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Abstract

We study the query complexity of WEAK PARITY : the problem of computing the parity of ann-bit
input string, where one only has to succeed on a1/2+ε fraction of input strings, but must do so with high
probability on those inputs where one does succeed. It is well-known thatn randomized queries and
n/2 quantum queries are needed to compute parity onall inputs. But surprisingly, we give a randomized
algorithm for WEAK PARITY that makes onlyO(n/ log0.246(1/ε)) queries, as well as a quantum algo-
rithm that makesO(n/

√

log(1/ε)) queries. We also prove a lower bound ofΩ (n/ log (1/ε)) in both
cases; and using extremal combinatorics, prove lower bounds ofΩ(log n) in the randomized case and
Ω(

√
logn) in the quantum case for anyε > 0. We show that improving our lower bounds is intimately

related to two longstanding open problems about Boolean functions: the Sensitivity Conjecture, and the
relationships between query complexity and polynomial degree.

1 Introduction

Given a Boolean inputX = (x1, . . . , xn) ∈ {0, 1}n, the PARITY problem is to compute

PAR (X) := x1 ⊕ · · · ⊕ xn . (1)

This is one of the most fundamental and well-studied problems in computer science.
Since PAR(X) is sensitive to alln bits at every inputX, any classical algorithm for PARITY requires

examining alln bits. As a result, PARITY is often considered a “maximally hard problem” for query or
decision-tree complexity. In the quantum case, one can get aslight improvement to⌈n/2⌉ queries, by
applying the Deutsch-Jozsa algorithm [10] to successive pairs of coordinates ((x1, x2), (x3, x4), etc.) and
then XORing the results. However, that factor-of-two improvement is known to be the best possible by
quantum algorithms [12, 5].1

So we might wonder: can we learnanythingabout a string’s parity by making a sublinear number of
queries? One natural goal would be to compute the parity, notfor all inputs, but merely for as many inputs
as possible. This motivates the following problem, which will be the focus of this paper.
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1Moreover, this holds even forunbounded-errorquantum algorithms, which only need to guess PAR(X) with someprobability

greater than1/2, but must do so for everyX.
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Problem 1 (WEAK PARITY or WEAKPARn,ε) Let p (X) be the probability that an algorithm accepts a
Boolean inputX ∈ {0, 1}n. Then givenε > 0, satisfy

Pr
X∈{0,1}n

[

|p (X)− PAR (X)| ≤ 1

3

]

≥ 1

2
+ ε, (2)

by queryingX as few times as possible. Equivalently, satisfy|A| ≥ (1/2 + ε) 2n, whereA ⊆ {0, 1}n is the
set of all inputsX such that|p (X)− PAR (X)| ≤ 1/3.

We will sometimes refer to the above as “bounded-error”WEAK PARITY . In the “zero-error” variant,
we instead want to satisfy the stronger condition

Pr
X∈{0,1}n

[p (X) = PAR (X)] ≥ 1

2
+ ε. (3)

To build intuition, let’s start with some elementary remarks about WEAK PARITY .

(i) Of course it’s trivial to guess PAR(X) on a1/2 fraction of inputsX, for example by always outputting
0. (On the other hand, beingwrongon a1/2 + ε fraction ofX ’s is just as hard as being right on that
fraction.)

(ii) As usual, the constant1/3 in equation (2) is arbitrary; we can replace it by any other constant in
(0, 1/2) using amplification.

(iii) There is no requirement that the acceptance probability p (X) approximate a total Boolean function.
In other words, ifX /∈ A thenp (X) can be anything in[0, 1].

(iv) It is not hard to see that WEAK PARITY is completely uninteresting for deterministic classical algo-
rithms. Indeed, any such algorithm that makes fewer thann queries correctly guesses PAR(X) on
exactly half of the inputs.

(v) Even a randomized or quantum algorithm must be “uncorrelated” with PAR(X), if it always makes
T < n queries (in the randomized case) orT < n/2 queries (in the quantum case). In other words,
we must have

∑

X∈{0,1}n

(

p (X)− 1

2

)(

PAR (X)− 1

2

)

= 0, (4)

wherep (X) is the algorithm’s acceptance probability. The reason is just Fourier analysis: if we
switch domains from{0, 1} to {1,−1}, then PAR(X) = x1 · · · xn. But for a randomized algorithm,
p (X) is a multilinear polynomial inx1, . . . , xn of degree at mostT < n, while for a quantum
algorithm, Beals et al. [5] showed thatp (X) is a multilinear polynomial of degree at most2T < n.
And any such polynomial has correlation0 with the degree-n monomialx1 · · · xn.

(vi) Crucially, however, equation (4) doesnot rule out sublinear randomized or quantum algorithms for
WEAK PARITY (which exist for allε = o (1), as we will see!). The reason is a bit reminiscent of the
famoushat puzzle:2 suppose, for example, that an algorithm output PAR(X) with probability exactly

2In that puzzle,n players are each assigned a red hat or a blue hat uniformly at random, and can see the colors of every hat except
their own. At least one player must guess the color of her own hat, and every guess must be correct. Surprisingly, even though
each player has only a1/2 probability of being correct, it is possible for the playersto win this game with probability∼ 1− 1/n,
by “conspiring” so that the cases where they are wrong coincide with each other. See http://en.wikipedia.org/wiki/Hatpuzzle
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2/3 on a3/4 fraction of inputsX, and with probability0 on the remaining1/4 fraction of inputs.
Such an algorithm would succeed at WEAK PARITY for ε = 1/4, despite maintaining an overall
correlation of0 with PAR(X).

(vii) The correlation argument does establish that, for thezero-errorvariant of WEAK PARITY , any ran-
domized algorithm must make at leastn queries, and any quantum algorithm must make at leastn/2
queries, withsomenonzero probability.3 Even then, however, an algorithm that makes anexpected
sublinear number of queries on each inputX is not ruled out (and as we will see, such algorithms
exist).

The regime of WEAK PARITY that interests us the most is whereε is very small—the extreme case being
ε = 1/2n. We want to know:are there nontrivial randomized or quantum algorithms to guess the parity of
X on slightly more than half the inputs?

Despite an immense amount of work on query complexity, so faras we know the above question was
never asked before. Here we initiate its study, both by proving upper and lower bounds, and by relating
this innocent-looking question to longstanding open problems in combinatorics, including the Sensitivity
Conjecture. Even though WEAK PARITY might look at first like a curiosity, we will find that the task of
understanding its query complexity is tightly linked togeneralquestions about query complexity, and these
links help to motivate its study. Conversely, WEAK PARITY illustrates how an old pastime in complexity
theory—namely, understanding the largest possible gaps between query complexity measures forarbitrary
Boolean functions—can actually have implications for the query complexities ofspecificproblems.

2 Our Results

First, in Section 4, we prove an upper bound ofO(n/ log0.246 (1/ε)) on the zero-error randomized query
complexity of WEAK PARITY , and an upper bound ofO(n/

√

log 1/ε) on its bounded-error quantum query

complexity. (For zero-error quantum query complexity, we get the slightly worse boundO

(

n · (log log
1

ε )
2

√
log 1/ε

)

.)

Our quantum algorithm is based on Grover’s algorithm, whileour randomized algorithm is based on the
well-knownO

(

n0.754
)

randomized algorithm for the complete binary AND/OR tree. For the zero-error
quantum algorithm, we use a recent zero-error quantum algorithm for the complete binary AND/OR tree
due to Ambainis et al. [3].

Then, in Section 5, we prove a not-quite-matching lower bound of Ω (n/ log (1/ε)) queries, by using
random self-reducibility to reduce ordinary PARITY to WEAK PARITY . This lower bound is the same for
randomized and quantum, and for zero-error and bounded-error.

The gap between our upper and lower bounds might seem tiny. But notice that the gap steadily worsens
for smallerε, reachingO(n0.754) orO(

√
n) orO(

√
n log2 n) versus the trivialΩ (1) whenε = 1/2n. This

leads us to ask whether we can prove a nontrivial lower bound that works forall ε > 0. Equivalently, can we
rule out anO (1)-query randomized or quantum algorithm that computes PARITY on a subsetA ⊆ {0, 1}n
of size2n−1 + 1?

In Section 6, we show that wecan(barely) rule out such an algorithm. In 1988, Chung et al. [9]showed
that any induced subgraph of the Boolean hypercube{0, 1}n, of size at least2n−1+1, must have at least one
vertex of degreeΩ (log n). As a consequence, we deduce that for allε > 0, any bounded-error randomized

3For the bounded-error variant of WEAK PARITY , the argument also establishes that ifε > 1/4, then any randomized algorithm
must maken queries, and any quantum algorithm must maken/2 queries.
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algorithm for WEAK PARITY must makeΩ(log n) queries, and any bounded-error quantum algorithm must
makeΩ(

√
log n) queries.

It has been conjectured that Chung et al.’sΩ (log n) degree lower bound can be improved tonΩ(1).
Previously, however, Gotsman and Linial [13] showed that such an improvement would imply the notorious
Sensitivity Conjecturein the study of Boolean functions. In Section 6, we observe that annΩ(1) lower
bound for Chung et al.’s problem wouldalsoyield annΩ(1) lower bound on the bounded-error randomized
and quantum query complexities of WEAK PARITY , for all ε > 0. Thus, while we do not have a direct
reduction between WEAK PARITY and the Sensitivity Conjecture in either direction, it seems plausible that
a breakthrough on one problem would lead to a breakthrough onthe other.

Next, in Section 7, we connect WEAK PARITY to another longstanding open problem in the study of
Boolean functions—and in this case, we give a direct reduction. Namely, suppose we could prove a lower
bound ofΩ

(

n/ log1−c (1/ε)
)

on the bounded-error randomized query complexity of WEAK PARITY . We
show that this would imply thatR2 (f) = Ω (deg (f)c) for all total Boolean functionsf : {0, 1}n → {0, 1},
whereR2 (f) is the bounded-error randomized query complexity off , anddeg (f) is its exact degree as
a real polynomial. Similar statements hold for other kinds of query complexity (e.g., the bounded-error
quantum query complexityQ2 (f), and the zero-error randomized query complexityR0 (f)).

Nisan [16] showed thatR2 (f) = Ω(deg (f)1/3) for all total Boolean functionsf , while Beals et
al. [5] showed thatQ2 (f) = Ω(deg (f)1/6) for all f . Meanwhile, the largest known separations are
R2 (f) = O(deg (f)0.753...) if f is the complete binary AND/OR tree (see Section 3 for a definition), and
Q2 (f) = O(

√

deg (f)) if f is theOR function. However, even improving on the3rd- and6th-power
relations remains open. Our result says that, if there existed Boolean functionsf with larger separations
than are currently known, then wecould improve our algorithms for WEAK PARITY . And conversely, any
randomized lower bound for WEAK PARITY better thanΩ(n/ log2/3 (1/ε)), or any quantum lower bound
better thanΩ(n/ log5/6 (1/ε)), would improve the known relations between degree and querycomplexity
for all Boolean functions.

Lastly, in Section 8, we briefly consider the weak query complexities of functions other than PARITY .
We show that, foreveryBoolean functionf , it is possible to agree withf (X) on 2n−1 + 1 inputsX using
a bounded-error quantum algorithm that makesO(

√
n) queries, or a zero-error randomized algorithm that

makesO(n0.754) queries, or a zero-error quantum algorithm that makesO(
√
n log2 n) queries.

3 Preliminaries

We assume some familiarity with classical and quantum querycomplexity; see Buhrman and de Wolf [8]
for an excellent introduction. This section reviews the most relevant definitions and facts.

3.1 Classical Query Complexity

Given a Boolean functionf : {0, 1}n → {0, 1}, thedeterministic query complexityD(f) is the minimum
number of queries made by any deterministic, classical algorithm that computesf (X) for every input
X ∈ {0, 1}n. (Here and throughout, a query returnsxi given i, and the “number of queries” means the
number maximized over allX ∈ {0, 1}n.)

Also, thezero-error randomized query complexityR0 (f) is the minimum number of queries made by
any randomized algorithm that computesf (X) with success probability at least2/3 for everyX—and that,
whenever it fails to computef (X), instead outputs “don’t know.” Thebounded-error randomized query
complexityR2 (f) is the minimum number of queries made by a randomized algorithm that computesf (X)
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with success probability at least2/3 for everyX, and that can behave arbitrarily (for example, by outputting
the wrong answer) when it fails. We have the following relations for everyf :

n ≥ D(f) ≥ R0 (f) ≥ R2 (f) . (5)

We could also have definedR0 (f) as the minimumexpectednumber of queries made by a randomized
algorithm that computesf (X) with certainty for every inputX (where the expectation is over the internal
randomness of the algorithm, and must be bounded for everyX). We will sometimes use this interpretation,
which changes the value ofR0 (f) by at most a constant factor.

We will use the following well-known result:

Theorem 2 D(f) ≤ R0 (f)
2 andD(f) = O(R2 (f)

3) for all total Boolean functionsf .4

We will write R2(WEAKPARn,ε) to denote the minimum number of queries made by any randomized
algorithm that, for at least a1/2 + ε fraction of inputsX ∈ {0, 1}n, outputs PAR(X) with probability at
least2/3. We will also writeR0(WEAKPARn,ε) to denote the minimum number of queries made by any
randomized algorithm that, for at least a1/2 + ε fraction of inputsX, outputs PAR(X) with probability
at least2/3, and otherwise outputs “don’t know.” In both cases, for the remaining inputsX (i.e., those on
which the algorithm fails), the algorithm’s output behavior can be arbitrary, but the upper bound on query
complexity must hold forall inputsX ∈ {0, 1}n.

Note that we could also defineR′
0(WEAKPARn,ε) as the minimumexpectednumber of queries made by

any randomized algorithm that, for at least a1/2+ ε fraction of inputsX, outputs PAR(X) with probability
1. In this case, the expected number of queries needs to be bounded only for thoseX ’s on which the
algorithm succeeds. For completeness, let us verify the following.

Proposition 3 R0(WEAKPARn,ε) andR′
0(WEAKPARn,ε) are equal up to constant factors.

Proof. Let A be a randomized algorithm that realizesR0(WEAKPARn,ε) ≤ T . Then we can simply run
A repeatedly, until it outputs either0 or 1. This will yield an algorithm that, for at least a1/2 + ε fraction
of inputsX ∈ {0, 1}n, outputs PAR(X) with certainty afterO (T ) queries in expectation. (The algorithm
might not halt for the remainingX ’s, but that’s okay.)

Conversely, letA′ be a randomized algorithm that realizesR′
0(WEAKPARn,ε) ≤ T . Then we can run

A′ until it’s either halted or made3T queries, and can output “don’t know” in the latter case. By Markov’s
inequality, this will yield an algorithm that, for at least a1/2+ ε fraction of inputsX, outputs PAR(X) with
probability at least2/3, and otherwise outputs “don’t know.” Furthermore, the number of queries will be
bounded by3T for everyX.

3.2 Quantum Query Complexity

Thezero-error quantum query complexityQ0 (f) is the minimum number of queries made by any quantum
algorithm that computesf (X) with success probability at least2/3, for every inputX—and that, whenever
it fails to computef (X), instead outputs “don’t know.” Here a query maps each computational basis state
of the form |i, b, z〉 to a basis state of the form|i, b⊕ xi, z〉, wherez is a “workspace register” whose

4TheD (f) ≤ R0 (f)
2 part follows from the folklore result thatD (f) ≤ C(f)2, whereC(f) is the so-calledcertificate

complexity, together with the fact thatR0 (f) ≥ C(f). TheD(f) = O(R2 (f)
3) part was proved by Nisan [16]. It also follows

from the result of Beals et al. [5] thatD(f) ≤ bs (f)3, wherebs (f) is theblock sensitivity(see Section 3.4), together with the fact
thatR2 (f) = Ω (bs (f)).
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dimension can be arbitrary. The final output (0, 1, or “don’t know”) is obtained by measuring a designated
part ofz. Thebounded-error randomized query complexityQ2 (f) is the minimum number of queries made
by a quantum algorithm that computesf (X) with success probability at least2/3 for everyX, and whose
output can be arbitrary when it fails. We have the following relations for everyf :

R0 (f) ≥ Q0 (f) ≥ Q2 (f) , R2 (f) ≥ Q2 (f) . (6)

Like in the randomized case, we can also interpretQ0 (f) as the minimumexpectednumber of queries made
by a quantum algorithm that computesf (X) with certainty for every inputX, if we generalize the quantum
query model to allow intermediate measurements. Doing so changesQ0 (f) by at most a constant factor.

We will use the following results of Beals et al. [5] and Midrijanis [15] respectively:

Theorem 4 (Beals et al. [5]) D(f) = O(Q2 (f)
6) for all total Booleanf .

Theorem 5 (Midrijanis [15]) D(f) = O(Q0 (f)
3) for all total Booleanf .5

Just like in the randomized case, we will writeQ2(WEAKPARn,ε) for the minimum number of queries
made by any quantum algorithm that, for at least a1/2 + ε fraction of inputsX, outputs PAR(X) with
probability at least2/3; and will writeQ0(WEAKPARn,ε) for the minimum number of queries made by any
quantum algorithm that, for at least a1/2+ ε fraction ofX ’s, outputs PAR(X) with probability at least2/3,
and otherwise outputs “don’t know.”

Once again, if we generalize the quantum query model to allowintermediate measurements, then we can
also defineQ0(WEAKPARn,ε) as the minimumexpectednumber of queries made by any quantum algorithm
that, for at least a1/2 + ε fraction ofX ’s, outputs PAR(X) with probability1 (with the expected number of
queries bounded only for thoseX ’s on which the algorithm succeeds). Doing so changesQ0(WEAKPARn,ε)
by at most a constant factor, for the same reasons as in Proposition 3.

3.3 Degree

Given a Boolean functionf , thedegreedeg (f) is the degree of the (unique) real multilinear polynomial
p : R

n → R that satisfiesp (X) = f (X) for all X ∈ {0, 1}n. Degree has a known combinatorial
characterization that will be useful to us:6

Proposition 6 (folklore) Given ad-dimensional subcubeS in {0, 1}n, let S0, S1 be the subsets ofS with
even and odd Hamming weight respectively (thus|S0| = |S1| = 2d−1). Also, given a Boolean function
f : {0, 1}n → {0, 1}, call f “parity-correlated” on S if

|{X ∈ S0 : f (X) = 1}| 6= |{X ∈ S1 : f (X) = 1}| . (7)

Thendeg (f) equals the maximum dimension of a subcube on whichf is parity-correlated.

It is not hard to see thatdeg (f) ≤ D(f) for all Boolean functionsf . Combined with Theorems 2 and
4, this implies thatR2 (f) = Ω(deg (f)1/3) andQ2 (f) = Ω(deg (f)1/6), as stated in Section 2.

5This improved the result of Buhrman et al. [7] thatD(f) = O(Q0 (f)
4), as well as the result of Aaronson [2] thatR0 (f) =

O(Q0 (f)
3 log n).

6For a proof of this characterization, see for example Aaronson [1].
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3.4 Sensitivity and Block Sensitivity

Given an inputX ∈ {0, 1}n and a subsetB ⊆ [n], letXB denoteX with all the bits inB flipped. Then for
a Boolean functionf , thesensitivitysX (f) is the number of indicesi ∈ [n] such thatf

(

X{i}) 6= f (X),
while theblock sensitivitybsX (f) is the maximum number of pairwise-disjoint “blocks”B1, . . . , Bk ⊆ [n]
that can be found such thatf

(

XBj
)

6= f (X) for all j ∈ [k]. We then define

s (f) := max
X∈{0,1}n

sX (f) , bs (f) := max
X∈{0,1}n

bsX (f) . (8)

Clearlys (f) ≤ bs (f). The famousSensitivity Conjecture(see Hatami et al. [14] for a survey) asserts that
the gap betweens (f) andbs (f) is never more than polynomial:7

Conjecture 7 (Sensitivity Conjecture) There exists a polynomialp such thatbs (f) ≤ p (s (f)) for all f .

Nisan and Szegedy [17] showed thatbs (f) ≤ 2 deg (f)2 (recently improved by Tal [22] tobs (f) ≤
deg (f)2), while Beals et al. [5] showed thatdeg (f) ≤ bs (f)3.8 Thus, degree and block sensitivity
are polynomially related. This implies that Conjecture 7 isequivalent to the conjecture that sensitivity is
polynomially related to degree.

3.5 AND/OR Tree

A particular Boolean function of interest to us will be thecomplete binary AND/OR tree. Assumen = 2d;
then this function is defined recursively as follows:

T0 (x) := x, (9)

Td (x1, . . . , xn) :=

{

Td−1

(

x1, . . . , xn/2
)

ANDTd−1

(

xn/2+1, . . . , xn
)

if d > 0 is odd,
Td−1

(

x1, . . . , xn/2
)

ORTd−1

(

xn/2+1, . . . , xn
)

if d > 0 is even.
(10)

It is not hard to see that
D(Td) = deg (Td) = 2d = n. (11)

By contrast, Saks and Wigderson [19] proved the following.

Theorem 8 (Saks-Wigderson [19]) R0 (Td) = O

(

(

1+
√
33

4

)d
)

= O(n0.753...).

Saks and Wigderson [19] also proved a matching lower bound ofR0 (Td) = Ω(n0.753...), while Santha
[20] proved thatR2 (Td) = Ω(n0.753...) even for bounded-error algorithms. Note thatTd gives the largest
known gap betweenD(f) andR2 (f) for any total Boolean functionf .

Recently, building on the breakthrough quantum walk algorithm for game-tree evaluation [11] (see also
[4]), Ambainis et al. [3] proved the following.

Theorem 9 (Ambainis et al. [3]) Q0 (Td) = O(
√
n log2 n).

7Rubinstein [18] showed thatbs (f) canbe quadratically larger thans (f).
8This follows immediately from their result thatD (f) ≤ bs (f)3, which improved on the boundD(f) ≤ bs (f)4 due to

Nisan and Szegedy [17], and which they then combined with theresultQ2 (f) = Ω(
√

bs (f)) to prove Theorem 4, thatD(f) =
O(Q2 (f)

6).
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By comparison, it is not hard to show (by reduction from PARITY ) thatQ2 (Td) = Ω(
√
n). Once again,

Theorem 9 gives the largest known gap betweenD(f) andQ0 (f) for any totalf .9

Finally, the following fact will be useful to us.

Proposition 10 Let n = 2d. The number of inputsX ∈ {0, 1}n such thatTd (X) = PAR(X) is exactly
2n−1 + 1 if d is even, and exactly2n−1 − 1 if d is odd.

Proof. This is most easily proved by switching to the Fourier representation. Let

T∗
d (x1, . . . , xn) := 1− 2Td

(

1− x1
2

, . . . ,
1− xn

2

)

, (12)

PAR∗ (X) := x1 · · · xn. (13)

Then the problem reduces to computing the correlation

Cd :=
∑

X∈{0,1}n
T∗
d (X) PAR∗ (X) , (14)

since

|{X ∈ {0, 1}n : Td (X) = PAR (X)}| = 2n−1 +
Cd

2
. (15)

We claim, by induction ond, thatCd = 2 if d is even, andCd = −2 if d is odd. Certainly this holds for the
base cased = 0. For largerd, using the fact that every two distinct monomials have correlation 0, one can
check by calculation that

Cd =

{

−C2
d−1/2 if d is odd,

C2
d−1/2 if d is even.

(16)

4 Algorithms for WEAK PARITY

We now prove our first result: that there exist nontrivial randomized and quantum algorithms for WEAK

PARITY . For simplicity, we first consider the special caseε = 2−n; later we will generalize to arbitraryε.

Lemma 11 We have

Q2(WEAKPARn,2−n) = O(
√
n), (17)

R0(WEAKPARn,2−n) = O(n0.754), (18)

Q0(WEAKPARn,2−n) = O(
√
n log2 n). (19)

Proof. For Q2, observe that theOR function,OR(X), agrees with the parity ofX on 2n−1 + 1 inputs
X ∈ {0, 1}n: namely, all the inputs of odd Hamming weight, plus the input0n. Thus, simply computing
OR(X) gives us an algorithm for WEAKPARn,ε with ε = 2−n. And of course,OR can be computed with
bounded error inO (

√
n) quantum queries, using Grover’s algorithm.

9It improves slightly on an earlier result of Buhrman et al. [7], who showed that for everyε > 0, there exists anf such that
Q0 (f) = O(D (f)1/2+ε). ForQ2, we can do slightly better (Q2 (f) = O(

√

D(f))) by just takingf to be theOR function.
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ForR0, assume for simplicity thatn has the form2d; this will not affect the asymptotics. By Proposition
10, if d is even then the AND/OR treeTd (X) agrees with PAR(X) on2n−1 + 1 inputsX, while if d is odd
then1 − Td (X) does. Either way, simply computingTd (X) gives us an algorithm for WEAKPARn,2−n .
Furthermore, by Theorem 8, there is a zero-error randomizedalgorithm forTd (X) that makesO(n0.754)
queries.

ForQ0, we also compute eitherTd (X) or 1−Td (X) as our guess for PAR(X), except now we use the
zero-error quantum algorithm of Theorem 9, which makesO(

√
n log2 n) queries.

Next, we give a general strategy for converting a WEAK PARITY algorithm for smallε into an algorithm
that works for largerε, with the query complexity gradually increasing asε does.

Lemma 12 For all positive integersk, we have

R2(WEAKPARkn,ε) ≤ k ·R2(WEAKPARn,ε). (20)

So in particular, supposeR2(WEAKPARn,1/f(n)) ≤ T (n). Then for allN andε > 0,

R2(WEAKPARN,ε) ≤
N · T

(

f−1 (1/ε)
)

f−1 (1/ε)
. (21)

Exactly the same holds if we replaceR2 byR0, Q2, or Q0 throughout.

Proof. LetA be a randomized algorithm for WEAKPARn,ε, and letX be an input to WEAKPAR of sizekn.
Then our strategy is to group the bits ofX into n blocksY1, . . . , Yn of k bits each, then runA on the input

PAR (Y1) , . . . ,PAR (Yn) , (22)

and output whateverA outputs. IfA madeT (n) queries originally, then this strategy can be implemented
usingk · T (n) queries: namely,k queries to the underlying inputX every timeA queries a bit PAR(Yi).
Furthermore, letp (Z) be A’s success probability on inputZ ∈ {0, 1}n. Then the strategy succeeds
whenever

|p (PAR (Y1) , . . . ,PAR (Yn))− (PAR (Y1)⊕ · · · ⊕ PAR (Yn))| ≤
1

3
, (23)

and by assumption, this occurs for at least a1/2 + ε fraction ofZ ’s.
The inequality (21) is just a rewriting of (20), if we make thesubstitutionsε := 1/f (n) andn :=

f−1 (1/ε) to get
R2(WEAKPARf−1(1/ε),ε) ≤ T

(

f−1 (1/ε)
)

, (24)

followed by k := N/f−1 (1/ε). Finally, since we never used thatA was classical or bounded-error,
everything in the proof still works if we replaceR2 by R0, Q2, orQ0 throughout.

Combining Lemmas 11 and 12 now easily gives us our upper bounds:

Theorem 13 For all n andε ∈ [2−n, 1/2], we have

Q2(WEAKPARn,ε) = O

(

n
√

log 1/ε

)

, (25)

R0(WEAKPARn,ε) = O

(

n

log0.246 1/ε

)

, (26)

Q0(WEAKPARn,ε) = O

(

n · (log log 1/ε)
2

√

log 1/ε

)

. (27)
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We do not know any upper bound onR2(WEAKPARn,ε) better than our upper bound onR0(WEAKPARn,ε).
As a final note, all of our algorithms actually satisfy a stronger property than the definition of WEAK

PARITY requires. Namely, the algorithms all compute a total Boolean function f (X) that agrees with
PAR(X) on a 1/2 + ε fraction of inputs. This means, for example, that we can obtain a randomized
algorithm that outputs PAR(X) with probability 1 on a1/2 + ε fraction of inputsX ∈ {0, 1}n, and that
halts afterO(n/ log0.246 (1/ε)) queries in expectation onevery input X (not just those inputs for which
the algorithm succeeds). We can similarly obtain a quantum algorithm with expected query complexity

O

(

n · (log log 1/ε)2√
log 1/ε

)

and the same success condition.

5 Lower Bound via Random Self-Reducibility

Our next result is alower bound on the bounded-error randomized and quantum query complexities of
WEAK PARITY . The lower bound matches our upper bounds in its dependence on n, though not in its
dependence onε.

Theorem 14 Q2(WEAKPARn,ε) = Ω (n/ log (1/ε)) for all 0 < ε < 1
2 .

Proof. Let C be a quantum algorithm for WEAKPARn,ε that never makes more thanT queries. Using
C, we will produce a new quantum algorithmC ′, which makesO

(

T log 1
ε

)

queries, and which guesses
PAR(X) on everyinput X ∈ {0, 1}n with probability stricter greater than1/2. But it is well-known that
any quantum algorithm of the latter kind must make at leastn/2 queries: in other words, that PARITY has
unbounded-error quantum query complexityn/2 (this follows from the polynomial method [5]). Putting
the two facts together, we conclude that

T = Ω

(

n

log 1/ε

)

. (28)

To produceC ′, the first step is simply to amplifyC. Thus, letC∗ be an algorithm that outputs the
majority answer amongd log 1/ε invocations ofC. Then by a Chernoff bound, provided the constantd is
sufficiently large,

Pr
X∈{0,1}n

[|Pr [C∗ (X) accepts]− PAR (X)| ≤ ε] ≥ 1

2
+ ε. (29)

Next,C ′ chooses a stringY ∈ {0, 1}n uniformly at random and setsZ := X⊕Y . It then runsC∗ to obtain
a guessb about PAR(Z). Finally,C ′ outputs PAR(Y )⊕ b as its guess for PAR(X).

ClearlyC ′ has the same quantum query complexity asC∗: it is easy to simulate a query to a bitzi of
Z, by querying the corresponding bitxi of X and then XORing withyi. Furthermore, notice thatZ is
uniformly random, regardless ofX, and that ifb = PAR (Z) then PAR(Y ) ⊕ b =PAR(X). It follows that
C ′ succeeds with probability at least

(

1

2
+ ε

)

(1− ε) =
1

2
+

ε

2
− ε2 >

1

2
(30)

for everyX, which is what we wanted to show.
Of course, Theorem 14 implies thatQ0(WEAKPARn,ε), R2(WEAKPARn,ε), andR0(WEAKPARn,ε) are

Ω (n/ log (1/ε)) as well. It is curious that we do not get any lower bounds forQ0, R2, orR0 better than for
Q2.

10



It is, however, illuminating to see what happens if we run thereduction of Theorem 14, starting from
the assumption thatC is azero-error randomized or quantum algorithm for WEAKPARn,ε. Suppose fur-
thermore thatC satisfies the same strong property that our zero-error algorithms from Section 4 satisfied:
namely, the property thatC halts afterT queries in expectation oneveryinputX ∈ {0, 1}n. In that case,
one can skip the amplification step in Theorem 14, to produce an algorithmC ′ with the following properties:

(i) C halts afterT queries in expectation on every inputX, and

(ii) C guesses PAR(X) with probability greater than1/2 on every inputX.

Now, one might think the above would implyT ≥ n/2 (regardless ofε), thereby contradicting our upper
bounds from Section 4! However, the apparent paradox is resolved once we realize that the lower bound
of Beals et al. [5]—showing thatT ≥ n/2 queries are needed to guess PAR(X) with probability greater
than1/2 on every inputX—says nothing aboutexpectedquery complexity. And indeed, it is trivial to
design an algorithm that guesses PAR(X) with 1/2 + ε probability on every inputX, using2εn queries in
expectation. That algorithm just evaluates PAR(X) (usingn queries) with probability2ε, and otherwise
guesses randomly, without examiningX at all!

6 Lower Bound via Sensitivity

Theorem 14 shows that our algorithms from Theorem 13 are close to optimal whenε is reasonably large.
Unfortunately, though, Theorem 14 gives nothing whenε = 2−n. Equivalently, it does not even rule out a
randomized or quantum algorithm making aconstantnumber of queries (!), that correctly decides PARITY

on a subset of size2n−1 + 1. We conjecture thatnΩ(1) randomized or quantum queries are needed for the
latter task, but we are unable to prove that conjecture—a state of affairs that Section 7 will help to explain.
In this section, we at least prove thatΩ(log n) randomized queries andΩ(

√
log n) quantum queries are

needed to solve WEAK PARITY for all ε > 0.
The key is a combinatorial quantity calledΛ (n), which was introduced by Chung, Füredi, Graham, and

Seymour [9]. Abusing notation, we identify the set{0, 1}n with the Boolean hypercube graph (where two
vertices are adjacent if and only if they have Hamming distance1), and also identify any subsetG ⊆ {0, 1}n
with the induced subgraph of{0, 1}n whose vertex set isG. Let∆(G) be the maximum degree of any vertex
in G. Then

Λ (n) := min
G⊆{0,1}n : |G|=2n−1+1

∆(G) (31)

is the minimum of∆(G) over all induced subgraphsG of size2n−1 + 1.
The following proposition relatesΛ (n) to WEAK PARITY .

Proposition 15 R2(WEAKPARn,ε) = Ω(Λ (n)) andQ2(WEAKPARn,ε) = Ω(
√

Λ (n)) for all ε > 0.

Proof. LetU be an algorithm that decides PARITY (with bounded error probability) on a subsetA ⊆ {0, 1}n.
Then we claim thatU must makeΩ(∆ (A)) randomized orΩ(

√

∆(A)) quantum queries, which isΩ(Λ (n))
or Ω(

√

Λ (n)) respectively if|A| > 2n−1. To see this, letX ∈ A be a vertex with degree∆(A). Then
PARITY , when restricted toX and its neighbors, already yields a Grover search instance of size∆(A). But
searching a list ofN elements is well-known to requireΩ(N) randomized orΩ(

√
N) quantum queries [6].

To build intuition, it is easy to find an induced subgraphG ⊆ {0, 1}n such that|G| = 2n−1 but∆(G) =
0: consider the set of all points with odd Hamming weight. But adding a single vertex to thatG increases

11



its maximum degree∆(G) all the way ton. More generally, Chung et al. [9] were able to prove the
following.10

Theorem 16 (Chung et al. [9]) We have

Λ (n) ≥ 1

2
log2 n− 1

2
log2 log2 n+

1

2
. (32)

Combining Theorem 16 with Proposition 15 tells us immediately that

R2(WEAKPARn,ε) = Ω(log n), (33)

Q2(WEAKPARn,ε) = Ω(
√

log n) (34)

for all ε > 0.
Now, the best-knownupper bound onΛ (n), also proved by Chung et al. [9], is

√
n + 1, and it is

conjectured that this is essentially tight. By Proposition15, clearly a proof of that conjecture would imply

R2(WEAKPARn,ε) = Ω(
√
n), (35)

Q2(WEAKPARn,ε) = Ω
(

n1/4
)

(36)

for all ε > 0—and more generally, provingΛ (n) ≥ nΩ(1) would imply thatR(WEAKPARn,ε) and
Q(WEAKPARn,ε) arenΩ(1).

Unfortunately, provingΛ (n) ≥ nΩ(1) will be challenging. To see why, recall the famousSensitiv-
ity Conjecture(Conjecture 7), which says thats (f) is polynomially related tobs (f) (or equivalently, to
deg (f)). In 1992, Gotsman and Linial [13] showed that the Sensitivity Conjecture is equivalent to a state-
ment about the maximum degrees of induced subgraphs of{0, 1}n:

Theorem 17 (Gotsman-Linial [13]) Given any growth rateh, we haves (f) > h (deg (f)) for all Boolean
functionsf : {0, 1}n → {0, 1}, if and only if

max {∆(G) ,∆({0, 1}n \G)} ≥ h (n) (37)

for all subsetsG ⊆ {0, 1}n such that|G| 6= 2n−1.

Notice that if|G| 6= 2n−1, then

max {∆(G) ,∆({0, 1}n \G)} ≥ Λ (n) . (38)

To see this, choose whichever ofG or {0, 1}n \G is larger, and then discard all but2n−1+1 of its elements.
Thus, any lower bound on Chung et al.’s combinatorial quantity Λ (n) implies the same lower bound on the
functionh (n) of Theorem 17. For example, ifΛ (n) ≥ nΩ(1), thens (f) ≥ deg (f)Ω(1).

But this means thatany proof ofΛ (n) ≥ nΩ(1) would imply the Sensitivity Conjecture!11 Thus, the
conjectureΛ (n) ≥ nΩ(1) could be seen as a “common combinatorial core” of the WEAK PARITY and
sensitivity versus block sensitivity questions.

10Chung et al.’s result is very closely related to an earlier result of Simon [21], which states that iff : {0, 1}n → {0, 1} is
a Boolean function depending on alln of its inputs, thens (f) ≥ 1

2
log2 n − 1

2
log2 log2 n + 1

2
, wheres (f) is the sensitivity.

However, neither Chung et al.’s result nor Simon’s seems derivable as an immediate corollary of the other.
11Interestingly, we do not know the reverse implication.
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7 Connection to deg (f) vs. Q(f)

In the last section, we identified a known combinatorial conjecture (Λ (n) ≥ nΩ(1)) that would imply that
the randomized and quantum query complexities of WEAK PARITY arenΩ(1) for all ε > 0. However, since
Λ (n) ≥ nΩ(1) would also imply the Sensitivity Conjecture, it will clearly be difficult to prove.

So could there be adifferentway to prove tight lower bounds forR2(WEAKPARn,ε) andQ2(WEAKPARn,ε)—
a way that wouldn’t require us to address any longstanding open problems about Boolean functions? Alas,
in this section we largely close off that possibility. In particular, suppose we could prove a strong lower
bound onR2(WEAKPARn,ε). We will show that this would imply a better polynomial relationship between
deg (f) andR2 (f) for all total Boolean functionsf than is currently known. Similar statements hold for
R0, Q2, andQ0.

Theorem 18 Given a constantc, suppose there exists a sequence of functions{fn}n≥1 such thatdeg (fn) =
n andR2 (fn) = O (nc). Then

R2(WEAKPARn,ε) = O

(

n

log1−c 1/ε

)

. (39)

The same holds if we replaceR2 byR0, Q2, or Q0 in both instances.

Proof. We first show thatR2(WEAKPARn,2−n) = O (nc) in the special caseε = 2−n; then we generalize
to largerε.

Observe that we can assume without loss of generality that eachfn has exactlyn inputs. For otherwise,
let p be the unique multilinear polynomial representingfn; then choose a monomialm of p with degreen,
and arbitrarily fix all bits that do not appear inm. This yields a subfunctionf ′

n with n inputs,deg (f ′
n) =

deg (fn) = n, andR2 (f
′
n) ≤ R2 (fn).

Now by Proposition 6, the statementdeg (fn) = n is equivalent to the combinatorial statement

|{X : fn (X) = 1 and PAR (X) = 0}| 6= |{X : fn (X) = 1 and PAR (X) = 1}| . (40)

This means thatfn (X) either agrees or disagrees with PAR(X) on at least2n−1+1 inputsX. By replacing
fn by 1−fn, we can assume without loss of generality that the first case holds. Then if we run the algorithm
for fn, it will makeO (nc) queries and correctly decide PARITY on at least2n−1 + 1 inputs, which was the
desired result.

To generalize to arbitraryε, we simply need to appeal to Lemma 12, which tells us that if

R2(WEAKPARn,2−n) ≤ T (n) = O (nc) , (41)

then

R2(WEAKPARN,ε) ≤
N · T (log2 1/ε)

log2 1/ε
= O

(

N

log1−c 1/ε

)

. (42)

Finally, since we never used that the algorithm was classical or bounded-error, everything in the proof still
works if we replaceR2 by R0, Q2, orQ0 throughout.

For clarity, let us state Theorem 18 in contrapositive form.

Corollary 19 SupposeR2(WEAKPARn,ε) = Ω
(

n/ log1−c (1/ε)
)

. Then for every Boolean functionf , we
haveR2 (f) = Ω (deg (f)c) (and similarly forR0, Q2, andQ0).
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Plugging ourΩ (n/ log (1/ε)) lower bound onR2(WEAKPARn,ε) (i.e., Theorem 14) into Corollary 19,
we get only the trivial lower boundR2 (f) = Ω (1) for non-constantf . On the other hand, suppose we
could prove that

R2(WEAKPARn,ε) = Ω

(

n

log2/3 1/ε

)

. (43)

Then Corollary 19 would reproduce the result of Nisan [16] that R2 (f) = Ω(deg (f)1/3) for all Boolean
functionsf . Likewise, if we could prove that

Q2(WEAKPARn,ε) = Ω

(

n

log5/6 1/ε

)

, (44)

then Corollary 19 would reproduce the result of Beals et al. [5] thatQ2 (f) = Ω(deg (f)1/6) for all f . Any
better lower bounds than those onR2(WEAKPARn,ε) or Q2(WEAKPARn,ε) would imply better general
lower bounds onR2 (f) orQ2 (f) than are currently known. So for example, suppose we could prove that

Q2(WEAKPARn,ε) = Ω

(

n
√

log 1/ε

)

; (45)

i.e., that the quantum algorithm of Theorem 13 was optimal. Then we would prove the longstanding
conjecture thatQ2 (f) = Ω(

√

deg (f)) for all Boolean functionsf (the bound being saturated whenf =
OR).

One might wonder: can we also go in the other direction, and use the known polynomial relationships
betweendeg (f) and query complexity measures to prove better lower bounds for WEAK PARITY? At
present, we cannot quite do that, but we can do something close. Recall from Section 1 that, in defining
WEAK PARITY , we did not impose any requirement that our algorithm’s acceptance probabilityp (X) ap-
proximate a total Boolean function. However, suppose wedo impose that requirement. Then we can easily
show the following:

Proposition 20 Fix any ε > 0. Suppose an algorithm’s acceptance probability must satisfy p (X) ∈
[0, 1/3] ∪ [2/3, 1] for all X ∈ {0, 1}n. Then any randomized algorithm forWEAKPARn,ε makesΩ

(

n1/3
)

queries, and any quantum algorithm makesΩ
(

n1/6
)

queries.
Suppose further that the acceptance probability must satisfy p (X) ∈ {0, 1} for all X. Then any

randomized algorithm forWEAKPARn,ε makesΩ
(

n1/2
)

queries in expectation, and any quantum algorithm
makesΩ

(

n1/3
)

queries.

Proof. Let f (X) = ⌊p (X)⌉ be the total Boolean function approximated byp (X). Then since the algo-
rithm solves WEAK PARITY ,

|{X : f (X) = 1 and PAR (X) = 1}| > |{X : f (X) = 1 and PAR (X) = 0}| . (46)

So by Proposition 6, we must havedeg (f) = D (f) = n. By Theorems 2, 4, and 5, this means that

R2 (f) = Ω(D (f)1/3) = Ω(n1/3), (47)

Q2 (f) = Ω(D (f)1/6) = Ω(n1/6), (48)

R0 (f) = Ω(D (f)1/2) = Ω(n1/2), (49)

Q0 (f) = Ω(D (f)1/3) = Ω(n1/3). (50)
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Of course, any improvement to the known polynomial relationships betweenD(f) andR2 (f), Q2 (f),
etc. for total Booleanf would automatically yield a corresponding improvement to Proposition 20.

8 Weak Algorithms for Other Functions

In this section, we begin the investigation of weak algorithms for Boolean functions other than PARITY .
Our main result is the following:

Theorem 21 Let f : {0, 1}n → {0, 1} be any Boolean function. Then we can guessf (X) on 2n−1 + 1
inputsX using a bounded-error quantum algorithm that makesO(

√
n) queries, a zero-error randomized

algorithm that makesO
(

n0.754
)

queries, or a zero-error quantum algorithm that makesO(
√
n log2 n)

queries.

Proof. Assume without loss of generality thatn has the form2d for d ≥ 2 (this will not affect the asymp-
totics). There are two cases. First, supposef is unbalanced: that is,

|{X : f (X) = 1}| 6= 2n−1. (51)

Then we can trivially agree withf on at least2n−1 + 1 inputsX, by either always outputting0 or always
outputting1.

Second, supposef is balanced. Note that theOR function outputs1 on an odd number of inputsX. It
follows that|{X : f (X) = OR(X)}| must be odd as well, and cannot equal2n−1. So eitherOR(X) or
1 − OR(X) must agree withf (X) on at least2n−1 + 1 inputsX. Thus, Grover’s algorithm gives us the
desired bounded-error quantum algorithm makingO(

√
n) queries.

For the other algorithms, recall Proposition 10, which tells us that the AND/OR treeTd also outputs1
on an odd number of inputsX. So by the same reasoning as above, eitherTd (X) or 1 − Td (X) must
agree withf (X) on at least2n−1 +1 inputsX. Hence, we can use Theorem 8 to get the desired zero-error
randomized algorithm makingO

(

n0.754
)

queries, and use Theorem 9 to get a zero-error quantum algorithm
makingO(

√
n log2 n) queries.

Interestingly, unlike for PARITY , for arbitrary f it is unclear whether we can get any nontrivial al-
gorithms whenε is larger than2−n. Our proof of Lemma 12 relied essentially on PARITY ’s downward
self-reducibility, so it does not generalize to other functions.

Note also that we cannot hope to prove any generallower bound on the weak query complexity off ,
even assuming thatf is balanced and that its quantum query complexity isΩ (n). As a counterexample, let
H(X) = 1 if X has Hamming weight at least2n/3 andH(X) = 0 otherwise; then consider

f (x1, . . . , xn) := x1 ⊕H (x2, . . . , xn) . (52)

9 Open Problems

The obvious problem is to close the gaps between our upper andlower bounds on the query complexity
of WEAK PARITY . We have seen that this problem is intimately related to longstanding open problems
in the study of Boolean functions, including polynomial degree versus query complexity, the Sensitivity
Conjecture, and lower-bounding Chung et al.’s [9] combinatorial quantityΛ (n). Perhaps the surprising
relationships among these problems could motivate renewedattacks.
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In the meantime, can we reprove ourΩ (n/ log (1/ε)) lower bound for WEAK PARITY (or better yet,
improve it)without exploiting PARITY ’s random self-reducibility? How far can we get by using (say) the
polynomial or adversary methods directly? It would also be great if we could say something about weak
algorithms for functions other than PARITY , beyond what we said in Section 8: for example, what happens
if ε > 2−n?

Let us end with three more specific questions:

(1) Do we ever get faster algorithms for WEAK PARITY , if we drop the constraint that the algorithm’s
acceptance probability approximates a total Boolean function f?12

(2) Can we “interpolate” between our two different ways of proving lower bounds for WEAK PARITY , to
get better lower bounds thanΩ(log n) or Ω(

√
log n) whenε is small but still larger than2−n?

(3) Can we show that annΩ(1) lower bound for WEAK PARITY is directly implied by the Sensitivity
Conjecture, rather than the related conjecture thatΛ (n) ≥ nΩ(1)?

10 Acknowledgments

We thank Ronald de Wolf, both for helpful discussions and forhis comments on a draft.

References

[1] S. Aaronson. Algorithms for Boolean function query properties.SIAM J. Comput., 32(5):1140–1157,
2003.

[2] S. Aaronson. Quantum certificate complexity. InProc. IEEE Conference on Computational Complex-
ity, pages 171–178, 2003. ECCC TR03-005, quant-ph/0210020.

[3] A. Ambainis, A. Childs, F. Le Gall, and S. Tani. The quantum query complexity of certification.
Quantum Information and Computation, 10(3-4), 2010. arXiv:0903.1291.

[4] A. Ambainis, A. M. Childs, B. W. Reichardt, R.̌Spalek, and S. Zhang. Any AND-OR formula of
sizeN can be evaluated in timeN1/2+o(1) on a quantum computer. InProc. IEEE FOCS, 2007.
quant-ph/0703015 and arXiv:0704.3628.

[5] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polynomials.
J. ACM, 48(4):778–797, 2001. Earlier version in IEEE FOCS 1998, pp. 352-361. quant-ph/9802049.

[6] C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum com-
puting. SIAM J. Comput., 26(5):1510–1523, 1997. quant-ph/9701001.

[7] H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka. Bounds forsmall-error and zero-error quantum
algorithms. InProc. IEEE FOCS, pages 358–368, 1999. cs.CC/9904019.

[8] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a survey.Theoretical
Comput. Sci., 288:21–43, 2002.

12If the answer is no, then of course Proposition 20 already gives us good lower bounds for WEAK PARITY whenε = 2−n.

16
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