
Upper Bounds on Fourier Entropy

Sourav Chakraborty∗1, Raghav Kulkarni†2, Satya V. Lokam‡3, and Nitin Saurabh§4

1Chennai Mathematical Institute, Chennai, India
2Centre for Quantum Technologies, Singapore
3Microsoft Research India, Bangalore, India

4Institute of Mathematical Sciences, Chennai, India

Abstract

Given a function f : {0, 1}
n → R, its Fourier Entropy is de�ned to be −

∑
S f̂
2(S) log f̂2(S),

where f̂ denotes the Fourier transform of f. This quantity arises in a number of applications,

especially in the study of Boolean functions. An outstanding open question is a conjecture of

Friedgut and Kalai (1996), called Fourier Entropy Inuence (FEI) Conjecture, asserting that

the Fourier Entropy of any Boolean function f is bounded above, up to a constant factor, by

the total inuence (= average sensitivity) of f.

In this paper we give several upper bounds on the Fourier Entropy of Boolean as well as

real valued functions. We give a general bound involving the (1 + δ)-th moment of |S| w.r.t.

the distribution f̂2(S); the FEI conjecture needs the �rst moment of |S|. A variant of this

bound uses the �rst and second moments of sensitivities (average sensitivity being the �rst

moment). We also give upper bounds on the Fourier Entropy of Boolean functions in terms of

several complexity measures that are known to be bigger than the inuence. These complexity

measures include, among others, the logarithm of the number of leaves and the average depth

of a decision tree. Finally, we show that the FEI Conjecture holds for two special classes of

functions, namely linear threshold functions and read-once formulas.

1 Introduction

Fourier transforms are extensively used in a number of �elds such as engineering, physics, and

computer science. Within theoretical computer science, Fourier analysis of Boolean functions

evolved into one of the most useful and versatile tools; see the book [19] for a comprehensive survey

of this area and pointers to literature on this subject. In particular, it plays an important role in

numerous results in complexity theory, learning theory, social choice, inapproximability, metric

∗sourav@cmi.ac.in
†kulraghav@gmail.com
‡satya@microsoft.com
§nitin@imsc.res.in

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 52 (2013)

spaces, etc. If f̂ denotes the Fourier transform of a Boolean function f, then
∑
S⊆[n] f̂

2(S) = 1 and

hence we can de�ne an entropy of the distribution given by f̂2(S):

H(f) :=
∑
S⊆[n]

f̂2(S) log
1

f̂2(S)
. (1)

The Fourier Entropy-Inuence (FEI) Conjecture, made by Friedgut and Kalai [9] in 1996, states

that for every Boolean function, its Fourier entropy is bounded above by its total inuence.

Fourier Entropy-Influence Conjecture: There exist a universal constant C such that for all

f : {0, 1}n → {+1,−1},

H(f) 6 C · Inf(f), (2)

where Inf(f) is the total inuence of f which is the same as the average sensitivity as(f) of f. The

latter quantity may be intuitively viewed as the expected number of coordinates of an input which,

when ipped, will cause the value of f to be changed, where the expectation is w.r.t. the uniform

distribution on the input assignments of f. Thus, the conjecture intuitively asserts that if the

Fourier coe�cients of a Boolean function are \smeared out," then its inuence must be large, i.e.,

at a typical input, the value of f changes in several di�erent directions.

1.1 Motivation

Resolving the FEI conjecture is one of the most important open problems in the Fourier analysis of

Boolean functions. The original motivation for the conjecture in [9] stems from a study of threshold

phenomena in random graphs.

The FEI Conjecture has numerous applications. It implies a variant of Mansour's Conjec-

ture [16] stating that for a Boolean function computable by a DNF formula with m terms, most

of its Fourier mass is concentrated on poly(m)-many coe�cients. A proof of Mansour's conjecture

would imply an e�cient and accurate agnostic learning algorithm for DNF's [10] answering a major

open question in computational learning theory.

The FEI conjecture implies the seminal KKL-result [11, 21] that for every Boolean function that

is 1 with a constant probability, there is always an input variable with inuence at leastΩ(logn/n).

The FEI conjecture also implies that for any n-vertex graph property, the inuence is at least

c(logn)2. The best known lower bound, by Bourgain and Kalai [4], is Ω((logn)2−ε), for any ε > 0.

See [12], [20] and [13] for a detailed explanation on these and other consequences of the conjec-

ture.

1.2 Prior Work

The �rst advance on FEI conjecture was made by Klivans, Lee, and Wan in [13] showing that

the conjecture holds for random DNFs. In [20], O'Donnell, Wright, and Zhou proved that the

conjecture holds for symmetric functions and more generally for any d-part symmetric functions

for constant d. They also proved the conjecture for functions computable by read-once decision

2

trees. Among other recent e�orts on the FEI conjecture, Keller, Mossel, and Schlank [12] generalize

the conjecture to biased product measures on the Boolean cube and prove a variant of the conjecture

for function with extremely low Fourier weight on the high levels. It is also relatively easy to show

that the FEI conjecture holds for a random Boolean function, e.g., see Das, Pal, and Visavalia [6]

for a proof. By direct calculation, one can verify the conjecture for simple functions like AND, OR,

Majority, Tribes etc.

1.3 Our results

We report here various upper bounds on Fourier entropy that may be viewed as progress toward

the FEI conjecture.

General bounds: Recall [11] the well-known identity as(f) = Inf(f) =
∑
S |S| f̂

2(S) that relates

the inuence Inf(f) or average sensitivity as(f) to f̂. Hence, the FEI conjecture (2) states that there

is an absolute constant C such that for all Boolean f,

H(f) 6 C ·
∑
S

|S| f̂2(S). (3)

We prove here that for all δ, 0 < δ 6 1, and for all f with
∑
S f̂
2(S) = 1, and hence for Boolean f

in particular,

H(f) 6
∑
S

|S|1+δ f̂2(S) + (logn)O(1/δ). (4)

From this, we can also derive

H(f) 6 as(f)1−δ · as2(f)δ + (logn)O(1/δ), (5)

where as2(f) :=
∑
S |S|

2 f̂2(S).

Using the \tensorizability" property of the FEI conjecture, O'Donnell et al [20] observe that

the FEI conjecture is equivalent to showing that for all f : {0, 1}n → {+1,−1},

H(f) 6 C
∑
S

|S| f̂2(S) + o(n). (6)

It is worth contrasting (4) and (5) with (6).

It is important to note that (4) holds for arbitrary, i.e., even non-Boolean, f such that (without

loss of generality)
∑
S f̂
2(S) = 1. On the other hand, there are examples of non-Boolean f for which

the FEI conjecture (3) is false. From (5), one can show that for all f, H(f) = O(as(f) logn). Hence

proving the FEI conjecture should involve removing the \extra" log factor while exploiting the

Boolean nature of f.

3

Upper bounds by Complexity Measures: The Inf(f) of a Boolean function f is used to derive

lower bounds on a number of complexity parameters of f such as the number of leaves or the average

depth of a decision tree computing f. Hence a natural weakening of the FEI conjecture is to prove

upper bounds on the Fourier entropy in terms of such complexity measures of Boolean functions.

By a relatively easy argument, we show that

H(f) = O(log L(f)), (7)

where L(f) denotes the minimum number of leaves in a decision tree that computes f. If DNF(f)

denotes the minimum number of terms in a DNF for the function f, note that DNF(f) 6 L(f)). Thus

improving (7) with O(logDNF(f)) on the right hand side would resolveMansour's conjecture. We

note that (7) also holds when the queries made by the decision tree involve parities or conjunctions

of subsets of variables. It also holds when L(f) is generalized to the number of subcubes in a

subcube partition that represents f. Note that for a Boolean function

Inf(f) 6 log(Lc(f)) 6 log(L(f)) 6 D(f),

where Lc(f) is number of subcubes in a subcube partition that represents f andD(f) is the minimum

depth of a decision tree computing f.

We also prove the following strengthening of (7):

H(f) 6 2 �d(f), (8)

where �d(f) denotes the minimum average depth of a decision tree computing f (observe that
�d(f) 6 log(L(f))). Note that the average depth of a decision tree is also a kind of entropy: it is

given by the distribution induced on the leaves of a decision tree when an input is drawn uniformly

at random. Thus (8) relates the two kinds of entropy up to a constant factor.

FEI inequality for some Special Classes of Boolean functions: Finally, we prove that the

FEI conjecture holds for two special classes of Boolean functions:

� Linear Threshold Functions (LTF's), i.e., functions f such that f(x) = sign(w0+w1x1+ · · ·+
wnxn) for wi ∈ R, and

� Read-Once Formulas, i.e., functions computable by a tree with AND and OR gates at internal

nodes and each variable occurring at most once at the leaves.

Prior to our result for LTF's, FEI is known to be true for unweighted threshold functions, i.e.,

when f(x) = sign(x1 + · · · + xn − θ) for some integer θ ∈ [0..n]. This is a corollary of the result

from [20] that the FEI holds for all symmetric Boolean functions. Our proof for LTF's makes use

of an upper bound on the level-k Fourier mass of a Boolean function due to Benjamini et al. [2]

(see also Talagrand [22] and O'Donnell's lecture notes [17]) and a recent lower bound of 12 + c, for

an absolute positive constant c, due to De et al. [7] on the level-6 1 mass of any LTF (also known

as the Gotsman-Linial or O'Donnell constant). The fact that this bound is strictly larger than 1/2

by an absolute constant is critical for our application.

4

O'Donnell et al [20] also prove that the FEI holds for read-once decision trees. Our result

for read-once formulas is a strict generalization of their result. For instance, the tribes function

is computable by read-once formulas but not by read-once decision trees. Our proof for read-

once formulas is a consequence of a kind of tensorizability for {0, 1}-valued Boolean functions. In

particular, we show that an inequality similar to the FEI inequality is preserved when functions

depending on disjoint sets of variables are combined by AND and OR operators.

2 Preliminaries

We recall here some basic facts of Fourier analysis. Consider the space of all functions from {0, 1}n

to R, endowed with the inner product 〈f, g〉 = 2−n
∑
x∈{0,1}n f(x)g(x). The character functions

χS(x) := (−1)
∑
i∈S xi for S ⊆ [n] form an orthonormal basis for this space of functions w.r.t. the

above inner product. Thus, every function f : {0, 1}n −→ R of n boolean variables has the unique

Fourier expansion:

f(x) =
∑
S⊆[n]

f̂(S)χS(x).

The vector f̂ = (f̂(S))S⊆[n] is called the Fourier transform of the function f. The Fourier coe�cient

f̂(S) of f at S is then given by

f̂(S) = 2−n
∑

x∈{0,1}n
f(x)χS(x).

The norm of a function f is de�ned to be ‖f‖ =
√
〈f, f〉. Orthonormality of {χS} implies the

Parseval's identity: ‖f‖2 =
∑
S f̂
2(S).

We consider Boolean functions with range {−1,+1}. For an f : {0, 1}n → {−1,+1}, ‖f‖ is clearly
1 and hence Parsevals' identity shows that for Boolean functions

∑
S f̂
2(S) = 1. This implies that

squared Fourier coe�cients can be thought of as a probability distribution and the notion of Fourier

entropy (1) is well-de�ned.

The inuence of f in the i-th direction, denoted Infi(f) is the fraction of inputs at which the

value of f gets ipped if we ip the i-th bit:

Infi(f) = 2
−n|{x ∈ {0, 1}n : f(x) 6= f(x⊕ ei)}|,

where x⊕ ei is obtained from x by ipping the ith bit of x.

The (total) inuence of f is de�ned to by Inf(f), is
∑n
i=1 Infi(f). The inuence of i on f can be

shown, e.g., [11], to be

Infi(f) =
∑
S3i
f̂(S)2

and hence it follows that Inf(f) =
∑
S⊆[n] |S|f̂(S)

2.

For x ∈ {0, 1}n, the sensitivity of f at x, denoted sf(x), is de�ned to be sf(x) := |{i : f(x) 6=
f(x⊕ei), 1 6 i 6 n}|, i.e., the number of coordinates of x, which when ipped, will ip the value of f.
The (maximum) sensitivity of the function f, denoted s(f) is de�ned to be the largest sensitivity

of f at x over all x ∈ {0, 1}n: s(f) := max{sf(x) : x ∈ {0, 1}n}. The average sensitivity of f, denoted

as(f), is de�ned to be as(f) := 2−n
∑
x∈{0,1}n sf(x). It is easy to see that Inf(f) = as(f) and hence we

also have as(f) =
∑
S⊆[n] |S|f̂(S)

2.

5

3 A bound on the entropy of general functions

Theorem 3.1. If f =
∑
S⊆[n] f̂(S)χS is a real-valued function on the domain {0, 1}n such that∑

S |f̂(S)
2| = 1 then for any δ > 0∑
S⊆[n]

f̂(S)2 log

(
1

f̂(S)2

)
=
∑
S

|S|1+δ f̂(S)2 + 2 log1+δ n+ 2(2 logn)(1+δ)/δ(logn)2.

3.1 Proof of Theorem 3.1

Our proof strategy is as follows: We partition the Fourier coe�cients into suitable parts and then

upper bound each part. We start with suitably chosen sets A0, B0 ⊆ 2[n] and then inductively

construct the sets A1, B1, . . . , Ak, Bk. The Ai's represent the new Fourier coe�cients whose total

entropy we are able to upper bound. The Bi's represent the Fourier coe�cients that are not yet

accounted for. Our construction yields that as k increases Bk only consists of those f̂(S) for which

|S| < ψ(k, n, δ), where ψ is a suitable function of k, n and δ. Finally an appropriate choice of k

gives us the desired inequality. We start by describing the Ai and Bi.

Let A0 be the be the set of all S ⊆ [n] for which |S|1+δ is at least log
(

1
f̂(S)2

)
. That is:

A0 := {S | f̂(S)2 > 1/2|S|
1+δ

}.

Clearly, ∑
S∈A0

f̂(S)2 log

(
1

f̂(S)2

)
6
∑
S∈A0

|S|1+δf̂(S)2. (9)

Now, let A1 be all the S ⊆ [n] for which |f̂(S)| 6 2−n. The following lemma helps to upper

bound the contribution of sets from A1 to the entropy.

Lemma 3.2. For any t, let T ⊆ {S | |f̂(S)| 6 1/t} and |T | 6 t then
∑
S∈T f̂(S)

2 log
(

1
f̂(S)2

)
6 2.

Also for any k we have ∑
S:|S|6k

f̂(S)2 log

(
1

f̂(S)2

)
6 2+ 2k logn.

Proof. Since |f̂(S)| 6 1/t for every S ∈ T ,∑
S∈T

f̂(S)2 log

(
1

f̂(S)2

)
6
2

t

∑
S∈T

|f̂(S)| log

(
1

|f̂(S)|

)
6 2,

where the last inequality follows from the fact that |f̂(S)| log(1/|f̂(S)|) < 1 (because x log(1/x) < 1

for all 0 6 x < 1) and |T | 6 t.
Now for the second inequality note that {S | |S| 6 k} is less than nk. Let Sk := {S|f̂(S) < 1/nk}.

From the above inequality
∑
S∈Sk f̂(S)

2 log
(

1
f̂(S)2

)
6 2, Now for all S such that |S| 6 k and S 6∈ Sk

then log(1/|f̂(S)|) < k logn and hence∑
S:|S|6k and S 6∈Sk

f̂(S)2 log

(
1

f̂(S)2

)
6 2k logn.

6

Thus by Lemma 3.2 we have, ∑
S∈A1

f̂(S)2 log

(
1

f̂(S)2

)
6 2. (10)

Let B1 = {0, 1}n\(A0 ∪ A1). By the de�nition of A0 and A1, B1 ⊆
{
S | 1

22n
6 f̂(S)2 6 1

2|S|
1+δ

}
.

Thus B1 ⊆ {S | |S| 6 (2n)1/1+δ} and hence |B1| 6
(

n
(2n)1+δ

)
< n(2n)1+δ . Hence by Lemma 3.2 we have

a o(n) contribution from the total entropy of B1 and thus from Equation 9 and 10 we obtain∑
S⊆[n]

f̂(S)2 log

(
1

f̂(S)2

)
=
∑
S∈A0

|S|1+δf̂(S)2 + o(n).

Now we proceed to sharpen the o(n) term. We repeat the above step via an inductive con-

struction described as follows: Suppose we have constructed Bk and let rk be the smallest such

that |Bk| 6 nrk . De�ne Ak+1 := {S ∈ Bk | f̂(S)2 6 1/n2rk}, and Bk+1 := Bk\Ak+1. So,

Bk+1 ⊆
{
S |

1

n2rk
6 f̂(S)2 6

1

2|S|
1+δ

}
.

Thus Bk+1 ⊆ {S | |S| 6 (2rk logn)
1/1+δ} and we obtain the rk+1 which is smallest such that

|Bk+1| 6 nrk+1 . Thus rk+1 6 (2rk logn)
1/1+δ. We know that r1 6 n. For k = log1+δ n we have

rk 6 (2 logn)(1+δ)/δ. Note that for all k > 0 since Ak+1 ⊆ Bk and |Bk| 6 nrk thus by the de�nition

of Ak+1 and by Lemma 3.2 ∑
S∈Ak+1

f̂(S)2 log

(
1

f̂(S)2

)
6 2.

Thus each Ak contributes at most 2 to the entropy. The only Fourier coe�cients that we have

not accounted for after kth step are the ones in Bk+1 and those are with |S| 6 (2rk logn)
1/(1+δ) 6

2(2 logn)(1+δ)/δ logn. Hence from Lemma 3.2 we have

∑
S⊆[n]

f̂(S)2 log

(
1

f̂(S)2

)
6
∑
S⊆[n]

|S|1+δf̂(S)2 + 2 log1+δ n+ 2(2 logn)(1+δ)/δ(logn)2.

This completes the proof of Theorem 3.1. �

3.2 Corollaries to Theorem 3.1

By choosing δ = log logn
logn , we obtain

Corollary 3.3. For any function f : {0, 1}n → R such that
∑
S |f̂(S)

2| = 1 then

∑
S⊆[n]

f̂(S)2 log

(
1

f̂(S)2

)
= O(as(f) logn) + o(n).

7

Corollary 3.4. If f =
∑
S⊆[n] f̂(S)χS is a real-valued function on the domain {0, 1}n such that∑

S |f̂(S)
2| = 1 then for any δ > 0∑
S⊆[n]

f̂(S)2 log

(
1

f̂(S)2

)
= as(f)1−δas2(f)

δ + 2 log1+δ n+ 2(2 logn)(1+δ)/δ(logn)2,

where as2(f) :=
∑
S |S|

2 f̂(S)2.

The proof of Corollary 3.4 follows from Lemma 3.6 below. But for proving Lemma 3.6 we need

Lemma 3.5. We prove the lemmas below.

For a Boolean function f : {0, 1}n → {1,−1} we say that the ith bit f is sensitive on input x if

f(x⊕ ei) 6= f(x), where ei ∈ {0, 1}n is a vector whose all co-ordinates except the ith are 0 as x, and

the ith bit is 1. The sensitivity of f on input x, denoted by s(f, x) is the total number of sensitive

bits of f on x. The sensitivity of f, denoted by s(f), is the maximum over all x of s(f, x). The

average sensitivity denoted by as(f) :=
∑
x s(f, x)/2

n. Kahn-Kalai-Linial [11] proved that

as(f) =
∑
S

f̂(S)2|S| = Inf(f).

For f : {0, 1}n → R, let as2(f) :=
∑
S |S|

2f̂(S)2. The following lemma gives an identity for as2(f)

in terms of the sensitivity of f. We present here a proof due to Alex Samorodnitsky (personal

communication).

Lemma 3.5. For f : {−1, 1}n → {−1, 1},

1

2n

∑
x

s(f, x)2 =
∑
S⊆[n]

|S|2f̂(S)2 = as2(f).

Proof. Consider the following function L : {0, 1}n → R

L(x) =

n for |x| = 0

−1 for |x| = 1

0 for |x| > 1

Let L ∗ f(x) := 1
2n

∑
z L(x⊕ z)f(z). Note that:

(L ∗ f)(x) = 2s(f, x)f(x)

2n
.

Using Parseval's Identity we obtain:

1

2n

∑
x

(2s(f, x)/2n)2 =
∑
S⊆[n]

(̂L ∗ f)(S)2 =
∑
S⊆[n]

L̂(S)2f̂(S)2.

Since for any S ⊆ [n], L̂(S) = 2|S|/2n so we obtain the equality that

1

2n

∑
x

4s(f, x)2 =
∑
S⊆[n]

4|S|2f̂(S)2.

8

Lemma 3.6. For all 0 6 δ 6 1,

as(f)1−δas2(f)
δ >
∑
S⊆[n]

|S|1+δf̂(S)2.

Proof. We treat f̂(S)2 as the probability associated to the set S and use the following version of the

Cauchy-Schwartz inequality: for any two random variables X, Y : Ω→ R, we have:
√
E(X2)

√
E(Y2) >

E(XY). Choosing X(S) =
√
|S| and Y(S) = |S| immediately yields the desired inequality for the value

of δ = 1
2 in light of Lemma 3.5.

In fact, we can show the following: if the desired inequality holds for δ = α and δ = β then

the inequality must also hold for δ = α+β
2 . To show this, one may apply the Cauchy-Schwartz

inequality with X(S) = |S|(1+α)/2 and Y(S) = |S|(1+β)/2.

Hence, by continuity, the desired inequality holds for any δ ∈ [0, 1].

4 Bounding Entropy using Complexity Measures

In this section, we prove upper bounds on Fourier entropy in terms of some complexity parameters

associated to decision trees and subcube partitions.

4.1 via L1-norm : Decision Trees

Lemma 4.1. Let f : {0, 1}n → R be such that
∑
S f̂(S)

2 6 1. Let L1(f) :=
∑
S |f̂(S)| be the L1-norm

of the Fourier transform of f. Assume, further, that L1(f) > 1. Then, H(f) 6 4 log L1(f) + 9.

Proof. Let L := L1(f). Let θ := 1/(16L2). Let G := {S : |f̂(S)| > θ}. Note that for x > 16,

log x 6
√
x. We thus have for S 6∈ G, log 1

|f̂(S)|
6 1√

|f̂(S)|
.

H(f) =
∑
S

f̂2(S) log
1

f̂2(S)
6
∑
S∈G

f̂(S)2 log
1

f̂(S)2
+ 2
∑
S 6∈G

f̂(S)2
1√
|f̂(S)|

6 log
1

θ2

∑
S∈G

f̂(S)2 + 2max
S 6∈G

√
|f̂(S)|

∑
S 6∈G

|f̂(S)|

6 log(256L4) + 2 · 1
4L
· L 6 4 log L+ 9.

It is well-known and easy to prove1 that the L1-norm of a function computed by a decision tree

is at most the number of leaves in that tree.

Lemma 4.2 ([14, 15]). Let `(f) be the minimum number of leaves in a decision tree computing

the Boolean function f. Then L1(f) :=
∑
S |f̂(S)| 6 `(f).

In fact, even if we allow the queries at each internal node of a decision tree to be parities

or conjunctions of subsets of variables (or more generally any functions with bounded L1-

norm), then also we have L1(f) = O(`(f)).

1See also Lemma 4.8

9

Corollary 4.3. Let `(f) be the number of leaves in a decision tree computing a Boolean

function f. Then H(f) = O(log `(f)).

The same bound as above holds also for decision trees that query parities and conjunctions of

variables at their internal nodes.

The decision tree depth D(f) of a function is the minimum depth (length of a longest root-to-

leaf path) of a decision tree computing f and that the degree deg(f) is the degree of the (unique)

multilinear polynomial over R that represents f. It is easy to see that log(L1(f)) 6 deg(f) 6 D(f).

Thus, we immediately have

Corollary 4.4. For every Boolean function f, H(f) = O(D(f)) and H(f) = O(deg(f)).

Remark 4.1. A natural question to ask is how important Boolean-ness of functions is in

entropy upper bounds. While Lemma 4.1 holds for real-valued functions as well, we note that

the Corollaries 4.3 and 4.4 hold only for Boolean-valued functions. In fact, we give examples

below to show that these corollaries fail for non-Boolean functions.

A decision tree for a non-Boolean, say R-valued, function f can be de�ned by a natural general-

ization of the one for a Boolean-valued function. It queries the (Boolean) input variables as in the

usual decision tree, but produces a value in R at each leaf. It must guarantee that on all inputs

that reach a leaf the function value must be constant and equal to the value produced at that leaf.

Our next example shows that Fourier entropy cannot be upper bounded by log(number of

leaves) for non-Boolean f in contrast to Corollary 4.3 for Boolean functions. In fact, there is an

exponential gap:

Lemma 4.5. There exists a function f : {0, 1}n → R satisfying
∑
S f̂
2(S) = 1 such that∑

S⊆[n]

f̂(S)2 log

(
1

f̂(S)2

)
= Ω(n), but log `(f) = O(logn).

Proof. Consider the following function:

f(x) =

√
2d(x)

n
,

where d(x) is the �rst index in x that is 1. Note that this function has a decision tree same as

the OR function and thus have only n + 1 leaves. Now to see that
∑
S⊆[n] f̂(S)

2 = 1 consider the

following: ∑
x

f(x)2 =
∑
i∈[n]

∑
x:d(x)=i

f(x)2 =
∑
i∈[n]

2n−i
2i

n
= 2n,

and thus from Parseval's identity we have
∑
S⊆[n] f̂(S)

2 = 1.

It is easy to check that for any set S ⊆ [n] if k is the largest index in S then

f̂(S) =
1√
n2n

(
2n−k
√
2
k
−

√
2
n
−
√
2
k

√
2− 1

)
≈ 1√

n2k
.

And from this it follows that the entropy for the fourier coe�cient squares is around n/2 + logn

whereas log(`) = log(n).

10

Our next example shows that Fourier entropy can be logarithmically larger than the degree for

non-Boolean functions in contrast to Corollary 4.4 for Boolean functions.

Lemma 4.6. There exists a function f : {0, 1}n → R of degree d satisfying
∑
S |f̂(S)

2| = 1 such

that ∑
S⊆[n]

f̂(S)2 log

(
1

f̂(S)2

)
= Ω(d logn).

Proof. Consider the following function f =
∑
S⊆[n] f̂(S)χS, where f̂(S) = 1/

√(
n
2

)
if |S| = 2, and

f̂(S) = 0 otherwise. It is easy to see that the H(f) = log
(
n
2

)
, whereas Inf(f) =

∑
S⊆[n]

|S|f̂(S)2 = 2.

So now if we put uniform weights on k-sized sets, that is, f̂(S) = 1/
√(

n
k

)
if |S| = k and f̂(S) = 0

if |S| 6= k, we will get Inf(f) = k and H(f) = log
(
n
k

)
> k logn − k log k. Choosing k =

√
n, we will

have H(f) = Ω(
√
n logn) and Inf(f) =

√
n. Since the degree of the function is d =

√
n, we get

H(f) = Ω(d · logn).

4.2 via Concentration : Subcube Partitions

Note that a decision tree computing a Boolean function f induces a partition of the cube {0, 1}n

into monochromatic subcubes, i.e., f has the same value on all points in a given subcube, with one

subcube corresponding to each leaf. But there exist monochromatic subcube partitions that are

not induced by any decision tree. We can generalize Corollary 4.3 to subcube partitions.

Our goal in presenting the generalization to subcube partitions is to illustrate a di�erent ap-

proach. The approach uses the concentration property of the Fourier transform and uses a general,

potentially powerful, technique. One way to do this is to use a result due to Bourgain and Kalai

(Theorem 3.2 in [12]). However, we give a more direct proof for the special case of subcube parti-

tions.

Definition 4.7. A subcube C of the cube Bn := {0, 1}n is given by a mapping (partial assign-

ment) α : [n] → {−1,+1, ∗} and is de�ned to be the set of all vectors in Bn that agree with α

on coordinates �xed, i.e., assigned a non-∗ value, by α: C := Cα := {x ∈ Bn : α(i) 6= ∗ =⇒
xi = α(i)}. We use A := {i ∈ [n] : α(i) 6= ∗} to denote the set of �xed coordinates of α and

denote the cube C also by the pair (A,α).

For a function f : {0, 1}n → {+1,−1}, a partition C = {C1, . . . , Cm} of Bn into subcubes Ci
such that f is constant on each Ci is called a (monochromatic) subcube partition w.r.t. f. If

C is a subcube partition monochromatic w.r.t. f, we also say C computes f.

We denote by Lc(f) the minimum number of subcubes in a subcube partition that computes

f.

Suppose now f is computed by the subcube partition C = {C1, . . . , CL}, where Ci = (Ai, αi).

Let φi : {0, 1}
n → {0, 1} be the characteristic function of the subcube Ci : φi(x) = 1 if x ∈ Ci and

φi(x) = 0 otherwise. Let βi ∈ {−1,+1} be the value of f on Ci. Then, clearly

f(x) =

L∑
i=1

βiφi(x).

11

By linearity of the Fourier transform, it follows that f̂(S) =
∑L
i=1 βiφ̂i(S). A simple calculation

shows that, for the characteristic function φ of a subcube C = (A,α), the Fourier transform is

given by φ̂(S) = 2−|A|χS(α) if S ⊆ A and φ̂(S) = 0 otherwise. It follows that

f̂(S) =
∑

i : S⊆Ai

2−|Ai| · βiχS(αi). (11)

In particular, f̂(S) 6= 0 =⇒ ∃i S ⊆ Ai.
The following lemma directly follows from the above observations.

Lemma 4.8. Let f be computed by the subcube partition C = {C1, . . . , CL}, where Ci = (Ai, αi).

Then,

(i)
∑
S

|f̂(S)| 6 L, and

(ii) For any integer t > 0,
∑
|S|>t

f̂2(S) 6
∑
|Ai|>t

2−|Ai|.

Proof. Using (11),

∑
S

|f̂(S)| =
∑
S

|
∑

i : S⊆Ai

βiχS(αi)2
−|Ai|| 6

∑
S

∑
i : S⊆Ai

2−|Ai| =

L∑
i=1

2−|Ai|
∑
S⊆Ai

1 =

L∑
i=1

2−|Ai| · 2|Ai| = L.

By (11), if |S| > t, the contribution to f̂(S) comes from only the Ci such that |Ai| > t. Let

g ≡
∑

|Ai|>t
βiφi be the restriction of f to subcubes with codimension > t. It is then clear that∑

|S|>t

f̂2(S) =
∑
|S|>t

ĝ2(S) 6
∑
S

ĝ2(S) = 2−n
∑
|Ai|>t

|Ci| =
∑
|Ai|>t

2−|Ai|.

This proves (ii).

Combining Lemma 4.8(i) and Lemma 4.1, it immediately follows that H(f) = O(log Lc(f)).

However, we give here a di�erent approach to prove essentially the same result. The approach

uses the concentration property of the Fourier transform and illustrates a general, potentially

powerful, technique. One way to do this is to combine Lemma 4.8(ii) with the following result due

to Bourgain and Kallai:

Theorem 4.9 (Bourgain-Kalai, cited in [12]). For f : {0, 1}n → {+1,−1} ,suppose that there exist

c0 > 0, 0 < a < 1/2, and integer k such that for all t,∑
S:|S|>t

f̂2(S) 6 ec0k · e−at.

Then, for any α > 1, there exists a set Bα such that

(i) log |Bα| 6 C · αk, where C depends only on a and c0, and

(ii)
∑
S 6∈Bα f̂

2(S) 6 n−α.

12

However, we gave a more direct proof that nevertheless derives statements analogous to (i) and

(ii) of Theorem 4.9, but for the special case of subcube partitions.

Theorem 4.10. Let f : {0, 1}n → {+1,−1} be computed by a subcube partition C of size L.

Then,

H(f) 6 2 log L(f) + 2 logn+ 2.

Proof. To bound entropy via concentration, we use the following simple idea. Suppose E is a subset
of Fourier coe�cients of a Boolean function f such that

∑
S∈E f̂

2(S) = ε. For a subset of coe�cients

B, let H(B) denote the Fourier entropy restricted to that set B, appropriately normalized. Then a

simple manipulation shows∑
S

f̂2(S) log
1

f̂2(S)
= (1− ε)H(E) + εH(E) + H(ε), (12)

where H(p) := p log 1p + (1− p) log 1
1−p is the binary entropy function.

Now, let

Bt := {S : ∃ i |Ai| 6 t such that S ⊆ Ai}.

Note that if S 6∈ Bt, then every set Ai that contains S must have size larger than t. Hence, using

(??), only sets of size larger than t contribute to such f̂(S). We now argue as in the proof of

Lemma 4.8(ii). Let g ≡
∑

|Ai|>t
βiφi be the restriction of f to subcubes with codimension > t. It

is then clear that∑
S 6∈Bt

f̂2(S) =
∑
S 6∈Bt

ĝ2(S) 6
∑
S

ĝ2(S) = 2−n
∑
|Ai|>t

|Ci| =
∑
|Ai|>t

2−|Ai| < 2−tL. (13)

Since
∑
i 2

−|Ai| = 1, we have that |{i : |Ai| 6 t}| 6 2t. Since every S ∈ Bt is a subset of some Ai
with |Ai| 6 t, it follows

|Bt| 6
∑
|Ai|6t

2|Ai| 6 2t · |{i : |Ai| 6 t}| 6 2
2t. (14)

Fix t := log(Ln).

We can now estimate the Fourier entropy of a subcube partition:

H(f) =
∑
S

f̂2(S) log
1

f̂2(S)

= (1− 1/n)H(f̂2(S) : S ∈ Bt) + (1/n)H(f̂2(S) : S 6∈ Bt) +H(1/n) using (12) and (13)

6 (1− 1/n) log |Bt|+ 1/n · n+H(1/n) using (14)

6 2t+ 1+H(1/n)

6 2 log L+ 2 logn+ 2.

13

4.3 via leaf entropy : Average Decision Tree Depth

Let T be a decision tree computing f : {0, 1}n → {+1,−1} on variable set X = {x1, . . . , xn}. If

A1, . . . , AL are the sets (with repetitions) of variables queried along the root-to-leaf paths in the

tree T , then the average depth (w.r.t. the uniform distribution on inputs) of T is de�ned to be

�d :=

L∑
i=1

|Ai|2
−|Ai|.

Note that the average depth of a decision tree is also a kind of entropy: if each leaf λi is chosen

with the probability pi = 2−|Ai| of uniformly chosen random input reaches it, then the entropy of

the distribution induced on the λi is H(λi) = −
∑
i pi log pi =

∑
i |Ai|2

−|Ai|. Here, we will show

that the Fourier entropy is at most twice the leaf entropy of a decision tree.

W.l.o.g., let x1 be the variable queried by the root node of T and let T1 and T2 be the subtrees

reached by the branches x1 = +1 and x1 = −1 respectively and let g1 and g2 be the corresponding

functions computed on variable set Y = X \ {x1}. Let �d be the average depth of T and �d1 and �d2
be the average depths of T1 and T2 respectively. The following straightforward lemma relates the

Fourier transform of f to those of it subfunctions g1 and g2.

Lemma 4.11. Let S ⊆ {2, . . . , n}.

(i) f̂(S) = (ĝ1(S) + ĝ2(S))/2.

(ii) f̂(S ∪ {1}) = (ĝ1(S) − ĝ2(S))/2.

(iii) �d = (�d1 + �d2)/2+ 1.

Proof. Observe that

f(x1, x2, . . . , xn) = f(x1, y) =
(1+ x1)

2
g1(y) +

(1− x1)

2
g2(y)

=
1

2
(g1(y) + g2(y)) +

x1
2
(g1(y) − g2(y)).

(i) and (ii) now follow by linearity of the Fourier transform.

Let {Bi}
L1
i=1 be the variable sets queried along the root-to-leaf paths in T1 and similarly let {Ci}

L2
i=1

be the variable sets queried along the root-to-leaf paths in T2. Then, note that the variable sets

{A1}
L
i=1, where L = L1+L2, queried along the root-to-leaf paths in T are given by {Bi∪{x1}}L1i=1

⋃
{Ci∪

{x1}}
L2
i=1. It thus follows that

�d :=

L∑
i=1

|Ai|2
−|Ai|

=

L1∑
1=1

(|Bi|+ 1)2
−|Bi|−1 +

L2∑
1=1

(|Ci|+ 1)2
−|Ci|−1

=
1

2

L1∑
1=1

|Bi|2
−|Bi| +

1

2

L1∑
1=1

2−|Bi| +
1

2

L2∑
1=1

|Ci|2
−|Ci| +

1

2

L2∑
1=1

2−|Ci|

=
1

2
�d1 +

1

2
+
1

2
�d2 +

1

2
,

14

where the last line follows by applying the de�nition of average depth to T1 and noting that∑L1
1=1 2

−|Bi| = 1 for the decision tree T1 and similarly for T2. This proves (iii).

Remark 4.2. Note that g1 and g2 di�er on an input y if and only f is sensitive to x1 at

(x1, y). In particular, it is obvious that 1
4‖g1 − g2‖

2 is the probability with which f changes

value at a random input when x1 is ipped and hence is Inff(1). Not surprisingly, from (ii),∑
1∈T f̂

2(T) = 1
4

∑
S⊆Y ĝ1 − g2

2
(S) = 1

4‖g1 − g2‖
2 and we know that Inff(1) =

∑
1∈T f̂

2(T). It also

follows from this that 1
4‖g1 + g2‖

2 = 1
4

∑
S⊆Y ĝ1 + g2

2
(S) = 1− Inff(1).

We will also need the following technical lemma.

Lemma 4.12. Let g1 and g2 be de�ned as before Lemma 4.11. Then,

H(f) 6
1

2
H(g1) +

1

2
H(g2) + 2. (15)

Proof. We will use the concavity of the function x log 1x (for 0 6 x 6 1)2 and Lemma 4.11. For

simplicity of notation below, let N ′ := {2, . . . , n}.

H(f) =
∑
T⊆[n]

f̂2(T) log
1

f̂2(T)

=
∑
S⊆N ′

f̂2(S) log
1

f̂2(S)
+ f̂2(S ∪ {1}) log

1

f̂2(S ∪ {1})

6
∑
S⊆N ′

(f̂2(S) + f̂2(S ∪ {1})) log
2

f̂2(S) + f̂2(S ∪ {1})
by concavity of x log 1x .

=
∑
S⊆N ′

ĝ1
2(S) + ĝ2

2(S)

2
log

4

ĝ1
2(S) + ĝ2

2(S)
by Lemma 4.11 (i) and (ii)

=
1

2

∑
S⊆N ′

ĝ1
2(S) log

1

ĝ1
2(S) + ĝ2

2(S)
+
1

2

∑
S⊆N ′

ĝ2
2(S) log

1

ĝ1
2(S) + ĝ2

2(S)
+
∑
S⊆N ′

ĝ1
2(S) + ĝ2

2(S)

6
1

2

∑
S⊆N ′

ĝ1
2(S) log

1

ĝ1
2(S)

+
1

2

∑
S⊆N ′

ĝ2
2(S) log

1

ĝ2
2(S)

+ 2

since
∑
S⊆N ′ ĝ1

2(S) =
∑
S⊆N ′ ĝ2

2(S) = 1.

Let �d(f) denote the minimum average depth of a decision tree computing f.

Theorem 4.13. For every Boolean function f, H(f) 6 2 · �d(f).

Proof. The proof is by induction on the number of variables of f.

H(f) =
1

2
H(g1) +

1

2
H(g2) + 2 by Lemma 4.12

2That is, x log 1
x
+ y log 1

y
6 (x + y) log 2

x+y
.

15

6 �d1 + �d2 + 2 by induction, H(gi) 6 2 �di for i = 1, 2

= 2�d by Lemma 4.11 (iii)

Remark 4.3. The constant 2 in the bound of Theorem 4.13 cannot be replaced by 1. Indeed,

let f(x, y) = x1y1 + · · · + xn/2yn/2 mod 2 be the inner product mod 2 function. Then because

f̂2(S) = 2−n for all S ⊆ [n], H(f) = n. On the other hand, it can be shown that �d(f) = 3
4n−o(n).

Hence, the constant must be at least 4/3.

5 Entropy-Influence Inequality for some special classes

So far we have established upper bounds on Fourier entropy of general boolean functions. In

this section, we will prove the Fourier Entropy-Inuence conjecture for balanced linear threshold

functions and read-once formulas.

5.1 Linear Threshold Functions

For f : {0, 1}n → {+1,−1}, let Wk[f] :=
∑
S=k f̂(S)

2. Let II(f) :=
∑n
i=1 Infi(f)

2.

From [20] we have the following bound on entropy:

Lemma 5.1. [20] Let f : {0, 1}n → {+1,−1} be any Boolean function. Then,

H(f) 6
n∑
k=0

Wk[f] log

(
n

k

)
+

n∑
k=0

Wk[f] log
1

Wk[f]
6

1

ln 2
Inf[f] +

1

ln 2

n∑
k=1

Wk[f]k ln
n

k
+ 3 · Inf[f]

We will use the following upper bound on Wk:

Theorem 5.2. [2, 22] Let f : {0, 1}n → {+1,−1} be a boolean function. For each k > 2, we have

Wk[f] 6 Ck · II(f) logk−1
1

II(f)

where Ck is some constant. Unpublished work of Kindler (cited in [17]) shows that in fact

Ck 6 O(1/k).

We will also use the following lower bound on W61 of an LTF:

Theorem 5.3. [7] Let f : {0, 1}n → {+1,−1} be a linear threshold function. Then there exist a

universal constant c > 0, such that

f̂(∅)2 +
n∑
i=1

f̂({i})2 >
1

2
+ c

We call a function f balanced, if f̂(∅) = 0.

16

Lemma 5.4. Let f : {0, 1}n → {+1,−1} be a balanced linear threshold function. Then

n∑
k=1

Wk[f]k ln
n

k
6 O(II(f) · logn).

Proof.

n∑
k=1

Wk[f]k ln
n

k
6

n∑
k=1

Wk[f]k ·
n∑
j=k

1

j
6

n∑
j=1

1

j

j∑
k=1

Wk[f]k 6 c ′ ·
n∑
j=1

1

j

j∑
k=1

II(f) logk−1
1

II(f)

6 c ′ ·
n∑
j=1

1

j
II(f)

∞∑
k=1

αk−1 (using Theorem 5.3, α := log 1
1
2
+c
, 0 6 α < 1.)

6 c ′ · II(f) 1

1− α

n∑
j=1

1

j
6 c ′ · 1

1− α
· II(f) · (logn)

The third inequality follows from Theorem 5.2 and c ′ is a constant depending on Ck.

Combining Lemmas 5.1 and 5.4, we obtain the following theorem.

Theorem 5.5. Let f : {0, 1}n → {+1,−1} be a balanced linear threshold function. Then,

H(f) 6
1

ln 2
Inf[f] + 3 · Inf[f] + c ′

(1− α) ln 2
· (logn) · II(f)

Note that since Infi(f) = |f̂({i})| for linear threshold functions II(f) is at most 1.

5.2 Read-Once Boolean Formulas

It is well-known and easy to see that the mod-2 sum (XOR or Parity) of two functions on disjoint

sets of variables simply results in addition of the Fourier entropy and the average sensitivity:

Fact 5.6. Now, let f = g1 ⊕ g2 for gi : {0, 1}Vi → {−1,+1}, where V1 ∩ V2 = ∅. Let V = V1 ∪ V2.
Then,

1. H(f) = H(g1) +H(g2)

2. as(f) = as(g1) + as(g2)

We show below somewhat analogous relations when composing functions on disjoint sets of

variables using AND and OR operations. The theorem for read-once formulas at once follows from

these \tensorizability"-like properties.

For a function f : {0, 1}n → {+1,−1} be, we will use fB to refer to its 0-1 counterpart: fB ≡ 1−f
2 .

In the latter case, we de�ne

H(fB) =
∑
S

f̂B
2
(S) log

1

f̂B
2
(S)
.

Note that this is not exactly an entropy (since we don't normalize), but we will use it simply for

notational convenience. An easy relation enables translation between H(f) and H(fB):

17

Lemma 5.7.

H(f) = 4 ·H(fB) +ϕ(p), (16)

where p = Pr[fB = 1] = f̂B(∅) =
∑
S f̂B

2
(S), q := 1− p, and

ϕ(p) := H(4pq) − 4p(H(p) − log p). (17)

Now, let f = AND(g1, g2) for gi : {0, 1}
Vi → {−1,+1}, where V1 ∩ V2 = ∅. Let V = V1 ∪ V2. Let

giB ≡ 1−gi
2 and pi = ĝiB(∅). It is then obvious that fB ≡ g1B · g2B.

Lemma 5.8. With the above notations, the following identities hold:

1. For all S ⊆ V, f̂B(S) = ĝ1B(S ∩ V1) · ĝ2B(S ∩ V2)

2. H(fB) = p2 ·H(g1B) + p1 ·H(g2B)

3. as(f) = p2 · as(g1) + p1 · as(g2)

Let us de�ne the following function for 0 6 p 6 1:

ψ(p) := p2 log
1

p2
− 2H(p). (18)

The following technical lemma gives us the crucial property of ψ:

Lemma 5.9. For ψ as above and p1, p2 ∈ [0, 1],

p1 ·ψ(p2) + p2 ·ψ(p1) 6 ψ(p1p2).

Proof. We need to prove that p1ψ(p2) + p2ψ(p1) −ψ(p1p2) 6 0. Let's begin by manipulating the

l.h.s.:

p1ψ(p2) + p2ψ(p1) −ψ(p1p2)

= p1(p
2
2 log

1

p22
− 2H(p2)) + p2(p

2
1 log

1

p21
− 2H(p1)) − (p1p2)

2 log
1

(p1p2)2
+ 2H(p1p2)

= 2p1p2(−p2 log p2 − p1 log p1 + p1p2 log p2 + p1p2 log p1) + 2(H(p1p2) − p2H(p1) − p1H(p2))

= 2p1p2(−p2q1 log p2 − p1q2 log p1) + 2(−(1− p1p2) log(1− p1p2) + p2q1 logq1 + p1q2 logq2)

= 2p1q2(−p1p2 log p1 + logq2) + 2p2q1(−p1p2 log p2 + logq1) − 2(1− p1p2) log(1− p1p2)

6 2(1− p1p2)

(
−p1p2 log(p1p2) + log

q1q2
1− p1p2

)
since p1q2, p2q1 6 (1− p1p2)

6 2(1− p1p2)

(
−p1p2 log(p1p2) + log

(1−
√
p1p2)

2

(1− p1p2)

)
since q1q2 = (1− p1)(1− p2) 6 (1−

√
p1p2)

2, e.g., by the AM-GM inequality p1 + p2 > 2
√
p1p2.

18

Since p1p2 ∈ [0, 1], it su�ces to show the (univariate) inequality τ(x) := −x ln x + ln (1−
√
x)2

1−x 6 0
for x ∈ [0, 1]. Since the boundary cases are easy to verify, it su�ces to prove the that τ(x) 6 0 for
x ∈ (0, 1). Note that τ(0) = 0 and hence it su�ces to prove that τ ′(x) < 0 for x ∈ (0, 1). But

τ ′(x) = −1+ ln
1

x
−

1√
x(1− x)

6 −1+

√
1

x
−

1√
x(1− x)

since lny 6
√
y

= −1−

√
x

1− x

< 0 for x ∈ (0, 1).

Let us call the following the FEI01 Inequality: (Fourier Entropy-Inuence Inequality, but

the 0-1 version)

H(fB) 6 c · as(f) +ψ(p), (19)

where p = f̂B(∅) = Prx[fB(x) = 1] and c is a constant3 to be �xed later.

Lemma 5.10. Suppose fB = AND(g1B, g2B), where the gi depend on disjoint sets of variables.

If each of the gi satis�es the FEI01 Inequality (19), then so does f.

Proof.

H(fB) = p2H(g1B) + p1H(g2B) by Lemma 5.8(2)

6 p2(c · as(g1) +ψ(p1)) + p1(c · as(g2) +ψ(p2)) since gi satisfy (19)

= c · (p2as(g1) + p1as(g2)) + (p2ψ(p1) + p1ψ(p2)

6 c · as(f) +ψ(p) by Lemma 5.8(3) and Lemma 5.9

Lemma 5.11. If f satis�es FEI01 inequality (19), then so does its negation, i.e., 1− f.

Proof. Note that H(1 − f) = H(f) − p2 log 1
p2

+ q2 log 1
q2

and ψ(p) − ψ(q) = p2 log 1
p2

− q2 log 1
q2

(because H(p) = H(q)).

Corollary 5.12. Suppose fB = OR(g1B, g2B), where the gi depend on disjoint sets of variables.

If each of the gi satis�es the FEI01 Inequality (19), then so does f.

Proof. Note that 1− fB = (1− g1B) · (1− g2B) and apply lemmas 5.10 and 5.11.

Theorem 5.13. The FEI01 inequality holds for all read-once Boolean formulas. In fact,

inequality (19) is satis�ed for any read-once formula f with constant c = 5/2.

3We do not attempt to �nd optimal constants here. By �ne-tuning the choices of various functions, it may be

possible to get better constants.

19

Proof. Let f be computed by a read-once Boolean formula. We proceed by induction on the tree.

At the leaves f is a single variable, say x1. Then H(fB) =
1
4 log 4 +

1
4 log 4 = 1

2 since fB(∅) = 1/2

and fB({1}) = −1/2, as(f) = 1, p = 1/2, and ψ(1/2) = −3/2. Thus with c = 5/2, (19) is satis�ed.

Now, lemma 5.10 and 5.12 imply that at every AND gate and OR gate, the inequality (19) is

preserved, i.e., if it holds at both the inputs, it also holds at the output.

Combining this theorem with (16) and (19) and noting that 4ψ(p)+ϕ(p) 6 0 for p ∈ [0, 1], we

conclude that the Fourier Entropy Inuence conjecture (2) holds for read-once formulas:

Corollary 5.14. If f is computed by a read-once formula, then H(f) 6 10 Inf(f).

5.2.1 Extension to Read-Once Formulas with Parity Gates

We show below that the above result can be extended to show the Entropy Inuence Conjecture

holds for read-once formulas that include parity gates at internal nodes (in addition to AND and

OR). Along the same lines as before, we formulate an inequality for the Fourier entropy that is

preserved by the XOR operator using Fact 5.6. Speci�cally, consider the inequality

H(f) 6 10 · as(f) + κ(p), (20)

where

κ(p) := 4ψ(p) +ϕ(p) = −8H(p) − 8pq− (1− 4pq) log(1− 4pq). (21)

We already know that (20) is preserved by AND and OR operators. It su�ces, therefore, to

show that it is also preserved by the parity operator. This will follow if we can show that

κ(p1) + κ(p2) 6 κ(p1q2 + p2q1), (22)

since if f = g1 · g2 (note that we are back to {−1,+1}-valued Boolean functions and hence parity

is simply product) then p = p1q2 + p2q1. Lemma 5.17 below proves this property of κ. Assuming

this we prove the following lemma which leads us to the main theorem of this section.

Lemma 5.15. Suppose f = g1 · g2, where the gi depend on disjoint sets of variables. If each

of the gi satis�es the entropy-inuence inequality (20), then so does f.

Proof.

H(f) = H(g1) +H(g2) by Fact 5.6(i)

6 10 · as(g1) + κ(p1) + 10 · as(g2) + κ(g2) since gi satisfy (20)

= 10 · as(f) + κ(p1) + κ(p2) by Fact 5.6(ii)

6 10 · as(f) + κ(p) by Lemma 5.17 below

20

Theorem 5.16. If f is computed by a read-once formula using AND, OR, and XOR gates,

then H(f) 6 10 Inf(f).

Proof. We use induction on the tree given by the formula computing f to prove (20). The leaves

are input variables or their negations and the claim that they satisfy (20) can be veri�ed by direct

calculation. At any internal node, its two inputs are given by subformulas depending on disjoint

sets of variables by the read-once property of the formula. When the internal node is an AND or

OR gate, the claim follows from Lemma 5.10, Corollary 5.12, (16), and (21). When the internal

node is an XOR gate, the claim follows from Lemma 5.15. Thus (20) holds at the root of the tree

and hence for f. It is easy to verify that −10 6 κ(p) 6 0 for p ∈ [0, 1]. This proves the theorem.

To complete the above proof, we still need to prove the property (22) of κ. We do this below.

Lemma 5.17. For κ as de�ned by (21), κ(p1) + κ(p2) 6 κ(p1q2 + p2q1).

Proof. In the following, we will let p = p1q2 + p2q1 and q = 1− p = p1p2 + q1q2.

To begin with, we observe that (1− 4pq) = (p−q)2 and that (p−q) = (p1−q1)(p2−q2), i.e.,

parity operation on independent Boolean variables results in multiplying their biases, and hence

(1 − 4pq) = (1 − 4p1q1)(1 − 4p2q2). Using this, we relate the third terms on either side of the

inequality to be proved.

(1− 4pq) log(1− 4pq) = (1− 4p1q1)(1− 4p2q2) log((1− 4p1q1)1− 4p2q2))

= (1− 4p2q2) ((1− 4p1q1) log(1− 4p1q1)) + (1− 4p1q1) ((1− 4p2q2) log(1− 4p2q2))

6 ((1− 4p1q1) log(1− 4p1q1)) + ((1− 4p2q2) log(1− 4p2q2)) + 64p1q1p2q2,

using that −(1−4p1q1) log(1−4p1q1) 6 8p1q1 (this follows from the inequality x log 1x 6
4 2(1−x)

for x ∈ [0, 1]). Thus, we have

−(1− 4p1q1) log(1− 4p1q1) − (1− 4p2q2) log(1− 4p2q2) + (1− 4pq) log(1− 4pq) 6 64p1q1p2q2.
(23)

Next, we simplify the second terms:

pq = (p1q2 + p2q1)(p1p2 + q1q2) = p1q1(p
2
2 + q

2
2) + p2q2(p

2
1 + q

2
1)

= p1q1(1− 2p2q2) + p2q2(1− 2p1q1)

= p1q1 + p2q2 − 4p1q1p2q2.

Hence, we have

−8p1q1 − 8p2q2 + 8pq = −32p1q1p2q2. (24)

4Any constant c > 1
ln 2

can be used instead of 2

21

Finally, the �rst terms:

H(p) = H(p1q2 + p2q1)

= (p1q2 + p2q1) log
1

(p1q2 + p2q1)
+ (p1p2 + q1q2) log

1

(p1p2 + q1q2)

= p1q2 log
1

p1q2
+ p1q2 log

p1q2
(p1q2 + p2q1)

+ p2q1 log
1

p2q1
+ p2q1 log

p2q1
(p1q2 + p2q1)

+ similar terms for the second summand

= q2(−p1 log p1) + p1(−q2 logq2) + p2(−q1 logq1) + q1(−p2 log p2)

+ p1q2 log
p1q2

(p1q2 + p2q1)
+ p2q1 log

p2q1
(p1q2 + p2q1)

+ similar terms from the second half

= −p1 log p1(q2 + p2) − q1 logq1(p2 + q2) − p2 log p2(q1 + p1) − q2 logq2(p1 + q1)

+ p1q2 log
p1q2

(p1q2 + p2q1)
+ p2q1 log

p2q1
(p1q2 + p2q1)

+ p1p2 log
p1p2

(p1p2 + q1q2)
+ q1q2 log

q1q2
(p1p2 + q1q2)

= H(p1) + H(p2) − (p1q2 + p2q1)H

(
p1q2

(p1q2 + p2q1)

)
− (p1p2 + q1q2)H

(
p1p2

(p1p2 + q1q2)

)
6 H(p1) + H(p2) − 2min{p1q2, p2q1}− 2min{p1p2, q1, q2} using H(p) > 2min{p, q}

6 H(p1) + H(p2) − 2p1q2p2q1 − 2p1p2q1q2 since min{p, q} > pq for 0 6 p, q 6 1

= H(p1) + H(p2) − 4p1q1p2q2.

Hence, we have

−8H(p1) − 8H(p2) + 8H(p) 6 −32p1q1p2q2. (25)

Combing (23), (24), (25), and the de�nition (21), we obtain

κ(p1) + κ(p2) − κ(p) 6 0

and this concludes the proof.

References

[1] Michael Ben-Or and Nathan Linial. Collective coin ipping. In Silvio Micali, editor, Ran-

domness and Computation. Academic Press, New York, 1990.

[2] Itai Benjamini, Gil Kalai, and Oded Schramm. Noise sensitivity of boolean functions and

applications to percolation. Publications Mathmatiques de l'Institut des Hautes tudes

Scienti�ques, 90(1):5{43, 1999.

[3] Ravi Boppana. The average sensitivity of bounded-depth circuits. Information Processing

Letters, 63(5):257{261, 1997.

[4] J. Bourgain and G. Kalai. Inuences of variables and threshold intervals under group symme-

tries. Geometric and Functional Analysis GAFA, 7(3):438{461, 1997.

22

[5] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: A

survey. Theoretical Computer Science, 288(1):21{43, 2002.

[6] Bireswar Das, Manjish Pal, and Vijay Visavaliya. The entropy inuence conjecture revisited.

Technical report, arXiv:1110.4301, 2011.

[7] Anindya De, Ilias Diakonikolas, and Rocco A. Servedio. Robust khintchine-kahane inequality

and computing optimal constants in fourier analysis and high-dimensional geometry. CoRR,

abs/1207.2229, 2012.

[8] Ronald de Wolf. A brief introduction to fourier analysis on the boolean cube. Theory of

Computing, Graduate Surveys, 1:1{20, 2008.

[9] Ehud Friedgut and Gil Kalai. Every monotone graph property has a sharp threshold. Pro-

ceedings of the American Mathematical Society, 124(10):2993{3002, 1996.

[10] Parikshit Gopalan, Adam Tauman Kalai, and Adam R. Klivans. Agnostically learning decision

trees. In Proceedings of the 40th annual ACM symposium on Theory of computing, STOC

'08, pages 527{536, 2008.

[11] Je� Kahn, Gil Kalai, and Nathan Linial. The inuence of variables on boolean functions. In

Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science,

pages 68{80, 1988.

[12] Nathan Keller, Elchanan Mossel, and Tomer Schlank. A note on the entropy/inuence con-

jecture. Technical report, arXiv:1105.2651, 2011.

[13] Adam Klivans, Homin Lee, and Andrew Wan. Mansour's conjecture is true for random dnf

formulas. In Proceedings of the 23rd Conference on Learning Theory, pages 368{380, 2010.

[14] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum.

In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages

455{464, 1991.

[15] Yishay Mansour. Learning boolean functions via the fourier transform. pages 391{424, 1994.

[16] Yishay Mansour. An o(nlog logn) learning algorithm for dnf under the uniform distribution.

Journal of Computer and System Sciences, 50(3):543{550, 1995.

[17] Ryan O'Donnell. The lecture notes of the course "analysis of boolean functions": Lecture 29:

Open problems, 2007.

[18] Ryan O'Donnell. Some topics in analysis of boolean functions. In Proceedings of the 40th

Annual ACM Symposium on Theory of Computing, pages 569{578, 2008.

[19] Ryan O'Donnell. Analysis of boolean functions, 2012.

23

[20] Ryan O'Donnell, John Wright, and Yuan Zhou. The fourier entropy-inuence conjecture for

certain classes of boolean functions. In Proceedings of Automata, Languages and Program-

ming - 38th International Colloquium, pages 330{341, 2011.

[21] Michel Talagrand. On russo's approximate zero-one law. Annals of Probability, 22(3):1576{

1587, 1994.

[22] Michel Talagrand. How much are increasing sets positively correlated? Combinatorica,

16(2):243{258, 1996.

24

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

