
Low-Depth Uniform Threshold Circuits and the

Bit-Complexity of Straight Line Programs

Eric Allender1, Nikhil Balaji2, and Samir Datta2

1 Department of Computer Science, Rutgers University, USA
allender@cs.rutgers.edu

2 Chennai Mathematical Institute, India
{nikhil,sdatta}@cmi.ac.in

Abstract. We present improved uniform TC0 circuits for division, matrix powering, and related prob-
lems, where the improvement is in terms of “majority depth” (initially studied by Maciel and Thérien).
As a corollary, we obtain improved bounds on the complexity of certain problems involving arithmetic
circuits, which are known to lie in the counting hierarchy.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 177 (2013)

1 Introduction

How hard is it to compute the 10100-th bit of the binary expansion of
√

2? Datta and
Pratap [DP12], and Jeřábek [Jeř12] considered the question of computing the m-th bit of
an algebraic number. Jeřábek [Jeř12] showed that this problem has uniform TC0 circuits3

of size polynomial in m (which is not so useful when m = 10100). The related earlier work
of Datta and Pratap presented the related result that, when m is expressed in binary, this
problem lies in the counting hierarchy. More precisely, Datta and Pratap showed that this
problem is reducible to the problem of computing certain bits of the quotient of two numbers
represented by arithmetic circuits of polynomial size.4 Thus, we are led to the problem of
evaluating arithmetic circuits.

Arithmetic circuits of polynomial size can produce numbers that require exponentially-
many bits to represent in binary. The problem known as BitSLP5 (= {(C, i, b) : the i-th
bit of the number represented by arithmetic circuit C is b}) is known to be hard for #P
[ABKPM09]. It was known that BitSLP lies in the counting hierarchy [ABKPM09], but the
best previously-known bound for this problem is the bound mentioned in [ABKPM09] and

credited there to [AS05]: PHPPPPPP
PP

. That bound follows via a straightforward translation
of a uniform TC0 algorithm presented in [HAB02] for converting from Chinese Remainder
Representation (CRR) to binary.

In this paper, we improve this bound on the complexity of BitSLP to PHPPPPPP

. In order
to do this, we present improved uniform TC0 algorithms for a number of problems that were
already known to reside in uniform TC0. The improvements that we provide are related
to the depth of the TC0 circuits. There are several possible variants of “depth” that one
could choose to study. For instance, several papers have studied circuits consisting only of
majority gates, and tight bounds are known for the depth required for several problems, in
that model. (See, for instance [GK98,SR94,Weg93,She07] and other work referenced there.)
Since our motivation comes largely from the desire to understand the complexity of problems
in the counting hierarchy, it turns out that it is much more relevant to consider the notion
of majority depth that was considered by Maciel and Thérien [MT98]. In this model, circuits
have unbounded-fan-in AND, OR, and MAJORITY gates (as well as NOT gates). The class

T̂C
0

d consists of functions computable by families of threshold circuits of polynomial size
and constant depth such that no path from an input to an output gate encounters more

than d MAJORITY gates. Thus the class of functions with majority depth zero, T̂C
0

0, is

precisely AC0. In order to explain the connection between T̂C
0

d and the counting hierarchy,
it is necessary to define the levels of the counting hierarchy.

Define CH1 = PP, and CHk+1 = PPCHk .

3 For somewhat-related TC0 algorithms on sums of radicals, see [HBM+10].
4 It is mistakenly claimed in [DP12] that this problem lies in PHPPPP

. In this paper, we prove the weaker bound that

it lies in PHPPPPPP

.
5 “SLP” stands for “straight-line program”; which is a model equivalent to arithmetic circuits. Throughout the rest

of the paper, we will stick with the arithmetic circuit formalism.

2

Proposition 1. (Implicit in [ABKPM09, Theorem 4.1].) Let A be a set such that, for some

k, some polynomial-time computable function f and for some dlogtime-uniform T̂C
0

d circuit
family Cn, it holds that x ∈ A if and only if C

2|x|+|x|k (x, f(x, 1)f(x, 2) . . . f(x, 2|x|
k
)) accepts.

Then A ∈ PHCHd.

(One important part of the proof of Proposition 1 is the fact that, by Toda’s theorem [Tod91],

for every oracle A, PPPH
A

⊆ PPP
A

. Thus all of the AC0 circuitry inside the T̂C
0

d circuit can
be swallowed up by the PH part of the simulation.)

Note that the dlogtime-uniformity condition is crucial for Proposition 1. Thus, for the

remainder of this paper, all references to T̂C
0

d will refer to the dlogtime-uniform version of this
class, unless we specifically refer to nonuniform circuits. Table 1 compares the complexity
bounds that Maciel and Thérien obtained in the nonuniform setting with the bounds that
we are able to obtain in the uniform setting. (Maciel and Thérien also considered several
problems for which they gave uniform circuit bounds; the problems listed in Table 1 were
not known to lie in dlogtime-uniform TC0 until the subsequent work of [HAB02].)

Nonuniform Uniform
Problem Majority-Depth [MT98] Majority-Depth

Iterated multiplication 3 3
Division 2 3
Powering 2 3

CRR-to-binary 1 3
Matrix powering 3

In all of the cases where our uniform majority-depth bounds are worse than the nonuni-
form bounds given by [MT98], our algorithms also give rise to nonuniform algorithms that
match the bounds of [MT98] (by hardwiring in some information that depends only on the
length), although in all cases the algorithms differ in several respects from those of [MT98].

Table 1 also lists one problem that was not considered by Maciel and Thérien: the prob-
lem of taking as input 1m and a k × k matrix A, and producing Am. For any fixed k, this
problem was shown to be in nonuniform TC0 by Mereghetti and Palano [MP00]; it follows
from [HAB02] that their algorithm can be implemented in dlogtime-uniform TC0. The cor-
responding problem of computing large powers of a k × k matrix (i.e., when m is given
in binary) has been discussed recently; see the final section of [OW13]. We show that this

version of matrix powering is in PHPPPPPP

.
In addition to BitSLP, there has also been interest in the related problem PosSLP (=

{C : the number represented by arithmetic circuit C is positive}) [EY10,KP07,KS12,KP11].
PosSLP ∈ PHPPPP

, and is not known to be in PH [ABKPM09], but in contrast to BitSLP, it is
not known (or believed [EY10]) to be NP-hard. Our theorems do not imply any new bounds
on the complexity of PosSLP, but we do conjecture that BitSLP and PosSLP both lie in PHPP.
This conjecture is based mainly on the heuristic that says that, for problems of interest, if a
nonuniform circuit is known, then corresponding dlogtime-uniform circuits usually also exist.

3

Converting from CRR to binary can be done nonuniformly in majority-depth one, and there
is no reason to believe that this is not possible uniformly – although it seems clear that a
different approach will be needed, to reach this goal.

2 Preliminaries

Given a list of primes Π = (p1, . . . , pm) and a number X, the CRRΠ representation of X is
the list (X mod p1, . . . , X mod pm). We shall sometimes refer to the CRR representation of
X if Π is understood.

For background and definitions regarding circuit complexity classes such as AC0,TC0,NC1,
as well as a discussion of dlogtime uniformity, we refer the reader to [Vol99].

We include the following definitions, merely to avoid possible ambiguity:

Definition 1.
The Binary expansion of the rational number X/Y is the unique expression X/Y =

∑∞
i=−∞ ai2

i

where the binary expansion of any integer multiple of 2j has ai = 0 for all i < j.
The binary expansion of X/Y correct to m places is the sequence of bits representing∑blog(X/Y)c

i=−m ai2
i.

The following lemma is a list of useful subroutines of problems that are computable in

AC0 and T̂C
0

1.

Lemma 1. Let x, y, i, j, k, xj ∈ (0, nc) (c ≥ 3 is a constant). Let X,Xj ∈ [0, 2n) and let
p ∈ Πnc. Then the following operations have the indicated complexities:

1. p 7→ first nc bits of 1/p in T̂C
0

0 = AC0.

2. k,X1 . . . , Xk 7→
∑k

j=1Xj mod p in T̂C
0

1.

3. x 7→ xi mod p in T̂C
0

0 = AC0.

4. p 7→ gp in T̂C
0

0 = AC0 where gp is a generator of the multiplicative group modulo p.

5. X 7→ X mod p in T̂C
0

1.

6. x, y 7→ xy mod p in T̂C
0

0 = AC0.

7. (x1, . . . , xk) 7→
∏k

j=1 xj mod p in T̂C
0

1.

Proof. We list the proofs of items in the Lemma above:

1. Follows from Lemma 4.2 and Corollary 6.2 in [HAB02]
2. Follows from Corollary 3.4.2 in [MT98]
3. Follows from Corollary 6.2 in [HAB02]
4. Follows from testing each integer x ∈ [1, n − 1] for being a generator by checking if
x(p−1)/2 6≡ 1 mod p and reporting the first successful x (implicit in [HAB02,ABKPM09]).

5. Follows from (the proof of) Lemma 4.1 in [HAB02]
6. Follows from Proposition 3.7 in [MT98] and the fact that two log-bit integers can be

added in AC0.
7. Follows from the reducing multiplication to addition of discrete logs and the previous

parts.
ut

4

3 Uniform Circuits for Division

Theorem 1. The function taking as input X ∈ [0, 2n), Y ∈ [1, 2n), and 0m and producing

as output the binary expansion of X/Y correct to m places is in T̂C
0

3.

Proof. This task is trivial if Y = 1; thus in the rest of this argument assume that Y ≥ 2.
Computing the binary expansion of Z/Y correct to m places is equivalent to computing

b2mZ/Y c. Thus we will focus primarily on the task of computing bX/Y c, given integers X
and Y .

Our approach will be to compute a rational number Ṽ (X, Y) that is a strict underestimate

of X/Y , such that X/Y −Ṽ (X, Y) < 1/Y . Since Y > 1, we have that bX/Y c 6= b(X+1)/Y c
if and only if (X + 1)/Y = bX/Y c+ 1. It follows that in all cases bX/Y c = bṼ (X + 1, Y)c,
since ⌊

X

Y

⌋
≤ X

Y
=
X + 1

Y
− 1

Y
< Ṽ (X + 1, Y) <

X + 1

Y
.

Note that, in order to compute bX
Y
c, we actually compute an approximation to (X + 1)/Y .

The approximation Ṽ (X, Y) is actually defined in terms of another rational approxima-

tion W (X, Y), which will have the property that Ṽ (X, Y) ≤ W (X, Y) < X/Y . We postpone

the definition of Ṽ (X, Y), and focus for now on W (X, Y), an under approximation of X
Y

with
error at most 2−(n+1). .

Using AC0 circuitry, we can compute a value t such that 2t−1 ≤ Y < 2t.
Let u = 1− 2−tY . Then u ∈ (0, 1

2
]. Thus,

Y −1 = 2−t(1− u)−1 = 2−t(1 + u+ u2 + . . .)

Set Y ′ = 2−t(1 + u+ u2 + . . .+ u2n+1), then

0 < Y −1 − Y ′ ≤ 2−t
∑

j>2n+1

2−j < 2−(2n+1)

Define W (X, Y) to be XY ′. Hence, 0 < X
Y
−W (X, Y) < 2−(n+1).

We find it useful to use this equivalent expression for W (X, Y):

W (X, Y) =
X

2t

2n+1∑
j=0

(1− Y

2t
)j =

1

22(n+1)t

2n+1∑
j=0

X(2t − Y)j2(2n+1−j)t.

Define Wj(X, Y) to be X(2t−Y)j(2(2n+1−j)t). Thus W (X, Y) = 1
22(n+1)t

∑2n+1
j=0 Wj(X, Y).

Lemma 2. (Adapted from [DP12]) Let Π be any set of primes such that the product M of
these primes lies in (2n, 2n

c
) for a fixed constant c ≥ 3. Then, given X, Y,Π we can compute

the CRRΠ representations of the 2(n + 1) numbers Wj(X, Y) (for j ∈ {0, . . . , 2n + 1}) in

T̂C
0

1.

5

Proof. With the aid of Lemma 1, we see that using AC0 circuitry, we can compute 2t − Y ,
2j mod p for each prime p ∈ Π and various powers j, as well as finding generators mod p.

In T̂C
0

1 we can compute X mod p and (2t − Y) mod p (each of which has O(log n) bits).
Using those results, with AC0 circuitry we can compute the powers (2t − Y)j mod p and
then do additional arithmetic on numbers of O(log n) bits to obtain the product X(2t −
Y)j(2(2n+1−j)t) mod p for each p ∈ Π. (The condition that c ≥ 3 ensures that the numbers
that we are representing are all less than M .) ut

Having the CRRΠ representation of the number Wj(X, Y), our goal might be to convert
the Wj(X, Y) to binary, and take their sum. In order to do this efficiently, we first show how
to obtain an approximation (in binary) to W (X, Y)/M where M =

∏
p∈Π p, and then in

Lemma 4 we build on this to compute our approximation Ṽ (X, Y) to W (X, Y).
Recall that W (X, Y) = 1

22(n+1)t

∑2n+1
j=0 Wj(X, Y). Thus 22(n+1)tW (X, Y) is an integer with

the same significant bits as W (X, Y).

Lemma 3. Let Π be any set of primes such that the product M of these primes lies in
(2n, 2n

c
) for a fixed constant c ≥ 3, and let b be any natural number. Then, given X, Y,Π we

can compute the binary representation of a good approximation to
⌊
22(n+1)tW (X,Y)

M

⌋
in T̂C

0

2

(where by good we mean that it under-estimates the correct value by at most an additive term
of 1/2n

b
).

Proof. Let hΠp = (M/p)−1 mod p for each prime p ∈ Π.

If we were to first compute a good approximation ÃΠ to the fractional part of:

AΠ =
∑
p∈Π

(22(n+1)tW (X, Y) mod p)hΠp
p

i.e. if ÃΠ were a good approximation to AΠ − bAΠc, then ÃΠM would be a good approx-
imation to 22(n+1)tW (X, Y). This follows from observing that the fractional part of An is

exactly 22(n+1)tW (X,Y)
M

(as in [HAB02,ABKPM09]).

Instead, we will compute a good approximation Ã′Π to the fractional part of

A′Π =
∑
p∈Π

2n+1∑
j=0

(Wj(X, Y) mod p)hΠp
p

.

Notice that the exact magnitudes of the two quantities AΠ , A
′
Π are not the same but their

fractional parts will perforce be the same. Since we are adding up 2(n+ 1)|Π| approximate
quantities it suffices to compute each of them to bm = 2nb + 2(n+ 1)|Π| bits of accuracy to
ensure that we get:

0 ≤ W (X, Y)

M
− Ã′Π <

1

2nb .

It remains for us to analyze the complexity of this computation. By Lemma 2, we can
compute the CRRΠ representation of the numbers Wj(X, Y) ∈ [0, 2n) for j ∈ {0, . . . , O(n)}

6

in T̂C
0

1. Also, by Lemma 1, each hΠp can be computed in T̂C
0

1, and polynomially-many bits
of the binary expansion of 1/p can be obtained in AC0.

Using AC0 circuitry we can multiply together the O(log n)-bit numbers Wj(X, Y) mod
p and hΠp , and then obtain the binary expansion of ((Wj(X, Y) mod p)hΠp) · (1/p) (since
multiplying an n-bit number by a log n bit number can be done in AC0).

Thus, with one more layer of majority gates, we can compute

A′Π =
∑
p∈Π

2n+1∑
j=0

(Wj(X, Y) mod p)hΠp
p

and strip off the integer part, to obtain the desired approximation. ut

Corollary 1. Let Π be any set of primes such that the product M of these primes lies in
(2n, 2n

c
) for a fixed constant c ≥ 3. Then, given Z in CRRΠ representation and the numbers

hΠp for each p ∈ Π, we can compute the binary representation of a good approximation to⌊
Z
M

⌋
in T̂C

0

1

Before presenting our approximation Ṽ (X, Y), first we present a claim, which helps mo-
tivate the definition.

Claim. Let Πi for i ∈ {1, . . . , nc} be nc sets of pairwise disjoint primes such that Mi =∏
p∈Πi

p ∈ (2n
c
, 2n

d
) (for some constants c, d : 3 ≤ c < d). Let Π = ∪nc

i=1Πi. Then, for any
value A, it holds that

A(1− nc

2nc) <
A
∏nc

i=1 (Mi − 1)∏nc

i=1Mi

< A

The claim follows immediately from Proposition 3, which is provided in the appendix for
completeness.

Now, finally, we present our desired approximation. Ṽ (X, Y) is 2n
c · V ′(X, Y), where

V ′(X, Y) is an approximation (within 1/2n
2c

) of

V (X, Y) =
W (X, Y)

∏nc

i=1 (Mi − 1)/2∏nc

i=1Mi

.

Note that

W (X, Y)− 2n
c

V (X, Y) = W (X, Y)− 2n
cW (X, Y)

∏nc

i=1 (Mi − 1)/2∏nc

i=1Mi

= W (X, Y)− W (X, Y)
∏nc

i=1 (Mi − 1)∏nc

i=1Mi

<
nc

2nc

7

and

2n
c

V (X, Y)− Ṽ (X, Y) = 2n
c

V (X, Y)− 2n
c

V ′(X, Y)

= 2n
c

(V (X, Y)− V ′(X, Y))

≤ 2n
c

(
1

2n2c)

=
2n

c

2n2c .

Thus X/Y − Ṽ (X, Y) = (X/Y −W (X, Y) + (W (X, Y)− 2n
c
V (X, Y)) + (2n

c
V (X, Y)−

Ṽ (X, Y)) < 2−(n+1) + nc/2n
c

+ 2n
c
/2n

2c
< 1/Y .

Lemma 4. Let Πi for i ∈ {1, . . . , nc} be nc sets of pairwise disjoint primes such that Mi =∏
p∈Πi

p ∈ (2n
c
, 2n

d
) (for some constants c, d : 3 ≤ c < d). Let Π = ∪nc

i=1Πi. Then, given

X, Y and the Πi, we can compute Ṽ (X, Y) in T̂C
0

3.

Proof. Via Lemma 1, in T̂C
0

1 we can compute the CRRΠ representation of each Mi, as well
as the numbers Wj mod p (using Lemma 2). Also, as in Lemma 3, we can compute the values
hΠp for each prime p.

Then, via Lemma 1, with one more layer of majority gates we can compute the CRR
representation of

∏
i (Mi − 1)/2, as well as the CRR representation of 22(n+1)tW (X, Y) =∑2n+1

j=0 Wj(X, Y). The CRR representation of the product 22(n+1)tW (X, Y) ·
∏

i (Mi − 1)/2

can then be computed with AC0 circuitry to obtain the CRR representation of the numerator
of the expression for V (X, Y). (It is important to note that 22(n+1)tW (X, Y)·

∏
i (Mi − 1)/2 <∏

iMi, so that it is appropriate to talk about this CRR representation. Indeed, that is the
reason why we divide each factor Mi − 1 by two.)

This value can then be converted to binary with one additional layer of majority gates,
via Corollary 1, to obtain Ṽ (X, Y). ut

This completes the proof of Theorem 1. ut

Corollary 2. Let Π be any set of primes such that the product M of these primes lies
in (2n, 2n

c
) for a fixed constant c ≥ 3. Then, given Z in CRRπ representation, the binary

representation of Z can be computed in T̂C
0

3

Proof. Recall from the proof of Theorem 1 that, in order to compute the bits of Z/2, our
circuit actually computes an approximation to (Z+ 1)/2. Although, of course, it is trivial to
compute Z/2 if Z is given to us in binary, let us consider how to modify the circuit described

in the proof of Lemma 4, if we were computing Ṽ (Z + 1, 2), where we are given Z in CRR
representation.

With one layer of majority gates, we can compute the CRRΠ representation of each Mi

and the values hΠp for each prime p. (We will not need the numbers Wj mod p.)
Then, with one more layer of majority gates we can compute the CRR representation

of
∏

i (Mi − 1)/2. In place of the gates that store the value of the CRR representation of

8

22(n+1)tW (X, Y), we insert the CRR representation of Z (which is given to us as input) and
using AC0 circuitry store the value of Z + 1. The CRR representation of the product Z + 1 ·∏

i (Mi − 1)/2 can then be computed with AC0 circuitry to obtain the CRR representation
of the numerator of the expression for V (Z + 1, 2).

Then this value can be converted to binary with one additional layer of majority gates,
from which the bits of Z can be read off. ut

It is rather frustrating to observe that the input values Z are not used until quite late

in the T̂C
0

3 computation (when just one layer of majority gates remain). However, we see no
simpler uniform algorithm to convert CRR to binary.

For our application regarding problems in the counting hierarchy, it is useful to consider
the analog to Theorem 1 where the values X and Y are presented in CRR notation.

Theorem 2. The function taking as input X ∈ [0, 2n), Y ∈ [1, 2n) (in CRR) as well as 0m,

and producing as output the binary expansion of X/Y correct to m places is in T̂C
0

3.

Proof. We assume that the CRR basis consists of pairwise disjoint sets of primes Mi, as in
Lemma 4.

The algorithm is much the same as in Theorem 1, but there are some important differences
that require comment. The first step is to determine if Y = 1, which can be done using AC0

circuitry (since the CRR of 1 is easy to recognize). The next step is to determine a value
t such that 2t−1 ≤ Y < 2t. Although this is trivial when the input is presented in binary,
when the input is given in CRR it requires the following lemma:

Lemma 5. (Adapted from [AAD00,DMS94,ABKPM09]) Let X be an integer from (−2n, 2n)

specified by its residues modulo each p ∈ Πn. Then, the predicate X > 0 is in T̂C
0

2

Since we are able to determine inequalities in majority-depth two, we will carry out the
initial part of the algorithm from Theorem 1 using all possible values of t, and then select
the correct value between the second and third levels of MAJORITY gates.

Thus, for each t, and for each j, we compute the values Wj,t(X + 1, Y) = (X + 1)(2t −
Y)j(2(2n+1−j)t) in CRR, along with the desired number of bits of accuracy of 1/p for each p
in our CRR basis.

With this information available, as in Lemma 4, in majority-depth one we can compute
hΠp , as well as the CRR representation of each Mi, and thus with AC0 circuitry we obtain
(Wj,t(X + 1, Y) and the CRR for each (Mi − 1)/2.

Next, with our second layer of majority gates we sum the values Wj,t(X + 1, Y) (over all
j), and at this point we also will have been able to determine which is the correct value of
t, so that we can take the correct sum, to obtain 22(n+1)tW (X, Y).

Thus, after majority-depth two, we have obtained the same partial results as in the proof
of Lemma 4, and the rest of the algorithm is thus identical. ut

Proposition 2. Iterated product is in uniform T̂C
0

3.

9

Proof. The overall algorithm is identical to the algorithm outlined in [MT98], although the
implementation of the basic building blocks is different. In majority-depth one, we convert
the input from binary to CRR. With one more level of majority gates, we compute the CRR
of the product.

Simultaneously, in majority-depth two we compute the bottom two levels of our circuit
that computes from CRR to binary, as in Corollary 2.

Thus, with one final level of majority gates, we are able to convert the answer from CRR
to binary. ut

3.1 Consequences for the Counting Hierarchy

Corollary 3. BitSLP ∈ PHPPPPPP

.

Proof. This is immediate from Proposition 1 and Corollary 2.
Let f be the function that takes as input a tuple (C, (p, j)) and if p is a prime, evaluates

the arithmetic circuit C mod p and outputs the j-th bit of the result. This function f , taken

together with the T̂C
0

3 circuit family promised by Corollary 2, satisfies the hypothesis of
Proposition 1. (There is a minor subtlety, regarding how to partition the set of primes into
the groupings Mi, but this is easily handled by merely using all of the primes of a given
length, at most polynomially-larger than |C|.) ut

Via essentially identical methods, using Theorem 2, we obtain:

Corollary 4. {(CX , Cy, i) : the i-th bit of the quotient X/Y , where X and Y are represented

by arithmetic circuits CX and CY , respectively, is in PHPPPPPP

.

4 Powering

We investigate the complexity of integer powering and powering constant size matrices from
the perspective of optimizing the majority depth. We present TC0 circuits with majority
depth three for both these problems.

Since iterated integer product is in uniform T̂C
0

3, by Proposition 2, it is immediate that
integer powering is also in this class. However, we present a different algorithm, which has
the same structure as the algorithm that we present for matrix powering.

4.1 Integer Powering

Theorem 3. The function taking as input X ∈ [0, 2n), 1m and 1i(where i ∈ [1, nm]) and

producing as output the i-th bit of Xm is in T̂C
0

3.

Proof. Our algorithm is as follows:

1. Convert X to CRR. Let X ≡ Xj mod pj for j ∈ [k]. This is implementable in T̂C
0

1 by
item 5 in Lemma 1.

10

2. Compute Xm by reducing via Fermat’s little theorem. Since Xp−1 ≡ 1 mod p for any
prime p, we can compute X

mj

j mod pj where m = qj(pj − 1) +mj for j ∈ [k]. This step
is in AC0 via item 3 in Lemma 1. In parallel, compute the first two phases of our uniform
algorithm to convert CRR to binary (Corollary 2).

3. At this stage, we have the answer encoded in CRR, and we invoke the final layer of the
circuit from Corollary 2, convert the answer to binary.

Putting these three together, we have integer powering in T̂C
0

3. ut

4.2 Integer Matrix Powering

Theorem 4. The function MPOW(A,m, p, q, i) taking as input a (d × d) integer matrix
A ∈ {0, 1}d2n, p, q, 1i, where p, q ∈ [d], i ∈ [O(n)] and producing as output the i-th bit of the

(p, q)-th entry of Am is in T̂C
0

3.

For a (d × d) matrix, the characteristic polynomial χA(x) : Z → Z is a univariate
polynomial of degree at most d. Let q, r : Z→ Z be univariate polynomials of degree at most
(m− d) and (d− 1) such that xm = q(x)χA(x) + r(x). By the Cayley-Hamilton theorem, we
have that χA(A) = 0. So, in order to compute Am, we just have to compute r(A).

Lemma 6. Given a (d× d) matrix A with entries that are n-bit integers, the coefficients of

the characteristic polynomial of A in CRR can be computed in T̂C
0

1.

Proof. We convert the entries of A to CRR and compute the determinant of (xI − A).
This involves an iterated sum of O(2dd!) integers each of which is an iterated product of

d n-bit integers. The conversion to CRR is in T̂C
0

1 by item 5 in Lemma 1. Since addition,
multiplication, and powering of O(1) numbers of O(log n) bits is computable in AC0 (by
Lemma 1, items 3, 4 and 6), it follows that the coefficients of the characteristic polynomial

can be computed in T̂C
0

1.

Lemma 7. Given the coefficients of the polynomial r, in CRR, and given A in CRR, we
can compute Am in CRR using AC0 circuitry.

Proof. Recall that Am = r(A). Let r(x) = r0 + r1x + . . . + rd−1x
d−1. Computing any entry

of r(A) in CRR involves an iterated sum of O(1) many numbers which are themselves an
iterated product of o(1) many O(log n)-bit integers. The claim follows by appeal to Lemma 1.

ut

Lemma 8. (Adapted from [HV06]) Let p > m be a prime of magnitude poly(m). Let g(x)
of degree m and f(x) of degree d be monic univariate polynomials over GFp, such that
g(x) = q(x)f(x) + r(x) for some polynomials q(x) of degree (m − d) and r(x) of degree

(d− 1). Then, given the coefficients of g and f , the coefficients of r can be computed in T̂C
0

1.

11

Proof. Following [HV06], let f(x) =
∑d

i=0 aix
i, g(x) =

∑m
i=0 bix

i, r(x) =
∑d−1

i=0 rix
i and

q(x) =
∑m−d

i=0 qix
i. Since f, g are monic, we have ad = bm = 1. Denote by fR(x), gR(x), rR(x)

and qR(x) respectively the polynomial with the i-th coefficient ad−i, bm−i, rd−i−1 and qm−d−i
respectively. Then note that xdf(1/x) = fR(x), xmg(1/x) = gR(x), xm−dq(1/x) = qR(x) and
xd−1r(1/x) = rR(x).

We use the Kung-Sieveking algorithm (as implemented in [HV06]). The algorithm is as
follows:

1. Compute f̃R(x) =
∑m−d

i=0 (1− fR(x))i via interpolation in CRR.

2. Compute h(x) = f̃R(x)gR(x) = c0 + c1x + . . . + cm−dx
m−d from which the coefficients of

q(x) can be obtained as qi = cm−d−i.
3. Compute r(x) = g(x)− q(x)f(x).

To prove the correctness of our algorithm, note that we have g(1/x) = q(1/x)f(1/x) +
r(1/x). Scaling the whole equation by xm, we get gR(x) = qR(x)fR(x) +xm−d+1rR(x). Hence
when we compute h(x) = f̃R(x)gR(x) in step 2 of our algorithm, we get

h(x) = f̃R(x)gR(x) = f̃R(x)qR(x)fR(x) + xm−d+1f̃R(x)rR(x).

Note that f̃R(x)fR(x) = f̃R(x)(1 − (1 − fR(x))) =
∑m−d

i=0 (1 − fR(x))i −
∑m−d

i=0 (1 −
fR(x))i+1 = 1 − (1 − fR(x))m−d+1 (a telescoping sum). Since f is monic, fR has a con-
stant term which is 1 and hence (1−fR(x))m−d+1 does not contain a monomial of degree less
than (m− d+ 1). This is also the case with xm−d+1f̃R(x)rR(x), and hence all the monomials
of degree less than (m− d+ 1) belong to qR(x).

Now we justify why the algorithm above is amenable to a T̂C
0

1 implementation: Firstly,
note that given f(x) and g(x), the coefficients of fR(x) and gR(x) can be computed in
NC0. To compute the coefficients of f̃R(x), we use interpolation via the discrete Fourier
transform (DFT) using arithmetic modulo p. Find a generator w of the multiplicative group
modulo p and substitute x = {w1, w2, . . . , wp−1} to obtain a system of linear equations
in the coefficients F of f̃R(x) : V · F = Y , where Y is the vector consisting of f̃R(wi)
evaluated at the various powers of w. Since the underlying linear transformation V (w) is
a DFT, it is invertible; the inverse DFT V −1(w) is equal to V (w−1) · (p − 1)−1, which is
equivalent to −V (w−1) mod p. We can find each coefficient of f̃R(x) evaluating V −1Y , i.e.,
by an inner product of a row of the inverse DFT-matrix with the vector formed by evaluating∑(m−d+1)

i=1 (1− fR(i))i−1 at various powers of w and dividing by p− 1. The terms in this sum
can be computed in AC0, and then the sum can be computed in majority-depth one, to obtain
the coefficients of f̃R(x). Then steps 2 and 3 above can be computed using AC0 circuitry, to
obtain the coefficients of r. ut

Proof. (of Theorem 4)

Our T̂C
0

3 circuit C that implements the ideas above is the following:

0. At the input, we have the d2 entries Aij, i, j ∈ [d] of A, a set Π of short primes (such
that Π can be partitioned in to nc sets Πi that are pairwise disjoint, i.e., Π = ∪nc

i=1Πi),
the numbers I = {1, 2, . . . , (m− d+ 1)}.

12

1. In majority-depth one, we obtain (1) Aij mod p for each prime p in our basis, and (2)
Mi =

∏
p∈Πi

p for all the nc sets that constitute Π, and (3) the CRR of the characteristic
polynomial of A (via appeal to Lemma 6).

2. In the next layer of threshold gates, we compute (1)
∏nc

i (Mi− 1)/2 in CRR, and (2) the
coefficients of the polynomial r in CRR, by appeal to Lemma 8.

3. At this point, by appeal to Lemma 7, using AC0 circuitry, we can obtain r(A) = Am in
CRR, and with one more layer of MAJORITY gates we can convert to binary, by appeal
to Corollary 2.

ut

5 Open Questions and Discussion

Is conversion from CRR to binary in dlogtime-uniform T̂C
0

1? This problem has been known

to be in P-uniform T̂C
0

1 starting with the seminal work of Beame, Cook, and Hoover [BCH86],
but the subsequent improvements on the uniformity condition [CDL01,HAB02] introduced
additional complexity that translated into increased depth. We have been able to reduce
the majority-depth by rearranging the algorithmic components introduced in this line of
research, but it appears to us that a fresh approach will be needed, in order to decrease the
depth further.

Is BitSLP in PHPP? An affirmative answer to the first question implies an affirmative

answer to the second, and this would pin down the complexity of BitSLP between P#P and
PHPP. We have not attempted to determine a small value of k such that BitSLP ∈ (Σp

k)A

for some set A ∈ CH3, because we suspect that BitSLP does reside lower in CH, and any
improvement in majority-depth will be more significant than optimizing the depth of AC0

circuitry, since PH ⊆ PPP.
Is PosSLP in PH? Some interesting observations related to this problem were announced

recently [Ete13,JS12].
Is it easy to compute bits of large powers of small matrices? We remark in this regard, that

there are some surprising things that one can compute, regarding large powers of integers
[HKR10].

Acknowledgments

The first author acknowledges the support of NSF grants CCF-0832787 and CCF-1064785.

References

AAD00. Manindra Agrawal, Eric Allender, and Samir Datta. On TC0, AC0, and Arithmetic circuits. Journal of
Computer and System Sciences, 60(2):395–421, 2000.

ABKPM09. Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On the complexity
of numerical analysis. SIAM J. Comput., 38(5):1987–2006, 2009.

AS05. E. Allender and H. Schnorr. The complexity of the BitSLP problem. Unpublished Manuscript, 2005.

13

BCH86. P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and related problems. SIAM
Journal on Computing, 15:994–1003, 1986.

CDL01. Andrew Chiu, George I. Davida, and Bruce E. Litow. Division in logspace-uniform NC1. ITA, 35(3):259–
275, 2001.

DMS94. Paul F. Dietz, Ioan I. Macarie, and Joel I. Seiferas. Bits and relative order from residues, space efficiently.
Information Processing Letters, 50(3):123–127, 1994.

DP12. Samir Datta and Rameshwar Pratap. Computing bits of algebraic numbers. In TAMC, pages 189–201,
2012.

Ete13. Kousha Etessami. Probability, recursion, games, and fixed points. Talk presented at Horizons in TCS:
A Celebration of Mihalis Yannakakis’ 60th Birthday, 2013.

EY10. Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria and other fixed points.
SIAM J. Comput., 39(6):2531–2597, 2010.

GK98. Mikael Goldmann and Marek Karpinski. Simulating threshold circuits by majority circuits. SIAM J.
Comput., 27(1):230–246, 1998.

HAB02. W. Hesse, E. Allender, and D.A.M. Barrington. Uniform constant-depth threshold circuits for division
and iterated multiplication. Journal of Computer and System Sciences, 65:695–716, 2002.

HBM+10. Paul Hunter, Patricia Bouyer, Nicolas Markey, Joël Ouaknine, and James Worrell. Computing rational
radical sums in uniform TC0. In FSTTCS, pages 308–316, 2010.

HKR10. Mika Hirvensalo, Juhani Karhumäki, and Alexander Rabinovich. Computing partial information out of
intractable: Powers of algebraic numbers as an example. Journal of Number Theory, 130:232–253, 2010.

HV06. Alexander Healy and Emanuele Viola. Constant-depth circuits for arithmetic in finite fields of charac-
teristic two. In STACS 2006, pages 672–683. Springer, 2006.

Jeř12. Emil Jeřábek. Root finding with threshold circuits. Theoretical Computer Science, 462:59–69, 2012.
JS12. Gorav Jindal and Thatchaphol Saranurak. Subtraction makes computing integers faster. CoRR,

abs/1212.2549, 2012.
KP07. Pascal Koiran and Sylvain Perifel. The complexity of two problems on arithmetic circuits. Theor.

Comput. Sci., 389(1-2):172–181, 2007.
KP11. Pascal Koiran and Sylvain Perifel. Interpolation in Valiant’s theory. Computational Complexity, 20(1):1–

20, 2011.
KS12. Neeraj Kayal and Chandan Saha. On the sum of square roots of polynomials and related problems.

TOCT, 4(4):9, 2012.
MP00. Carlo Mereghetti and Beatrice Palano. Threshold circuits for iterated matrix product and powering.

ITA, 34(1):39–46, 2000.
MT98. Alexis Maciel and Denis Thérien. Threshold circuits of small majority-depth. Inf. Comput., 146(1):55–

83, 1998.
OW13. Joël Ouaknine and James Worrell. Positivity problems for low-order linear recurrence sequences. CoRR,

abs/1307.2779, 2013. SODA 2014, to appear.
She07. Alexander A. Sherstov. Powering requires threshold depth 3. Inf. Process. Lett., 102(2-3):104–107, 2007.
SR94. Kai-Yeung Siu and Vwani P. Roychowdhury. On optimal depth threshold circuits for multiplication and

related problems. SIAM J. Discrete Math., 7(2):284–292, 1994.
Tod91. S. Toda. PP is as hard as the polynomial time hierarchy. SIAM Journal on Computing, 20:865–877,

1991.
Vol99. H. Vollmer. Introduction to Circuit Complexity. Springer-Verlag, 1999.
Weg93. Ingo Wegener. Optimal lower bounds on the depth of polynomial-size threshold circuits for some arith-

metic functions. Inf. Process. Lett., 46(2):85–87, 1993.

6 Appendix

The following simple proposition is used in Claim 3, and is included for completeness.

Proposition 3. Let x > 1 be given. Then for all n ≥ 1,

1− n

x
<

(
1− 1

x

)n
14

Proof. By induction. Assume that 1 − n/x < (1 − 1/x)n. Then 1 − (n + 1)/x = 1 − n/x +
n/x− (n+ 1)/x < (1− 1/x)n− 1/x < (1− 1/x)n− (1− 1/x)1/x = (1− 1/x)n(1− 1/x). ut

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

