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Abstract

We prove a new efficiently computable lower bound on the coef-
ficients of stable homogeneous polynomials and present its algorth-
mic and combinatorial applications. Our main application is the first
poly-time deterministic algorithm which approximates the partition
functions associated with boolean matrices with prescribed row and
column sums within simply exponential multiplicative factor. This
new algorithm is a particular instance of new polynomial time deter-
ministic algorithms related to the multiple partial differentiation of
polynomials given by evaluation oracles

1 Basic Definitions and Motivations

For given two integer vectors r = (r1, ..., rn) and c = (c1, ..., cm), we denote
as BMr,c the set of boolean n×m matrices with prescribed rows sums r and
column sums c.
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Next, we introduce an analogue of the permanent (a partition function asso-
ciated with BMr,c):

PEr,c(A) =:
∑

B∈BM(r,c)

∏
1≤i≤n;1≤j≤m

A(i, j)B(i,j), (1)

where A is n×m complex matrix. Note that if A is a n×n matrix; r = c = en,
where en is n-dimensional vector of all ones, then the definition (1) reduces
to the permanent: PEen,en(A) = per(A).
The main focus of this note is on bounds and deterministic algorithms
for PEr,c(A) in the non-negative case A ≥ 0. To avoid messy formulas,
we will mainly focus below on the uniform square case, i.e. n = m and
ri = cj = r, 1 ≤ i, j ≤ n and use simplified notations: BMren,ren =:
BM(r, n);PEren,ren(A) =: PE(r, A).
Boolean matrices with prescribed row and column sums is one of the most
classical and intensely studied topics in analytic combimatorics, with appli-
cations to many areas from applied statistics to the representation theory.
We, as many other researchers, are interested in the counting aspect, i.e.
in computing/bounding/approximating the partition function PEr,c(A). It
was known already to W.T.Tutte [17] that this partition function can be
in poly-time reduced to the permanent. Therefore, if A is nonnegative the
famous FPRAS [19] can be applied and this was already mentioned in [19]
as one of the main applications. We are after deterministic poly-time al-
gorithms. A. Barvinok initiated this, deterministic, line of algorithmic re-
search in [14]. He also used the reduction to the permanent and the Van Der
Waerden-Falikman-Egorychev (VFE) [10], [9] celebrated lower bound on the
permanent of doubly-stochastic matrices:

per(A) ≥ vdw(n) =:
n!

nn
, A ∈ BM(i, n).

The techniques in [14] result in a deterministic poly-time algorithm approxi-
mating PE(r, A) within multiplicative factor (Ω(

√
n))n for any fixed r, even

for r = 1. Such poor approximation is due the fact that the reduction to
the permanent produces highly structured n2 × n2 matrices. VFE bound is
clearly a powerful algorithmic tool, as was recently effectively illustrated in
[18]. Yet, neither VFE nor even more refined Schrijver’s lower bound [2] are
sharp enough for those structured matrices. This phenomenon was observed
by A. Schrijver 30 years ago in [1]. The author introduced in [11] and [4]
a new approach to lower bounds. We will give a brief description of the
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approach and refine it. The new lower bounds are asymptotically sharp and
allow, for instance, to get a deterministic poly-time algorithm to approximate
PE(r, A) within multiplicative factor f(r)−1 where

f(r) = (
vdw(n)

vdw(r)vdw(n− r)
)n

r−1
r
vdw(n)

vdw(r)
n
r
≈ (

√
2πmin(r, n− r))−n.

Besides, we show that algorithm from [14] actually approximates within(roughly)
multiplicative factor f(r)2. So, for fixed r or n−r the new bounds give simply
exponential factor. But, say for r = n

2
, the current factor is not simply expo-

nential. Is there a deterministic Non-Approximability result for PE(n
2
, A)?

We also study the sparse case, i.e. when, say, the columns of matrix A have
relatively small number of non-zero entries. In this direction we generalize,
reprove, sharpen the results of A. Schrijver [1] on how many k-regular sub-
graphs 2k-regular bipartite graph can have.
The main moral of this paper is that when one needs to deal with the per-
manent of highly structured matrices the only (and often painless) way to
get sharp lower bounds is to use stable polynomials approach.Prior to
[11] and [4] VFE was, essentially, the only general purpose non-trivial lower
bound on the permanent. It is not true anymore.

1.1 Generating polynomials

The goal of this subsection is to represent PEr,c(A) as a coefficient of some
effectively computable polynomial.

1. The following natural representation in the case of unit weights, i.e
A(i, j) ≡ 1, was already in [16], the general case of it was used in [14].

PEr,c(A) = [
∏

1≤i≤n
yrii

∏
1≤j≤m

x
cj
j ]

∏
1≤i≤n,1≤j≤m

(1 + A(i, j)xjyi), (2)

i.e. PEr,c(A) is the coefficient of the monomial
∏

1≤i≤n y
ri
i

∏
1≤j≤m x

cj
j

in the non-homogeneous polynomial
∏

1≤i≤n,1≤j≤m(1 + A(i, j)xjyi).
It is easy to convert non-homogeneous formula (2) into a homogeneous
one:

PEr,c(A) = [
∏

1≤j≤m
x
cj
j

∏
1≤i≤n

zm−rii ]
∏

1≤i≤n,1≤j≤m
(zi + A(i, j)xj). (3)
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As the polynomial
∏

1≤i≤n,1≤j≤m(zi + A(i, j)xj) is a product of linear
forms, the formula (3) allows to express PEr,c(A) as the permanent of
some nm×nm matrix, the fact essentially proved in a very different way
in [17].The permanent also showed up, in a similar context of Eulerian
Orientations, in [1].
Indeed, associate with any k × l matrix B the product polynomial

ProdB(x1, ..., xl) =:
∏

1≤i≤k

∑
1≤j≤l

B(i, j)xj. (4)

Then

[
∏

1≤j≤l
x
ωj

j ]ProdB(x1, ..., xl) = per(Bω1,...,ωl
)
∏

1≤j≤l
(ωj!)

−1, (5)

where k × k matrix Bω1,...,ωl
consists of ωj copies of the jth column of

B, 1 ≤ j ≤ l.

2. We will use below the following equally natural representation. Recall
the definition of standard symmetric functions:

Sk(x1, ..., xm) =
∑

1≤i1<..<ik≤m

∏
1≤j≤k

xij ,

and define the following homogeneous polynomial

ESr;A(x1, ..., xm) =
∏

1≤i≤n
Sri(A(i, 1)x1, ..., A(i,m)xm). (6)

Then
PEr,c(A) = [

∏
1≤j≤n

x
cj
j ]ESr;A(x1, ..., xm). (7)

Remark 1.1: Note that in the square case n = m, the polynomial
ESen;A = ProdA. The polynomial ESr;A is, of course, related to the
polynomial
TM(z1, ..., zn;x1, ..., xm) =:

∏
1≤i≤n,1≤j≤m(zi + A(i, j)xj):

ESr;A(x1, ..., xm) = const
∏

1≤i≤n

∂m−ri

∂zm−rii

TM(zi = 0, 1 ≤ i ≤ n;x1, ..., xm).

(8)
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1.2 Exact algorithms

It is well known that the coefficient [
∏

1≤j≤n x
cj
j ]ESr,c;A(x1, ..., xm) can be

computed by evaluating the polynomial ESr;A at
∏

1≤j≤n(1 + cj) points.
Which gives(see Remark (1.1)) an exact algorithm for PEr,c(A) of complexity

O

min(
∏

1≤j≤n
(1 + cj)nm log(m),

∏
1≤i≤m

(1 + ri)nm log(n))

 .
Thus if n > m and m is fixed then the exists a polynomial in n exact deter-
ministic algorithm to compute PEr,c(A).

1.3 Previous Work

Estimation of the cardinality |BMr,c| = PEr,c(A), where A = Jn,m = ene
T
m

is a matrix of all ones, is one of classical topics in analytic combinatorics.
The reader may consult Barvinok’s paper [14] for references to most major
results on the topic.
To avoid messy formulas, we will mainly focus below on the uniform square
case, i.e. n = m and ri = cj = r, 1 ≤ i, j ≤ n and use simplified notations:

BMren,ren =: BM(r, n);PEren,ren(A) =: PE(r, A).

It is easy to see that PE(r, A) is #P-Complete for all 1 ≤ r < n. The
connection to the permanent implies that for non-negative matrices A there
is FPRAS for PE(r, A). We are interested in this paper in deterministic
algorithms. We briefly recall the main idea behind Barvinok’s algorithm from
[14]:
Define

αr,c(A) = inf
zj ,xi>0

∏
1≤i≤n,1≤j≤m(zj + A(i, j)xi)∏

1≤i≤n x
ri
i

∏
1≤j≤m z

n−cj
j

.

Then

αren,ren(A) ≥ PE(r, A) ≥ vdw(n2)

(vdw(n− r)vdw(r))n
α(A), (9)

where vdw(k) =: k!
kk

. As the number log(α(A)) can computed(approximated
within small additive error) via the convex minimization, the bounds (9)
give a poly-time deterministic algorithm to approximate PE(r, A) within
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multiplicative factor γn =: ( vdw(n2)
(vdw(n−r)vdw(r))n

)−1. The factor γn is not sim-

ply exponential even for r = 1, indeed (γn)
1
n ≈ const(

√
n) for a fixed r.

The proof of (9) in [14] is based on the Sinkhorm’s Scaling and the Van
Der Waerden-Falikman-Egorychev lower bound on the permanent of doubly-
stochastic matrices.

2 Our Results

We prove and apply in this paper an optimized version of our lower bounds
on the coefficients of H-Stable polynomials [8]. The lower bounds in [8]
were obtained by a “naive” application of the lower on the mixed derivative
of H-Stable polynomials [4].
When applied to the polynomial

∏
1≤i≤n,1≤j≤m(zj+A(i, j)xi), the main result

of the current paper implies the following bounds:

α(A) ≥ PE(r, A) ≥
(

vdw(n)

vdw(n− r)vdw(r)

)2n−1

α(A) (10)

I.e. for the fixed r the Barvinok’s approach gives a deterministic algorithm
to approximate PE(r, A) within simply exponential factor (ervdw(r))2n. We
stress again that this result seems to be unprovable by using only Van Der
Waerden-Falikman-Egorychev and alike purely permanental bounds, even
the newest ones in [7].
When applied to the the polynomial ESr;A(x1, ..., xm), our new bounds imply
the following general inequality

µ(A) ≥ PEr,c(A) ≥
∏

2≤j≤n

(
vdw(n)

vdw(n− cj)vdw(cj)

)
µ(A), (11)

where

µ(A) =: inf
xj>0

ESr;A(x1, ..., xm)∏
1≤j≤m x

cj
j

Note that

log(µ) = inf∑
1≤j≤m

yj=0
log(ESr;A(exp(

y1

c1

), ..., exp(
ym
cm

))),
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and the function log(ESr,c;A(exp(y1
c1

), ..., exp(ym
cm

))) is convex in ys. For the
fixed r = ren, c = ren this gives a deterministic poly-time algorithm to
approximate PE(r, A) within simply exponential factor (ervdw(r))n. This
paper does not give the detailed complexity analysis of this convex mini-
mization, say based on the Ellipsoid Algorithm. We rather present a very
simple converging algorithm, which does pretty well in practice.
In the sparse case we get a much better lower bound(not fully optimized yet):

µ(A) ≥ PEr,c(A) ≥
∏

2≤j≤m

(
vdw(Clj)

vdw(Clj − cj)vdw(cj)

)
µ(A), (12)

where Clj = min(
∑

1≤k≤j cj, Col(j)) and Col(j) is the number of nonzero
entries in the jth column of A.
In the uniform case, i.e. m = n, r = c = ren this gives the following bound

µ(A) ≥ PE(r, A) ≥
∏

2≤j≤m

(
vdw(Cj)

vdw(Cj − r)vdw(r)

)
µ(A), (13)

where Cj = min(rj, Col(j)).
Our final result is the following combinatorial lower bound: LetA ∈ BMkr,kc 6=
∅. Then

inf
xj>0

ESr,c;A(x1, ..., xm)∏
1≤j≤n x

cj
j

=
∏

1≤i≤n

(
kri
ri

)
(14)

and

PEr,c(A) ≥
∏

1≤i≤n

(
kri
ri

) ∏
2≤j≤m

vdw(kcj)

vdw(kcj − cj)vdw(cj)
(15)

The formula (15) can be sligthly, i.e. by const(k, t) > 1, improved in the

regular case. In particular, const(2, t) =
((

2t
t

))−1
22t.

Let A ∈ BMkten,kten , where k, t are positive integers. Then

PEten,ten(A) ≥
(
kt

t

)n (
vdw(kt)

vdw((k − 1)t)vdw(t)

)n−k
vdw(kt)

vdw(t)k
. (16)

The inequalities (15, 16) generalize and improve results from [1].
All the inequalities in this section are fairly direct corollaries of
Theorem(5.1) (see the main inequality (35)).

7



3 Stable Homogeneous Polynomials

3.1 Definitions, previous results and the naive approach

The next definition introduces key notations and notions.

Definition 3.1:

1. The linear space of homogeneous polynomials with real (complex) coef-
ficients of degree n and inm variables is denotedHomR(m,n) (HomC(m,n)).
We denote as Hom+(m,n) the closed convex cone of polynomials p ∈
HomR(m,n) with nonnegative coefficients.

2. For a polynomial p ∈ Hom+(n, n) we define its Capacity as

Cap(p) = inf
xi>0,

∏
1≤i≤n

xi=1
p(x1, . . . , xn) = inf

xi>0

p(x1, . . . , xn)∏
1≤i≤n xi

. (17)

3. Consider a polynomial p ∈ HomC(m,n),

p(x1, . . . , xm) =
∑

(r1,...,rm)

ar1,...,rm
∏

1≤i≤m
xrii .

We define Rankp(S) as the maximal joint degree attained on the subset
S ⊂ {1, . . . ,m}:

Rankp(S) = max
ar1,...,rm 6=0

∑
j∈S

rj. (18)

If S = {i} is a singleton, we define degp(i) = Rankp(S).

4. A polynomial p ∈ HomC(m,n) is called H-Stable if p(Z) 6= 0 pro-
vided Re(Z) > 0; is called H-SStable if p(Z) 6= 0 provided Re(Z) ≥ 0
and

∑
1≤i≤mRe(zi) > 0.

(We coined the term “H-Stable” to stress two things: Homo-
geneity and Hurwitz’ stability.)

5. We define

vdw(i) =
i!

ii
;G(i) =

vdw(i)

vdw(i− 1)
=
(
i− 1

i

)i−1

, i > 1;G(1) = 1. (19)

Note that vdw(i) and G(i) are strictly decreasing sequences.
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The main inequality in [4] was stated as the following theorem

Theorem 3.2: Let p ∈ Hom+(n, n) be H-Stable polynomial. Then the
following inequality holds

∂n

∂x1 . . . ∂xn
p(0, . . . , 0) ≥

∏
2≤i≤n

G( min(i, degp(i)))Cap(p). (20)

So, if p ∈ Hom+(n, n) is H-Stable and degp(i) ≤ k ≤ n for k + 1 ≤ i ≤ n
then the following inequality holds:

∂n

∂x1 . . . ∂xn
p(0, . . . , 0) ≥ G(k)n−k

k!

kk
Cap(p). (21)

For k = n we get the feneralized Van der Waerden-Falikman-Egorychev
inequality:

∂n

∂x1 . . . ∂xn
p(0, . . . , 0) ≥ n!

nn
Cap(p). (22)

3.2 A naive generalization to the general monomials

Let p ∈ Hom+(m,n) and consider an integer vector

c = (c1, ..., cm) ∈ Rm
+ ,

∑
1≤i≤m

ci = n.

Define the following polynomial q ∈ Hom+(n, n):

q(y1,1, ..., y1,c1 ; y2,1, ..., y2,c2 ; ...; ym,1, ..., ym,cm) = p(z1, ..., zm),

where zi =

∑
1≤j≤ci

y(i,j)

ci
, 1 ≤ i ≤ m. Note that if the polynomial p is H-

Stable then q also is.
Also, analogously to (17), let us define:

Capc(p) =: Capc1,...,cm(p) =: inf
xj>0

p(x1, ..., xm)∏
1≤j≤m x

cj
j

. (23)

Fact 3.3:

1. Capc1,...,cm(p) = Cap(q).
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2. [xc11 ...x
cm
m ]p =

∏
1≤i≤m

ci!
c
ci
i

∂n∏
1≤i≤m

∏
1≤j≤ci

∂yi,j
q(0)

Corollary 3.4: Let p ∈ Hom+(m,n) be H-Stable and degp(i) ≤ k, 1 ≤ i ≤
m. Then the following inequality holds:

Capc1,...,cm(p) ≥ [xc11 ...x
cm
m ]p ≥ Capc1,...,cm(p)(

∏
1≤i≤m

(vdw(ci))
−1)G(k)n−kvdw(k).

(24)
If k = n then

Capc1,...,cm(p) ≥ [xc11 ...x
cm
m ]p ≥ Capc1,...,cm(p)(

∏
1≤i≤m

(vdw(ci))
−1)vdw(n).

(25)

Example 3.5:

1. Let A = Jn be the n×n matrix of all ones and consider the H-Stable
polynomial ESren;Jn(x1, ..., xn) =

∏
1≤i≤n Sr(x1, ..., xn). Then

Capren(ESren;Jn) =

(
n

r

)n
; degESren;Jn

(i) = n, 1 ≤ i ≤ n.

Applying the inequality (24) we get that

|BM(r, n)| = [xr1....x
r
n]ESren;Jn ≥

(
n

r

)n
(
rr

r!
)n(

n− 1

n
)(n−1)n(r−1) n!

nn

(26)
It was proved by Everrett and Stein in [15](their proof is rather in-
volved) that

|BM(r, n)| = (rn)!

(r!)2n
exp(−1

2
(r − 1)2)β(r, n), (27)

where limn→∞ β(r, n) = 1 for any fixed integer number r. Our lower
bound from from (26)

|BM(r, n)| ≥ HY P (r, n) =

(
n

r

)n
(
rr

r!
)n(

n− 1

n
)(n−1)n(r−1) n!

nn

is valid for all values of r. Directly applying Stirling formula, we get
that for the fixed r

lim
n→∞

HY P (r, n)

|BM(r, n)|
= (
√
r)−1.
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Not bad at all, considering how computationally and conceptually sim-
ple is our derivation of (26)!
The same reasoning applies to general non-negative n× n matrices:

Capren(ESren;A) ≥ PE(r, A) ≥ Capren(ESren;A)(
rr

r!
)n(

n− 1

n
)(n−1)n(r−1) n!

nn
.

(28)
As log(Capren(ESren;A)) can be expressed in terms of convex minimiza-
tion, for a fixed r the inequality (28) justifies a deterministic poly-time
algorithm to approximate PE(r, A) within simply exponential factor
(ervdw(r))n.
We stress that the current, say in [12], [13], very delicate, accurate
and efficient estimates of |BMr,c|(valid for some ranges of (r, c) can
not be, at least directly, applied to estimate PEr,c(A) even for boolean
matrices A because of the #P-Hardness of PEr,c(A).

2. Applying the inequality (24) to the polynomial TM(z1, ..., zn;x1, ..., xm) =∏
1≤i≤n,1≤j≤m(zj + A(i, j)xi) we get that

α ≥ PE(r, A) ≥ α(vdw(r)(vdw(n− r))−n
(
n− 1

n

)(n−1)n(n−1) n!

nn

It is better than (9), yet does not give a simply exponential factor.

3. Let A ∈ BMtr,tc. We are interested in a lower bound on PEr,c(A).
I.e. on how many 1

t
-shrunken copies of itself the boolean matrix A

contains. Now, ESr;A(x1, ..., xm) =
∏

1≤i≤n Sri(A(i, 1)x1, ..., A(i,m)xm)
and PEr,c(A) = [

∏
1≤j≤n x

cj
j ]ESr;A(x1, ..., xm). Easy computation: If

A ∈ BMtr,tc then Capc(ESr;A) =
∏

1≤i≤n

(
tri
ri

)
Let us consider the simplest non-trivial case of A ∈ BM(2r, n). Ap-
plying the inequality (24), we get that

PE(r, A) ≥
(

2r

r

)n
(vdw(r))−n((

2r − 1

2r
)(2r−1)n(r−1) r!

rr
.

Yet, the asymtotically correct bound from [1] is

PE(r, A) ≥

(2r

r

)2

(2)−2r

n . (29)
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Not only we will improve in the current paper the bound (29), but also
show that if all columns of n × n nonnegative matrix A have at most
tr non-zero entries then PE(r, A) can be deterministically in poly-time

approximated within the factor ( vdw(tr)
vdw(r)vdw(r(t−1))

)−n.

4 New Observations, which were overlooked

in [4]

Associate with a polynomial p ∈ Hom+(n, n) the following sequence of poly-
nomials qi ∈ Hom+(i, i):

qn = p, qi(x1, . . . , xi) =
∂n−i

∂xi+1 . . . ∂xn
p(x1, . . . , xi, 0, . . . , 0); 1 ≤ i ≤ n− 1.

The inequality (20) is, actually, a corollary of the following inequality, which
holds for H-Stable polynomials:

Cap(qi) ≥ Cap(qi−1) ≥ G(degqi(i))Cap(qi), n ≥ i ≥ 2. (30)

As Cap(q1) = ∂n

∂x1...∂xn
p(0, . . . , 0), one gets that

∂n

∂x1 . . . ∂xn
p(0, . . . , 0) ≥

∏
2≤i≤n

G(degqi(i)))Cap(p). (31)

The inequality (20) follows from (31) becauseG(i) is decreasing and degqi(i) ≤
min(i, degp(i). There were several reasons why the inequality (20) was stated
as the main result:

1. It is simpler to understand than more general one (31). It was sufficient
for the killer application: a short, transparent proof of the (improved)
Schrijver’s lower bound on the number of perfect matchings in k-regular
bipartite graphs.

2. For the most of natural polynomials, the gegrees degqi(i) are straightfor-
ward to compute. Moreover, if a polynomial p with integer coefficients
is given as an evaluation oracle then Rankp(S) can be computed in
polynomial time via the univariate interpolation. On the other hand,
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if i = n− [na], a > 0 then even deciding whether degqi(i) is zero or not
is NP-HARD. Indeed, consider, for instance, the following family of
polynomials, essentially due to A. Barvinok:

p(x1, ..., xn) = BarA(xn, ...., xn−[na]+1)(x1 + ...+ xn−[na])
n−[na],

where BarA(xn, ...., xn−[na]) = tr((Diag(xn, ...., xn−[na])A)[na]) and A
is the adjacency matrix of an undirected graph. If the graph has a
Hamiltonian cycle then degqi(i) = i and is zero otherwise.

4.1 New Structural Results

The following simple bound was overlooked in [4]:
degqi(i) ≤ min(Rankp({i, ..., n})− n+ i, degp(i)). So, if

Rankp({j, ..., n})− n+ j ≤ k : k + 1 ≤ j ≤ n (32)

then
∂n

∂x1 . . . ∂xn
p(0, . . . , 0) ≥ Cap(p)G(k)n−kvdw(k). (33)

Example 4.1: Let A be n× n doubly-stochastic matrix with the following
pentagon shaped support: A(i, j) = 0 : j − i ≥ n − k. Then the product
polynomial ProdA(x1, ..., xn) =

∏
1≤i≤n

∑
1≤j≤nA(i, j)xj satisfies the inequal-

ities (32) and cap(ProdA) = 1. Therefore per(A) ≥ G(k)n−kvdw(k). This
lower bound for the permanent was proved by very different methods in [20],
moreover it was shown there that it is sharp. Therefore, the more general
bound (33) is sharp as well.

We remind the following result(combination of results in [6] and [11]).

Theorem 4.2: Let p ∈ Hom+(m,n), p(x1, ..., xm) =
∑
r1+...+rm=n ar1,...,rnx

r1
1 ...x

rm
m

be H-Stable. Then

1.
ar1,...,rm > 0⇐⇒

∑
j∈S

rj ≤ Rankp(S) : S ⊂ {1, . . . ,m}. (34)

2. The set function Rankp(S) is submodular.

3. As ar1,...,rm > 0 iff minS⊂{1,...,m}(Rankp(S) −∑j∈S rj) ≥ 0 hence given
the evaluation oracle for p there is deterministic strongly polynomial
algorithm to decide whether ar1,...,rm > 0.
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Lemma 4.3: Let p ∈ Hom+(n, n) be H-Stable polynomial with integer
coefficients given as an evaluation oracle.Then for any i ≥ 1 there is a de-
terministic strongly polynomial algorithm to compute degqi(i), i.e. with the
number of logical and arithmetic operations bounded by poly(n).

Proof: Associate with the number i and any polynomial p ∈ Hom+(n, n)
the following polynomials Pl(y1, ..., yn) = p(z1, ...., zn)
where 0 ≤ l ≤ n− i− 1 and zj = y1 + ...+ yl, 1 ≤ j ≤ i− 1; zi = yl+1 + ...+
yn−i; zi+k = yi+k, 1 ≤ k ≤ n− i.
Then degqi(i) ≥ n − i − l iff ∂n

∂y1...∂yn
P (0, . . . , 0) > 0. Now, if the original

polynomial p is H-Stable then the polynomials Pl are H-Stable as well,
have integer coefficients and there are evaluation oracles for them. Therefore
we can apply the submodular minimization algorithm from Theorem (4.2)
to decide whether the monomial y1...yn is in the support of Pl. Running this
algorithm at most i ≤ n times will give us degqi(i).

Example 4.4: [Gale-Ryser Inequalities]. Consider the following H-Stable
polynomial
GRr,c(x1, ..., xm) =

∏
1≤i≤n Sri(x1, ..., xm);

∑
j cj =

∑
i ri.

Clearly, the monomial
∏

1≤j≤n x
cj
j is in the support iff the set BMr,c is not

empty, i.e. there exists a boolean matrix with column sums c and row
sums r. It is easy to see that RankGRr,c(S) =

∑
1≤i≤n min(|S|, ri). It fol-

lows from the characterization (34) that BMr,c is not empty iff
∑
j∈S cj ≤∑

1≤i≤n min(|S|, ri) for all subsets S ⊂ {1, ...,m}. Equivalently, for the or-
dered column sums cj1 ≥ cj2 ≥ ... ≥ cjm the following inequalities hold:∑

1≤k≤t cjk ≤
∑

1≤i≤n min(t, ri); 1 ≤ t ≤ m.
These are the famous Gale-Ryser inequalities, albeit stated without Ferrers
matrices.

5 Main New Lower Bound

Let p ∈ Hom+(m,n) be a homogeneous polynomial in m variables, of degree
n and with non-negative coefficients. We fix a monomial

∏
1≤j≤m x

cj
j ,
∑

1≤j≤m cj =
n and assume WLOG that cj > 0, 1 ≤ j ≤ m. Let 0 ≤ ac1,...,cm =
[
∏

1≤j≤m x
cj
j ]p be a coefficient of the monomial. Define Capc1,...,cm(p) =:

infxj>0
p(x1,...,xm)∏

1≤j≤m
x
cj
j

. Clearly, ac1,...,cm ≤ Capc1,...,cm(p).

14



Theorem 5.1: Let p ∈ Hom+(d,m) be H-Stable. Define the following
family of polynomials:
Qm = p,Qi ∈ Hom(i, n− (cm + ...+ ci+1)),m− 1 ≥ i ≥ 1:

Qi =
∂cm+...+ci+1

∂x
ci+1

i+1 . . . ∂x
cm
m

p(x1, . . . , xi, 0, . . . , 0); 1 ≤ i ≤ m− 1.

Denote dg(i) =: degQi
(i). Then the following inequality holds

ac1,...,cm ≥ Capc1,...,cm(p)
∏

2≤j≤m

vdw(dg(j))

vdw(dg(j))vdw(dg(j)− cj)
(35)

Remark 5.2 : It is easy to see that for a fixed value of c the function
vdw(K)

vdw(c)vdw(K−c) = (vdw(c))−1G(K)G(K−1)...G(K−c+1) is strictly decreasing

in K ≥ c. Also, the dg(j) ≤ min(j, n− (cm + ...+ cj+1)).

Corollary 5.3: Let p ∈ Hom+(m,n) be H-Stable. Then the following
(non-optimized but easy to use) lower bound holds:

ac1,...,cm ≥ Capc1,...,cm(p)
∏

1≤j≤m

vdw(degp(j))

vdw(cj)vdw(degp(j)− cj)
(36)

Our proof is, similarly to [4], by induction, which is based on the following
bivariate lemma.

Lemma 5.4: p ∈ Hom+(2, d) be H-Stable, i.e. p(x1, x2) =
∑

0≤i≤d aix
d−i
1 xi2

and 1 ≤ c2 < d. Then

ac2 ≥ Capd−c2,c2(p)
vdw(d)

vdw(c2)vdw(d− c2)
.

Proof: Define the following polynomial P ∈ Hom+(d, d):
P (y1, ..., yd−c2 ; z1, ..., zc2) = p( 1

d−c2
∑

1≤k≤d−c2 yk,
1
c2

∑
1≤i≤c2 zi).

It follows from the standard AG inequality that Capd−c2,c2(p) = Cap(P ) and
it is easy to see that P is H-Stable. Consider the following polynomial
R(z1, ..., zc2) =:

∏
1≤k≤d−c2

∂
∂yk
P (yk = 0, 1 ≤ k ≤ d − c2; z1, ..., zc2). First,

it follows from (30) that Cap(R) ≥ G(d)...G(c2 + 1)Cap(P ). By the di-
rect inspection, R(z1, ..., zc2) = ac2vdw(d − c2)( 1

c2

∑
1≤i≤c2 zi)

c2 . Therefore
Cap(R) = ac2vdw(d− c2).
Putting things together gives that
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ac2 ≥
G(d)...G(c2+1)
vdw(d−c2)

Capd−c2,c2(p) = vdw(d)
vdw(c2)vdw(d−c2)

Capd−c2,c2(p).

Proof: [Proof of Theorem (5.1)]. Let p ∈ Hom+(m,n) be H-Stable. Ex-
pand it in the last variable:
p(x1, ..., xm) =

∑
0≤i≤degp(m) x

i
mTi(x1, ..., xm−1). Our goal is to prove that

Capc1,...,cm−1(Tcm) ≥ vdw(d)

vdw(cm)vdw(d− cm)
Capc1,...,cm−1,cm(p). (37)

Fix positive numbers (y1, ..., ym−1) and consider the following bivariate poly-
nomial: W (t, xm) = p(ty1, ..., tym−1, xm). The polynomial W is of degree n
and H-Stable. Note that W (t, xm) ≥ Capc1,...,cm(p)td−cmxcmm

∏
1≤i≤m−1 y

cj
i .

It follows from Lemma(5.4) that

Tcmi(y1, ..., ym−1) ≥ vdw(d)
vdw(cm)vdw(d−cm)

Capc1,...,cm(p)
∏

1≤i≤m−1 y
cj
i , which proves

the inequality (37). Now the polynomial Tcm ∈ Hom+(m − 1, n − cm) is
also H-Stable [4]. Thus we can apply the same argument to the polynomial
Tcm(x1, ..., xm−1) and so on until only the first variable x1 remains.

6 Algorithms to compute parameters of The-

orem (5.1)

To compute the lower bound in (35) we need the degrees degQi
(i) and the

capacity Capc1,...,cm(p). We assume that the polynomial p has rational co-
efficients and is given an evaluation oracle, say, on the integer vectors. Es-
sentially this model allows to do, besides logic, only low-dimensional inter-
polations. Lemma (4.3) allows to compute degQi

(i) in this model in poly(n)
operations, i.e. with now dependence on the bit-wise complexity of the coef-
ficients.

6.1 A practical algorithm to approximate Capc1,...,cm(p)

Associate with a polynomial p ∈ Hom+(m,n) and a non-negative vector
(c1, ..., cm),

∑
1≤i≤m ci = n the following maps:

F (x1, ..., xm) = (y1, ..., ym); yi =
xi
ai
, G(X) = F (X)(

∏
1≤i≤m

acii )
1
n

16



where ai =
xi

∂
∂xi

p(X)

cip(X)
. In other words yi = α

∂
∂xi

p(X)
, α is a normalizing constant.

Note that it follows from the Euler’s identity for homogeneous functions that

mul(X) =:
∏

1≤i≤m
acii ≤

 ∑
1≤i≤m

xi
∂
∂xi
p(X)

np(X)

n = 1, (38)

and the map G preserves the product of powers
∏

1≤i≤m x
ci
i .

Lemma 6.1: Suppose that the polynomial p ∈ Hom+(m,n) is log-concave
on Rm

++. Then the following inequality holds:

p(G(X)) ≤ mul(X)p(X).

Proof: The log-concavity gives the following inequality

log(p(y1, ..., ym)) ≤ log(p(x1, ..., xm)) +
∑

1≤i≤m

∂
∂xi
p(X)

p(X)
(yi − xi).

So if Y = F (X), X ∈ Rm
++ then the Euler’s identity gives the following

inequality

log(p(y1, ..., ym)) ≤ log(p(x1, ..., xm))+
∑

1≤i≤m
(ci−

xi
∂
∂xi
p(X)

p(X)
= log(p(x1, ..., xm)).

Finally, p(G(X)) = mul(X)p(F (X)) ≤ mul(X)p(X). We suggest the fol-
lowing algorithm to approximate Capc1,...,cm(p):
Start with xi,0 = 1, 1 ≤ i ≤ m and recursively compute the following vector
sequence:

Xk+1 = G(Xk)), k ≥ 1.

Stop if mul(Xk) ≥ 1− ε, where ε << 1 and output Capc1,...,cm(p) ≈ p(Xk).
This algorithm does not work for general polynomials in Hom+(m,n) (just
consider p(x1, x2) = 2(x1)2 +(x2)2 and (c1, c2) = (1, 1)). But Lemma (6.1) es-
sentially proves that if Capc1,...,cm(p) > 0 and p ∈ Hom+(m,n) is log-concave
then the algorithm converges. In fact, it is a generalization of the famous(
and efficient in practice) Sinkhorn’s scaling algorithm to the product of sym-
metric functions ESr;A(x1, ..., xm). Sinkhorn’s scaling algorithm corresponds
to the product of linear forms.
As any H-Stable polynomial p ∈ Hom+(m,n) is log-concave, we can apply
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Lemma(6.1). In practice it usually takes just a few steps of the Sinkhorn’s
scaling to get a very good approximation. We expect the same from our
generalization. Note that each step of the algorithm for ESr;A boils down to
computing n symmetric functions of m variables(the evaluation of the poly-
nomial) and nm symmetric functions of m−1 variables(the evaluation of the
gradient).

7 Applications of Theorem (5.1)

Example 7.1:

1. The polynomial from [14] TM(z1, ..., zn;x1, ..., xm) =:
∏

1≤i≤n,1≤j≤m(zi+
A(i, j)xj). Consider, just for the illustration, the square uniform case:
n = m, c = (n−r, ..., n−r; r, ..., r). Note that the degrees of all variable
are bounded by n. Using non-optimized lower bound (36) we get that
the coefficient

an−r,...,n−r;r,...,r ≥ Capn−r,...,n−r;r,...,r(TZ)

(
vdw(n)

vdw(r)vdw(n− r)

)2n

2. We give a better lower bound on |BM(r, n)|. The polynomial is Symr,n(x) =:

(Sr(x1, ..., xn))n. Degree of each variable is n. Capr,...,r(Symr,n) =
(
n
r

)n
.

The slightly optimized lower bound is, assuming that r divides n, as
follows

|BM(r, n)| ≥
(
n

r

)n (
vdw(n)

vdw(r)vdw(n− r)

)n(r−1)
r

vdw(n)(vdw(r)−
n
r ).

(39)
For the fixed r this new bound is asymptotically equal to the “old”
bound (26), but, say, for r = Ω(n) the bound (39) is exponentially in
n greater than the bound (26).

3. Let A ∈ BM(tr, n). We are interested in a lower bound on PE(r, A).
I.e. on how many 1

t
-shrunken copies of itself the boolean matrix A

contains.
Now, the polynomial is ESr;A(x1, ..., xm) =

∏
1≤i≤n Sri(A(i, 1)x1, ..., A(i,m)xm)

and we are after a lower bound on [
∏

1≤j≤n x
cj
j ]ESr;A(x1, ..., xm).

Easy computation: Capc(ESr;A) = (
(
tr
r

)
)n if A ∈ BM(tr, n).
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Theorem (5.1) and Remark (5.2) give the following lower bound:

PE(r, A) ≥
((

tr

r

))n (
vdw(tr)

vdw(r)vdw(r(t− 1))

)n−t
vdw(rt)(vdw(r))−t,

improving (and reproving) the bounds from [1]. In the same way we
can get bounds on PE(r, A) for matrices A with r-sparse columns.

8 An analogue of Van Der Waerden Conjec-

ture

It is well known(a fairly direct corollary of the famous Edmond’s result that
the intersection of two matroidal polytopes is equal to the polytope of the
the intersection of the matroids) that the convex hull CO(BM(r, n)) = {A :
0 ≤ A(i, j) ≤ 1, Ae = AT e = re.
Note that for r = 1 the polytope CO(BM(r, n)) is equal to the polytope Ωn

of doubly-stochastic n× n matrices and Pe(1, A) = Per(A).
The natural question, an analogue of the Van Der Waerden Conjecture(r = 1)
is to compute the following minimum and maximum:

NMin(r, n) =: min
A∈CO(BM(r,n))

PE(r, A), NMax(r, n) =: max
A∈CO(BM(r,n))

PE(r, A)

Remark 8.1 : Recall that NMin(1, n) = n!
nn and it took more than 50

years to prove. On the other hand, the equality maxA∈CO(BM(r,n)) Pe(1, A) =
maxA∈Ωn Per(A) is fairly trivial.

First of all, any matrix A ∈ BM(r, n) is a local maximum. Therefore
NMin(r, n) < 1. One would guess that the minimum is attained at the
“center” Cenr,n =: r

n
Jn, Jn = eeT .

The Everett-Stein asymptotically exact estimate and our easily proved lower
bound give that:

PE(r,
r

n
Jn) ≥ const(r)

(
r

n

)rn (rn)!

(r!)2n
≥ const(r)

(
r2r

er(r!)2

)n
.

Define n(r) =: r2r

er(r!)2
. By the direct inspection n(1) < 1, n(2) < 1 but

n(i) > 1 for all i ≥ 3.
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So, there is a possibility that NMin(2, n) = PE(2, Cen2,n). On the other
hand, for r ≥ 3 the “center” is not a minimum, at least for sufficiently large
n.
The following (preliminary) result provides some lower and upper bounds on
NMin(r, n) and NMax(r, n).

Proposition 8.2: Let A,B be nonnegative n×m matrices, 0 < a < 1. Then
for all positive vectors (x1, ..., xm) the following inequality holds

ESr;aA+(1−a)B(x1, ..., xm) ≥ (ESr;A(x1, ..., xm))a(ESr;B(x1, ..., xm))1−a.

Proof: Follows from the well known fact that the symmetric functions are
log-concave on the positive orthant.

Corollary 8.3: The functional G(A) =: log(Capc1,...,cm(ESr;A) is concave
on the convex cone of non-negative matrices.
Therefore, Capr,...,r(ESren;A) ≥ 1 if A ∈ CO(BM(r, n)).

It is as easy to prove the upper bound:

Capr,...,r(ESren;A) ≤ Capr,...,r(ESren; r
n
Jn) = (

(
n

r

)
)n(

r

n
)rn, A ∈ CO(BM(r, n)).

(40)

Indeed, it follows from Newton’s inequalities that Symr(x1, ..., xn) ≤ (x1+...+xn
n

)r
(
n
r

)
.

Therefore, if A ∈ CO(BM(r, n) then

Capr,...,r(ESren;A) ≤ ESren;A(1, ..., 1) ≤ (

(
n

r

)
)n(

r

n
)rn.

We put these observation in the following statement about our current knowl-
edge on the range of PE(r, A), A ∈ CO(BM(r, n).

Lemma 8.4: Let A ∈ CO(BM(r, n) then

min
A∈CO(BM(r,n)

Capr,...,r(ESren;A) = 1, max
A∈CO(BM(r,n)

Capr,...,r(ESren;A) = (

(
n

r

)
)n(

r

n
)rn.

And, assuming that r divides n, the following inequalities hold

(

(
n

r

)
)n(

r

n
)rn ≥ PE(r, A) ≥ (

vdw(n)

vdw(r)vdw(n− r)
)n

r−1
r

vdw(n)

vdw(r)n/r
.
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