

On the Structure of Boolean Functions with Small Spectral Norm

Amir Shpilka^{*} Ben lee Volk^{*}

Abstract

In this paper we prove results regarding Boolean functions with small spectral norm (the spectral norm of f is $\|\hat{f}\|_1 = \sum_{\alpha} |\hat{f}(\alpha)|$). Specifically, we prove the following results for functions $f: \{0,1\}^n \to \{0,1\}$ with $\|\hat{f}\|_1 = A$.

- 1. There is a subspace V of co-dimension at most A^2 such that $f|_V$ is constant.
- 2. f can be computed by a parity decision tree of size n^{A^2} . (a parity decision tree is a decision tree whose nodes are labeled with arbitrary linear functions.)
- 3. If in addition f has at most s nonzero Fourier coefficients, then f can be computed by a parity decision tree of depth $A^2 \log s$.
- 4. For every $0 < \epsilon$ there is a parity decision tree of depth $A^3 \log(1/\epsilon)$ that ϵ -approximates f. Furthermore, this tree can be learned, with probability $1-\delta$, using $poly(n, A, 1/\epsilon, \log(1/\delta))$ membership queries.

All the results above also hold (with a slight change in parameters) to functions $f : \mathbb{Z}_p^n \to \{0,1\}$.

^{*}Faculty of Computer Science, Technion — Israel Institute of Technology, Haifa, Israel, {shpilka,benlee}@cs.technion.ac.il. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number 257575.

1 Introduction

The Fourier transform is one of the most useful tools in the analysis of Boolean functions. It is a household name in many areas of theoretical computer science: Learning theory (cf. [KM93, LMN93, Man94]); Hardness of approximation (cf. [Hås01]); Property testing (cf. [BLR93, BCH⁺96, GOS⁺11]); Social choice (cf. [KKL88, Kal02]) and more. The reader interested in the Fourier transform and its applications is referred to the online book [O'D12].

A common theme in the study of Fourier transform is the question of classifying all Boolean functions whose Fourier transforms share some natural property. For example, Friedgut proved that Boolean functions that have *small influence* are close to being juntas (i.e. functions that depend on a small number of coordinates) [Fri98]. Friedgut, Kalai and Naor proved that Boolean functions whose Fourier spectrum is concentrated on the first two levels are close to dictator functions (i.e. functions of the form $f(x_1, \ldots, x_n) = x_i$ or $1 - x_i$). In [ZS10, MO09] it was conjectured that a Boolean function that has a *sparse* Fourier spectrum (i.e. that has only *s* nonzero Fourier coefficients), can be computed by a parity decision tree (for short we denote parity decision tree by \oplus -DT) of depth poly(log *s*). Recall that in a \oplus -DT nodes are labeled by linear functions (over \mathbb{Z}_2) rather than by variables. It is well known that a function that is computed by a depth $d \oplus$ -DT has sparsity at most $\exp(d)$ (see Lemma 2.5), so this conjecture implies a (more or less) tight result. This conjecture was raised in the context of the log-rank conjecture in communication complexity and, if true, it would imply that the log-rank conjecture is true for functions of the form $F(x, y) = f(x \oplus y)$, for some Boolean function f.

In this paper we are interested in the structure of functions that have small spectral norm. Namely, in Boolean functions $f : \{0, 1\}^n \to \{0, 1\}$ that for some number A satisfy

$$\|\hat{f}\|_1 \stackrel{\text{def}}{=} \sum_{\alpha} |\hat{f}(\alpha)| \le A, \qquad (1)$$

where A may depend on the number of variables n (for definitions see Section 2). Such functions were studied in the context of circuit complexity (cf. [Gro97]) and, more notably, in learning theory, where it is one of the most general family of Boolean functions that can be learned efficiently [KM93, Man94, ABF⁺08]. In particular, Kushilevitz and Mansour proved that any Boolean function satisfying (1), can be well approximated by a sparse polynomial [KM93]. This already gives some rough structure for functions with small spectral norm, however one may ask for a more refined structure that captures the function exactly. Green and Sanders were the first to obtain such a result (and until this work this was the only such result). They proved that if f satisfies Equation (1) then it can be expressed as a sum of at most $2^{2^{O(A^4)}}$ characteristic functions of subspaces, that is,

$$f = \sum_{i=1}^{2^{2^{O(A^4)}}} \pm \mathbb{1}_{V_i},$$
(2)

where each V_i is a subspace. Thus, when A is constant this gives a very strong result on the structure of such a function f. This result can be seen as an *inverse* theorem, as it is well known and easy to see that the spectral norm of the characteristic function of a subspace is constant. Thus, [GS08a] show that in general, any function with a small spectral norm is a linear combination of a (relatively) small number of such characteristic functions. Of course, ideally one would like to show that the number of functions in the sum is at most poly(A) and not doubly exponential in A, however, Green and Sanders note that "it seems to us that it would be difficult to use our method to reduce the number of exponentials below two."

It is possible that another classification of Boolean functions with small spectral norm could be achieved using decision trees, or more generally, parity decision trees. It is not hard to show that if a Boolean function g is computed by a \oplus -DT with s leaves then the spectral norm of g is at most s (see Lemma 2.5). Interestingly, we are not aware of any Boolean function that has a small spectral norm and that cannot be computed by a small \oplus -DT. It is thus an interesting question whether this is indeed the general case, namely, that any function of small spectral norm can be computed by a small \oplus -DT. We note that the result of [GS08a] does not yield such a structure. Indeed, if we were to represent the function given by Equation (2) as a \oplus -DT then, without knowing anything more about the function, then we do not see a more efficient representation than the brute-force one that yields a \oplus -DT of size $n^{2^{2O(A^4)}}$.

Another interesting question concerning functions with small spectral norm comes from the learning theory perspective. As mentioned above, Kushilevitz and Mansour proved that for any Boolean function satisfying Equation (1) there is some sparse polynomial $g = \sum_{i=1}^{A/\epsilon^2} \hat{f}(\alpha_i)\chi_{\alpha_i}(x)$ (where the coefficients in the summation are the A/ϵ^2 largest Fourier coefficient of f) such that $\Pr_x[f(x) \neq \operatorname{sgn}(g(x)] \leq \epsilon$. Thus, their learning algorithm outputs as hypothesis the function $\operatorname{sgn}(g(x))$. This is the case even if f is computed by a small decision tree or a small \oplus -DT. It would be desirable to output a hypothesis coming from the same complexity class as f, i.e. to output a decision tree or a \oplus -DT. However, a hardness result of $[\operatorname{ABF}^+08]$ shows that under reasonable complexity assumptions, one cannot hope to output a small decision tree approximating f. So, a refinement of the question should be to try and output the smallest tree one can find for a function approximating f. For example, the function

$$\operatorname{sgn}(g) = \operatorname{sgn}\left(\sum_{i=1}^{A/\epsilon^2} \hat{f}(\alpha_i)\chi_{\alpha_i}(x)\right)$$
(3)

can be computed by a \oplus -DT of depth $O(A/\epsilon^2)$ in the natural way. Even when A is a constant and ϵ is polynomially small this does not give much information. Thus, a natural question is to try and find a better representation for such a range of parameters.

1.1 Our results

Our first result identifies a *local* structure shared by Boolean functions with small spectral norm.

Theorem 1.1. Let $f : \{0,1\}^n \to \{0,1\}$ be such that $\|\hat{f}\|_1 = A$, then, there is an affine subspace $V \subset \{0,1\}^n$ of co-dimension at most A^2 such that f is constant on V.

We note that the proof of [GS08a] does not imply the existence of such an affine subspace V of such a high dimension. Our next two results (for functions defined over the Boolean cube) follow easily from this theorem.

Theorem 1.2. Let $f : \{0,1\}^n \to \{0,1\}$ be such that $\|\hat{f}\|_1 = A$, then, f can be computed by $a \oplus -DT$ of size n^{A^2} .

In particular, the theorem implies that $f = \sum_{i=1}^{n^{A^2}} \pm \mathbb{1}_{V_i}$, where each V_i is a subspace.

Another result settles the conjecture of [ZS10, MO09] for the case of sparse Boolean functions with small spectral norm.

Theorem 1.3. Let $f : \{0,1\}^n \to \{0,1\}$ be such that $\|\hat{f}\|_1 = A$ and $|\{\alpha \mid \hat{f}(\alpha) \neq 0\}| = s$. Then f can be computed by $a \oplus -DT$ of depth $A^2 \log s$.

Thus, if the spectral norm of f is constant (or $poly(\log s)$), Theorem 1.3 settles the conjecture affirmatively. The conjecture is still open for the case where the spectral norm of f is large.

Our last result (for functions over the Boolean cube) fits into the context of learning theory and provides a bound on the depth of a \oplus -DT *approximating* a function with a small spectral norm. Here, the distance between two Boolean functions is measured with respect to the uniform distribution, namely, $\operatorname{dist}(f,g) = \operatorname{Pr}_{x \in \{0,1\}^n}[f(x) \neq g(x)].$

Theorem 1.4. Let $f : \{0,1\}^n \to \{0,1\}$ be such that $\|\hat{f}\|_1 = A$. Then for every $\delta, \epsilon > 0$ there is a randomized algorithm that, given a query oracle to f, outputs (with probability at least $1 - \delta$) a \oplus -DT of depth $O(A^3 \log(1/\epsilon))$ which computes a Boolean function g_{ϵ} such that $dist(f, g_{\epsilon}) \leq \epsilon$. The algorithm runs in polynomial time in $n, A, 1/\epsilon$ and $\log(1/\delta)$.

Thus, when A is a constant and ϵ is polynomially small, the depth is only $O(\log n)$ which greatly improves upon the depth of the \oplus -DT obtained from Equation (3).

We also prove analogs of the theorems above for functions $f : \mathbb{Z}_p^n \to \{+1, -1\}$ having small spectral norm. Namely, in the theorems above one could instead talk of $f : \mathbb{Z}_p^n \to \{0, 1\}$ and obtain essentially the same results.¹ Theorems 4.5, 4.6, 4.8 and 4.9 are the \mathbb{Z}_p analogs to Theorems 1.1, 1.2, 1.3 and 1.4, respectively. We note that in [GS08b] Green and Sanders extended their result to hold for functions mapping an abelian group G to $\{0, 1\}$, obtaining the same bound as in [GS08a], so our result for functions on \mathbb{Z}_p^n could be seen as an analog to their result for such groups.

1.2 Comparison with [GS08a]

Comparing Theorem 1.2 to Equation (2) (that was proved in [GS08a]), we note that while Equation (2) does not involve the number of variables (i.e. the upper bound on the number of subspaces only involves A), our result does involve n. On the other hand, we give a more refined structure that of a parity decision tree - which is not implied by Equation (2) (see also the discussion above). Moreover, when $A = \Omega((\log \log n)^{1/4})$, our bound is much better than the one given in Equation (2).

Our proof technique is also quite different than that of [GS08a]. Their proof idea is to represent f as $f = f_1 + f_2$ where the Fourier supports of f_1 and f_2 are disjoint, and such that f_1 and f_2 are close to being integer valued and have a somewhat smaller spectral norm. Then, using recursion, they represent each f_i as a sum of a small number of characteristic functions of subspaces. In particular, Green and Sanders do not restrict their treatment to Boolean functions but rather study functions that at every point of the Boolean cube obtain a value that is almost an integer. Thus, they prove a more general result, namely, that $f_{\mathbb{Z}}$, the integer part of f, can be represented in the form of Equation (2). We on the other hand only work with Boolean functions, so their result is stronger from that respect. However, while their proof was a bit involved and required using results from additive combinatorics, our approach is more elementary and is based on exploiting the fact that f is Boolean. In particular, our starting point is an analysis of the simple equation $f^2 = 1$ (when we think of f as mapping $\{0,1\}^n$ to $\{\pm 1\}$). Furthermore, we are able to use the fact that f is Boolean in order to show that it can be computed by a small \oplus -DT, which does not seem to follow from [GS08a].

Green and Sanders later extended their technique and proved a similar result for functions over general abelian groups $f: G \to \{0, 1\}$ [GS08b]. Our technique do not extend to general groups,

¹Of course, one would have to speak about the analog of a \oplus -DT for the case where the inputs come from \mathbb{Z}_p^n .

but we do obtain results for the case that $G = \mathbb{Z}_p^n$, which again has the same advantages and disadvantages compared to the result of [GS08b] (although, the simplicity of our approach is even more evident here).

1.3 Proof idea

As mentioned above, our proof relies on the simple equation $f^2 = 1$ (when we think of $f : \{0, 1\}^n \rightarrow \{\pm 1\}$). By expanding the Fourier representations (See Section 2 for definitions) of both sides we reach the identity

$$\sum_{\gamma} \hat{f}(\gamma)\hat{f}(\delta+\gamma) = 0,$$

that holds for all $\delta \neq 0$ (See Lemma 3.2). This identity could be interpreted as saying that the mass on pairs whose product is positive is the same as the mass on pairs whose product is negative. In particular, if we consider the two heaviest elements in the Fourier spectrum, say, $\hat{f}(\alpha)$ and $\hat{f}(\beta)$, and let $\delta = \alpha + \beta$, then by restricting f to one of the subspaces $\chi_{\delta}(x) = 1$ or $\chi_{\delta}(x) = -1$, we get a substantial saving in the spectral norm (see Lemma 3.1). This happens since there is a significant L_1 mass on pairs $\hat{f}(\gamma), \hat{f}(\delta + \gamma)$ that have different signs. By repeating this process we manage to prove the existence of small \oplus -DT for f.

The argument for functions over \mathbb{Z}_p^n is similar, but requires more technical work (in particular, the proof of Theorem 4.9 requires substantially more work than the proof of Theorem 1.4). For that reason we decided to give a separate proof for the case of functions over the Boolean cube, and then, after the ideas were laid out in their simpler form, to prove the results in the more general case.

1.4 Organization

Section 2 contains the basic background and definitions. In Section 3 we prove our results for functions $f : \mathbb{Z}_2^n \to \{+1, -1\}$. The results for functions on \mathbb{Z}_p^n are given in Section 4. Finally, in Section 5 we discuss problems left open by this work.

2 Notation and Basic Results

It will be more convenient for us to talk about functions $f : \{0,1\}^n \to \{\pm 1\}$. Note that if $f : \{0,1\}^n \to \{0,1\}$ then $1-2f : \{0,1\}^n \to \{\pm 1\}$ and 1-2f and f have roughly the same spectral norm (up to a multiplicative factor of 2) and the same Fourier sparsity (up to ± 1).

2.1 Decision trees and parity decision trees

In this section we define the basic computational models that we shall consider in the paper.

Definition 2.1 (Decision tree). A decision tree is a labeled binary tree T. Each internal node of T is labeled with a variable x_i , and each leaf by a bit $b \in \{+1, -1\}$. Given an input $x \in \mathbb{Z}_2^n$, a computation over the tree is executed as follows: Starting at the root, stop if it's a leaf, and output its label. Otherwise, query its label x_i . If $x_i = 0$, then recursively evaluate the left subtree, and if $x_i = 1$, evaluate the right subtree.

A decision tree T computes a function f if for every $x \in \mathbb{Z}_2^n$, the computation of x over T outputs f(x). The *depth* of a decision tree is the maximal length of a path from the root to a leaf. The decision tree complexity of f, denoted D(f), is the depth of a minimal-depth tree

computing f. Since one can always simply query all the variables of the input, it holds that for any Boolean function f, $D(f) \leq n$. A comprehensive survey of decision tree complexity can be found in [BdW02].

In the context of Fourier analysis, even a function with simple Fourier spectrum, such as the parity function over n bits, which has only 1 nonzero Fourier coefficient, requires a full binary decision tree for its computation, and in particular its depth is n. This example suggests that a more suitable computational model for understanding the connection between the computational complexity and the Fourier expansion of a function is the *parity decision tree* model, first presented by Kushilevitz and Mansour ([KM93]).

Definition 2.2 (\oplus -DT). A parity decision tree is a labeled binary tree *T*, in which every internal node is labeled by a linear function $\alpha \in \mathbb{Z}_2^n$, and each leaf with a bit $b \in \{+1, -1\}$. Whenever a computation over an input *x* arrives at an internal node, it queries $\langle \alpha, x \rangle$ (where the inner product is carried modulo 2). If $\langle \alpha, x \rangle = 0$ it recursively evaluates the left subtree, and if $\langle \alpha, x \rangle = 1$, it evaluates the right subtree. When the computation reaches a leaf it outputs its label.

Namely, a \oplus -DT can make an arbitrary linear query in every internal node (and in particular, compute the parity of *n* bits using a single query). Since a query of a single variable is linear, this model is an extension of the regular decision tree model.

The depth of the minimal-depth parity decision tree which computes f is denoted $D^{\oplus}(f)$, thus $D^{\oplus}(f) \leq D(f)$. As the example of the parity function shows, the parity decision tree model is strictly stronger than the model of decision trees. We also denote by $\operatorname{size}_{\oplus}(f)$ the size (i.e. number of leaves) of a minimal-size \oplus -DT computing f.

As a helpful tool, we extend the parity decision tree model to a functional parity decision tree model, in which we allow every leaf to be labeled with a Boolean function, rather than only by a constant. A functional \oplus -DT T then computes a function f if for every leaf ℓ of T, its label equals the restriction of f to the affine subspace defined by the constraints that appear on the path from T's root to ℓ .

2.2 Fourier Transform

We represent Boolean functions as functions $f : \mathbb{Z}_2^n \to \{+1, -1\} \subseteq \mathbb{R}$ where -1 represents the Boolean value "True" and 1 represents the Boolean value "False". For a vector of n bits α , α_i denotes its *i*-th coordinate. The set of 2^n group characters $\{\chi_\alpha : \mathbb{Z}_2^n \to \{+1, -1\} \mid \alpha \in \mathbb{Z}_2^n\}$, with $\chi_\alpha(x) = (-1)^{\sum_{i=1}^n \alpha_i x_i}$ for every $\alpha \in \mathbb{Z}_2^n$, forms a basis of the vector space of functions from \mathbb{Z}_2^n into \mathbb{R} . Furthermore, the basis is orthonormal with respect to the inner product²

$$\langle f,g\rangle = \mathop{\mathbb{E}}_{x} \left[f(x)g(x)\right]$$

where the expectation is taken over the uniform distribution over \mathbb{Z}_2^n . The Fourier expansion of a function $f : \mathbb{Z}_2^n \to \{+1, -1\}$ is its unique representation as a linear combination of those group characters:

$$f(x) = \sum_{\alpha \in \mathbb{Z}_2^n} \hat{f}(\alpha) \chi_{\alpha}(x).$$

Two of the basic identities of Fourier analysis, which follow from the orthonormality of the basis, are:

²Later when we study of functions over \mathbb{Z}_p^n we define the inner product to be $\mathbb{E}_x\left[f(x)\overline{g(x)}\right]$.

- 1. $\hat{f}(\alpha) = \langle f, \chi_{\alpha} \rangle = \mathbb{E}_x \left[f(x) \chi_{\alpha}(x) \right]$
- 2. (Plancherel's Theorem) $\langle f, g \rangle = \mathbb{E}_x \left[f(x)g(x) \right] = \sum_{\alpha \in \mathbb{Z}_2^n} \hat{f}(\alpha)\hat{g}(\alpha).$

The case f = g in Plancherel's theorem is called *Parseval's Identity*. Furthermore, when f is Boolean, $f^2 = 1$, which implies

$$\sum_{\alpha \in \mathbb{Z}_2^n} \hat{f}(\alpha)^2 = 1.$$
(4)

We define two basic complexity measures for Boolean functions:

Definition 2.3. Let $f : \mathbb{Z}_2^n \to \{+1, -1\}$ be a Boolean function. The sparsity of f, denoted spar(f), is the number of non-zero Fourier coefficients, namely

spar
$$(f) = \# \left\{ \alpha \in \mathbb{Z}_2^n \mid \hat{f}(\alpha) \neq 0 \right\}.$$

A function f is said to be s-sparse if $\operatorname{spar}(f) \leq s$.

Definition 2.4. Let $f : \mathbb{Z}_2^n \to \{+1, -1\}$ be a Boolean function. The L_1 norm (also dubbed the spectral norm) of f is defined as

$$\|\widehat{f}\|_1 = \sum_{\alpha \in \mathbb{Z}_2^n} |\widehat{f}(\alpha)|.$$

For every $f : \mathbb{Z}_2^n \to \{\pm 1, -1\}$ it holds that $\|\hat{f}\|_1 \ge \|f\|_{\infty} = 1$ (where $\|f\|_{\infty} = \max_{x \in \mathbb{Z}_2^n} |f(x)|$). We later show (Lemma 3.5) that equality is obtained if and only if $f = \pm \chi_{\alpha}$ for some $\alpha \in \mathbb{Z}_2^n$.

These measure are related to parity decision trees using the following simple lemma. For completeness we give the proof of the lemma in Appendix A.

Lemma 2.5. Let $f : \mathbb{Z}_2^n \to \{+1, -1\}$ be a Boolean function computed by $a \oplus -DTT$ of depth k and size m. Then:

- 1. $\operatorname{spar}(f) \le m2^k \le 4^k$.
- 2. $\|\hat{f}\|_1 \le m \le 2^k$.

In the upcoming sections we consider restrictions of Boolean functions to (affine) subspaces of \mathbb{Z}_2^n . We denote by $f|_V$ the restriction of f to a subspace $V \subseteq \mathbb{Z}_2^n$. For any $\alpha \neq 0$, the set $\{x \mid \chi_\alpha(x) = 1\}$ is a subspace of \mathbb{Z}_2^n of co-dimension 1. The restriction of f to this subspace is denoted $f|_{\chi_\alpha=1}$. Similarly, the set $\{x \mid \chi_\alpha(x) = -1\}$ is an affine subspace of co-dimension 1, and we denote with $f|_{\chi_\alpha=-1}$ the restriction of f to this subspace. It can be shown (cf. [O'D12], Chapter 3, Section 3.3) that under such a restriction, the coefficients $\hat{f}(\beta)$ and $\hat{f}(\alpha + \beta)$ (for every $\beta \in \mathbb{Z}_2^n$) collapse to a single Fourier coefficient whose absolute value is $|\hat{f}(\beta) + \hat{f}(\alpha + \beta)|$. Similarly, in the Fourier transform of $f|_{\chi_\alpha=-1}$, they collapse to a single coefficient whose absolute value is $|\hat{f}(\beta) - \hat{f}(\alpha + \beta)|$. This in particular implies that $||\hat{f}||_1$ and $\operatorname{spar}(f)$ do not increase when f is restricted to such a subspace. Indeed, both facts follow easily from the representation

$$f(x) = \sum_{\beta \in \mathbb{Z}_2^n / \langle \alpha \rangle} \left(\hat{f}(\beta) + \hat{f}(\beta + \alpha) \chi_\alpha(x) \right) \chi_\beta(x) , \qquad (5)$$

where $\mathbb{Z}_2^n/\langle \alpha \rangle$ denotes the cosets of the group $\langle \alpha \rangle = \{0, \alpha\}$ in \mathbb{Z}_2^n . When studying a restricted function, say $f' = f|_{\chi_\alpha(x)=1}$, we shall abuse notation and denote with $\hat{f}'(\beta)$ the term corresponding to the coset $\beta + \langle \alpha \rangle$. Namely, $\hat{f}'(\beta) = \hat{f}(\beta) + \hat{f}(\beta + \alpha)$. (similarly, for $f'' = f|_{\chi_\alpha(x)=-1}$, we shall denote $\hat{f''}(\beta) = \hat{f}(\beta) - \hat{f}(\beta + \alpha)$.) Thus, in f' both $\hat{f}'(\beta)$ and $\hat{f}'(\beta + \alpha)$ refer to the same Fourier coefficient as we only consider coefficients modulo $\langle \alpha \rangle$ (similarly for f'').

3 Boolean functions with small spectral Norm

In this section we prove our main results for functions over the Boolean cube. While many of the proofs and techniques used for general primes also apply to the case p = 2, we find the case p = 2 substantially simpler, so we present the proofs for this case separately.

3.1 Basic tools

In this section we prove the following lemma, which states that for every Boolean function $f : \mathbb{Z}_2^n \to \{+1, -1\}$, with small spectral norm, there exists a linear function χ_{γ} such that both restrictions $f|_{\chi_{\gamma}=1}$ and $f|_{\chi_{\gamma}=-1}$ have noticeable smaller spectral norms compared to f. In Section 4 we give a generalization of the lemma for functions $f : \mathbb{Z}_p^n \to \{+1, -1\}$ (Lemma 4.1).

Lemma 3.1 (Main Lemma for functions over \mathbb{Z}_2^n). Let $f : \mathbb{Z}_2^n \to \{+1, -1\}$ be a Boolean function. Let $\hat{f}(\alpha)$ be f's maximal Fourier coefficient in absolute value, and $\hat{f}(\beta)$ be the second largest, and suppose $\hat{f}(\beta) \neq 0$. Let $f' = f|_{\chi_{\alpha+\beta}=1}$ and $f'' = f|_{\chi_{\alpha+\beta}=-1}$. Then, if $\hat{f}(\alpha)\hat{f}(\beta) > 0$ then it holds that

$$\|\hat{f}'\|_1 \le \|\hat{f}\|_1 - |\hat{f}(\alpha)|$$
 and $\|\hat{f}''\|_1 \le \|\hat{f}\|_1 - |\hat{f}(\beta)|$.

If $\hat{f}(\alpha)\hat{f}(\beta) < 0$ then

$$\|\hat{f}'\|_1 \le \|\hat{f}\|_1 - |\hat{f}(\beta)|$$
 and $\|\hat{f}''\|_1 \le \|\hat{f}\|_1 - |\hat{f}(\alpha)|$.

The proof of the lemma follows from analyzing the simple equation $f^2 = 1$.

Lemma 3.2. Let $f : \mathbb{Z}_2^n \to \{+1, -1\}$ be a Boolean function. For all $\alpha \neq 0$, it holds that

$$\sum_{\gamma} \hat{f}(\gamma)\hat{f}(\alpha + \gamma) = 0.$$

Proof. Since f is Boolean we have that $f^2 = 1$. In the Fourier representation,

$$\left(\sum_{\gamma} \hat{f}(\gamma)\chi_{\gamma}(x)\right) \left(\sum_{\beta} \hat{f}(\beta)\chi_{\beta}(x)\right) = 1.$$

Then $\sum_{\gamma} \hat{f}(\gamma) \hat{f}(\alpha + \gamma)$ is the Fourier coefficient $\hat{f}^2(\alpha)$ of the function f^2 at α . However, if $\alpha \neq 0$ then this coefficient equals 0 by the uniqueness of the Fourier expansion of the function $f^2 = 1$. \Box

Proof of Lemma 3.1. Without loss of generality assume that $\hat{f}(\alpha)\hat{f}(\beta) > 0$, i.e. they have the same sign (the other case is completely analogous.) By Lemma 3.2,

$$\sum_{\gamma \in \mathbb{Z}_2^n} \hat{f}(\gamma) \hat{f}(\alpha + \beta + \gamma) = 0.$$
(6)

Let $N_{\alpha+\beta} \subseteq \mathbb{Z}_2^n$ be the set of vectors γ such that $\hat{f}(\gamma)\hat{f}(\alpha+\beta+\gamma) < 0$ (Note that by assumption, $\alpha, \beta \notin N_{\alpha+\beta}$). Switching sides in (6), we get:

$$2\left|\hat{f}(\alpha)\hat{f}(\beta)\right| = \sum_{\gamma \in N_{\alpha+\beta}} \left|\hat{f}(\gamma)\hat{f}(\alpha+\beta+\gamma)\right| - \sum_{\substack{\gamma \notin N_{\alpha+\beta}\\ \gamma \neq \alpha,\beta}} \left|\hat{f}(\gamma)\hat{f}(\alpha+\beta+\gamma)\right|.$$

In particular,

$$|\hat{f}(\alpha)||\hat{f}(\beta)| \le \frac{1}{2} \sum_{\gamma \in N_{\alpha+\beta}} \left| \hat{f}(\gamma)\hat{f}(\alpha+\beta+\gamma) \right|.$$
(7)

We now use the fact that that $\hat{f}(\beta)$ is the second largest in absolute value, and $\hat{f}(\alpha)$ does not appear in the sum, to bound the right hand side:

$$\sum_{\gamma \in N_{\alpha+\beta}} \left| \hat{f}(\gamma) \hat{f}(\alpha+\beta+\gamma) \right| \le |\hat{f}(\beta)| \sum_{\gamma \in N_{\alpha+\beta}} \min\left\{ |\hat{f}(\gamma)|, |\hat{f}(\alpha+\beta+\gamma)| \right\}.$$
(8)

Then (7) and (8) (as well as the assumption $|\hat{f}(\beta)| > 0$) together imply

$$|\hat{f}(\alpha)| \le \frac{1}{2} \sum_{\gamma \in N_{\alpha+\beta}} \min\left\{ |\hat{f}(\gamma)|, |\hat{f}(\alpha+\beta+\gamma)| \right\}.$$
(9)

Let $f' = f|_{\chi_{\alpha+\beta}=1}$. Then for every γ the coefficients $\hat{f}(\gamma)$ and $\hat{f}(\alpha + \beta + \gamma)$ collapse to a single coefficient whose absolute value is $|\hat{f}(\gamma) + \hat{f}(\alpha + \beta + \gamma)|$ (recall Equation (5)). For $\gamma \in N_{\alpha+\beta}$,

$$|\hat{f}(\gamma) + \hat{f}(\alpha + \beta + \gamma)| = \left||\hat{f}(\gamma)| - |\hat{f}(\alpha + \beta + \gamma)|\right|$$

which reduces the L_1 norm of f' compared to that of f by at least $\min(|\hat{f}(\gamma)|, |\hat{f}(\alpha + \beta + \gamma)|)$. In total, since both γ and $\alpha + \beta + \gamma$ belong to $N_{\alpha+\beta}$, we get:

$$\|\widehat{f'}\|_1 \le \|\widehat{f}\|_1 - \frac{1}{2} \sum_{\gamma \in N_{\alpha+\beta}} \min\left\{ |\widehat{f}(\gamma)|, |\widehat{f}(\alpha+\beta+\gamma)| \right\}.$$

Therefore by (9) we have

$$\|\widehat{f'}\|_1 \le \|\widehat{f}\|_1 - |\widehat{f}(\alpha)|.$$

When we consider $f'' = f|_{\chi_{\alpha+\beta}=-1}$ we clearly have that for $\gamma = \alpha$,

$$|\widehat{f''}(\gamma)| = |\widehat{f}(\gamma) - \widehat{f}(\alpha + \beta + \gamma)| = |\widehat{f}(\alpha)| - |\widehat{f}(\beta)|.$$

Hence,

$$\|\widehat{f''}\|_1 \le \|\widehat{f}\|_1 - |\widehat{f}(\beta)|.$$

Next, we show that any Boolean function with small spectral norm has a large Fourier coefficient.

Lemma 3.3. Let $f : \mathbb{Z}_2^n \to \{+1, -1\}$ be a Boolean function. Denote $A = \|\hat{f}\|_1$, and let $\hat{f}(\alpha)$ be f's maximal Fourier coefficient in absolute value. Then $|\hat{f}(\alpha)| \ge 1/A$. Furthermore, let $\hat{f}(\beta)$ be f's second largest Fourier coefficient in absolute value. Then $|\hat{f}(\beta)| > (1 - \hat{f}(\alpha)^2)/\|\hat{f}\|_1 = (1 - \hat{f}(\alpha)^2)/A$.

Proof. By Parseval's identity,

$$1 = \mathbb{E}[f^2] = \sum_{\gamma} \hat{f}(\gamma)^2.$$

Now note that

$$1 = \sum_{\gamma} \hat{f}(\gamma)^2 \le |\hat{f}(\alpha)| \sum_{\gamma} |\hat{f}(\gamma)| \le A |\hat{f}(\alpha)|,$$

which implies that indeed $|\hat{f}(\alpha)| \geq 1/A$. The second statement follows similarly, since

$$1 - \hat{f}(\alpha)^2 = \sum_{\gamma \neq \alpha} \hat{f}(\gamma)^2 \le |\hat{f}(\beta)| \sum_{\gamma \neq \alpha} |\hat{f}(\gamma)| < \|\hat{f}\|_1 \cdot |\hat{f}(\beta)| = A|\hat{f}(\beta)|.$$

Corollary 3.4. Let $f : \mathbb{Z}_2^n \to \{+1, -1\}$ be a Boolean function such that $\|\hat{f}\|_1 = A > 1$. Then there exists $\gamma \in \mathbb{Z}_2^n$ and $b \in \{+1, -1\}$ such that $\|\widehat{f}|_{\chi_{\gamma}=b}\|_1 \leq A - 1/A$.

Proof. The assumption A > 1 implies the second largest coefficient, $\hat{f}(\beta)$, is non-zero, and then the result is immediate from Lemma 3.1 and Lemma 3.3.

3.2 **Proofs of Theorems**

We now show how Theorems 1.1,1.2,1.3 and 1.4 follow as simple consequences of Lemma 3.1.

Lemma 3.5. Let $f : \mathbb{Z}_2^n \to \{\pm 1, -1\}$ be a Boolean function such that $\|\hat{f}\|_1 = 1$. Then $f = \pm \chi_\alpha$ for some $\alpha \in \mathbb{Z}_2^n$.

Proof. By Parseval's identity and the assumption, we get

$$\sum_{\gamma} \hat{f}(\gamma)^2 = 1 = \sum_{\gamma} |\hat{f}(\gamma)|$$

For all γ we have that $|\hat{f}(\gamma)| \in [0,1]$, so $|\hat{f}(\gamma)| < \hat{f}(\gamma)^2$ unless $|\hat{f}(\gamma)| = 1$ or $\hat{f}(\gamma) = 0$, and the proposition follows.

Corollary 3.4 and Lemma 3.5 imply Theorem 1.1:

Proof of Theorem 1.1. Apply Corollary 3.4 iteratively on f. After less than A^2 steps, we are left with a function g which is a restriction of f on an affine subspace defined by the restrictions so far, such that $\|\hat{g}\|_1 = 1$. By Lemma 3.5, $g = \pm \chi_{\alpha}$ for some $\alpha \in \mathbb{Z}_2^n$. If $\alpha \neq 0$ we further restrict g on $\chi_{\alpha} = 1$ to get a restriction of f which is constant.

We note that the proof of Theorem 1.1 actually implies that f is constant on a subspace of co-dimension at most $\binom{A+1}{2}$, but we do not make an effort to improve the constants in the exponent.

Proof of Theorem 1.2. Let

$$L(n, A) \stackrel{\text{def}}{=} \max_{\substack{f: \mathbb{Z}_2^n \to \{+1, -1\}\\ \|\hat{f}\|_1 \le A}} \text{size}_{\oplus}(f).$$

We show, by induction on n, that $L(n, A) \leq 2n^{A^2}$.

For n = 1 the result is trivial.

Let n > 1 and further assume that A > 1 (if A = 1 then the claim follows from Lemma 3.5). By Corollary 3.4, there is a linear function $\gamma \in \mathbb{Z}_2^n$ and $b \in \{+1, -1\}$ such that $\|\widehat{f}|_{\chi_{\gamma}=b}\|_1 \leq A - 1/A$. Consider the tree whose first query is the linear function χ_{γ} (i.e. we branch left or right according to the value of $\langle x, \gamma \rangle$). By the choice of γ we obtain the following recursion:

$$L(n, A) \le L(n - 1, A - 1/A) + L(n - 1, A).$$

The induction hypothesis then implies (using the assumption that A > 1)

$$L(n, A) \le 2(n-1)^{(A-1/A)^2} + 2(n-1)^{A^2}$$

$$\le 2(n-1)^{A^2-1} (1 + (n-1))$$

$$< 2n^{A^2}.$$

It is tempting to try and save something in the argument above, especially as we assume that we never save anything in the spectral norm when branching according to $\chi_{\gamma} = -b$. However, as the AND function demonstrates, this argument gives a nearly tight result is some cases.

Proof of Theorem 1.3. By Theorem 1.1, there exist A^2 linear functions $\alpha_1, \ldots, \alpha_{A^2}$ that can be fixed to values b_1, \ldots, b_{A^2} , respectively, where $b_i \in \{+1, -1\}$ for $1 \leq i \leq A^2$, such that f restricted to the subspace $\{x \mid \chi_{\alpha_i}(x) = b_i, \forall 1 \leq i \leq A^2\}$ is constant. This implies that for any non-zero coefficient $\hat{f}(\beta)$ there exists at least one other non-zero coefficient $\hat{f}(\beta+\gamma)$ for $\gamma \in \text{span}\{\alpha_1, \ldots, \alpha_{A^2}\}$. Indeed, if no such coefficient exists then the restriction $f|_{\chi_{\alpha_1}(x)=b_1,\ldots,\chi_{\alpha_{A^2}}=b^2}$ will have the non-constant term $\hat{f}(\beta) \cdot \chi_{\beta}$ (for example, this can be easily obtained from Equation (5)). Therefore, for any other fixing of $\chi_{\alpha_1}, \ldots, \chi_{\alpha_{A^2}}$, both $\hat{f}(\beta)\chi_{\beta}$ and $\hat{f}(\beta+\gamma)\chi_{\beta+\gamma}$ collapse to the same (perhaps nonzero) linear function, which implies that $\text{span}(f|_{\chi_{\alpha_1}=b'_1,\ldots,\chi_{\alpha_{A^2}}=b'_{A^2}}) \leq \text{span}(f)/2$ for any choice of b'_1, \ldots, b'_{A^2} . In other words, if we consider the tree of depth A^2 in which on level i all nodes branch according to $\langle \alpha_i, x \rangle$ then restricting f to any path yields a new function with half the sparsity. Thus, we can continue this process by induction for at most $\log s$ steps, until all the functions in the leaves are constant. The resulting tree has depth at most $A^2 \log s$ as claimed.

Our next goal is proving Theorem 1.4. To this end, we use a lemma which shows there exists a low depth functional \oplus -DT which computes f whose leaves are highly biased. Recall that the *bias* of a Boolean function f is defined to be

$$\operatorname{bias}(f) \stackrel{\text{def}}{=} \left| \Pr_{x}[f(x) = 1] - \Pr_{x}[f(x) = -1] \right|.$$

Alternatively, $bias(f) = |\hat{f}(0)|$. The proof of the theorem is slightly more delicate than the previous proofs.

Lemma 3.6. Let $f : \mathbb{Z}_2^n \to \{+1, -1\}$ be a Boolean function with $\|\hat{f}\|_1 \leq A$. Then there exists a functional \oplus -DT for f of depth at most $O(A^3 \log(1/\epsilon))$ such that all the functions on its leaves have bias at least $1 - \epsilon$.

Proof. Let $\hat{f}(\alpha)$ be f's largest coefficient in absolute value, and $\hat{f}(\beta)$ the second largest, and suppose $\hat{f}(\alpha)\hat{f}(\beta) > 0$ (this is without loss of generality). We consider two cases:

1. $|\hat{f}(\alpha)| > 1 - \epsilon$ for $\alpha \neq 0$:

We first show that if $|\hat{f}(\alpha)| > 1 - \epsilon$ then $|\hat{f}(0)| < \epsilon$. By considering -f instead of f, if needed, we may assume without the loss of generality $\hat{f}(\alpha) > 1 - \epsilon$. Note that

$$1 - \epsilon < \hat{f}(\alpha) = \Pr[f = \chi_{\alpha}] - \Pr[f \neq \chi_{\alpha}] = (1 - \Pr[f \neq \chi_{\alpha}]) - \Pr[f \neq \chi_{\alpha}],$$

so $\Pr[f \neq \chi_{\alpha}] < \epsilon/2$. Now, since $\mathbb{E}[\chi_{\alpha}] = 0$, we have

$$|\hat{f}(0)| = |\mathbb{E}[f]| = |\mathbb{E}[f] - \mathbb{E}[\chi_{\alpha}]| = |\mathbb{E}[f - \chi_{\alpha}]| \le \mathbb{E}[|f - \chi_{\alpha}|] = 2\Pr[f \neq \chi_{\alpha}] \le \epsilon.$$

In this case we query on χ_{α} . Note that no matter what value χ_{α} obtains, the restricted function has bias at least $\hat{f}(\alpha) - |\hat{f}(0)| > 1 - 2\epsilon$.

2. $|\hat{f}(\alpha)| \leq 1 - \epsilon$:

In this case we show that we can create a tree of depth $O(A \log(1/\epsilon))$ such that all the functions on its leaves have spectral norm at most $\|\hat{f}\|_1 - c/A$ for some absolute constant c. Note that the assumption in particular implies A > 1, and by Lemma 3.3 we have $|\hat{f}(\alpha)| \ge 1/A$ and $|\hat{f}(\beta)| > \frac{1-\hat{f}(\alpha)^2}{\|\hat{f}\|_1} \ge \frac{1-\hat{f}(\alpha)^2}{A} > \epsilon/A$. We next query the function on $\chi_{\alpha+\beta}$. Let $f' = f|_{\chi_{\alpha+\beta}=1}$ and $f'' = f|_{\chi_{\alpha+\beta}=-1}$. By Lemma 3.1, $\|\hat{f}'\|_1 \le A - 1/A$ and $\|\hat{f}''\|_1 \le A - |\hat{f}(\beta)|$. If $|\hat{f}(\beta)| > 1/4A$ then we are done. Suppose then $\epsilon/A < |\hat{f}(\beta)| < 1/4A$. Thus, f' has the desired spectral norm, but the norm of f'' may still be too large. We note, however, that

$$|\hat{f}''(\alpha)| \le 1 - \epsilon - |\hat{f}(\beta)| \le 1 - \epsilon - \epsilon/A = 1 - \left(1 + \frac{1}{A}\right)\epsilon.$$

That is, $|\hat{f}''(\alpha)| \leq 1 - \epsilon''$ where $\epsilon'' = (1 + 1/A)\epsilon$. Moreover, our assumption on $|\hat{f}(\beta)|$ implies $|\hat{f}''(\alpha)| > |\hat{f}(\alpha)| - |\hat{f}(\beta)| \geq |\hat{f}(\alpha)| - 1/4A > 3/4A$. Furthermore, any other coefficient of f'' satisfies $|\hat{f}''(\gamma)| \leq |\hat{f}(\gamma)| + |\hat{f}(\gamma + \alpha + \beta)| \leq 2|\hat{f}(\beta)| \leq 1/2A < |\hat{f}''(\alpha)|$. In other words, $f''(\alpha)$ is also the largest coefficient, in absolute value, of f''. In particular, if we were to repeat this process for f'' then in the next step the spectral norm of one of the children will be as desired and the spectral norm of the other child will be at most $1 - (1 + \frac{1}{A})^2 \epsilon$. Hence, after $O(A \log(1/\epsilon))$ such steps we will be in the situation where the largest Fourier coefficient of the "bad" child is at most, say, $1/\sqrt{2}$. At this stage, if we query again in the direction of the sum of the two heaviest coefficients then the restriction will satisfy that its spectral norm is at most $\|\hat{f}\|_1 - \frac{1}{2A}$.

We continue by induction until all the functions on the leaves are either constant or highly biased. \Box

The functional \oplus -DT from Lemma 3.6 can be easily converted to a \oplus -DT of a function g which ϵ -approximates f by replacing every function-labeled leaf with the value it is highly biased towards (i.e. by the sign of its Fourier coefficient of the constant term). The proof of Theorem 1.4 follows by combining this fact with the well known result of Goldreich and Levin [GL89] and of Kushilevitz and Mansour [KM93], who showed that given a query oracle to a function f, with high probability, one can approximate its large Fourier coefficients in polynomial time.

Lemma 3.7 ([GL89, KM93]). There exists a randomized algorithm, such that given a query oracle to a function $f : \mathbb{Z}_2^n \to \{+1, -1\}$, and parameters δ, θ, η , outputs, with probability at least $1 - \delta$, a list containing all of f's Fourier coefficients whose absolute value is at least θ . Furthermore, the algorithm outputs an additive approximation of at most η to each of these coefficients. The algorithm runs in polynomial time in n, $1/\theta$, $1/\eta$ and $\log(1/\delta)$.

Proof of Theorem 1.4. We use the algorithm from Lemma 3.7 to find f's largest Fourier coefficient in absolute value, $\hat{f}(\alpha)$. Whenever $|\hat{f}(\alpha)| \leq 1 - \epsilon$, the same algorithm can be used to find the second largest coefficient, $\hat{f}(\beta)$, in polynomial time (in $n, 1/\epsilon$ and $\log(1/\delta)$). We use Lemma 3.6 to construct a functional \oplus -DT, and replace every function-labeled leaf with the constant it's biased towards.

In fact, there is a slight inaccuracy in the argument above. Note that Lemma 3.7 only guarantees that we find a coefficient that is approximately the largest one. However, if it is the case that the

second largest coefficient is very close to the largest one, then in Lemma 3.6 when we branch according to $\chi_{\alpha+\beta}$ both children have significantly smaller spectral norm.

If it is the case that we correctly identified the largest Fourier coefficient but failed to identify the second largest then we note that if our approximation is good enough, say better than $\epsilon/2A$, then even if we are mistaken and branch according to $\chi_{\alpha+\beta'}$ where $||\hat{f}(\beta)| - |\hat{f}(\beta')|| < \epsilon/2A$, the the argument in Lemma 3.6 still works, perhaps with a slightly worse constant in the big O.

4 Functions over \mathbb{Z}_n^n with small spectral norm

In this section, we extend our results to functions $f : \mathbb{Z}_p^n \to \{+1, -1\}$ where p is any fixed prime. Throughout this section we assume p > 2. We start by giving some basic facts on the Fourier transform over \mathbb{Z}_p^n .

4.1 Preliminaries

Let $\omega = e^{\frac{2\pi i}{p}} \in \mathbb{C}$ be a primitive root of unity of order p. The set of p^n group characters

$$\{\chi_{\alpha}: \mathbb{Z}_p^n \to \mathbb{C} \mid \alpha \in \mathbb{Z}_p^n\}$$

where $\chi_{\alpha}(x) = \omega^{\langle \alpha, x \rangle}$, is a basis for the vector space of functions from \mathbb{Z}_p^n into \mathbb{C} , and is orthonormal with respect to the inner product $\langle f, g \rangle = \mathbb{E}_x[f(x)\overline{g(x)}]$.³ We now have that $\hat{f}(\alpha) = \mathbb{E}_x[f(x)\overline{\chi_{\alpha}(x)}]$ and $f = \sum_{\alpha \in \mathbb{Z}_p^n} \hat{f}(\alpha)\chi_{\alpha}$. Plancherel's theorem holds here as well and the sparsity and L_1 norm are defined in the same way as they were defined for functions $f : \mathbb{Z}_2^n \to \{+1, -1\}$. Lemma 3.3 also extends to functions $f : \mathbb{Z}_p^n \to \{+1, -1\}$, with virtually the same proof. When f is real-valued (and in particular, a Boolean function), then $\hat{f}(0) = \mathbb{E}[f]$ is real, and it can also be directly verified that $\hat{f}(\alpha) = \overline{\hat{f}(-\alpha)}$.

We have the analog to Equation (5):

$$f(x) = \sum_{\beta \in \mathbb{Z}_p^n / \langle \alpha \rangle} \left(\sum_{k=0}^{p-1} \hat{f}(\beta + k \cdot \alpha) (\chi_\alpha(x))^k \right) \chi_\beta(x) .$$
(10)

Hence, when f is restricted to an affine subspace on which $\chi_{\alpha} = \omega^{\lambda}$ (where $0 \leq \lambda \leq p-1$), then for every⁴ $\beta \in \mathbb{Z}_p^n/\langle \alpha \rangle$ we have

$$\hat{g}(\beta) = \sum_{k=0}^{p-1} \omega^{\lambda k} \hat{f}(\beta + k\alpha).$$

For every $\beta \in \mathbb{Z}_p^n$, we denote by $[\beta]_{\alpha} = \beta + \langle \alpha \rangle$ the coset of $\langle \alpha \rangle$ in which β resides.

Lemma 3.2 now becomes:

$$\sum_{\alpha \in \mathbb{Z}_p^n} \hat{f}(\alpha) \hat{f}(\beta - \alpha) = 0$$
(11)

for all $0 \neq \beta \in \mathbb{Z}_p^n$.

As a generalization of the \oplus -DT model, we define a *p*-ary linear decision tree, denoted \oplus_{p} -DT, to be a computation tree where every internal node v is labeled by a linear function $\gamma \in \mathbb{Z}_p^n$ and has p children. The edges between v and its children are labeled $0, 1, \ldots, p-1$, and on an

³For a complex number z, we denote by \overline{z} its complex conjugate.

⁴Recall that $\langle \alpha \rangle$ is the additive group generated by α and $\mathbb{Z}_p^n/\langle \alpha \rangle$ is the set of cosets of $\langle \alpha \rangle$.

input x, it computes $\langle \gamma, x \rangle \mod p$ and branches accordingly. We carry along from the binary case the notation $D^{\oplus_p}(f)$ and $\operatorname{size}_{\oplus_p}(f)$, and define them to be the depth (respectively, size) of a minimal-depth (resp. size) \oplus_p -DT computing f.

4.2 Basic tools

In this section we prove the basic tools required for generalizing Theorems 1.1, 1.2 and 1.3 for functions $f : \mathbb{Z}_p^n \to \{+1, -1\}$. We begin by giving an analog of our Main Lemma, Lemma 3.1:

Lemma 4.1. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}$ be a non-constant Boolean function such that $\|\hat{f}\|_1 = A$. Then there exist a constant $c = c(p) > 0, 0 \neq \gamma \in \mathbb{Z}_p^n$ and at least p-1 distinct elements $\lambda_1, \ldots, \lambda_{p-1} \in \mathbb{Z}_p$ such that $\|\widehat{f}\|_{\chi_{\gamma}=\omega^{\lambda_k}}\|_1 \leq A - c/A$ for $k = 1, \ldots, p-1$.

Note that this is not quite an analog of Lemma 3.1 as such analog would have to bound the spectral norm for each of the p children. However, for sake of proving versions of Theorems 1.1, 1.2 and 1.3 we only require this relaxed version. We will need a stronger claim when proving the analog for Theorem 1.4.

As before we first prove a claim characterizing functions with very small spectral norm. Observe that when p > 2, the characters themselves are not Boolean functions any more. The following is a variant of Lemma 3.5 for \mathbb{Z}_p^n with p > 2.

Lemma 4.2. Let $f : \mathbb{Z}_p^n \to \{\pm 1, -1\}$ be a Boolean function such that $\|\hat{f}\|_1 = 1$. Then $f = \pm 1$.

Proof. Once more, using Parseval's identity and the assumption:

$$\sum_{\gamma} |\hat{f}(\gamma)|^2 = 1 = \sum_{\gamma} |\hat{f}(\gamma)|.$$

As before, $|\hat{f}(\gamma)| \in [0,1]$, which implies $|\hat{f}(\alpha)| = 1$ for exactly one $\alpha \in \mathbb{Z}_p^n$, i.e. $f = z \cdot \chi_\alpha$ where $z \in \mathbb{C}$ and |z| = 1. Since f is Boolean and f(0) = z, we get $z = \pm 1$, and $\pm \chi_\alpha$ is Boolean (when p > 2) only when $\alpha = 0$.

The following is a purely geometric lemma we use in our analysis. Since the Fourier coefficients now are complex numbers we need to bound the decrease in the spectral norm when two coefficients that are not aligned in the same direction collapse to the same coefficient.

Lemma 4.3. Let $z_1, z_2 \in \mathbb{C}$ such that $|z_1| = R$, $|z_2| = r$ and $r \leq R$. Suppose the angle between z_1 and z_2 is θ . Then, for $C = C(\theta) = (1 - \cos(\theta))/2$ it holds that

$$|z_1| + |z_2| - |z_1 + z_2| \ge Cr.$$

We give the simple proof in Appendix B.

The next lemma is similar to the inequalities of the type we used in the proof of Lemma 3.1.

Lemma 4.4. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}$ be a non-constant Boolean function, and suppose $\hat{f}(0)$ is the largest Fourier coefficient in absolute value and $\hat{f}(\beta)$ is the second largest. Then

$$2|\hat{f}(0)| \le \sum_{\substack{\gamma \in \mathbb{Z}_p^n \\ \gamma \ne 0, \beta}} \min\left\{ |\hat{f}(\gamma)|, |\hat{f}(\gamma - \beta)| \right\}.$$

Proof. By rearranging Equation (11) with respect to β , we get:

$$|2\hat{f}(0)\hat{f}(\beta)| = \left|\sum_{\substack{\gamma \in \mathbb{Z}_p^n \\ \gamma \neq 0, \beta}} \hat{f}(\gamma)\hat{f}(\beta - \gamma)\right|$$

Now apply the triangle inequality to the right hand side, and then utilize the fact that $\hat{f}(\beta)$ is the second largest in absolute value and $\hat{f}(0)$ does not appear in the right hand side, to obtain

$$2|\hat{f}(0)||\hat{f}(\beta)| \le |\hat{f}(\beta)| \sum_{\substack{\gamma \in \mathbb{Z}_p^n \\ \gamma \ne 0, \beta}} \min\left\{ |\hat{f}(\gamma)|, |\hat{f}(\beta - \gamma)| \right\}.$$

Since f is real-valued, $\hat{f}(\beta - \gamma) = \overline{\hat{f}(\gamma - \beta)}$ (and in particular, they have the same absolute value), and since f is non-constant, by Lemma 4.2 we have $\|\hat{f}\|_1 > 1$, i.e. $\hat{f}(\beta) \neq 0$, which implies the desired inequality.

Proof of Lemma 4.1. Let $\hat{f}(\alpha)$ be f's maximal Fourier coefficient in absolute value, and let $C = C(\pi/p)$ as in Lemma 4.3 We distinguish between two cases:

The first case we consider is $\alpha \neq 0$. In this case, by Lemma 3.3, $|\hat{f}(-\alpha)| = |\hat{f}(\alpha)| \geq 1/A$. Let $\lambda \in \mathbb{Z}_p$, and consider the restriction $f|_{\chi_{\alpha}=\omega^{\lambda}}$. The new constant coefficient becomes $|\hat{f}(0) + \omega^{\lambda}\hat{f}(\alpha) + \cdots + \omega^{\lambda(p-1)}\hat{f}((p-1)\alpha)|$. We analyze only the loss in the L_1 norm obtained from the collapse of $\hat{f}(\alpha)$ and $\hat{f}(-\alpha) = \hat{f}((p-1)\alpha)$ to the same coefficient. Let θ be the angle between $\hat{f}(\alpha)$ and $\hat{f}(-\alpha)$. Since multiplication by ω is equivalent to rotation by $2\pi/p$, as λ traverses over 0, 1, ..., p-1, the angle between $\omega^{\lambda}\hat{f}(\alpha)$ and $\omega^{\lambda(p-1)}\hat{f}(-\alpha)$ attains all possible values $\theta + 2\kappa\pi/p$ for $\kappa = 0, 1, ..., p-1$. Hence, there exists at most one choice of λ such that the angle between $\omega^{\lambda}\hat{f}(\alpha)$ and $\omega^{\lambda(p-1)}\hat{f}(-\alpha)$ is less than π/p . It follows that for all but at most one choice of λ ,

$$|\hat{f}(\alpha)| + |\hat{f}(-\alpha)| - |\omega^{\lambda}\hat{f}(\alpha) + \omega^{\lambda(p-1)}\hat{f}(-\alpha)| \ge C|\hat{f}(-\alpha)| \ge C/A.$$

Hence, for all but at most one $\lambda \in \mathbb{Z}_p$,

$$\|\widehat{f}\|_{\chi_{\alpha}=\omega^{\lambda}}\|_{1} \leq \|\widehat{f}\|_{1} - C/A.$$

$$\tag{12}$$

The second case is $\alpha = 0$. Let $\hat{f}(\beta)$ be the second largest coefficient in absolute value. By the assumption $\|\hat{f}\|_1 > 1$, we have $|\hat{f}(\beta)| > 0$. We define the *weight* of a pair $\{\gamma, \gamma - \beta\} \subseteq \mathbb{Z}_p^n$ to be $w(\gamma) = \min \{|\hat{f}(\gamma)|, |\hat{f}(\gamma - \beta)|\}$, and denote

$$W = \sum_{\gamma \neq 0, \beta} w(\gamma).$$

Thus By Lemma 4.4, we have

$$2|\hat{f}(0)| \le W. \tag{13}$$

Note that when restricting f on $\chi_{\beta} = \omega^{\lambda}$, $\hat{f}(\gamma)$ and $\hat{f}(\gamma - \beta)$ collapse to the same coefficient, and as in the previous case, the angle between them after the restriction is $\theta + 2\kappa\pi/p$ for some $\kappa \in \mathbb{Z}_p$, where θ is the angle between $\hat{f}(\gamma)$ and $\hat{f}(\gamma - \beta)$. We call $\lambda \in \mathbb{Z}_p$ good with respect to γ if the angle between $\hat{f}(\gamma)$ and $\omega^{\lambda(p-1)}\hat{f}(\gamma - \beta)$ is at least π/p , and as in the previous case, if we fix β , then for every pair there exist at least p-1 good elements in \mathbb{Z}_p . An element λ which is good for γ implies a large angle between $\hat{f}(\gamma)$ and $\hat{f}(\gamma - \beta)$ under the restriction $f|_{\chi_{\beta}=\omega^{\lambda}}$. Intuitively, by Lemma 4.3, this implies we are guaranteed to lose at least $C \cdot \min\{|\hat{f}(\gamma)|, |\hat{f}(\gamma - \beta)|\} = Cw(\gamma)$ in the spectral norm (the actual analysis, which will now follow, is a bit more delicate).

Consider now the matrix M whose rows are indexed by elements $\gamma \in \mathbb{Z}_p^n$ for all $\gamma \neq 0, \beta$, and whose columns are indexed by all elements $\lambda \in \mathbb{Z}_p$. We define:

$$M_{\gamma,\lambda} = \begin{cases} w(\gamma) & \text{if } \lambda \text{ is good with respect to } \gamma \\ 0 & \text{otherwise} \end{cases}$$

Since for every γ there are at least p-1 good elements, we have

$$\sum_{\gamma,\lambda} M_{\gamma,\lambda} \ge (p-1) \sum_{\gamma \ne 0,\beta} w(\gamma) = (p-1)W.$$
(14)

While for every fixed column λ_0 ,

$$\sum_{\gamma} M_{\gamma,\lambda_0} \le W. \tag{15}$$

As there are p columns, (14) and (15) together imply that there is at most one column in which the total weight is less than W/2, i.e. for all $\lambda \in \mathbb{Z}_p$ but at most one, it holds that

$$\sum_{\gamma} M_{\gamma,\lambda} \ge W/2 . \tag{16}$$

Every element $\lambda \in \mathbb{Z}_p$ which satisfies (16) will be called *good*. We thus proved the existence of at least p-1 good elements λ .

We now fix a good element λ and consider the restriction $\chi_{\beta} = \omega^{\lambda}$. Consider pairs $\{\gamma, \gamma - \beta\}$. Note that both elements belong to the same coset in $\mathbb{Z}_p^n/\langle\beta\rangle$. Moreover, all the elements that collapse to the same coefficient when we restrict on $\chi_{\beta} = \omega^{\lambda}$ form a coset. To avoid over-counting, we analyze only the saving in the L_1 norm caused by pairs $\{\gamma, \gamma - \beta\}$ (among the elements for which λ is good) that attain the maximum weight in their respective coset.

Let $[\delta_1]_{\beta}, \ldots, [\delta_{p^{n-1}}]_{\beta}$ be all distinct cosets of $\langle \beta \rangle$, and for $1 \leq k \leq p^{n-1}$, let

$$\gamma_k = \operatorname*{arg\,max}_{\gamma \in [\delta_k]_\beta} M_{\gamma,\lambda},$$

and define $N_{\lambda} = \{\gamma_k \mid M_{\gamma_k,\lambda} \neq 0, 1 \le k \le p^{n-1}\}$. We rewrite (16) as

$$\frac{W}{2} \le \sum_{k=1}^{p^{n-1}} \sum_{\substack{\gamma \in [\delta_k]_\beta \\ \gamma \neq 0, \beta}} M_{\gamma,j} \le p \sum_{\substack{\gamma_k \in N_\lambda \\ \gamma_k \in N_\lambda}} w(\gamma_k).$$
(17)

Since λ is good, we know that after the restriction, we lose at least $Cw(\gamma_k)$ for every $\gamma_k \in N_{\lambda}$. This implies the total reduction in the spectral norm is at least

$$C\sum_{\gamma_k \in N_\lambda} w(\gamma_k) \ge \frac{CW}{2p}$$

Inequality (13) and Lemma 3.3 now imply

$$\frac{CW}{2p} \ge \frac{C}{p}|\hat{f}(0)| \ge \frac{C}{pA}.$$

Hence, for every good λ ,

$$\|\widehat{f}\|_{\chi_{\beta}=\omega^{\lambda}}\|_{1} \le \|\widehat{f}\|_{1} - C/(pA).$$
(18)

Taking c = C/p and considering both cases which are described by inequalities (12) and (18), the statement of the lemma follows.

4.3 Analogs of Theorems 1.1, 1.2 and 1.3

Theorems 1.1, 1.2 and 1.3 now follow as consequences of Lemma 4.1. Their proofs use the same arguments we used to deduce their \mathbb{Z}_2^n counterparts from Lemma 3.1. The proof of an analog for Theorem 1.4 is a bit longer, and is deferred to section 4.4.

Theorem 4.5. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}$ be a Boolean function with $\|\hat{f}\|_1 = A$. Then there exists an affine subspace $V \subseteq \mathbb{Z}_p^n$ of co-dimension at most $O(A^2)$ such that f is constant on V.

Proof. Apply Lemma 4.1 iteratively on f. After at most A^2/c steps, we are left with a function g which is a restriction of f on an affine subspace defined by the restrictions so far, such that $\|\hat{g}\|_1 = 1$. By Lemma 4.2 $g = \pm 1$.

Theorem 4.6. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}$ be a Boolean function with $\|\hat{f}\|_1 = A$. Then $\operatorname{size}_{\oplus_p}(f) \leq n^{O(A^2)}$.

Proof. As before, let

$$L(n, A) \stackrel{\text{def}}{=} \max_{\substack{f: \mathbb{Z}_p^n \to \{+1, -1\}\\ \|\hat{f}\|_1 \le A}} \operatorname{size}_{\oplus_p} f.$$

By Lemma 4.1, there is a constant $0 < c \le 1$ (which depends only on p), a linear function $\gamma \in \mathbb{Z}_p^n$ and $\lambda_1, ..., \lambda_{p-1} \in \mathbb{Z}_p$ such that $\|\widehat{f}\|_{\chi_{\gamma}=\omega^{\lambda_j}}\|_1 \le A - c/A$ for all $1 \le j \le p-1$. We show, by induction on n, that $L(n, A) \le p^{A^2/c} n^{A^2/c}$. For n = 1 the result is trivial.

Let n > 1 and further assume that A > 1 (if A = 1 then the claim follows from Lemma 4.2). Consider the tree whose first query is the linear function χ_{γ} . By the choice of γ we obtain the following recursion:

$$L(n, A) \le (p-1)L(n-1, A-c/A) + L(n-1, A).$$

The induction hypothesis then implies (using the assumption that A > 1)

$$\begin{split} L(n,A) &\leq (p-1)p^{(A-c/A)^2/c}(n-1)^{(A-c/A)^2/c} + p^{A^2/c}(n-1)^{A^2/c} \\ &\leq (p-1)p^{(A^2/c)-1}(n-1)^{(A^2/c)-1} + p^{A^2/c}(n-1)^{A^2/c} \\ &\leq p^{A^2/c}(n-1)^{(A^2/c)-1}\left(1+(n-1)\right) \\ &\leq p^{A^2/c}n^{A^2/c}. \end{split}$$

As an immediate corollary, we get:

Corollary 4.7. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}$ be a Boolean function with $\|\hat{f}\|_1 = A$. Then $f = \sum_{i=1}^{n^{O(A^2)}} \pm \mathbb{1}_{V_i}$, where each V_i is an affine subspace of \mathbb{Z}_p^n .

Theorem 4.8. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}$ be such that $\|\hat{f}\|_1 = A$ and $|\{\alpha \mid \hat{f}(\alpha) \neq 0\}| = s$. Then f can be computed by $a \oplus_p$ -DT of depth $O(A^2 \log s)$.

Proof. By Theorem 4.5, there exist $K = O(A^2)$ linear functions $\alpha_1, \ldots, \alpha_K$ which can be fixed to values $\omega^{\lambda_1}, \ldots, \omega^{\lambda_K}$ where $\lambda_j \in \mathbb{Z}_p$ for $1 \leq j \leq K$, such that f restricted to the subspace $\{x \mid \chi_{\alpha_j}(x) = \omega^{\lambda_j}, \forall 1 \leq j \leq K\}$ is constant. Once again, this implies that for any non-zero coefficient $\hat{f}(\beta)$ there exists at least one other non-zero coefficient $\hat{f}(\beta+\gamma)$ for $\gamma \in \text{span}\{\alpha_1, \ldots, \alpha_K\}$, since if no such coefficient exists then the restriction $f|_{\chi_{\alpha_1}(x)=\omega^{\lambda_1},\ldots,\chi_{\alpha_K}=\omega^{\lambda_k}}$ will have the non-constant term $\hat{f}(\beta) \cdot \chi_{\beta}$. Therefore, for any other fixing of $\chi_{\alpha_1},\ldots,\chi_{\alpha_K}$, both $\hat{f}(\beta)\chi_{\beta}$ and $\hat{f}(\beta+\gamma)\chi_{\beta+\gamma}$ collapse to the same (perhaps non-zero) linear function, which implies that $\text{spar}(f)|_{\chi_{\alpha_1}=\omega^{\lambda'_1},\ldots,\chi_{\alpha_K}=\omega^{\lambda'_K}) \leq \text{spar}(f)/2$ for any choice of $\lambda'_1,\ldots,\lambda'_K$. Thus, we can continue by induction until all the functions in the leaves are constant.

4.4 An analog of Theorem 1.4

In this section we prove the following Theorem:

Theorem 4.9. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}$ be such that $\|\hat{f}\|_1 = A$. Then for every $\delta, \epsilon > 0$ there is a randomized algorithm that given a query oracle to f outputs (with probability at least $1 - \delta$) a \oplus_p -DT of depth $O(A^3 \log(1/\epsilon))$ that computes a Boolean function g_{ϵ} such that $dist(f, g_{\epsilon}) \leq \epsilon$. The algorithm runs in polynomial time in $n, A, 1/\epsilon$ and $\log(1/\delta)$.

We begin by introducing notations that will be used through some of the proofs of the upcoming lemmas in this section.

Notation 4.10. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}$ be a Boolean function, $0 \neq \alpha \in \mathbb{Z}_p^n$ and $\lambda \in \mathbb{Z}_p$. Denote $g = f|_{\chi_\alpha = \omega^\lambda}$. Recall that for every $\gamma \in \mathbb{Z}_p^n$, we denote $[\gamma]_\alpha = \gamma + \langle \alpha \rangle$. Let:

$$m_{\lambda}([\gamma]_{\alpha}) \stackrel{\text{def}}{=} |\hat{g}(\gamma)|^2 - \sum_{k=0}^{p-1} |\hat{f}(\gamma + k\alpha)|^2,$$

and

$$s_{\lambda}([\gamma]_{\alpha}) \stackrel{\text{def}}{=} \sum_{k=0}^{p-1} |\hat{f}(\gamma + k\alpha)| - |\hat{g}(\gamma)|.$$

Note that both $m_{\lambda}([\gamma]_{\alpha})$ and $s_{\lambda}([\gamma]_{\alpha})$ indeed depend only the coset of γ . Observe that $s_{\lambda}([\gamma]_{\alpha})$ is the amount of saving in the spectral norm on the coset $[\gamma]_{\alpha}$ when considering the restricted function g (in particular, $s_{\lambda}([\gamma]_{\alpha}) \geq 0$). Thus, our main goal is giving a lower bound for $\sum_{\gamma \in \mathbb{Z}_p^n/\langle \alpha \rangle} s_{\lambda}([\gamma]_{\alpha})$, when constructing the \oplus_p -DT for f.

The main lemma required for the proof of Theorem 4.9 roughly says that if $|\hat{g}(0)| \approx \sum_{k=0}^{p-1} |\hat{f}(k\alpha)|$, where $g = f|_{\chi_{\alpha} = \omega^{\lambda}}$ for some $\lambda \in \mathbb{Z}_p$ (i.e. $s_{\lambda}([0]_{\alpha})$ is small) then $\|\hat{g}\|_1 \leq \|\hat{f}\|_1 - c|\hat{f}(0)|$, for some constant c depending only on p. We note that if $|\hat{g}(0)| \ll \sum_{k=0}^{p-1} |\hat{f}(k\alpha)|$ then we already know that $\|\hat{g}\|_1$ is smaller than $\|\hat{f}\|_1$ which is also fine.

Lemma 4.11. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}$ be a Boolean function, and let $\hat{f}(\alpha)$ denote its largest Fourier coefficient in absolute value, apart from (maybe) $\hat{f}(0)$ (i.e. $\alpha = \arg \max_{\beta \neq 0} \{|\hat{f}(\beta)|\}$). Let $\lambda \in \mathbb{Z}_p$ and denote $g = f|_{\chi_{\alpha} = \omega^{\lambda}}$. Suppose further that

$$s_{\lambda}([0]_{\alpha}) \le |\hat{f}(0)| |\hat{f}(\alpha)|.$$

Then there exists a constant c = c(p) > 0 such that $\|\hat{g}\|_1 \leq \|\hat{f}\|_1 - c|\hat{f}(0)|$.

If $s_{\lambda}([0]_{\alpha})$ is small enough and satisfies the assumption of Lemma 4.11, then this lemma implies some saving in the L_1 norm. If it does not satisfy this, then we will show that we either lose (again) a substantial amount in the L_1 norm under the restriction, or that we can create a low depth tree at the end of which we obtain a substantial saving, in a similar manner to the proof of Lemma 3.6.

Lemma 4.12. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}, 0 \neq \alpha \in \mathbb{Z}_p^n \text{ and } \lambda \in \mathbb{Z}_p.$ Then

$$\sum_{\gamma \in \mathbb{Z}_p^n} m_{\lambda}([\gamma]_{\alpha}) = 0$$

Proof. Denote $g = f|_{\chi_{\alpha} = \omega^{\lambda}}$. Recall that $\hat{g}(\gamma) = \sum_{k=0}^{p-1} \omega^{\lambda k} \hat{f}(\gamma + k\alpha)$. By applying Parseval's identity to g, while noting the fact that every coset of $\langle \alpha \rangle$ appears exactly p times in the summation, we get:

$$1 = \frac{1}{p} \sum_{\gamma \in \mathbb{Z}_p^n} |\hat{g}(\gamma)|^2.$$
⁽¹⁹⁾

Applying Parseval's identity on f we get that

$$1 = \sum_{\gamma \in \mathbb{Z}_p^n} |\hat{f}(\gamma)|^2 = \frac{1}{p} \sum_{k=0}^{p-1} \sum_{\gamma \in \mathbb{Z}_p^n} |\hat{f}(\gamma + k\alpha)|^2 = \frac{1}{p} \sum_{\gamma \in \mathbb{Z}_p^n} \sum_{k=0}^{p-1} |\hat{f}(\gamma + k\alpha)|^2.$$
(20)

Subtracting (20) from (19) and multiplying by p we get that

$$0 = \sum_{\gamma \in \mathbb{Z}_p^n} \left(|\hat{g}(\gamma)|^2 - \sum_{k=0}^{p-1} |\hat{f}(\gamma + k\alpha)|^2 \right) = \sum_{\gamma \in \mathbb{Z}_p^n} m_{\lambda}([\gamma]_{\alpha}),$$

as required.

The following lemma relates $m_{\lambda}([\gamma]_{\alpha})$ with $s_{\lambda}([\gamma]_{\alpha})$, by giving a lower bound for the former:

Lemma 4.13. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}$ and let $\hat{f}(\alpha)$ be its largest coefficient in absolute value, apart from $\hat{f}(0)$ (i.e. $\alpha = \arg \max_{\beta \neq 0} \{|\hat{f}(\beta)|\}$). Let $\lambda \in \mathbb{Z}_p$ and $g = f|_{\chi_{\alpha} = \omega^{\lambda}}$. Let $\gamma \in \mathbb{Z}_p^n$ such that $\gamma \notin \langle \alpha \rangle$ (that is, $[\gamma]_{\alpha} \neq [0]_{\alpha}$). Then

$$m_{\lambda}([\gamma]_{\alpha}) \ge 2\sum_{k=0}^{p-1} |\hat{f}(\gamma+k\alpha)| |\hat{f}(\gamma+(k-1)\alpha)| - s_{\lambda}([\gamma]_{\alpha})2p |\hat{f}(\alpha)|.$$

Proof. The claim follows from a direct calculation:

$$m_{\lambda}([\gamma]_{\alpha}) = |\hat{g}(\gamma)|^{2} - \sum_{k=0}^{p-1} |\hat{f}(\gamma + k\alpha)|^{2}$$

$$= \left(\sum_{k=0}^{p-1} |\hat{f}(\gamma + k\alpha)| - s_{\lambda}([\gamma]_{\alpha})\right)^{2} - \sum_{k=0}^{p-1} |\hat{f}(\gamma + k\alpha)|^{2}$$

$$\geq 2\sum_{k=0}^{p-1} |\hat{f}(\gamma + k\alpha)| |\hat{f}(\gamma + (k-1)\alpha)| - 2s_{\lambda}([\gamma]_{\alpha}) \sum_{k=0}^{p-1} |\hat{f}(\gamma + k\alpha)|$$

$$\geq^{(\dagger)} 2\sum_{k=0}^{p-1} |\hat{f}(\gamma + k\alpha)| |\hat{f}(\gamma + (k-1)\alpha)| - s_{\lambda}([\gamma]_{\alpha}) \cdot 2p |\hat{f}(\alpha)|,$$

where to prove inequality (†) we used the fact that $\gamma \notin \langle \alpha \rangle$. I.e., it is not in the same coset of $\langle \alpha \rangle$ as 0 and therefore, $|\hat{f}(\gamma + k\alpha)| \leq |\hat{f}(\alpha)|$ for all $0 \leq k \leq p-1$.

The following Corollary, albeit being a simple and immediate consequence of Lemma 4.13 when considering the case $m_{\lambda}([\gamma]_{\alpha}) < 0$, will be useful:

Corollary 4.14. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}$ and let $\hat{f}(\alpha)$ be its largest coefficient in absolute value, apart from $\hat{f}(0)$. Let $\lambda \in \mathbb{Z}_p$ and $g = f|_{\chi_{\alpha} = \omega^{\lambda}}$. Suppose $\gamma \in \mathbb{Z}_p^n$ satisfies $m_{\lambda}([\gamma]_{\alpha}) < 0$ and $\gamma \notin \langle \alpha \rangle$. Then

$$|m_{\lambda}([\gamma]_{\alpha})| \leq s_{\lambda}([\gamma]_{\alpha}) \cdot 2p \cdot |\hat{f}(\alpha)| - 2\sum_{k=0}^{p-1} |\hat{f}(\gamma+k\alpha)| |\hat{f}(\gamma+(k-1)\alpha)|$$

Proof. By Lemma 4.13,

$$-m_{\lambda}([\gamma]_{\alpha}) \leq s_{\lambda}([\gamma]_{\alpha}) 2p|\hat{f}(\alpha)| - 2\sum_{k=0}^{p-1} |\hat{f}(\gamma+k\alpha)||\hat{f}(\gamma+(k-1)\alpha)|.$$

The assumption $m_{\lambda}([\gamma]_{\alpha}) < 0$ implies $|m_{\lambda}([\gamma]_{\alpha})| = -m_{\lambda}([\gamma]_{\alpha})$, and the claim follows.

Combining Lemma 4.12 and Corollary 4.14 we can bound $\sum_{\{\gamma \mid m_{\lambda}([\gamma]_{\alpha}) < 0\}} s_{\lambda}([\gamma]_{\alpha})$ from below.

Lemma 4.15. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}$ and let $\hat{f}(\alpha)$ be the largest Fourier coefficient in absolute value, apart from $\hat{f}(0)$. Suppose $m_{\lambda}([0]_{\alpha}) > 0$. Let $\lambda \in \mathbb{Z}_p$ and $g = f|_{\chi_{\alpha} = \omega^{\lambda}}$. Let $\mathcal{C}^+ = \{\gamma \in \mathbb{Z}_p^n / \langle \alpha \rangle \mid m_{\lambda}([\gamma]_{\alpha}) > 0\}$ and $\mathcal{C}^- = \{\gamma \in \mathbb{Z}_p^n / \langle \alpha \rangle \mid m_{\lambda}([\gamma]_{\alpha}) < 0\}$. Then

$$\frac{m_{\lambda}([0]_{\alpha})}{2p|\hat{f}(\alpha)|} \leq \sum_{\gamma \in \mathcal{C}^{-}} s_{\lambda}([\gamma]_{\alpha}).$$

Proof. Since $m_{\lambda}([\gamma]_{\alpha})$ is only a function of the coset of γ , Lemma 4.12 implies that

$$\sum_{\gamma \in \mathcal{C}^+} m_{\lambda}([\gamma]_{\alpha}) + \sum_{\gamma \in \mathcal{C}^-} m_{\lambda}([\gamma]_{\alpha}) = \frac{1}{p} \sum_{\gamma \in \mathbb{Z}_p^n} m_{\lambda}([\gamma]_{\alpha}) = 0.$$

Hence

$$m_{\lambda}([0]_{\alpha}) \leq \sum_{\gamma \in \mathcal{C}^{-}} |m_{\lambda}([\gamma]_{\alpha})|.$$
(21)

Since $m_{\lambda}([0]_{\alpha}) > 0$, for all $\gamma \in C^{-}$ we have $\gamma \notin [0]_{\alpha}$, and Corollary 4.14 particularly implies $|m_{\lambda}([\gamma]_{\alpha})| \leq 2p|\hat{f}(\alpha)|s_{\lambda}([\gamma]_{\alpha})$, so from (21) we conclude

$$m_{\lambda}([0]_{\alpha}) \leq 2p|\hat{f}(\alpha)| \sum_{\gamma \in \mathcal{C}^{-}} s_{\lambda}([\gamma]_{\alpha}).$$

Next we bound $m_{\lambda}([0]_{\alpha})$ from below in terms of $|\hat{f}(0)|$ and $|\hat{f}(\alpha)|$, under the assumption in Lemma 4.11. Note that we cannot use Lemma 4.13 as we require there that $\gamma \notin [0]_{\alpha}$.

We first need a simple inequality.

Lemma 4.16. Let $0 \le a, b \le 1$ and $d \ge 0$ be real numbers. Then,

$$(d + 2a + b - ab)^2 \ge d^2 + 2a^2 + b^2 + ab.$$

The elementary proof of Lemma 4.16 appears in Appendix C.

Lemma 4.17. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}$, and let $\hat{f}(\alpha)$ denote its largest Fourier coefficient in absolute value, apart from (maybe) $\hat{f}(0)$ (i.e. $\alpha = \arg \max_{\beta \neq 0} \{|\hat{f}(\beta)|\}$). Let $\lambda \in \mathbb{Z}_p$ and $g = f|_{\chi_{\alpha} = \omega^{\lambda}}$. Suppose

$$s_{\lambda}([0]_{\alpha}) \le |\hat{f}(0)||\hat{f}(\alpha)|$$

Then

$$|\hat{f}(0)||\hat{f}(\alpha)| \le m_{\lambda}([0]_{\alpha}).$$

Proof. By assumption,

$$|\hat{g}(0)| = \sum_{k=0}^{p-1} |\hat{f}(k\alpha)| - s_{\lambda}([0]_{\alpha}) \ge \sum_{k=0}^{p-1} |\hat{f}(k\alpha)| - |\hat{f}(0)| |\hat{f}(\alpha)|.$$

Hence,

$$m_{\lambda}([0]_{\alpha}) = |\hat{g}(0)|^2 - \sum_{k=0}^{p-1} |\hat{f}(k\alpha)|^2 \ge \left(\sum_{k=0}^{p-1} |\hat{f}(k\alpha)| - |\hat{f}(0)| |\hat{f}(\alpha)|\right)^2 - \sum_{k=0}^{p-1} |\hat{f}(k\alpha)|^2.$$
(22)

Denote $d = \sum_{k=2}^{p-2} |\hat{f}(k\alpha)|, b = |\hat{f}(0)|$ and $a = |\hat{f}(\alpha)| = |\hat{f}(-\alpha)|$. Lemma 4.16 implies that

$$\left(\sum_{k=0}^{p-1} |\hat{f}(k\alpha)| - |\hat{f}(0)||\hat{f}(\alpha)|\right)^{2} = (d+2a+b-ab)^{2} \ge d^{2}+2a^{2}+b^{2}+ab$$

$$= \left(\sum_{k=2}^{p-2} |\hat{f}(k\alpha)|\right)^{2} + 2|\hat{f}(\alpha)|^{2} + |\hat{f}(0)|^{2} + |\hat{f}(\alpha)||\hat{f}(0)|$$

$$\ge \sum_{k=2}^{p-2} |\hat{f}(k\alpha)|^{2} + |\hat{f}(\alpha)|^{2} + |\hat{f}(-\alpha)|^{2} + |\hat{f}(0)|^{2} + |\hat{f}(\alpha)||\hat{f}(0)|$$

$$= \sum_{k=0}^{p-1} |\hat{f}(k\alpha)|^{2} + |\hat{f}(\alpha)||\hat{f}(0)|.$$
(23)

From Equations (22) and (23) it now follows that

$$m_{\lambda}([0]_{\alpha}) \geq \left(\sum_{k=0}^{p-1} |\hat{f}(k\alpha)| - |\hat{f}(0)| |\hat{f}(\alpha)|\right)^{2} - \sum_{k=0}^{p-1} |\hat{f}(k\alpha)|^{2}$$

$$\geq \left(\sum_{k=0}^{p-1} |\hat{f}(k\alpha)|^{2} + |\hat{f}(\alpha)| |\hat{f}(0)|\right) - \sum_{k=0}^{p-1} |\hat{f}(k\alpha)|^{2}$$

$$= |\hat{f}(\alpha)| |\hat{f}(0)|.$$

Proof of Lemma 4.11. Lemma 4.17 in particular assures that $m_{\lambda}([0]_{\alpha}) > 0$, hence by Lemma 4.15, and then Lemma 4.17,

$$\sum_{\gamma \in \mathcal{C}^{-}} s_{\lambda}([\gamma]_{\alpha}) \geq \frac{m_{\lambda}([0]_{\alpha})}{2p|\hat{f}(\alpha)|} \geq \frac{|f(0)|}{2p}.$$

$$\leq \|\hat{f}\|_{1} - \sum_{\alpha \in \mathcal{C}^{-}} s_{\lambda}([\gamma]_{\alpha}) \leq \|\hat{f}\|_{1} - \frac{|\hat{f}(0)|}{2p}.$$

By definition of $s_{\lambda}([\gamma]_{\alpha})$, $\|\hat{g}\|_1 \leq \|\hat{f}\|_1 - \sum_{\gamma \in \mathcal{C}^-} s_{\lambda}([\gamma]_{\alpha}) \leq \|\hat{f}\|_1 - \frac{|f(0)|}{2p}$.

The proof of Theorem 4.9 now follows the same outline as the proof of Theorem 1.4. A functional $\bigoplus_p -DT$ is defined as a $\bigoplus_p -DT$ where we allow every leaf to be labeled by a Boolean function on \mathbb{Z}_p^n , and the bias of a function $f:\mathbb{Z}_p^n \to \{+1, -1\}$ is defined as in the binary case. The following lemma implies the exists of a low depth functional $\bigoplus_p -DT$ computing f whose leaves are highly biased.

Lemma 4.18. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}$ be a Boolean function with $\|\hat{f}\|_1 = A$. Then, for every $0 < \epsilon$ there exists a functional \bigoplus_p -DT for f of depth at most $O(A^3 \log(1/\epsilon))$ such that all the functions on its leaves have bias at least $1 - \epsilon$.

Proof. Let $\hat{f}(\alpha)$ be f's largest coefficient in absolute value. We consider two cases:

- 1. $|\hat{f}(\alpha)| > 1 \epsilon$: As $|\hat{f}(\alpha)| = |\hat{f}(-\alpha)|$, Parseval's identity implies that if $\epsilon < (1 1/\sqrt{2})$ then this case can only happen if $\alpha = 0$, hence f is already highly biased.
- 2. $|\hat{f}(\alpha)| \leq 1 \epsilon$:

In this case we show that we can create a tree of depth $O(A \log(1/\epsilon))$ such that all the functions on its leaves have spectral norm at most $\|\hat{f}\|_1 - c/A$ for some constant c = c(p) > 0.

We first show that without loss of generality, we may assume (at the cost of one query) $|\hat{f}(0)|$ is (somewhat) large. Suppose the largest coefficient is $|\hat{f}(\alpha)|$ for $\alpha \neq 0$. By Lemma 3.3 we have $|\hat{f}(\alpha)| \geq 1/A$. Upon restricting on $\chi_{\alpha} = \omega^{\lambda}$, $\hat{f}(\alpha)$ collapses to the same coefficient as $\hat{f}(0)$. Let $f' = f|_{\chi_{\alpha} = \omega^{\lambda}}$. If $|\hat{f}'(0)| \leq |\hat{f}(\alpha)|/2$, then $||\hat{f}'||_1 \leq ||\hat{f}||_1 - |\hat{f}(\alpha)|/2 \leq A - 1/(2A)$ and we are done. Otherwise, $|\hat{f}'(0)| \geq |\hat{f}(\alpha)|/2$ and since $\hat{f}(\alpha)$ is maximal, for all γ we have $|\hat{f}'(\gamma)| \leq p|\hat{f}(\alpha)|$. Therefore if $|\hat{f}'(\gamma')|$ is the maximal Fourier coefficient of f' we have $|\hat{f}'(0)| \geq |\hat{f}(\gamma')|/(2p) \geq 1/(2pA)$. Thus, from now on we shall assume that $|\hat{f}(0)| \geq 1/(2pA)$.

Let $\hat{f}(\beta)$ then be the largest Fourier coefficient apart from $\hat{f}(0)$ (if $\alpha \neq 0$ then $\beta = \alpha$, but if $\alpha = 0$ then $\beta \neq \alpha$). By Lemma 3.3 it holds that $|\hat{f}(\beta)| \geq \frac{1-|\hat{f}(0)|^2}{A} > \epsilon/A$ (recall that we assume that the largest Fourier coefficient has absolute value at most $1 - \epsilon$). We next query the function on χ_{β} . By Lemma 4.1, for at least p-1 values $\lambda_1, \ldots, \lambda_{p-1}$ in \mathbb{Z}_p , the restriction $g_j = f|_{\chi_{\beta} = \omega^{\lambda_j}}$ satisfies $\|\hat{g}_j\|_1 \leq \|\hat{f}\|_1 - c/A$, for some c = c(p).

Let $\lambda \in \mathbb{Z}_p$ be the only element not in $\{\lambda_1, ..., \lambda_{p-1}\}$ (if no such λ exists then we are done), and let $g = f|_{\chi_\beta = \omega^\lambda}$. Thus, $|\hat{g}(0)| = |\hat{f}(0) + \omega^\lambda \hat{f}(\beta) + \ldots + \omega^{(p-1)\lambda} \hat{f}((p-1)\beta)|$.

By Lemma 4.11, if $|\hat{g}(0)| \geq \sum_{k=0}^{p-1} |\hat{f}(k\beta)| - |\hat{f}(0)| |\hat{f}(\beta)|$ (i.e. $s_{\lambda}([0]_{\beta}) \leq |\hat{f}(0)| |\hat{f}(\beta)|$), then $\|\hat{g}\|_{1} \leq \|\hat{f}\|_{1} - c_{1}/A$, for some constant c_{1} depending only on p, and we are done. Suppose then

$$|\hat{g}(0)| \le \sum_{k=0}^{p-1} |\hat{f}(k\beta)| - |\hat{f}(0)| |\hat{f}(\beta)|.$$
(24)

We again consider two sub-cases. If $|\hat{f}(\beta)| \ge 1/(2pA)$, then (24) by itself implies $\|\hat{g}\|_1 \le \|\hat{f}\|_1 - c_2/A^2$ where c_2 depends only on p.

Hence the last case to consider is $|\hat{f}(\beta)| < 1/(2pA)$. Note that this implies in particular that the largest coefficient is $|\hat{f}(0)|$, and also that $2p|\hat{f}(\beta)| \leq |\hat{f}(0)|$. These facts are relevant in order to use the following claim, which shows that unless we get a substantial saving in the L_1 norm, the constant coefficient of the restricted function becomes (somewhat) smaller:

Claim 4.19. Under the conditions above, and assuming further that $\sum_{\gamma \in \mathbb{Z}_p^n} s_{\lambda}([\gamma]_{\beta}) \leq |\hat{f}(0)|/p^5$, it holds that $|\hat{g}(0)| \leq |\hat{f}(0)| - |\hat{f}(\beta)|/8$.

The proof of Claim 4.19, as well as the exact assumptions we use for its proof, is deferred to the end of the current proof (Lemma 4.21). If $\sum_{\gamma \in \mathbb{Z}_p^n} s_{\lambda}([\gamma]_{\beta}) \ge |\hat{f}(0)|/p^5 \ge \Omega(1/A)$ then again, we are obviously done. Otherwise, by Claim 4.19

$$\begin{aligned} |\hat{g}(0)| &\leq |\hat{f}(0)| - |\hat{f}(\beta)|/8 \leq |\hat{f}(0)| - \frac{\epsilon}{8A} \\ &\leq 1 - \epsilon - \epsilon/8A = 1 - \left(1 + \frac{1}{8A}\right)\epsilon \\ &\stackrel{\text{def}}{=} 1 - (1 + c'/A)\epsilon, \end{aligned}$$

where c' is an absolute constant (recall that $|\hat{f}(0)| \ge 1/2pA$ and $|\hat{f}(\beta)| \ge \epsilon/A$).

Again, if $|\hat{g}(0)| \leq 1/(2A)$ we are done, since $|\hat{f}(0)| \geq 1/A$, and therefore we lost at least 1/2A in the spectral norm. Otherwise, $\hat{g}(0)$ remains the largest coefficient. Indeed, $|\hat{g}(0)| > 1/(2A)$ and since $|\hat{f}(\beta)| < 1/(2pA)$ it follows that for all $\gamma \notin [0]_{\beta}$, $|\hat{g}(\gamma)| . Therefore, we may repeat this process for <math>g$ and $\epsilon' = \left(1 + \frac{c'}{A}\right)\epsilon$.

From here the result follows by induction, but to better understand the situation we perform one more step of the induction. Assuming g is as described, in the next step the spectral norm of p-1 of the children will be as desired, and for the p-th child, we either lost a lot in the L_1 norm by one of the previous arguments, or, if we resort again for the remaining case, then we have that $1/(2A) < |\hat{g}(0)| \le 1 - \epsilon' = 1 - (1 + \frac{c'}{A})\epsilon$. Hence, the largest Fourier coefficient of g (apart from $\hat{g}(0)$) is at least ϵ'/A , and the new constant term of the "bad" child is now at most $1 - (1 + \frac{c'}{A})\epsilon' = 1 - (1 + \frac{c'}{A})^2\epsilon$. Hence, after $O(A\log(1/\epsilon))$ such steps this process we will be in the situation where the "bad" child g satisfies $\hat{g}(0) \le 1 - 1/(4pA)$, and by the above analysis in the next step all children will have a spectral norm smaller by $\Omega(1/A)$.

We continue by induction until all the functions on the leaves are either constant or highly biased. Since in $O(A \log(1/\epsilon))$ levels of the tree we save at least $\Omega(1/A)$ in the spectral norm, in all the children, we get that the process stops at depth $O(A^3 \log(1/\epsilon))$.

To conclude the proof of Lemma 4.18 it remains to prove Claim 4.19. Recall that our setting is such that $\hat{f}(0)$ is the largest coefficient, and the second largest, $\hat{f}(\alpha)$ is much smaller. We first show that under the assumption that $s_{\lambda}([0]_{\alpha})$ is small, $m_{\lambda}([0]_{\alpha})$ is negative, with relatively large absolute value.

Lemma 4.20. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}$. Suppose $\hat{f}(0)$ is its largest Fourier coefficient in absolute value. Let $\hat{f}(\alpha)$ be its second largest coefficient in absolute value and assume that $p|\hat{f}(\alpha)| \leq |\hat{f}(0)|$. Let $\lambda \in \mathbb{Z}_p$ and $g = f|_{\chi_\alpha = \omega^\lambda}$. If $\sum_{\gamma} s_\lambda([\gamma]_\alpha) \leq |\hat{f}(0)|/p^5$, then

$$m_{\lambda}([0]_{\alpha}) \leq -(1-2/p^4)|\hat{f}(0)||\hat{f}(\alpha)|.$$

Proof. Lemma 4.12 implies

$$\sum_{\gamma \in \mathbb{Z}_p^n / \langle \alpha \rangle} m_{\lambda}([\gamma]_{\alpha}) = 0.$$

Lemma 4.13 now gives:

$$\sum_{[0]_{\alpha}\neq\gamma\in\mathbb{Z}_{p}^{n}/\langle\alpha\rangle}m_{\lambda}([\gamma]_{\alpha}) \geq \sum_{[0]_{\alpha}\neq\gamma\in\mathbb{Z}_{p}^{n}/\langle\alpha\rangle}2\sum_{k=0}^{p-1}|\hat{f}(\gamma+k\alpha)||\hat{f}(\gamma+(k-1)\alpha)| - s_{\lambda}([\gamma]_{\alpha})\cdot 2p|\hat{f}(\alpha)|$$
$$\geq \sum_{[0]_{\alpha}\neq\gamma\in\mathbb{Z}_{p}^{n}/\langle\alpha\rangle}2\sum_{k=0}^{p-1}|\hat{f}(\gamma+k\alpha)||\hat{f}(\gamma+(k-1)\alpha)| - \sum_{\gamma\in\mathbb{Z}_{p}^{n}/\langle\alpha\rangle}s_{\lambda}([\gamma]_{\alpha})\cdot 2p|\hat{f}(\alpha)|$$
$$\geq^{(*)}\sum_{[0]_{\alpha}\neq\gamma\in\mathbb{Z}_{p}^{n}/\langle\alpha\rangle}2\sum_{k=0}^{p-1}|\hat{f}(\gamma+k\alpha)||\hat{f}(\gamma+(k-1)\alpha)| - 2|\hat{f}(0)||\hat{f}(\alpha)|/p^{4}.$$
(25)

where in inequality (*) we used our assumption that $\sum_{\gamma} s_{\lambda}([\gamma]_{\alpha}) \leq |\hat{f}(0)|/p^5$. Recall that Equation (11) gives

$$\sum_{\gamma \in \mathbb{Z}_p^n} \hat{f}(\gamma) \hat{f}(\alpha - \gamma) = 0.$$

In particular, if we partition the sum according to the different cosets of $\langle \alpha \rangle$, we get

$$2|\hat{f}(0)||\hat{f}(\alpha)| \leq \sum_{[0]\neq\gamma\in\mathbb{Z}_p^n/\langle\alpha\rangle} \sum_{k=0}^{p-1} |\hat{f}(\gamma+k\alpha)||\hat{f}(\alpha-\gamma-k\alpha)| + \sum_{k=2}^{p-1} |\hat{f}(k\alpha)||\hat{f}(\alpha-k\alpha)|.$$

Note that since $|\hat{f}(0)|$ does not appear in the right hand term,

$$\sum_{k=2}^{p-1} |\hat{f}(k\alpha)| |\hat{f}(\alpha - k\alpha)| \le p |\hat{f}(\alpha)|^2,$$

which readily implies

$$\sum_{[0]_{\alpha} \neq \gamma \in \mathbb{Z}_p^n / \langle \alpha \rangle} \sum_{k=0}^{p-1} |\hat{f}(\gamma + k\alpha)| |\hat{f}(\alpha - \gamma - k\alpha)| \ge |\hat{f}(\alpha)| (2|\hat{f}(0)| - p|\hat{f}(\alpha)|) \ge |\hat{f}(\alpha)| |\hat{f}(0)|, \quad (26)$$

using the assumption on the size of $|\hat{f}(\alpha)|$. As for all β , $\overline{\hat{f}(\beta)} = \hat{f}(-\beta)$, it follows that

$$|\hat{f}(\alpha - \gamma - k\alpha)| = |\hat{f}(-(\alpha - \gamma - k\alpha))| = |\hat{f}(\gamma + (k - 1)\alpha)|.$$

Combining this with (26) we obtain

$$\sum_{[0]_{\alpha}\neq\gamma\in\mathbb{Z}_{p}^{n}/\langle\alpha\rangle}\sum_{k=0}^{p-1}|\hat{f}(\gamma+k\alpha)||\hat{f}(\gamma+(k-1)\alpha)|\geq|\hat{f}(\alpha)||\hat{f}(0)|$$

Returning to (25), we have thus proved that

$$\sum_{[0]_{\alpha} \neq \gamma \in \mathbb{Z}_p^n / \langle \alpha \rangle} m_{\lambda}([\gamma]_{\alpha}) \ge |\hat{f}(0)| |\hat{f}(\alpha)| - 2|\hat{f}(0)| |\hat{f}(\alpha)| / p^4 = (1 - 2/p^4) |\hat{f}(0)| |\hat{f}(\alpha)|.$$

From Lemma 4.12 we deduce that

$$m_{\lambda}([0]_{\alpha}) \le -(1-2/p^4)|\hat{f}(0)||\hat{f}(\alpha)|$$

as required.

We are now ready to prove Claim 4.19. For completeness, we re-state it before the proof.

Lemma 4.21. Let $f : \mathbb{Z}_p^n \to \{+1, -1\}$. Suppose $\hat{f}(0)$ is its largest Fourier coefficient in absolute value, and let $\hat{f}(\alpha)$ be its second largest. Suppose also $2p|\hat{f}(\alpha)| \leq |\hat{f}(0)|$. Let $\lambda \in \mathbb{Z}_p$ and $g = f|_{\chi_{\alpha}=\omega^{\lambda}}$. Suppose $\sum_{\gamma} s_{\lambda}([\gamma]_{\alpha}) \leq |\hat{f}(0)|/p^5$, then

$$|\hat{g}(0)| \le |\hat{f}(0)| - |\hat{f}(\alpha)|/8$$

Proof. Since the assumptions are slightly stronger than those of Lemma 4.20, we get:

$$m_{\lambda}([0]_{\alpha}) \le -(1-2/p^4)|\hat{f}(0)||\hat{f}(\alpha)|.$$

Thus,

$$\begin{aligned} |\hat{g}(0)|^2 &= \sum_{k=0}^{p-1} |\hat{f}(k\alpha)|^2 + m_{\lambda}([0]_{\alpha}) \\ &\leq \sum_{k=0}^{p-1} |\hat{f}(k\alpha)|^2 - (1 - 2/p^4) |\hat{f}(0)| |\hat{f}(\alpha)| \\ &\leq |\hat{f}(0)|^2 + (p - 1) |\hat{f}(\alpha)|^2 - 3/4 \cdot |\hat{f}(0)| |\hat{f}(\alpha)| \\ &\leq |\hat{f}(0)|^2 - |\hat{f}(0)| |\hat{f}(\alpha)| / 4 \\ &\leq \left(|\hat{f}(0)| - |\hat{f}(\alpha)| / 8 \right)^2. \end{aligned}$$

. 6		

As our final tool for proving Theorem 4.9, we note that although this result is not stated in [KM93], the algorithm from Lemma 3.7 can be modified in the straightforward way to work equally well for functions $f: \mathbb{Z}_p^n \to \{+1, -1\}$, with virtually the same proof.

Proof of Theorem 4.9. We use the algorithm from Lemma 3.7 to find f's largest Fourier coefficient in absolute value, $\hat{f}(\alpha)$. Whenever $|\hat{f}(\alpha)| \leq 1 - \epsilon$, the same algorithm can be used to find the second largest coefficient, $\hat{f}(\beta)$, in polynomial time (in $n, 1/\epsilon$ and $\log(1/\delta)$). We use Lemma 4.18 to construct a functional \oplus_p -DT, and replace every function-labeled leaf with the constant it's biased towards.

We again mention, as in the proof of Theorem 1.4, that we do not need to calculate $f(\alpha)$ and $\hat{f}(\beta)$ exactly, but only to within an error of, say, $\epsilon/(2pA)$, which can be guaranteed (with high probability) by the algorithm of Lemma 3.7.

5 Conclusions and open problems

In this work we obtained structural results for Boolean functions over \mathbb{Z}_p^n , for prime p. Our results provide a more refined structure than the one given in the works of Green and Sanders [GS08a, GS08b]. For a certain range of parameters we also obtain improved results in the setting of the works [GS08a, GS08b].

We were also able to achieve new results in the field of computational learning theory by showing that such functions can be learned with \oplus -DTs as the class of hypotheses.

There are still many intriguing open problems related to the structure of Boolean functions with small spectral norm. Most of these are related to the tightness of our results (as well as to the tightness of the results of Green and Sanders [GS08a]).

We do not believe that the bound given in Equation (2) is tight. Perhaps it is even true that one could represent f as a sum of polynomially (in A) many characteristic functions of subspaces (note that this is not true for functions over general abelian groups. See [GS08b]). Similarly, we do not believe that the bounds we obtain in Theorems 1.2 and 4.6 are tight. It seems more reasonable to believe that the true bound should be poly(n, A). The results in Theorems 1.1 and 4.5 are more likely close to being tight, but still, it may be the case that there is a subspace of co-dimension O(A) on which the function is constant.

Recall that [ZS10, MO09] conjectured that Boolean functions with sparse Fourier spectrum can be computed by a \oplus -DT of depth poly(log spar f). Theorems 1.3 and 4.8 give an affirmative answer only for the case that f also has a small spectral norm. Thus, the general case is still open.

Finally, Theorems 1.4 and 4.9 give shallow \oplus_p -DTs approximating functions with small spectral norm. These results too do not seem tight. In particular, it is interesting to understand whether something better can be obtained if we assume in addition that f can be computed exactly by a small \oplus_p -DT. Namely, can one output a shallow \oplus_p -DT approximating f over the uniform distribution using polynomially many membership queries (i.e. oracle calls) to f, assuming that f can be exactly computed by such a \oplus_p -DT (and has a small spectral norm).

References

- [ABF⁺08] M. Alekhnovich, M. Braverman, V. Feldman, A. R. Klivans, and T. Pitassi. The complexity of properly learning simple concept classes. J. of Computer and System Sciences, 74(1):16–34, 2008.
- [BCH⁺96] M. Bellare, D. Coppersmith, J. Håstad, M. A. Kiwi, and M. Sudan. Linearity testing in characteristic two. *IEEE Transactions on Information Theory*, 42(6):1781–1795, 1996.
- [BdW02] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a survey. Theoretical Computer Science, 288(1):21–43, 2002.
- [BLR93] M. Blum, M. Luby, and R. Rubinfeld. Selftesting/correcting with applications to numerical problems. J. of Computer and System Sciences, 47(3):549–595, 1993.
- [Fri98] E. Friedgut. Boolean functions with low average sensitivity depend on few coordinates. Combinatorica, 18(1):27–35, 1998.

- [GL89] O. Goldreich and L. A. Levin. A hardcore predicate for all one-way functions. In Proceedings of the 21st STOC, pages 25–32, 1989.
- [GOS⁺11] P. Gopalan, R. O'Donnell, R. Servedio, A. Shpilka, and K. Wimmer. Testing fourier dimensionality and sparsity. SIAM Journal on Computing, 40(4):1075–1100, 2011.
- [Gro97] V. Grolmusz. On the power of circuits with gates of low L_1 norms. Theoretical computer science, 188(1):117–128, 1997.
- [GS08a] B. Green and T. Sanders. Boolean functions with small spectral norm. *GAFA*, 18:144–162, 2008.
- [GS08b] B. Green and T. Sanders. A quantitative version of the idempotent theorem in harmonic analysis. *Annals. of Math.*, 168(3):1025–1054, 2008.
- [Hås01] J. Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
- [Kal02] G. Kalai. A Fourier-theoretic perspective on the Condorcet paradox and Arrow's theorem. Advances in Applied Mathematics, 29(3):412–426, 2002.
- [KKL88] J. Kahn, G. Kalai, and N. Linial. The influence of variables on Boolean functions. In Proceedings of the 29th annual FOCS, pages 68–80, 1988.
- [KM93] E. Kushilevitz and Y. Mansour. Learning Decision Trees Using the Fourier Spectrum. SIAM J. Comput., 22(6):1331–1348, 1993.
- [LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform and learnability. J. ACM, 40(3):607–620, 1993.
- [Man94] Y. Mansour. Learning Boolean functions via the Fourier transform. In *Theoretical* advances in neural computation and learning, pages 391–424, 1994.
- [MO09] A. Montanaro and T. Osborne. On the communication complexity of XOR functions. *CoRR*, abs/0909.3392, 2009.
- [O'D12] R. O'Donnell. Analysis of Boolean Functions. http://www. analysisofbooleanfunctions.org/, 2012.
- [ZS10] Z. Zhang and Y. Shi. On the parity complexity measures of Boolean functions. *Theo*retical Computer Science, 411(26-28):2612 – 2618, 2010.

A Proof of Lemma 2.5

The proof of Lemma 2.5 relies upon the following even simpler lemma.

Lemma A.1. Let $V \subseteq \mathbb{Z}_2^n$ be an affine subspace of co-dimension k, and let $\mathbb{1}_V : \mathbb{Z}_2^n \to \{0,1\}$ be its characteristic function. Then $\operatorname{spar}(\mathbb{1}_V) = 2^k$ and $\|\widehat{\mathbb{1}_V}\|_1 = 1$.

Proof. Denote $V = \alpha + U$ where U is a subspace of co-dimension k. There are k vectors $\gamma_1, \ldots, \gamma_k \in \mathbb{Z}_2^n$ (a basis for U^{\perp}) and $b_1, \ldots, b_k \in \{+1, -1\}$ such that $\mathbb{1}_V(x) = 1$ if and only if $\chi_{\gamma_i}(x) = b_i$ for all $1 \leq i \leq k$. Therefore

$$\mathbb{1}_V(x) = \prod_{i=1}^k \left(\frac{\chi_{\gamma_i}(x) + b_i}{2} \right).$$

Using the relation $\chi_{\beta}\chi_{\gamma} = \chi_{\beta+\gamma}$, and the fact that span $\{\gamma_1, \ldots, \gamma_k\} = U^{\perp}$, we get

$$\mathbb{1}_V(x) = \sum_{\gamma \in U^\perp} \pm 2^{-k} \chi_\gamma(x).$$

Since $|U^{\perp}| = 2^k$, both statements follow.

Proof of Lemma 2.5. Let L be the set of leaves of T, and for every $\ell \in L$ let b_{ℓ} be its label, and $\mathbb{1}_{\ell} : \mathbb{Z}_2^n \to \{0,1\}$ be the characteristic function of the set of inputs x such that computation upon x arrives at the leaf ℓ . Since T computes f, we may represent f as:

$$f = \sum_{\ell \in L} b_{\ell} \mathbb{1}_{\ell}(x).$$

Now note that if ℓ 's depth is t, then $\mathbb{1}_{\ell}$ is a characteristic function of an affine subspace of codimension t. The maximal depth of T is k, hence for every $\ell \in L$ we have, by Lemma A.1, $\operatorname{spar}(\mathbb{1}_{\ell}) \leq 2^k$ and $\|\widehat{\mathbb{1}}_{\ell}\|_1 = 1$. Finally, since |L| = m, we get

$$\operatorname{spar}(f) \le \sum_{\ell \in L} \operatorname{spar}(\mathbb{1}_{\ell}) \le m 2^k,$$

and since $|b_{\ell}| = 1$, the triangle inequality implies

$$\|\widehat{f}\|_1 \le \sum_{\ell \in L} \|\widehat{1}_\ell\|_1 \le m.$$

B Proof of Lemma 4.3

Proof. Suppose without the loss of generality (by applying a suitable rotation and reflection if needed) that $z_1 = R$ is a positive real number, and that the angle is exactly $\theta \leq \pi$ (i.e. $z_2 = re^{i\theta}$). Note that $|z_1| + |z_2| = R + r$ and $z_1 + z_2 = (R + r\cos(\theta)) + ir\sin(\theta)$. Hence,

$$|z_1 + z_2| = \sqrt{(R + r\cos(\theta))^2 + (r\sin(\theta))^2} = \sqrt{R^2 + r^2 + 2Rr\cos(\theta)} .$$

It remains to be shown that

$$R + r - \sqrt{R^2 + r^2 + 2Rr\cos(\theta)} \ge \frac{1 - \cos(\theta)}{2}r.$$

This is equivalent to

$$\left(R+r-\frac{1-\cos(\theta)}{2}r\right)^2 - R^2 - r^2 - 2Rr\cos(\theta) \ge 0.$$

Rearranging and factoring out $r \ge 0$, we get a linear function in r which is non-negative on both r = 0 and r = R, which implies the inequality holds for all $0 \le r \le R$.

C Proof of Lemma 4.16

Proof. The claim follows by a direct calculation:

$$\begin{aligned} (d+2a+b-ab)^2 &= d^2 + (2a+b-ab)^2 + 2d(2a+b-ab) \ge d^2 + (2a+b-ab)^2 \\ &= d^2 + 4a^2 + b^2 + 4ab - 2ab(2a+b) + a^2b^2 \\ &= (d^2 + 2a^2 + b^2 + ab) + a(3b-2b^2) + a^2(2-4b+b^2) \\ &\ge (d^2 + 2a^2 + b^2 + ab) + a^2(3b-2b^2) + a^2(2-4b+b^2) \\ &= (d^2 + 2a^2 + b^2 + ab) + a^2(2-b-b^2) \\ &\ge (d^2 + 2a^2 + b^2 + ab). \end{aligned}$$

ECCC

ISSN 1433-8092

http://eccc.hpi-web.de