight result is some cases.

Proof of Theorem 1.3. By Theorem 1.1, there exist A2 linear functions α1, . . . , αA2 that can be fixed
to values b1, . . . , bA2 , respectively, where bi ∈ {+1,−1} for 1 ≤ i ≤ A2, such that f restricted to the
subspace {x | χαi(x) = bi , ∀1 ≤ i ≤ A2} is constant. This implies that for any non-zero coefficient
f̂(β) there exists at least one other non-zero coefficient f̂(β+γ) for γ ∈ span{α1, . . . , αA2}. Indeed,
if no such coefficient exists then the restriction f |χα1 (x)=b1,...,χαA2=b

2 will have the non-constant

term f̂(β) · χβ (for example, this can be easily obtained from Equation (5)). Therefore, for any

other fixing of χα1 , . . . , χαA2 , both f̂(β)χβ and f̂(β + γ)χβ+γ collapse to the same (perhaps non-
zero) linear function, which implies that spar(f |χα1=b′1,...,χαA2=b

′
A2

) ≤ spar(f)/2 for any choice of

b′1, . . . , b
′
A2 . In other words, if we consider the tree of depth A2 in which on level i all nodes branch

according to 〈αi, x〉 then restricting f to any path yields a new function with half the sparsity.
Thus, we can continue this process by induction for at most log s steps, until all the functions in
the leaves are constant. The resulting tree has depth at most A2 log s as claimed.

Our next goal is proving Theorem 1.4. To this end, we use a lemma which shows there exists a
low depth functional ⊕-DT which computes f whose leaves are highly biased. Recall that the bias
of a Boolean function f is defined to be

bias(f)
def
=
∣∣∣Pr
x

[f(x) = 1]− Pr
x

[f(x) = −1]
∣∣∣ .

Alternatively, bias(f) = |f̂(0)|. The proof of the theorem is slightly more delicate than the previous
proofs.

Lemma 3.6. Let f : Zn2 → {+1,−1} be a Boolean function with ‖f̂‖1 ≤ A. Then there exists
a functional ⊕-DT for f of depth at most O(A3 log(1/ε)) such that all the functions on its leaves
have bias at least 1− ε.

Proof. Let f̂(α) be f ’s largest coefficient in absolute value, and f̂(β) the second largest, and suppose
f̂(α)f̂(β) > 0 (this is without loss of generality). We consider two cases:

1. |f̂(α)| > 1− ε for α 6= 0:

We first show that if |f̂(α)| > 1−ε then |f̂(0)| < ε. By considering −f instead of f , if needed,
we may assume without the loss of generality f̂(α) > 1− ε. Note that

1− ε < f̂(α) = Pr[f = χα]− Pr[f 6= χα] = (1− Pr[f 6= χα])− Pr[f 6= χα],

so Pr[f 6= χα] < ε/2. Now, since E[χα] = 0, we have

|f̂(0)| = |E[f ]| = |E[f ]−E[χα]| = |E[f − χα]| ≤ E[|f − χα|] = 2 Pr[f 6= χα] ≤ ε.
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In this case we query on χα. Note that no matter what value χα obtains, the restricted
function has bias at least f̂(α)− |f̂(0)| > 1− 2ε.

2. |f̂(α)| ≤ 1− ε:
In this case we show that we can create a tree of depth O(A log(1/ε)) such that all the
functions on its leaves have spectral norm at most ‖f̂‖1 − c/A for some absolute constant c.

Note that the assumption in particular implies A > 1, and by Lemma 3.3 we have |f̂(α)| ≥
1/A and |f̂(β)| > 1−f̂(α)2

‖f̂‖1
≥ 1−f̂(α)2

A > ε/A. We next query the function on χα+β. Let

f ′ = f |χα+β=1 and f ′′ = f |χα+β=−1. By Lemma 3.1, ‖f̂ ′‖1 ≤ A−1/A and ‖f̂ ′′‖1 ≤ A−|f̂(β)|.
If |f̂(β)| > 1/4A then we are done. Suppose then ε/A < |f̂(β)| < 1/4A. Thus, f ′ has the
desired spectral norm, but the norm of f ′′ may still be too large. We note, however, that

|f̂ ′′(α)| ≤ 1− ε− |f̂(β)| ≤ 1− ε− ε/A = 1−
(

1 +
1

A

)
ε.

That is, |f̂ ′′(α)| ≤ 1− ε′′ where ε′′ = (1 + 1/A)ε. Moreover, our assumption on |f̂(β)| implies
|f̂ ′′(α)| > |f̂(α)| − |f̂(β)| ≥ |f̂(α)| − 1/4A > 3/4A. Furthermore, any other coefficient of f ′′

satisfies |f̂ ′′(γ)| ≤ |f̂(γ)|+ |f̂(γ + α+ β)| ≤ 2|f̂(β)| ≤ 1/2A < |f̂ ′′(α)|. In other words, ˆf ′′(α)
is also the largest coefficient, in absolute value, of f ′′. In particular, if we were to repeat
this process for f ′′ then in the next step the spectral norm of one of the children will be as
desired and the spectral norm of the other child will be at most 1−

(
1 + 1

A

)2
ε. Hence, after

O(A log(1/ε)) such steps we will be in the situation where the largest Fourier coefficient of
the “bad” child is at most, say, 1/

√
2. At this stage, if we query again in the direction of the

sum of the two heaviest coefficients then the restriction will satisfy that its spectral norm is
at most ‖f̂‖1 − 1

2A .

We continue by induction until all the functions on the leaves are either constant or highly biased.

The functional ⊕-DT from Lemma 3.6 can be easily converted to a ⊕-DT of a function g which
ε-approximates f by replacing every function-labeled leaf with the value it is highly biased towards
(i.e. by the sign of its Fourier coefficient of the constant term). The proof of Theorem 1.4 follows
by combining this fact with the well known result of Goldreich and Levin [GL89] and of Kushilevitz
and Mansour [KM93], who showed that given a query oracle to a function f , with high probability,
one can approximate its large Fourier coefficients in polynomial time.

Lemma 3.7 ([GL89, KM93]). There exists a randomized algorithm, such that given a query oracle
to a function f : Zn2 → {+1,−1}, and parameters δ, θ, η, outputs, with probability at least 1 − δ,
a list containing all of f ’s Fourier coefficients whose absolute value is at least θ. Furthermore,
the algorithm outputs an additive approximation of at most η to each of these coefficients. The
algorithm runs in polynomial time in n, 1/θ, 1/η and log(1/δ).

Proof of Theorem 1.4. We use the algorithm from Lemma 3.7 to find f ’s largest Fourier coefficient
in absolute value, f̂(α). Whenever |f̂(α)| ≤ 1 − ε, the same algorithm can be used to find the
second largest coefficient, f̂(β), in polynomial time (in n, 1/ε and log(1/δ)). We use Lemma 3.6 to
construct a functional ⊕-DT, and replace every function-labeled leaf with the constant it’s biased
towards.

In fact, there is a slight inaccuracy in the argument above. Note that Lemma 3.7 only guarantees
that we find a coefficient that is approximately the largest one. However, if it is the case that the

11



second largest coefficient is very close to the largest one, then in Lemma 3.6 when we branch
according to χα+β both children have significantly smaller spectral norm.

If it is the case that we correctly identified the largest Fourier coefficient but failed to identify
the second largest then we note that if our approximation is good enough, say better than ε/2A,

then even if we are mistaken and branch according to χα+β′ where
∣∣∣|f̂(β)| − |f̂(β′)|

∣∣∣ < ε/2A, the

the argument in Lemma 3.6 still works, perhaps with a slightly worse constant in the big O.

4 Functions over Znp with small spectral norm

In this section, we extend our results to functions f : Znp → {+1,−1} where p is any fixed prime.
Throughout this section we assume p > 2. We start by giving some basic facts on the Fourier
transform over Znp .

4.1 Preliminaries

Let ω = e
2πi
p ∈ C be a primitive root of unity of order p. The set of pn group characters

{χα : Znp → C | α ∈ Znp}

where χα(x) = ω〈α,x〉, is a basis for the vector space of functions from Znp into C, and is orthonormal

with respect to the inner product 〈f, g〉 = Ex[f(x)g(x)].3 We now have that f̂(α) = Ex[f(x)χα(x)]
and f =

∑
α∈Znp f̂(α)χα. Plancherel’s theorem holds here as well and the sparsity and L1 norm are

defined in the same way as they were defined for functions f : Zn2 → {+1,−1}. Lemma 3.3 also
extends to functions f : Znp → {+1,−1}, with virtually the same proof. When f is real-valued (and

in particular, a Boolean function), then f̂(0) = E[f ] is real, and it can also be directly verified that

f̂(α) = f̂(−α).
We have the analog to Equation (5):

f(x) =
∑

β∈Znp/〈α〉

(
p−1∑
k=0

f̂(β + k · α)(χα(x))k

)
χβ(x) . (10)

Hence, when f is restricted to an affine subspace on which χα = ωλ (where 0 ≤ λ ≤ p − 1), then
for every4 β ∈ Znp/〈α〉 we have

ĝ(β) =

p−1∑
k=0

ωλkf̂(β + kα).

For every β ∈ Znp , we denote by [β]α = β + 〈α〉 the coset of 〈α〉 in which β resides.
Lemma 3.2 now becomes: ∑

α∈Znp

f̂(α)f̂(β − α) = 0 (11)

for all 0 6= β ∈ Znp .
As a generalization of the ⊕-DT model, we define a p-ary linear decision tree, denoted ⊕p-

DT, to be a computation tree where every internal node v is labeled by a linear function γ ∈ Znp
and has p children. The edges between v and its children are labeled 0, 1, . . . , p − 1, and on an

3For a complex number z, we denote by z its complex conjugate.
4Recall that 〈α〉 is the additive group generated by α and Znp/〈α〉 is the set of cosets of 〈α〉.
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input x, it computes 〈γ, x〉 mod p and branches accordingly. We carry along from the binary
case the notation D⊕p(f) and size⊕p(f), and define them to be the depth (respectively, size) of a
minimal-depth (resp. size) ⊕p-DT computing f .

4.2 Basic tools

In this section we prove the basic tools required for generalizing Theorems 1.1, 1.2 and 1.3 for
functions f : Znp → {+1,−1}. We begin by giving an analog of our Main Lemma, Lemma 3.1:

Lemma 4.1. Let f : Znp → {+1,−1} be a non-constant Boolean function such that ‖f̂‖1 = A. Then
there exist a constant c = c(p) > 0, 0 6= γ ∈ Znp and at least p−1 distinct elements λ1, . . . , λp−1 ∈ Zp
such that ‖ ̂f |χγ=ωλk‖1 ≤ A− c/A for k = 1, . . . , p− 1.

Note that this is not quite an analog of Lemma 3.1 as such analog would have to bound the
spectral norm for each of the p children. However, for sake of proving versions of Theorems 1.1,
1.2 and 1.3 we only require this relaxed version. We will need a stronger claim when proving the
analog for Theorem 1.4.

As before we first prove a claim characterizing functions with very small spectral norm. Observe
that when p > 2, the characters themselves are not Boolean functions any more. The following is
a variant of Lemma 3.5 for Znp with p > 2.

Lemma 4.2. Let f : Znp → {+1,−1} be a Boolean function such that ‖f̂‖1 = 1. Then f = ±1.

Proof. Once more, using Parseval’s identity and the assumption:∑
γ

|f̂(γ)|2 = 1 =
∑
γ

|f̂(γ)|.

As before, |f̂(γ)| ∈ [0, 1], which implies |f̂(α)| = 1 for exactly one α ∈ Znp , i.e. f = z · χα where
z ∈ C and |z| = 1. Since f is Boolean and f(0) = z, we get z = ±1, and ±χα is Boolean (when
p > 2) only when α = 0.

The following is a purely geometric lemma we use in our analysis. Since the Fourier coefficients
now are complex numbers we need to bound the decrease in the spectral norm when two coefficients
that are not aligned in the same direction collapse to the same coefficient.

Lemma 4.3. Let z1, z2 ∈ C such that |z1| = R, |z2| = r and r ≤ R. Suppose the angle between z1
and z2 is θ. Then, for C = C(θ) = (1− cos(θ))/2 it holds that

|z1|+ |z2| − |z1 + z2| ≥ Cr.

We give the simple proof in Appendix B.

The next lemma is similar to the inequalities of the type we used in the proof of Lemma 3.1.

Lemma 4.4. Let f : Znp → {+1,−1} be a non-constant Boolean function, and suppose f̂(0) is the

largest Fourier coefficient in absolute value and f̂(β) is the second largest. Then

2|f̂(0)| ≤
∑
γ∈Znp
γ 6=0,β

min
{
|f̂(γ)|, |f̂(γ − β)|

}
.
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Proof. By rearranging Equation (11) with respect to β, we get:

|2f̂(0)f̂(β)| =

∣∣∣∣∣∣∣∣
∑
γ∈Znp
γ 6=0,β

f̂(γ)f̂(β − γ)

∣∣∣∣∣∣∣∣
Now apply the triangle inequality to the right hand side, and then utilize the fact that f̂(β) is the
second largest in absolute value and f̂(0) does not appear in the right hand side, to obtain

2|f̂(0)||f̂(β)| ≤ |f̂(β)|
∑
γ∈Znp
γ 6=0,β

min
{
|f̂(γ)|, |f̂(β − γ)|

}
.

Since f is real-valued, f̂(β − γ) = f̂(γ − β) (and in particular, they have the same absolute value),
and since f is non-constant, by Lemma 4.2 we have ‖f̂‖1 > 1, i.e. f̂(β) 6= 0, which implies the
desired inequality.

Proof of Lemma 4.1. Let f̂(α) be f ’s maximal Fourier coefficient in absolute value, and let C =
C(π/p) as in Lemma 4.3 We distinguish between two cases:

The first case we consider is α 6= 0. In this case, by Lemma 3.3, |f̂(−α)| = |f̂(α)| ≥ 1/A.
Let λ ∈ Zp, and consider the restriction f |χα=ωλ . The new constant coefficient becomes |f̂(0) +

ωλf̂(α) + · · · + ωλ(p−1)f̂((p − 1)α)|. We analyze only the loss in the L1 norm obtained from the
collapse of f̂(α) and f̂(−α) = f̂((p − 1)α) to the same coefficient. Let θ be the angle between
f̂(α) and f̂(−α). Since multiplication by ω is equivalent to rotation by 2π/p, as λ traverses over
0, 1, ..., p− 1, the angle between ωλf̂(α) and ωλ(p−1)f̂(−α) attains all possible values θ+ 2κπ/p for
κ = 0, 1, ..., p− 1. Hence, there exists at most one choice of λ such that the angle between ωλf̂(α)
and ωλ(p−1)f̂(−α) is less than π/p. It follows that for all but at most one choice of λ,

|f̂(α)|+ |f̂(−α)| − |ωλf̂(α) + ωλ(p−1)f̂(−α)| ≥ C|f̂(−α)| ≥ C/A.

Hence, for all but at most one λ ∈ Zp,

‖ ̂f |χα=ωλ‖1 ≤ ‖f̂‖1 − C/A. (12)

The second case is α = 0. Let f̂(β) be the second largest coefficient in absolute value. By the
assumption ‖f̂‖1 > 1, we have |f̂(β)| > 0. We define the weight of a pair {γ, γ − β} ⊆ Znp to be

w(γ) = min
{
|f̂(γ)|, |f̂(γ − β)|

}
, and denote

W =
∑
γ 6=0,β

w(γ).

Thus By Lemma 4.4, we have
2|f̂(0)| ≤W. (13)

Note that when restricting f on χβ = ωλ, f̂(γ) and f̂(γ − β) collapse to the same coefficient, and
as in the previous case, the angle between them after the restriction is θ + 2κπ/p for some κ ∈ Zp,
where θ is the angle between f̂(γ) and f̂(γ− β). We call λ ∈ Zp good with respect to γ if the angle

between f̂(γ) and ωλ(p−1)f̂(γ − β) is at least π/p, and as in the previous case, if we fix β, then for
every pair there exist at least p− 1 good elements in Zp. An element λ which is good for γ implies
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a large angle between f̂(γ) and f̂(γ − β) under the restriction f |χβ=ωλ . Intuitively, by Lemma 4.3,

this implies we are guaranteed to lose at least C ·min{|f̂(γ)|, |f̂(γ − β)|} = Cw(γ) in the spectral
norm (the actual analysis, which will now follow, is a bit more delicate).

Consider now the matrix M whose rows are indexed by elements γ ∈ Znp for all γ 6= 0, β, and
whose columns are indexed by all elements λ ∈ Zp. We define:

Mγ,λ =

{
w(γ) if λ is good with respect to γ

0 otherwise
.

Since for every γ there are at least p− 1 good elements, we have∑
γ,λ

Mγ,λ ≥ (p− 1)
∑
γ 6=0,β

w(γ) = (p− 1)W. (14)

While for every fixed column λ0, ∑
γ

Mγ,λ0 ≤W. (15)

As there are p columns, (14) and (15) together imply that there is at most one column in which
the total weight is less than W/2, i.e. for all λ ∈ Zp but at most one, it holds that∑

γ

Mγ,λ ≥W/2 . (16)

Every element λ ∈ Zp which satisfies (16) will be called good. We thus proved the existence of at
least p− 1 good elements λ.

We now fix a good element λ and consider the restriction χβ = ωλ. Consider pairs {γ, γ − β}.
Note that both elements belong to the same coset in Znp/〈β〉. Moreover, all the elements that

collapse to the same coefficient when we restrict on χβ = ωλ form a coset. To avoid over-counting,
we analyze only the saving in the L1 norm caused by pairs {γ, γ − β} (among the elements for
which λ is good) that attain the maximum weight in their respective coset.

Let [δ1]β, . . . , [δpn−1 ]β be all distinct cosets of 〈β〉, and for 1 ≤ k ≤ pn−1, let

γk = arg max
γ∈[δk]β

Mγ,λ,

and define Nλ = {γk |Mγk,λ 6= 0, 1 ≤ k ≤ pn−1}. We rewrite (16) as

W

2
≤

pn−1∑
k=1

∑
γ∈[δk]β
γ 6=0,β

Mγ,j ≤ p
∑
γk∈Nλ

w(γk). (17)

Since λ is good, we know that after the restriction, we lose at least Cw(γk) for every γk ∈ Nλ. This
implies the total reduction in the spectral norm is at least

C
∑
γk∈Nλ

w(γk) ≥
CW

2p
.

Inequality (13) and Lemma 3.3 now imply

CW

2p
≥ C

p
|f̂(0)| ≥ C

pA
.
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Hence, for every good λ,

‖ ̂f |χβ=ωλ‖1 ≤ ‖f̂‖1 − C/(pA). (18)

Taking c = C/p and considering both cases which are described by inequalities (12) and (18), the
statement of the lemma follows.

4.3 Analogs of Theorems 1.1, 1.2 and 1.3

Theorems 1.1, 1.2 and 1.3 now follow as consequences of Lemma 4.1. Their proofs use the same
arguments we used to deduce their Zn2 counterparts from Lemma 3.1. The proof of an analog for
Theorem 1.4 is a bit longer, and is deferred to section 4.4.

Theorem 4.5. Let f : Znp → {+1,−1} be a Boolean function with ‖f̂‖1 = A. Then there exists an
affine subspace V ⊆ Znp of co-dimension at most O(A2) such that f is constant on V .

Proof. Apply Lemma 4.1 iteratively on f . After at most A2/c steps, we are left with a function
g which is a restriction of f on an affine subspace defined by the restrictions so far, such that
‖ĝ‖1 = 1. By Lemma 4.2 g = ±1.

Theorem 4.6. Let f : Znp → {+1,−1} be a Boolean function with ‖f̂‖1 = A. Then size⊕p(f) ≤
nO(A2).

Proof. As before, let

L(n,A)
def
= max

f :Znp→{+1,−1}
‖f̂‖1≤A

size⊕pf.

By Lemma 4.1, there is a constant 0 < c ≤ 1 (which depends only on p), a linear function γ ∈ Znp
and λ1, ..., λp−1 ∈ Zp such that ‖ ̂f |

χγ=ω
λj ‖1 ≤ A− c/A for all 1 ≤ j ≤ p−1. We show, by induction

on n, that L(n,A) ≤ pA2/cnA
2/c. For n = 1 the result is trivial.

Let n > 1 and further assume that A > 1 (if A = 1 then the claim follows from Lemma 4.2).
Consider the tree whose first query is the linear function χγ . By the choice of γ we obtain the
following recursion:

L(n,A) ≤ (p− 1)L(n− 1, A− c/A) + L(n− 1, A).

The induction hypothesis then implies (using the assumption that A > 1)

L(n,A) ≤ (p− 1)p(A−c/A)
2/c(n− 1)(A−c/A)

2/c + pA
2/c(n− 1)A

2/c

≤ (p− 1)p(A
2/c)−1(n− 1)(A

2/c)−1 + pA
2/c(n− 1)A

2/c

≤ pA2/c(n− 1)(A
2/c)−1 (1 + (n− 1))

≤ pA2/cnA
2/c.

As an immediate corollary, we get:

Corollary 4.7. Let f : Znp → {+1,−1} be a Boolean function with ‖f̂‖1 = A. Then f =∑nO(A2)

i=1 ±1Vi, where each Vi is an affine subspace of Znp .

Theorem 4.8. Let f : Znp → {+1,−1} be such that ‖f̂‖1 = A and |{α | f̂(α) 6= 0}| = s. Then f
can be computed by a ⊕p-DT of depth O(A2 log s).
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Proof. By Theorem 4.5, there exist K = O(A2) linear functions α1, . . . , αK which can be fixed to
values ωλ1 , . . . , ωλK where λj ∈ Zp for 1 ≤ j ≤ K, such that f restricted to the subspace {x |
χαj (x) = ωλj , ∀1 ≤ j ≤ K} is constant. Once again, this implies that for any non-zero coefficient

f̂(β) there exists at least one other non-zero coefficient f̂(β+γ) for γ ∈ span{α1, . . . , αK}, since if no
such coefficient exists then the restriction f |χα1 (x)=ωλ1 ,...,χαK=ωλk will have the non-constant term

f̂(β) · χβ. Therefore, for any other fixing of χα1 , . . . , χαK , both f̂(β)χβ and f̂(β + γ)χβ+γ collapse
to the same (perhaps non-zero) linear function, which implies that spar(f |

χα1=ω
λ′1 ,...,χαK=ω

λ′
K

) ≤
spar(f)/2 for any choice of λ′1, . . . , λ

′
K . Thus, we can continue by induction until all the functions

in the leaves are constant.

4.4 An analog of Theorem 1.4

In this section we prove the following Theorem:

Theorem 4.9. Let f : Znp → {+1,−1} be such that ‖f̂‖1 = A. Then for every δ, ε > 0 there is
a randomized algorithm that given a query oracle to f outputs (with probability at least 1 − δ) a
⊕p-DT of depth O(A3 log(1/ε)) that computes a Boolean function gε such that dist(f, gε) ≤ ε. The
algorithm runs in polynomial time in n,A, 1/ε and log(1/δ).

We begin by introducing notations that will be used through some of the proofs of the upcoming
lemmas in this section.

Notation 4.10. Let f : Znp → {+1,−1} be a Boolean function, 0 6= α ∈ Znp and λ ∈ Zp. Denote
g = f |χα=ωλ. Recall that for every γ ∈ Znp , we denote [γ]α = γ + 〈α〉. Let:

mλ([γ]α)
def
= |ĝ(γ)|2 −

p−1∑
k=0

|f̂(γ + kα)|2,

and

sλ([γ]α)
def
=

p−1∑
k=0

|f̂(γ + kα)| − |ĝ(γ)|.

Note that both mλ([γ]α) and sλ([γ]α) indeed depend only the coset of γ. Observe that sλ([γ]α) is
the amount of saving in the spectral norm on the coset [γ]α when considering the restricted function
g (in particular, sλ([γ]α) ≥ 0). Thus, our main goal is giving a lower bound for

∑
γ∈Znp/〈α〉 sλ([γ]α),

when constructing the ⊕p-DT for f .
The main lemma required for the proof of Theorem 4.9 roughly says that if |ĝ(0)| ≈∑p−1
k=0 |f̂(kα)|, where g = f |χα=ωλ for some λ ∈ Zp (i.e. sλ([0]α) is small) then ‖ĝ‖1 ≤ ‖f̂‖1−c|f̂(0)|,

for some constant c depending only on p. We note that if |ĝ(0)| �
∑p−1

k=0 |f̂(kα)| then we already

know that ‖ĝ‖1 is smaller than ‖f̂‖1 which is also fine.

Lemma 4.11. Let f : Znp → {+1,−1} be a Boolean function, and let f̂(α) denote its largest Fourier

coefficient in absolute value, apart from (maybe) f̂(0) (i.e. α = arg maxβ 6=0{|f̂(β)|}). Let λ ∈ Zp
and denote g = f |χα=ωλ. Suppose further that

sλ([0]α) ≤ |f̂(0)||f̂(α)|.

Then there exists a constant c = c(p) > 0 such that ‖ĝ‖1 ≤ ‖f̂‖1 − c|f̂(0)|.
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If sλ([0]α) is small enough and satisfies the assumption of Lemma 4.11, then this lemma implies
some saving in the L1 norm. If it does not satisfy this, then we will show that we either lose (again)
a substantial amount in the L1 norm under the restriction, or that we can create a low depth tree
at the end of which we obtain a substantial saving, in a similar manner to the proof of Lemma 3.6.

Lemma 4.12. Let f : Znp → {+1,−1}, 0 6= α ∈ Znp and λ ∈ Zp. Then∑
γ∈Znp

mλ([γ]α) = 0.

Proof. Denote g = f |χα=ωλ . Recall that ĝ(γ) =
∑p−1

k=0 ω
λkf̂(γ+kα). By applying Parseval’s identity

to g, while noting the fact that every coset of 〈α〉 appears exactly p times in the summation, we
get:

1 =
1

p

∑
γ∈Znp

|ĝ(γ)|2. (19)

Applying Parseval’s identity on f we get that

1 =
∑
γ∈Znp

|f̂(γ)|2 =
1

p

p−1∑
k=0

∑
γ∈Znp

|f̂(γ + kα)|2 =
1

p

∑
γ∈Znp

p−1∑
k=0

|f̂(γ + kα)|2. (20)

Subtracting (20) from (19) and multiplying by p we get that

0 =
∑
γ∈Znp

(
|ĝ(γ)|2 −

p−1∑
k=0

|f̂(γ + kα)|2
)

=
∑
γ∈Znp

mλ([γ]α),

as required.

The following lemma relates mλ([γ]α) with sλ([γ]α), by giving a lower bound for the former:

Lemma 4.13. Let f : Znp → {+1,−1} and let f̂(α) be its largest coefficient in absolute value, apart

from f̂(0) (i.e. α = arg maxβ 6=0{|f̂(β)|}). Let λ ∈ Zp and g = f |χα=ωλ. Let γ ∈ Znp such that
γ 6∈ 〈α〉 (that is, [γ]α 6= [0]α). Then

mλ([γ]α) ≥ 2

p−1∑
k=0

|f̂(γ + kα)||f̂(γ + (k − 1)α)| − sλ([γ]α)2p|f̂(α)|.

Proof. The claim follows from a direct calculation:

mλ([γ]α) = |ĝ(γ)|2 −
p−1∑
k=0

|f̂(γ + kα)|2

=

(
p−1∑
k=0

|f̂(γ + kα)| − sλ([γ]α)

)2

−
p−1∑
k=0

|f̂(γ + kα)|2

≥ 2

p−1∑
k=0

|f̂(γ + kα)||f̂(γ + (k − 1)α)| − 2sλ([γ]α)

p−1∑
k=0

|f̂(γ + kα)|

≥(†) 2

p−1∑
k=0

|f̂(γ + kα)||f̂(γ + (k − 1)α)| − sλ([γ]α) · 2p|f̂(α)|,
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where to prove inequality (†) we used the fact that γ 6∈ 〈α〉. I.e., it is not in the same coset of 〈α〉
as 0 and therefore, |f̂(γ + kα)| ≤ |f̂(α)| for all 0 ≤ k ≤ p− 1.

The following Corollary, albeit being a simple and immediate consequence of Lemma 4.13 when
considering the case mλ([γ]α) < 0, will be useful:

Corollary 4.14. Let f : Znp → {+1,−1} and let f̂(α) be its largest coefficient in absolute value,

apart from f̂(0). Let λ ∈ Zp and g = f |χα=ωλ. Suppose γ ∈ Znp satisfies mλ([γ]α) < 0 and γ 6∈ 〈α〉.
Then

|mλ([γ]α)| ≤ sλ([γ]α) · 2p · |f̂(α)| − 2

p−1∑
k=0

|f̂(γ + kα)||f̂(γ + (k − 1)α)|.

Proof. By Lemma 4.13,

−mλ([γ]α) ≤ sλ([γ]α)2p|f̂(α)| − 2

p−1∑
k=0

|f̂(γ + kα)||f̂(γ + (k − 1)α)|.

The assumption mλ([γ]α) < 0 implies |mλ([γ]α)| = −mλ([γ]α), and the claim follows.

Combining Lemma 4.12 and Corollary 4.14 we can bound
∑
{γ|mλ([γ]α)<0} sλ([γ]α) from below.

Lemma 4.15. Let f : Znp → {+1,−1} and let f̂(α) be the largest Fourier coefficient in absolute

value, apart from f̂(0). Suppose mλ([0]α) > 0. Let λ ∈ Zp and g = f |χα=ωλ. Let C+ = {γ ∈
Znp/〈α〉 | mλ([γ]α) > 0} and C− = {γ ∈ Znp/〈α〉 | mλ([γ]α) < 0}. Then

mλ([0]α)

2p|f̂(α)|
≤
∑
γ∈C−

sλ([γ]α).

Proof. Since mλ([γ]α) is only a function of the coset of γ, Lemma 4.12 implies that∑
γ∈C+

mλ([γ]α) +
∑
γ∈C−

mλ([γ]α) =
1

p

∑
γ∈Znp

mλ([γ]α) = 0.

Hence
mλ([0]α) ≤

∑
γ∈C−

|mλ([γ]α)|. (21)

Since mλ([0]α) > 0, for all γ ∈ C− we have γ 6∈ [0]α, and Corollary 4.14 particularly implies
|mλ([γ]α)| ≤ 2p|f̂(α)|sλ([γ]α), so from (21) we conclude

mλ([0]α) ≤ 2p|f̂(α)|
∑
γ∈C−

sλ([γ]α).

Next we bound mλ([0]α) from below in terms of |f̂(0)| and |f̂(α)|, under the assumption in
Lemma 4.11. Note that we cannot use Lemma 4.13 as we require there that γ 6∈ [0]α.

We first need a simple inequality.
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Lemma 4.16. Let 0 ≤ a, b ≤ 1 and d ≥ 0 be real numbers. Then,

(d+ 2a+ b− ab)2 ≥ d2 + 2a2 + b2 + ab.

The elementary proof of Lemma 4.16 appears in Appendix C.

Lemma 4.17. Let f : Znp → {+1,−1}, and let f̂(α) denote its largest Fourier coefficient in absolute

value, apart from (maybe) f̂(0) (i.e. α = arg maxβ 6=0{|f̂(β)|}). Let λ ∈ Zp and g = f |χα=ωλ.
Suppose

sλ([0]α) ≤ |f̂(0)||f̂(α)|.

Then
|f̂(0)||f̂(α)| ≤ mλ([0]α).

Proof. By assumption,

|ĝ(0)| =
p−1∑
k=0

|f̂(kα)| − sλ([0]α) ≥
p−1∑
k=0

|f̂(kα)| − |f̂(0)||f̂(α)|.

Hence,

mλ([0]α) = |ĝ(0)|2 −
p−1∑
k=0

|f̂(kα)|2 ≥

(
p−1∑
k=0

|f̂(kα)| − |f̂(0)||f̂(α)|

)2

−
p−1∑
k=0

|f̂(kα)|2. (22)

Denote d =
∑p−2

k=2 |f̂(kα)|, b = |f̂(0)| and a = |f̂(α)| = |f̂(−α)|. Lemma 4.16 implies that(
p−1∑
k=0

|f̂(kα)| − |f̂(0)||f̂(α)|

)2

= (d+ 2a+ b− ab)2 ≥ d2 + 2a2 + b2 + ab

=

(
p−2∑
k=2

|f̂(kα)|

)2

+ 2|f̂(α)|2 + |f̂(0)|2 + |f̂(α)||f̂(0)|

≥
p−2∑
k=2

|f̂(kα)|2 + |f̂(α)|2 + |f̂(−α)|2 + |f̂(0)|2 + |f̂(α)||f̂(0)|

=

p−1∑
k=0

|f̂(kα)|2 + |f̂(α)||f̂(0)|. (23)

From Equations (22) and (23) it now follows that

mλ([0]α) ≥

(
p−1∑
k=0

|f̂(kα)| − |f̂(0)||f̂(α)|

)2

−
p−1∑
k=0

|f̂(kα)|2

≥

(
p−1∑
k=0

|f̂(kα)|2 + |f̂(α)||f̂(0)|

)
−

p−1∑
k=0

|f̂(kα)|2

= |f̂(α)||f̂(0)|.
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Proof of Lemma 4.11. Lemma 4.17 in particular assures that mλ([0]α) > 0, hence by Lemma 4.15,
and then Lemma 4.17, ∑

γ∈C−
sλ([γ]α) ≥ mλ([0]α)

2p|f̂(α)|
≥ |f̂(0)|

2p
.

By definition of sλ([γ]α), ‖ĝ‖1 ≤ ‖f̂‖1 −
∑

γ∈C− sλ([γ]α) ≤ ‖f̂‖1 − |f̂(0)|2p .

The proof of Theorem 4.9 now follows the same outline as the proof of Theorem 1.4. A functional
⊕p-DT is defined as a ⊕p-DT where we allow every leaf to be labeled by a Boolean function on Znp ,
and the bias of a function f : Znp → {+1,−1} is defined as in the binary case. The following lemma
implies the exists of a low depth functional ⊕p-DT computing f whose leaves are highly biased.

Lemma 4.18. Let f : Znp → {+1,−1} be a Boolean function with ‖f̂‖1 = A. Then, for every 0 < ε
there exists a functional ⊕p-DT for f of depth at most O(A3 log(1/ε)) such that all the functions
on its leaves have bias at least 1− ε.

Proof. Let f̂(α) be f ’s largest coefficient in absolute value. We consider two cases:

1. |f̂(α)| > 1 − ε: As |f̂(α)| = |f̂(−α)|, Parseval’s identity implies that if ε < (1 − 1/
√

2) then
this case can only happen if α = 0, hence f is already highly biased.

2. |f̂(α)| ≤ 1− ε:
In this case we show that we can create a tree of depth O(A log(1/ε)) such that all the
functions on its leaves have spectral norm at most ‖f̂‖1−c/A for some constant c = c(p) > 0.

We first show that without loss of generality, we may assume (at the cost of one query) |f̂(0)|
is (somewhat) large. Suppose the largest coefficient is |f̂(α)| for α 6= 0. By Lemma 3.3 we
have |f̂(α)| ≥ 1/A. Upon restricting on χα = ωλ, f̂(α) collapses to the same coefficient as
f̂(0). Let f ′ = f |χα=ωλ . If |f̂ ′(0)| ≤ |f̂(α)|/2, then ‖f̂ ′‖1 ≤ ‖f̂‖1 − |f̂(α)|/2 ≤ A − 1/(2A)

and we are done. Otherwise, |f̂ ′(0)| ≥ |f̂(α)|/2 and since f̂(α) is maximal, for all γ we
have |f̂ ′(γ)| ≤ p|f̂(α)|. Therefore if |f̂ ′(γ′)| is the maximal Fourier coefficient of f ′ we have
|f̂ ′(0)| ≥ |f̂(γ′)|/(2p) ≥ 1/(2pA). Thus, from now on we shall assume that |f̂(0)| ≥ 1/(2pA).

Let f̂(β) then be the largest Fourier coefficient apart from f̂(0) (if α 6= 0 then β = α, but

if α = 0 then β 6= α). By Lemma 3.3 it holds that |f̂(β)| ≥ 1−|f̂(0)|2
A > ε/A (recall that we

assume that the largest Fourier coefficient has absolute value at most 1− ε). We next query
the function on χβ. By Lemma 4.1, for at least p−1 values λ1, . . . , λp−1 in Zp, the restriction

gj = f |
χβ=ω

λj satisfies ‖ĝj‖1 ≤ ‖f̂‖1 − c/A, for some c = c(p).

Let λ ∈ Zp be the only element not in {λ1, ..., λp−1} (if no such λ exists then we are done),

and let g = f |χβ=ωλ . Thus, |ĝ(0)| = |f̂(0) + ωλf̂(β) + . . .+ ω(p−1)λf̂((p− 1)β)|.

By Lemma 4.11, if |ĝ(0)| ≥
∑p−1

k=0 |f̂(kβ)| − |f̂(0)||f̂(β)| (i.e. sλ([0]β) ≤ |f̂(0)||f̂(β)|), then

‖ĝ‖1 ≤ ‖f̂‖1 − c1/A, for some constant c1 depending only on p, and we are done.

Suppose then

|ĝ(0)| ≤
p−1∑
k=0

|f̂(kβ)| − |f̂(0)||f̂(β)|. (24)

We again consider two sub-cases. If |f̂(β)| ≥ 1/(2pA), then (24) by itself implies ‖ĝ‖1 ≤
‖f̂‖1 − c2/A2 where c2 depends only on p.
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Hence the last case to consider is |f̂(β)| < 1/(2pA). Note that this implies in particular that
the largest coefficient is |f̂(0)|, and also that 2p|f̂(β)| ≤ |f̂(0)|. These facts are relevant in
order to use the following claim, which shows that unless we get a substantial saving in the
L1 norm, the constant coefficient of the restricted function becomes (somewhat) smaller:

Claim 4.19. Under the conditions above, and assuming further that
∑

γ∈Znp sλ([γ]β) ≤
|f̂(0)|/p5, it holds that |ĝ(0)| ≤ |f̂(0)| − |f̂(β)|/8.

The proof of Claim 4.19, as well as the exact assumptions we use for its proof, is deferred
to the end of the current proof (Lemma 4.21). If

∑
γ∈Znp sλ([γ]β) ≥ |f̂(0)|/p5 ≥ Ω(1/A) then

again, we are obviously done. Otherwise, by Claim 4.19

|ĝ(0)| ≤ |f̂(0)| − |f̂(β)|/8 ≤ |f̂(0)| − ε

8A

≤ 1− ε− ε/8A = 1−
(

1 +
1

8A

)
ε

def
= 1− (1 + c′/A)ε,

where c′ is an absolute constant (recall that |f̂(0)| ≥ 1/2pA and |f̂(β)| ≥ ε/A).

Again, if |ĝ(0)| ≤ 1/(2A) we are done, since |f̂(0)| ≥ 1/A, and therefore we lost at least 1/2A
in the spectral norm. Otherwise, ĝ(0) remains the largest coefficient. Indeed, |ĝ(0)| > 1/(2A)
and since |f̂(β)| < 1/(2pA) it follows that for all γ 6∈ [0]β, |ĝ(γ)| < p · 1/(2pA) = 1/(2A).

Therefore, we may repeat this process for g and ε′ =
(

1 + c′

A

)
ε.

From here the result follows by induction, but to better understand the situation we perform
one more step of the induction. Assuming g is as described, in the next step the spectral
norm of p − 1 of the children will be as desired, and for the p-th child, we either lost a lot
in the L1 norm by one of the previous arguments, or, if we resort again for the remaining

case, then we have that 1/(2A) < |ĝ(0)| ≤ 1− ε′ = 1−
(

1 + c′

A

)
ε. Hence, the largest Fourier

coefficient of g (apart from ĝ(0)) is at least ε′/A, and the new constant term of the “bad”

child is now at most 1−
(

1 + c′

A

)
ε′ = 1−

(
1 + c′

A

)2
ε. Hence, after O(A log(1/ε)) such steps

this process we will be in the situation where the “bad” child g satisfies ĝ(0) ≤ 1− 1/(4pA),
and by the above analysis in the next step all children will have a spectral norm smaller by
Ω(1/A).

We continue by induction until all the functions on the leaves are either constant or highly biased.
Since in O(A log(1/ε)) levels of the tree we save at least Ω(1/A) in the spectral norm, in all the
children, we get that the process stops at depth O(A3 log(1/ε)).

To conclude the proof of Lemma 4.18 it remains to prove Claim 4.19. Recall that our setting
is such that f̂(0) is the largest coefficient, and the second largest, f̂(α) is much smaller. We first
show that under the assumption that sλ([0]α) is small, mλ([0]α) is negative, with relatively large
absolute value.

Lemma 4.20. Let f : Znp → {+1,−1}. Suppose f̂(0) is its largest Fourier coefficient in absolute

value. Let f̂(α) be its second largest coefficient in absolute value and assume that p|f̂(α)| ≤ |f̂(0)|.
Let λ ∈ Zp and g = f |χα=ωλ. If

∑
γ sλ([γ]α) ≤ |f̂(0)|/p5, then

mλ([0]α) ≤ −(1− 2/p4)|f̂(0)||f̂(α)|.
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Proof. Lemma 4.12 implies ∑
γ∈Znp/〈α〉

mλ([γ]α) = 0.

Lemma 4.13 now gives:

∑
[0]α 6=γ∈Znp/〈α〉

mλ([γ]α) ≥
∑

[0]α 6=γ∈Znp/〈α〉

2

p−1∑
k=0

|f̂(γ + kα)||f̂(γ + (k − 1)α)| − sλ([γ]α) · 2p|f̂(α)|

≥
∑

[0]α 6=γ∈Znp/〈α〉

2

p−1∑
k=0

|f̂(γ + kα)||f̂(γ + (k − 1)α)| −
∑

γ∈Znp/〈α〉

sλ([γ]α) · 2p|f̂(α)|

≥(∗)
∑

[0]α 6=γ∈Znp/〈α〉

2

p−1∑
k=0

|f̂(γ + kα)||f̂(γ + (k − 1)α)| − 2|f̂(0)||f̂(α)|/p4. (25)

where in inequality (∗) we used our assumption that
∑

γ sλ([γ]α) ≤ |f̂(0)|/p5. Recall that Equa-
tion (11) gives ∑

γ∈Znp

f̂(γ)f̂(α− γ) = 0.

In particular, if we partition the sum according to the different cosets of 〈α〉, we get

2|f̂(0)||f̂(α)| ≤
∑

[0] 6=γ∈Znp/〈α〉

p−1∑
k=0

|f̂(γ + kα)||f̂(α− γ − kα)|+
p−1∑
k=2

|f̂(kα)||f̂(α− kα)|.

Note that since |f̂(0)| does not appear in the right hand term,

p−1∑
k=2

|f̂(kα)||f̂(α− kα)| ≤ p|f̂(α)|2,

which readily implies

∑
[0]α 6=γ∈Znp/〈α〉

p−1∑
k=0

|f̂(γ + kα)||f̂(α− γ − kα)| ≥ |f̂(α)|(2|f̂(0)| − p|f̂(α)|) ≥ |f̂(α)||f̂(0)|, (26)

using the assumption on the size of |f̂(α)|. As for all β, f̂(β) = f̂(−β), it follows that

|f̂(α− γ − kα)| = |f̂(−(α− γ − kα)| = |f̂(γ + (k − 1)α)|.

Combining this with (26) we obtain

∑
[0]α 6=γ∈Znp/〈α〉

p−1∑
k=0

|f̂(γ + kα)||f̂(γ + (k − 1)α)| ≥ |f̂(α)||f̂(0)|.

Returning to (25), we have thus proved that∑
[0]α 6=γ∈Znp/〈α〉

mλ([γ]α) ≥ |f̂(0)||f̂(α)| − 2|f̂(0)||f̂(α)|/p4 = (1− 2/p4)|f̂(0)||f̂(α)|.
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From Lemma 4.12 we deduce that

mλ([0]α) ≤ −(1− 2/p4)|f̂(0)||f̂(α)|

as required.

We are now ready to prove Claim 4.19. For completeness, we re-state it before the proof.

Lemma 4.21. Let f : Znp → {+1,−1}. Suppose f̂(0) is its largest Fourier coefficient in absolute

value, and let f̂(α) be its second largest. Suppose also 2p|f̂(α)| ≤ |f̂(0)|. Let λ ∈ Zp and g =

f |χα=ωλ. Suppose
∑

γ sλ([γ]α) ≤ |f̂(0)|/p5, then

|ĝ(0)| ≤ |f̂(0)| − |f̂(α)|/8.

Proof. Since the assumptions are slightly stronger than those of Lemma 4.20, we get:

mλ([0]α) ≤ −(1− 2/p4)|f̂(0)||f̂(α)|.

Thus,

|ĝ(0)|2 =

p−1∑
k=0

|f̂(kα)|2 +mλ([0]α)

≤
p−1∑
k=0

|f̂(kα)|2 − (1− 2/p4)|f̂(0)||f̂(α)|

≤ |f̂(0)|2 + (p− 1)|f̂(α)|2 − 3/4 · |f̂(0)||f̂(α)|
≤ |f̂(0)|2 − |f̂(0)||f̂(α)|/4

≤
(
|f̂(0)| − |f̂(α)|/8

)2
.

As our final tool for proving Theorem 4.9, we note that although this result is not stated in
[KM93], the algorithm from Lemma 3.7 can be modified in the straightforward way to work equally
well for functions f : Znp → {+1,−1}, with virtually the same proof.

Proof of Theorem 4.9. We use the algorithm from Lemma 3.7 to find f ’s largest Fourier coefficient
in absolute value, f̂(α). Whenever |f̂(α)| ≤ 1 − ε, the same algorithm can be used to find the
second largest coefficient, f̂(β), in polynomial time (in n, 1/ε and log(1/δ)). We use Lemma 4.18
to construct a functional ⊕p-DT, and replace every function-labeled leaf with the constant it’s
biased towards.

We again mention, as in the proof of Theorem 1.4, that we do not need to calculate f̂(α) and
f̂(β) exactly, but only to within an error of, say, ε/(2pA), which can be guaranteed (with high
probability) by the algorithm of Lemma 3.7.
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5 Conclusions and open problems

In this work we obtained structural results for Boolean functions over Znp , for prime p. Our results
provide a more refined structure than the one given in the works of Green and Sanders [GS08a,
GS08b]. For a certain range of parameters we also obtain improved results in the setting of the
works [GS08a, GS08b].

We were also able to achieve new results in the field of computational learning theory by showing
that such functions can be learned with ⊕-DTs as the class of hypotheses.

There are still many intriguing open problems related to the structure of Boolean functions
with small spectral norm. Most of these are related to the tightness of our results (as well as to
the tightness of the results of Green and Sanders [GS08a]).

We do not believe that the bound given in Equation (2) is tight. Perhaps it is even true that
one could represent f as a sum of polynomially (in A) many characteristic functions of subspaces
(note that this is not true for functions over general abelian groups. See [GS08b]). Similarly,
we do not believe that the bounds we obtain in Theorems 1.2 and 4.6 are tight. It seems more
reasonable to believe that the true bound should be poly(n,A). The results in Theorems 1.1 and
4.5 are more likely close to being tight, but still, it may be the case that there is a subspace of
co-dimension O(A) on which the function is constant.

Recall that [ZS10, MO09] conjectured that Boolean functions with sparse Fourier spectrum
can be computed by a ⊕-DT of depth poly(log spar f). Theorems 1.3 and 4.8 give an affirmative
answer only for the case that f also has a small spectral norm. Thus, the general case is still open.

Finally, Theorems 1.4 and 4.9 give shallow ⊕p-DTs approximating functions with small spectral
norm. These results too do not seem tight. In particular, it is interesting to understand whether
something better can be obtained if we assume in addition that f can be computed exactly by a small
⊕p-DT. Namely, can one output a shallow ⊕p-DT approximating f over the uniform distribution
using polynomially many membership queries (i.e. oracle calls) to f , assuming that f can be exactly
computed by such a ⊕p-DT (and has a small spectral norm).
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A Proof of Lemma 2.5

The proof of Lemma 2.5 relies upon the following even simpler lemma.

Lemma A.1. Let V ⊆ Zn2 be an affine subspace of co-dimension k, and let 1V : Zn2 → {0, 1} be its
characteristic function. Then spar(1V ) = 2k and ‖1̂V ‖1 = 1.

Proof. Denote V = α+U where U is a subspace of co-dimension k. There are k vectors γ1, . . . , γk ∈
Zn2 (a basis for U⊥) and b1, . . . , bk ∈ {+1,−1} such that 1V (x) = 1 if and only if χγi(x) = bi for all
1 ≤ i ≤ k. Therefore

1V (x) =
k∏
i=1

(
χγi(x) + bi

2

)
.
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Using the relation χβχγ = χβ+γ , and the fact that span{γ1, . . . , γk} = U⊥, we get

1V (x) =
∑
γ∈U⊥

±2−kχγ(x).

Since |U⊥| = 2k, both statements follow.

Proof of Lemma 2.5. Let L be the set of leaves of T , and for every ` ∈ L let b` be its label, and
1` : Zn2 → {0, 1} be the characteristic function of the set of inputs x such that computation upon
x arrives at the leaf `. Since T computes f , we may represent f as:

f =
∑
`∈L

b`1`(x).

Now note that if `’s depth is t, then 1` is a characteristic function of an affine subspace of co-
dimension t. The maximal depth of T is k, hence for every ` ∈ L we have, by Lemma A.1,
spar(1`) ≤ 2k and ‖1̂`‖1 = 1. Finally, since |L| = m, we get

spar(f) ≤
∑
`∈L

spar(1`) ≤ m2k,

and since |b`| = 1, the triangle inequality implies

‖f̂‖1 ≤
∑
`∈L
‖1̂`‖1 ≤ m.

B Proof of Lemma 4.3

Proof. Suppose without the loss of generality (by applying a suitable rotation and reflection if
needed) that z1 = R is a positive real number, and that the angle is exactly θ ≤ π (i.e. z2 = reiθ).

Note that |z1|+ |z2| = R+ r and z1 + z2 = (R+ r cos(θ)) + ir sin(θ). Hence,

|z1 + z2| =
√

(R+ r cos(θ))2 + (r sin(θ))2 =
√
R2 + r2 + 2Rr cos(θ) .

It remains to be shown that

R+ r −
√
R2 + r2 + 2Rr cos(θ) ≥ 1− cos(θ)

2
r.

This is equivalent to (
R+ r − 1− cos(θ)

2
r

)2

−R2 − r2 − 2Rr cos(θ) ≥ 0.

Rearranging and factoring out r ≥ 0, we get a linear function in r which is non-negative on both
r = 0 and r = R, which implies the inequality holds for all 0 ≤ r ≤ R.
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C Proof of Lemma 4.16

Proof. The claim follows by a direct calculation:

(d+ 2a+ b− ab)2 = d2 + (2a+ b− ab)2 + 2d(2a+ b− ab) ≥ d2 + (2a+ b− ab)2

= d2 + 4a2 + b2 + 4ab− 2ab(2a+ b) + a2b2

= (d2 + 2a2 + b2 + ab) + a(3b− 2b2) + a2(2− 4b+ b2)

≥ (d2 + 2a2 + b2 + ab) + a2(3b− 2b2) + a2(2− 4b+ b2)

= (d2 + 2a2 + b2 + ab) + a2(2− b− b2)
≥ (d2 + 2a2 + b2 + ab).
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