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Abstract

A Boolean function is called vertex-transitive, if the partition of the
Boolean cube into the preimage of 0 and the preimage of 1 is invariant
under a vertex-transitive group of isometric transformations of the Boolean
cube. Several constructions of vertex-transitive functions and some of their
properties are presented.

1 Introduction

A Boolean function of n variables is a function {0, 1}n → {0, 1}. Its domain,
the Boolean cube {0, 1}n, which is the set of the vertices of a hypercube of
dimension n, is considered as a metric space with the Hamming distance as the
metric. Isometric transformations of the Boolean cube are the permutations
of its vertices, which preserve the Hammimg distance. These transformations
are exactly those transformations, which may be defined by a permutation
of the n variables and the negation of a set of the variables. We investigate
non-constant Boolean functions f , for which the partition of the Boolean cube
to the sets f−1(0) and f−1(1) is invariant under a vertex-transitive group of
isometric transformations. Due to this property, the functions will be called
vertex-transitive functions. For the purposes of this paper, vertex-transitive
functions will also be called transitive functions, although this notion can have
a different meaning in the literature, see Section 3.

Vertex-transitive functions are defined in Section 2 as solutions of a specific
system of identities, which involve permutations and negations of the variables.
This understanding is sufficient for most of the results of the first six sections
of the paper. Vertex-transitive functions are also characterized using a suitably
defined group of automorphisms. This is used for some of the results in Section
2 and further developed in Section 7.

Every linear function over the two-element field F2 is transitive for trivial
reasons and there is a simple quadratic transitive function on 4 variables, see
Example 2.7. For every transitive function of n variables, there is a system of
n identities, which uniquely determines the function. Moreover, this system
allows to compute f(x) for any x ∈ {0, 1}n in time O(n2) on RAM machine, see
Theorem 2.5. Section 3 presents a comparison of vertex-transitive functions and
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a related, but different, notion, which is sometimes called a transitive function
in the literature. Section 4 presents a characterization of quadratic polynomials
over F2, which define a transitive function. Using this characterization and a
result of Section 2, the number of transitive functions of n variables is proved to
be at least 2Ω(n2) and at most 2O(n2 log n) in Theorem 4.5. Section 5 demonstrates
for every integer d a transitive function defined by a polynomial of degree d over
F2. Section 6 demonstrates transitive functions of small sensitivity and with
super-linear gap between sensitivity and block sensitivity.

The properties of the vertex-transitive groups of isometric transformations,
which define a transitive function, are investigated in Section 7. In particular,
it is proved that for every transitive function f , there is a transitive group G
of automorphisms of f , which is a 2-group or, equivalently, the size of G is a
power of 2. The minimum possible size of such G for a function of n variables
is 2n and the functions, which have a transitive group of automorphisms of this
size, will be called uniquely transitive. See Section 8 for remarks concerning
these functions.

2 Vertex-transitive functions

For a permutation p ∈ Sn and x = (x1, . . . , xn) ∈ {0, 1}n, let

xp = (xp−1(1), . . . , xp−1(n))

be the vector obtained from x by permuting its components according to p. Let
the composition of the permutations p1, p2 be defined so that for every x, we
have

(xp1)p2 = xp1p2 .

Isometric transformation of {0, 1}n is a permutation of the vertices of the hy-
percube, which preserves the Hamming distance. These mappings are exactly
the mappings of the form

x 7→ xp ⊕ s , (1)

where p ∈ Sn and s ∈ {0, 1}n. The mapping (1), will be denoted as τ(p, s).
Hence, for every p ∈ Sn, every s ∈ {0, 1}n, and every x ∈ {0, 1}n, we have

τ(p, s)(x) = xp ⊕ s .

The composition of transformations is denoted by ◦ and satisfies (τ2 ◦ τ1)(x) =
τ2(τ1(x)). Since

(xp1 ⊕ s1)
p2 ⊕ s2 = xp1p2 ⊕ sp2

1 ⊕ s2 ,

we have
τ(p2, s2) ◦ τ(p1, s1) = τ(p1p2, s

p2

1 ⊕ s2) . (2)

The group of all isometries τ(p, s) for all p ∈ Sn and s ∈ {0, 1}n will be denoted
Tn. Clearly, |Tn| = n! 2n. Similarly, if A is a set of indices of the variables, then
TA denotes the group of the isometric transformations of {0, 1}A.
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Definition 2.1 A Boolean function is vertex-transitive, if for every s ∈ {0, 1}n,
there is a permutation p and a constant a ∈ {0, 1}, such that the transformation
τ = τ(p, s) satisfies for every x ∈ {0, 1}n

f(τ(x)) = f(x) ⊕ a . (3)

In this paper, the vertex-transitive functions will be called transitive for
simplicity. However, in the literature, the notion of a transitive function can
have a different meaning, see Section 3.

Clearly, a function f is transitive if and only if ¬f is transitive. Due to this,
we may, without loss of generality, restrict ourselves to the functions, which
satisfy f(0) = 0. This restriction will be frequently used.

The identities of the form (3) may be composed, since f(τ1(x)) = f(x)⊕ a1

and f(τ2(x)) = f(x) ⊕ a2 imply

f(τ2(τ1(x))) = f(τ1(x)) ⊕ a2 = f(x) ⊕ a1 ⊕ a2 . (4)

In order to guarantee that a function is transitive, it is sufficient to find a set
of identities (3), which generates, using the composition rule (4), a system of
identities required by Definition 2.1. For a precise formulation, the following
notion is useful.

Definition 2.2 Let f be a Boolean function of n variables and τ ∈ Tn an
isometric transformation of {0, 1}n. Then, τ is called an automorphism of f , if
there is a ∈ {0, 1} such that for all x, the identity (3) is satisfied.

Clearly, a transformation τ is an automorphisms of f , if and only if the
partition of the Boolan cube into the sets f−1(0) and f−1(1) is invariant under
τ .

Lemma 2.3 A Boolean function f is transitive, if and only if there is a group
of automorphisms of f , which is transitive on {0, 1}n.

Proof. If τ1, τ2 are autmorphisms, then also τ2 ◦ τ1 is an automorphism due to
(4). Hence, the closure of the set of isometries τ required by Definition 2.1 is a
group of automorphisms of f , which is transitive.

If G is a group of automorphisms of f , which is transitive, then for every
s ∈ {0, 1}n, there is an automorphism τ ∈ G, which satisfies τ(0) = s. Clearly,
there is p ∈ Sn, such that τ = τ(p, s). Since τ is an automorphism of f , there is
a ∈ {0, 1}, such that for all x, the identity (3) is satisfied. Hence, by Definition
2.1, the function f is transitive. 2

The set of identities, which implies transitivity of a Boolean function using
Lemma 2.3, may be relatively small. Example 2.8 demonstrates a function of 8
variables, for which, a transitive group of automorphisms can be generated by
two identities. However, verification of the assumptions of the lemma includes
verification of the transitivity of a group of automorphisms given by its genera-
tors. Verification of this condition may be avoided, if the system of generators
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consists of n identities in the special form described in the next theorem. On
the other hand, the existence of a function f satisfying identities (5) is not guar-
anteed. Hence, in order to apply the theorem, the function f has to be known
in advance. The standard basis vector ei is the vector, whose i-th component
is 1 and all the remaining components are 0.

Theorem 2.4 A function f of n variables is transitive, if and only if for every
i = 1, . . . , n, there is a permutation pi ∈ Sn and a constant ai ∈ {0, 1} such that

f(xpi ⊕ ei) = f(x) ⊕ ai , (5)

where ei is the i-th standard basis vector. Moreover, if f satisfies f(0) = 0,
then it is uniquely determined by the parameters pi, ai for i = 1, . . . , n.

Proof. If f is transitive, then the subset of the identities from Definition 2.1
for the vectors s satisfying |s| = 1 is exactly the set of n identities required by
the statement of the theorem.

For the opposite direction, assume that f satisfies the n identities (5). For
every s ∈ {0, 1}n, we have to find p ∈ Sn and a ∈ {0, 1}, such that τ = τ(p, s)
satisfies (3) for every x ∈ {0, 1}n. Clearly, if s = 0, then p = id and a = 0 may
be used. If |s| = 1, then s = ei for some i = 1, . . . , n and using p = pi and
a = ai, the required identity follows from the assumption.

If |s| ≥ 2, let k = |s| and let i1, . . . , ik ∈ {1, . . . , n} be indices such that
s = ei1 ⊕ . . .⊕ eik . For every l = 0, . . . , k, let sl = ei1 ⊕ . . .⊕ eil . Hence, we have
|sl| = l for l = 0, . . . , k and sk = s. We prove by induction on l = 0, . . . , k that
there is rl ∈ Sn and bl ∈ {0, 1} such that τl = τ(rl, sl) satisfies (3) with a = bl.
Since s0 = 0, we may choose r0 = id and b0 = 0, similarly as above.

Let l ≥ 1 and assume that τl−1 = τ(rl−1, sl−1) and bl−1 satisfy for all x

f(τl−1(x)) = f(x) ⊕ bl−1 . (6)

Let j = r
(−1)
l−1 (il) and, hence, e

rl−1

j = eil . Let τ ′ = τ(pj, ej). By the assumption,
we have

f(τ ′(x)) = f(x) ⊕ aj . (7)

Combining (6) and (7), we obtain

f(τl−1(τ
′(x))) = f(τ ′(x)) ⊕ bl−1 = f(x) ⊕ aj ⊕ bl−1 .

Moreover, using (2), we obtain

τl−1 ◦ τ ′ = τ(pjrl−1, e
rl−1

j ⊕ sl−1) = τ(pjrl−1, eil ⊕ sl−1) = τ(pjrl−1, sl) .

Consequently, setting rl = pjrl−1 and bl = aj ⊕ bl−1 proves the induction
hypothesis for l and, hence, also the first part of the theorem.

If f satisfies f(0) = 0, then it is uniquely determined by the 2n identities
from Definition 2.1. Since these identities may be derived from the identities
(5), uniqueness of the solution f follows. 2

The complexity of evaluating a transitive function on RAM (random access
machine) with the unit cost measure may be bounded as follows.
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Theorem 2.5 Assume, f is a transitive function satisfying f(0) = 0 and let
pi, ai for i = 1, . . . , n be as in Theorem 2.4. Then, for every x ∈ {0, 1}n, it is
possible to compute f(x) in time O(n2) on RAM, if pi, ai for i = 1, . . . , n are
part of the input.

Proof. Let x be fixed and let s = x. Since f is transitive, there is p ∈ Sn and
a ∈ {0, 1}, such that for all y ∈ {0, 1}n

f(yp ⊕ s) = f(y) ⊕ a .

Moreover, the proof of Theorem 2.4 demonstrates a procedure, which computes
p and a for any given s using the parameters pi and ai. The procedure consists
of |s| steps, each of which may be performed in time O(n) on RAM. Since
|s| ≤ n, the total complexity is O(n2). When p and a are computed, setting
y = 0 in the identity above yields f(x) = f(s) = f(0) ⊕ a = a. 2

For an arbitrary set A ⊆ {1, . . . , n}, let xA denote the subset of the variables,
whose indices belong to A. Let par(xA) be the parity function of the variables
from xA.

Lemma 2.6 If A ⊆ {1, . . . , n}, then the linear function

f(x) = par(xA) =
⊕

i∈A

xi

is transitive.

Proof. For any s, consider the transformation τ = τ(id, s). Clearly, for every
x, we have

f(τ(x)) = f(x ⊕ s) = f(x) ⊕ f(s)

and, hence, (3) is satisfied with a = f(s). 2

An example of a quadratic transitive function may be described as follows.

Example 2.7 The function α(x1, x2, x3, x4) = (x1 ⊕ x2)(x3 ⊕ x4) ⊕ x2 ⊕ x4 is
transitive.

Proof. One can easily verify that the function α(x) = α(x1, x2, x3, x4) satisfies

α(x1 ⊕ 1, x2, x4, x3) = α(x)

α(x1, x2 ⊕ 1, x4, x3) = α(x) ⊕ 1

α(x2, x1, x3 ⊕ 1, x4) = α(x)

α(x2, x1, x3, x4 ⊕ 1) = α(x) ⊕ 1 ,

which are the identities (5) for the function α. Hence, the function α is transitive
by Theorem 2.4. 2

The next example demonstrates a transitive function defined by a polyno-
mial of degree 3 over F2.
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Example 2.8 Let β1 be the function of 4 variables defined by

β1(y1, . . . , y4) = y1 y2 y3 ⊕ y1 y2 y4 ⊕ y1 y3 y4 ⊕ y2 y3 y4

and let β2 be the function of 8 variables defined by the formula (the symbol +
is used instead of ⊕ for simplicity of the notation)

β2(x1, . . . , x8) = β1(x1 + x2, x3 + x4, x5 + x6, x7 + x8)
+ (x1 + x3 + x5 + x7)(x2 + x4 + x6 + x8)
+ (x1 + x2)(x3 + x4)
+ x3 + x4 + x5 + x8 .

Then, the function β2 is transitive.

Proof. Let x = (x1, . . . , x8). The function β2(x) = β2(x1, . . . , x8) satisfies the
identities

β2(x5, x6, x7, x8, x1, x2 ⊕ 1, x4, x3) = β2(x)
β2(x1 ⊕ 1, x2, x3, x4 ⊕ 1, x8, x7, x6, x5) = β2(x) ⊕ 1 .

The arguments of β2 in the left hand sides of these identities represent two au-
tomorphisms of β2, which generate a transitive group of isometries. Verification
of this is left to the reader. As a consequence, β2 is transitive by Lemma 2.3.
2

Lemma 2.9 If A and B are disjoint sets of indices of the variables and f(xA)
and g(xB) are transitive functions, then also f(xA) ⊕ g(xB) is a transitive
function.

Proof. Let GA, resp. GB , be a transitive group of isometric transformations
of {0, 1}A, resp. {0, 1}B , which are automorphisms of f(xA), resp. g(xB). A
transitive group of automorphisms of f(xA) ⊕ g(xB) may be obtained as the
direct product GA × GB . 2

In the next section, we will need a partial converse of this statement. For a
proof of this converse, we need a relationship between the automorphisms of a
function and its sensitivity on different variables.

Definition 2.10 For any function f of n variables and any i, 1 ≤ i ≤ n, let
σ(f, i) be the sensitivity of the function f on the variable xi, which is defined as
the probability of f(x ⊕ ei) 6= f(x), if x is chosen at random from the uniform
distribution on {0, 1}n.

Lemma 2.11 Let f be a function of n variables and let p ∈ Sn, s ∈ {0, 1}n be
such that τ = τ(p, s) is an automorphism of f . If p(i) = j, then the function f
has the same sensitivity on the variables xi and xj.
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Proof. Assume that for some a ∈ {0, 1} and for all x, we have

f(xp ⊕ s) = f(x) ⊕ a .

Substituting x ⊕ ei for x in both sides of this identity yields

f(xp ⊕ s ⊕ ej) = f(x ⊕ ei) ⊕ a .

This implies that the probability of f(xp ⊕ s ⊕ ej) 6= f(xp ⊕ s) is the same as
the probability of f(x ⊕ ei) 6= f(x). Since the mapping x 7→ xp ⊕ s preserves
the uniform distribution on {0, 1}n, the lemma follows. 2

Clearly, the sensitivity of f on xi is 0, if and only if f does not depend on
xi. The other extreme is the sensitivity 1, which can also be characterized in
simpler terms.

Lemma 2.12 The sensitivity of a function f on a variable xi is 1, if and only
if there is a function g(xA), where i /∈ A, such that f(x) = g(xA) ⊕ xi.

Proof. Note that the sensitivity of f on xi is r, if and only if the sensitivity of
g = f ⊕ xi on xi is 1 − r. 2

Theorem 2.13 Let A and B be disjoint sets of indices of the variables and let
the functions f(xA, xB) and g(xA) satisfy

f(xA, xB) = g(xA) ⊕ par(xB) .

Then, f is transitive if and only if g is transitive.

Proof. The “if” part follows from Lemma 2.9. For the “only if” part, assume
that f(xA, xB) is transitive. Without loss of generality, we may assume that
f depends on all the variables in xA and xB. Moreover, consider two cases as
follows.

For the first case, assume that the sensitivity of g(xA) on all xi, i ∈ A, is
in the open interval (0, 1). Let G be a group of automorphisms of f(xA, xB),
which is transitive on {0, 1}A∪B . If τ(p, s) ∈ G, then by Lemma 2.11, the
permutation p preserves each of the sets A and B. Hence, group G is a subgroup
of the direct product TA×TB , where TA, resp. TB , is the group of the isometric
transformations of {0, 1}A, resp. {0, 1}B . Let idA be the identity element of
TA. Since all elements of TB are automorphisms of par(xB), all elements of the
group {idA} × TB are automorphisms of f(xA, xB).

Let GA be the projection of G to the component TA. Since G is transitive
on {0, 1}A∪B , GA is transitive on {0, 1}A. We have to prove that all elements
of GA are automorphisms of g(xA). Let τA ∈ GA and let τ be an element of
G, whose TA component is τA. Hence, τ = (τA, τB) for some τB ∈ TB. Since
(idA, τ−1

B ) is an automorphism of f , also

(τA, idB) = (idA, τ−1
B ) ◦ (τA, τB)
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is an automorphism of f . This implies that τA is an automorphism of g, which
finishes the first case of the proof.

If g has sensitivity 1 for some variables in xA, let D be the set of their
indices and let C be the set of the indices of the variables from A, for which
the sensitivity of g is in the open interval (0, 1). Consider the decompositions

g(xA) = g′(xC) ⊕ par(xD)

and
f(xA, xB) = g′(xC) ⊕ par(xD) ⊕ par(xB) ,

which may be obtained by a repeated application of Lemma 2.12 to the function
g. The function g′ satisfies the assumption of the first case of the proof, so
we can use its conclusion for both these decompositions. It follows that g is
transitive, if and only if g′ is transitive and, similarly, f is transitive, if and only
if g′ is transitive. Consequently, the theorem holds also in the general case. 2

3 Variable-transitive functions

A function f will be called variable-transitive, if there is a transitive subgroup
G of Sn, such that for every p ∈ G and every x ∈ {0, 1}n, we have

f(xp) = f(x) .

These functions are called transitive functions and were investigated in relation
to their sensitivity and decision tree complexity, see for example [6, 4, 2]. In
particular, all graph properties are transitive functions in this sense.

Theorem 3.1 If a function satisfies f(0) = 0 and is simultaneously variable-
transitive and vertex-transitive, then it is either the parity of all variables or
the zero function.

Proof. For a variable-transitive function, there is a ∈ {0, 1} such that f(ei) = a
for all i = 1, . . . , n. Hence, if x = 0, then for every i = 1, . . . , n, we get

f(x ⊕ ei) = f(x) ⊕ a .

For a vertex-transitive function, if there is a vertex x with this propery, then
all vertices x of the hypercube have this property. If a = 0, this implies that
the function is the zero function. If a = 1, this implies that the function is the
parity of all variables. 2

The number of variable-transitive and the number of vertex-transitive func-
tions are very different. The logarithm to base 2 of the number of the functions,
which are invariant, for example, under the group of the cyclic shifts of the n
variables, is at least 2n/n. On the other hand, the logarithm of the number of
vertex-transitive functions is at most O(n2 log2 n), see Theorem 4.5.

In the rest of this paper, a transitive function means a vertex-transitive
function.
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4 Characterization of quadratic transitive functions

In order to verify transitivity of quadratic polynomials, the following reformu-
lation of Theorem 2.4 is useful.

Lemma 4.1 A function f is transitive, if and only if for every i = 1, . . . , n,
there is a permutation qi and a constant ai ∈ {0, 1} such that

f(x ⊕ ei) = f(xqi) ⊕ ai , (8)

where ei is the i-th standard basis vector.

Proof. If qi = p−1
i , then (8) is equivalent to (5). 2

Later, we will use the following identities for α, which are obtained by the
transformation of the first two identities from Example 2.7 to the form (8).

α(x1 ⊕ 1, x2, x3, x4) = α(x1, x2, x4, x3) (9)

α(x1, x2 ⊕ 1, x3, x4) = α(x1, x2, x4, x3) ⊕ 1 . (10)

Any quadratic polynomial f(x) over F2, which satisfies f(0) = 0, may be
written as

f(x) = xtUx ⊕ ctx , (11)

where U is an appropriate upper triangular matrix with zeros on the diagonal
and c is a column vector. In some contexts, it is useful to consider the matrix
Q = U ⊕ U t, which is symmetric and represents the adjacency matrix of a
graph, whose edges correspond to the products contained in the polynomial.

Lemma 4.2 If f is a quadratic polynomial in the form (11), Q = U ⊕ U t and
s ∈ {0, 1}n is arbitrary, then for every x, we have

f(x ⊕ s) = f(x) ⊕ stQx ⊕ f(s) .

Proof. Using (11), we obtain

f(x ⊕ s) = (x ⊕ s)tU(x ⊕ s) ⊕ ct(x ⊕ s) .

Expanding the right hand side, we obtain 6 terms, which may be combined to
the following three expressions

xtUx ⊕ ctx = f(x)

stUx ⊕ xtUs = stUx ⊕ stU tx = stQx

stUs ⊕ cts = f(s) .

The lemma follows. 2
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Definition 4.3 A quadratic polynomial is called special, if the number of its
variables is n = 2k and there is a homogeneous quadratic polynomial g of k
variables, such that

f(x) = g(u) ⊕
k⊕

i=1

x2i ,

where u = (x1 ⊕ x2, x3 ⊕ x4, . . . , xn−1 ⊕ xn).

Special quadratic polynomials may also be characterized in the form (11).
Let n = 2k for some k and let Π be the partition of the set of the indices of the
n variables into k two-element blocks {1, 2}, {3, 4}, . . . , {n−1, n}. Consider the
matrix Q as a block matrix obtained using Π for both the rows and columns.
The matrix consists of k × k blocks, each of which has dimension 2 × 2. If
the polynomial is a special quadratic polynomial, then all the diagonal blocks
are zero and for each of the non-diagonal blocks, either all of the components
are zero or all of them are equal to one. Moreover, if the vector c is splitted
according to Π, it consists of k blocks of the form (0, 1).

The above block structure for special quadratic polynomials is, in fact, a
characterization. A quadratic polynomial in the form (11) is a special quadratic
polynomial, if and only if the matrix Q = U ⊕ U t and the vector c have the
block structure described in the previous paragraph.

Lemma 4.4 Every special quadratic polynomial is transitive.

Proof. Let f be a special quadratic polynomial of n = 2k variables, let U and
c be as in (11) and let Q = U ⊕ U t.

In order to prove that f is a transitive function, we prove that for every
i = 1, . . . , n, the function f(x ⊕ ei) has the form (8). By Lemma 4.2, we have

f(x ⊕ ei) = f(x) ⊕ et
iQx ⊕ f(ei) .

This implies that f(x⊕ei) has the same quadratic terms as f and possibly differs
in the linear and constant terms. The linear part of f(x ⊕ ei) is (ct ⊕ et

iQ)x.
Since Q is a symmetric matrix, this is (c ⊕ Qei)

tx. Due to the block structure
of Q and c, the vector c′ = (c ⊕ Qei)

t consists of k blocks, each of which is
either (0, 1) or (1, 0). Let qi be the permutation, which for every j = 1, . . . , k
exchanges 2j−1 and 2j, whenever {2j−1, 2j} is a block of Π, where the vector
c′ is equal to (1, 0) and does not move 2j−1 and 2j otherwise. Clearly, c′ = cqi .
Let us prove

f(x ⊕ ei) = f(xqi) ⊕ f(ei) .

Since f is a special quadratic polynomial, its quadratic part is invariant under
the permutation qi of the variables, so the quadratic terms are the same on
both sides. Since c′ = cqi , the coefficients of the linear terms are given by c′ on
both sides, so they are also equal. Since also the constant terms coincide, the
function f is transitive by Lemma 4.1. 2

Using the special quadratic polynomials and a result of the previous section,
it is now easy to obtain bounds on the number of transitive functions.
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Theorem 4.5 The number of transitive functions of n variables is at least
2Ω(n2) and at most 2O(n2 log

2
n).

Proof. The number of quadratic transitive functions of n variables is at least
the number of the special quadratic polynomials of 2k variables, where k =
⌊n/2⌋. This number is equal to the number of the homogeneous quadratic
polynomials of k variables, which is

2(
k

2
) = 2n2/8+O(n) .

This implies the lower bound.
By Theorem 2.4, every transitive function of n variables satisfying f(0) = 0

may be uniquely described by n permutations and n additional bits. Hence the
number of all transitive functions is at most

2 (2 · n!)n = 2O(n2 log
2

n) .

This implies the upper bound in the theorem. 2

Lemma 4.6 The sensitivity of a quadratic polynomial on any variable is 0,
1/2, or 1.

Proof. The sensitivity of f on the variable xi is equal to the probability of
f(x⊕ ei)⊕ f(x) 6= 0 for x chosen from the uniform distribution on {0, 1}n. If f
is quadratic, then for every i, the function f(x ⊕ ei)⊕ f(x) is a linear function
over F2. Hence, the probability of f(x⊕ei)⊕f(x) 6= 0 is 0, 1/2, or 1 as required.
2

Recall that the sensitivity of f on the variable xi is denoted as σ(f, i). We
use also the sensitivity of a function in a vertex.

Definition 4.7 The sensitivity of a function f of n variables in any vertex x ∈
{0, 1}n will be denoted σ(f, x) and defined as the number of indices i = 1, . . . , n,
such that f(x ⊕ ei) 6= f(x).

Let σ(f) be the maximum of σ(f, x) over all x ∈ {0, 1}n. Clearly, for a
transitive function f , the sensitivity σ(f, x) is the same for all vertices x. Hence,
σ(f) is not only the maximum, but also the average value of the sensitivity over
all vertices. Due to this, we have

σ(f) =
1

2n

∑

x

σ(f, x) =
1

2n

∑

x

∑

i

(f(x ⊕ ei) ⊕ f(x)) ,

where the summation is over the real numbers. Since

σ(f, i) =
1

2n

∑

x

(f(x ⊕ ei) ⊕ f(x)) ,

we also have

σ(f) =
n∑

i=1

σ(f, i) . (12)
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Lemma 4.8 If f is a quadratic transitive function (11) of n variables, which
has sensitivity 1/2 on every variable, then for every s ∈ {0, 1}n, the vector
c ⊕ Qs contains n/2 non-zero components.

Proof. By the assumption, for all i = 1, . . . , n, σ(f, i) = 1/2. Hence, (12)
implies σ(f) = n/2. Since f is transitive, we have σ(f) = σ(f, s) for all
s ∈ {0, 1}n. In particular, n/2 is an integer. The sensitivity σ(f, s) is the
number of the linear terms of the polynomial f(x⊕ s) considered as a function
of x. By Lemma 4.2, the linear part of f(x ⊕ s) is

ctx ⊕ stQx = (c ⊕ Qs)tx .

Hence, the number of non-zero components of the vector c ⊕ Qs is n/2 as
required. 2

For every 0, 1-matrix M , let A(M) be the affine set generated by the affine
combinations of the rows of M over F2. Under a general field, affine combina-
tions are the linear combinations, whose sum of the coefficients is 1. Since M
is a matrix over F2, A(M) is the set of the sums of odd size subsets of the rows
of M . Every affine subset A of a vector space may be obtained as a+W , where
a is any element of A and W is the linear subspace formed by the differences
of the elements of A. The dimension of W will be called the dimension of the
affine set A. For a subset A of {0, 1}n and p ∈ Sn, let Ap be the set of xp for
x ∈ A.

Lemma 4.9 If A is an affine subset of {0, 1}n, whose elements have n/2 non-
zero components, then there is a permutation p of the n indices of the variables,
such that the affine set Ap is a subset of the solutions of the system of the linear
equations

x1 ⊕ x2 = 1
x3 ⊕ x4 = 1
. . .
xn−1 ⊕ xn = 1 .

(13)

Proof. Let k be the smallest number of affine generators of A and let B = {bi,j},
where i = 1, . . . , k and j = 1, . . . , n, be a k × n matrix, whose rows form
such a system of the generators. In particular, A = A(B). Moreover, let
b1, . . . , bn ∈ {0, 1}k be the columns of B.

Let L = {ℓI,y} be the 2k×2k matrix, such that the row indices I are subsets
of {1, . . . , k} and the column indices y are vectors y ∈ {0, 1}k . The rows are
the linear functions over the column index. More exactly, for every I and y, we
have

ℓI,y =
⊕

i∈I

yi .

Let H = {hI,y} be the matrix, whose elements are

hI,y = (−1)ℓI,y .

The matrix H is a Hadamard matrix known as Sylvester’s construction.
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Consider the matrix L as the set of its rows. In this sense, L is a linear space
over F2. Its elements are vectors, whose components are indexed by {0, 1}k .
Let φ : L → {0, 1}n be defined for every row z of L as

φ(z) = (zb1 , . . . , zbn
) . (14)

For every I, let ℓI be the row of L with index I. Let V be the set of ℓ{i} for
i = 1, . . . , k. The rows of L, which belong to V , represent the linear functions
depending on a single bit of the column index y. Using this, one can verify that
φ(ℓ{i}) is the i-th row of the matrix B, since

φ(ℓ{i}) = (ℓ{i},b1 , . . . , ℓ{i},bn
) = (bi,1, . . . , bi,n) .

This implies that φ maps V to the rows of B and, hence, also maps the affine
set A(V ) onto the affine set A = A(B). Since the dimension of both these affine
sets is k − 1, the linear map φ is a bijection between A(V ) and A = A(B).

By the assumption, for every z ∈ A(V ), the vector φ(z) ∈ A has n/2
components equal to one. Since φ(z) is defined by (14) as a selection of some
of the components of z, possibly with repetitions, the number of ones in φ(z),
denoted as |φ(z)|, may be expressed by the scalar product in the real numbers

|φ(z)| = w · z , (15)

where w is an integer vector, whose components are given by

wy = |{j ∈ {1, . . . , n}; bj = y}| . (16)

Clearly, ∑

y∈{0,1}k

wy = n . (17)

Lemma 4.10 For every y ∈ {0, 1}k, we have wy = wy, where y is the compo-
nentwise complement of y.

Proof. Since H has the full rank over the real numbers, the vector w is a linear
combination of the rows of H. Consider any row z′ of H and the corresponding
row z of L, so we have in the real numbers

z′ = 1 − 2z ,

where 1 denotes the vector of all ones. If z ∈ A(V ) ⊆ L, then φ(z) ∈ A and we
have |φ(z)| = n/2 by the assumption. Using (15) and (17), we obtain

w · z′ = n − 2 (w · z) = 0 .

Since H is an orthogonal matrix, this implies that the rows of H, which cor-
respond to the rows A(V ) of L, do not contribute to the linear combination
of the rows of H, which expresses w over the real numbers. Hence, w is the
linear combination of the remaining rows of H. Since the rows in V are the
linear functions over F2 of a single bit of y, the set A(V ) consists exactly of
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those linear functions, which are the parity of an odd number of the bits of y.
Hence, the rows of L, which do not belong to A(V ), are the parities of an even
number of the bits of y. A parity of an even number of the bits of y is the
same for y and y. Hence, if z is a row of L, which is not in A(V ), then zy = zy

for all y ∈ {0, 1}k . Clearly, if z′ = 1 − 2z is the row of H corresponding to
z, then z′y = z′y for all y ∈ {0, 1}k . Since this property is satisfied for all rows
of H, which contribute to the linear combination over the real numbers, which
expresses w, the lemma follows. 2

Lemma 4.10 and (16) imply that for every y, the number of the occurrences
of the column y in B is equal to the number of the occurrences of the column
y. Hence, there is a permutation p ∈ Sn, such that the n columns of Bp form
n/2 pairs of complementary consecutive columns. Hence, if x is a row of Bp,
the equations (13) are satisfied. These identities clearly extend to the elements
of A(Bp). Since Ap = A(Bp), the proof of Lemma 4.9 is completed. 2

The main result of this section is the following theorem and its corollary.

Theorem 4.11 If f is a transitive function defined by a quadratic polynomial
(11) of n variables, which has sensitivity 1/2 on each variable, then there is
p ∈ Sn, such that the function f(xp) is a special quadratic polynomial.

Proof. Let U be as in (11) and let Q = U ⊕ U t. By Lemma 4.8, the affine set

A = {c ⊕ Qs ; s ∈ {0, 1}n}

satisfies the assumptions of Lemma 4.9, if this lemma is understood in terms
of the column vectors. Let q be the permutation guaranteed by Lemma 4.9.
The elements of Aq satisfy (13). In particular, cq satisfies these identities.
Hence, if the vector cq is splitted into blocks of size 2 according to Π, it consists
of the blocks (0, 1) and (1, 0). Since the equations (13) are invariant under
exchanging the variables in any block, we may choose q so that c′ = cq has the
form (0, 1, 0, 1, . . . , 0, 1). Let Q′ be the matrix obtained by reordering of both
the columns and the rows of Q according to q. The matrix Q′ is a symmetric
matrix with zero diagonal, since these properties are preserved, if the columns
and the rows are permuted in the same way. Let U ′ be the upper triangular
part of Q′ and let f ′ be the function

f ′(x) = xtU ′x ⊕ (c′)tx .

One can easily verify that f ′(xq) = f(x) for every x.
The sum in F2 of c′ = (0, 1, . . . , 0, 1)t and any column of Q′ belongs to

Aq. Hence, if any column of Q′ is splitted according to Π, it consists of the
blocks (0, 0) and (1, 1). It follows that the matrix Q′ consists of n/2 pairs of
equal consecutive rows. Since it is symmetric, it consists of n/2×n/2 blocks of
dimension 2 × 2, each of which contains either all ones or all zeros. Moreover,
the diagonal blocks are zero, since the diagonal of the matrix is zero. Hence, Q′,
U ′ and c′ have the form, which implies that f ′ is a special quadratic polynomial.
Since f ′(x) = f(xp) for p = q−1, the proof is finished. 2
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Corollary 4.12 A quadratic polynomial defines a transitive function, if and
only if it may be obtained from a special quadratic polynomial by a permutation
of the variables and possibly removing irrelevant ones.

Proof. The “if” direction follows from Lemma 4.4. For the “only if” direction,
let f be a quadratic transitive polynomial, which depends on all its variables.
By a repeated application of Lemma 2.12, we can split the indices of the vari-
ables into disjoint sets A and B, such that f(x) = g(xA) ⊕ par(xB) and g has
sensitivity less than 1 on all its variables. By Lemma 4.6, g has sensitivity
1/2 on all its variables. Moreover, by Theorem 2.13, the function g(xA) is
transitive. Hence, by Theorem 4.11, g is a special quadratic polynomial up to
a permutation of the variables. The function par(xB) may be expressed as a
special quadratic polynomial of 2|B| variables, which depends only on |B| of
them and contains no quadratic terms. Since the parity of two special quadratic
polynomials on disjoint sets of variables is a special quadratic polynomial, the
theorem follows. 2

5 Transitive functions of an arbitrary degree

Let α be the quadratic transitive function from Example 2.7.

Lemma 5.1 For i = 1, 2, let gi be a transitive function of ki variables and
degree di. For i = 1, 2 and j = 1, 2, let xi,j be a vector of ki variables, such
that the sets of variables in the four vectors xi,j are mutually disjoint. Then,
α(g1(x1,1), g1(x1,2), g2(x2,1), g2(x2,2)) is a transitive function of 2(k1 + k2) vari-
ables and degree d1 + d2.

Proof. The concatenation of all the blocks xi,j will be denoted as x. Let f be
the considered function, so we have

f(x) = f(x1,1, x1,2, x2,1, x2,2) = α(g1(x1,1), g1(x1,2), g2(x2,1), g2(x2,2)) .

Let ei,j,l be the standard basis vector of length 2(k1+k2), which contains 1 at the
l-th position of the block corresponding to xi,j . In order to prove transitivity of
f using Lemma 4.1, we need to show that for every i, j, l, there is a permutation
p ∈ S2(k1+k2) and a ∈ {0, 1} such that

f(x ⊕ ei,j,l) = f(xp) ⊕ a . (18)

If (i, j) = (1, 1), then we consider e1,1,l, which has 1 at the l-th position of the
block x1,1 and is zero in all other blocks. Hence, we have

f(x ⊕ e1,1,l) = α(g1(x1,1 ⊕ el), g1(x1,2), g2(x2,1), g2(x2,2)) .

By Lemma 4.1, there are q ∈ Sk1
and b ∈ {0, 1}, such that

g1(x1,1 ⊕ el) = g1(x
q
1,1) ⊕ b ,
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which implies

f(x ⊕ e1,1,l) = α(g1(x
q
1,1) ⊕ b, g1(x1,2), g2(x2,1), g2(x2,2)) .

If b = 0, this implies

f(x ⊕ e1,1,l) = f(xq
1,1, x1,2, x2,1, x2,2) ,

which is the identity (18) for a suitable permutation p and a = 0. If b = 1, we
additionally use (9) to obtain

f(x ⊕ e1,1,l) = α(g1(x
q
1,1), g1(x1,2), g2(x2,2), g2(x2,1))

and, finally,
f(x ⊕ e1,1,l) = f(xq

1,1, x1,2, x2,2, x2,1) ,

which is the identity (18) for a suitable permutation p.
If (i, j) = (1, 2), then we consider e1,2,l, which has 1 at the l-th position of

the block x1,2 and is zero in all other blocks. Similarly as in the previous case,
we obtain

f(x ⊕ e1,2,l) = α(g1(x1,1), g1(x
q
1,2) ⊕ b, g2(x2,1), g2(x2,2))

with q ∈ Sk1
and b ∈ {0, 1} guaranteed by Lemma 4.1 for g1. If b = 0, this is

the identity (18) as in the previous case. If b = 1, we use (10) to obtain

f(x ⊕ e1,2,l) = α(g1(x1,1), g1(x
q
1,2), g2(x2,2), g2(x2,1)) ⊕ 1 ,

and, finally,
f(x ⊕ e1,2,l) = f(x1,1, x

q
1,2, x2,2, x2,1) ⊕ 1 ,

which is the identity (18) for a suitable permutation p and a = 1.
The cases (i, j) = (2, 1) and (i, j) = (2, 2) are similar and left to the reader.

2

Theorem 5.2 For every integer d ≥ 1, there is a transitive function of at most
2d2 variables represented by a polynomial over F2 of degree d.

Proof. Consider a binary tree with d leaves and the depth k = ⌈log2 d⌉. We
assign a transitive function to every node in the tree as follows. Every leaf will
be assigned to an arbitrary transitive function of degree 1. An internal node,
both successors of which are already assigned, will be assigned to the function
obtained by the previous lemma from the functions in the two successors. This
is repeated until the function assigned to the root of the tree is obtained. It is
easy to see that the degree of the function in the root is d and the number of
the variables of this function is at most d2k ≤ 2d2. 2
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6 Transitive functions with small sensitivity

Let φi be a formula in the form of a balanced 4-ary tree of depth i, whose
internal nodes compute the connective α from Example 2.7 and the leaves are
different variables. Let gi be the function of 4i variables, which is represented
by φi. In particular, g1 is the function α and the function g2 is defined as

g2(x1, . . . , x16) = α(α(x1, . . . , x4), . . . , α(x13, . . . , x16)) .

We consider the sensitivity and the block sensitivity of gi. For a general
function f , both these sensitivities are first defined in every vertex of the hy-
percube and the sensitivity of the function is the maximum of the corresponding
sensitivity over all vertices, see, for example, [2], [1]. The sensitivity of f in a
vertex x is denoted as σ(f, x), see Definition 4.7.

The block sensitivity of f in x is the maximum number m, such that there
are vectors vj, j = 1, . . . ,m, such that the sets of indices of non-zero components
in these vectors are pairwise disjoint and for every j = 1, . . . ,m, we have f(x⊕
vj) 6= f(x). Clearly, the block sensitivity in a vertex is at least the sensitivity
in the same vertex, since the vectors vj may be chosen to be those ei, for which
f(x ⊕ ei) 6= f(x).

For a transitive function, the block sensitivity is the same in all the vertices,
so the maximum is also the common value, similarly as for the sensitivity.

Since α is transitive, its sensitivity is equal to its sensitivity in the zero
vertex, which is 2, since α(e2) = α(e4) = 1 and α(0) = α(e1) = α(e3) = 0. The
block sensitivity of α in the zero vertex is at least 3, since α(e2) = α(e4) =
α(e1 ⊕ e3) = 1. Moreover, the set of the indices of non-zero components of
every vector v, which satisfies α(v) 6= α(0), contains at least one of the sets
{2}, {4}, and {1, 3}. This implies that the block sensitivity of α in the zero
vertex is at most 3. Altogether, the block sensitivity of α is 3. Moreover, the
same argument proves the implication

α(x1, x2, x3, x4) = 1 ⇒
1

2
x1 + x2 +

1

2
x3 + x4 ≥ 1 , (19)

which will be used later.

Theorem 6.1 For every i ≥ 0, gi is a transitive funtion of 4i variables, whose
sensitivity is 2i and block sensitivity is 3i.

Proof. For every i ≥ 0, the function gi is transitive by an induction argument
using Lemma 5.1. As mentioned above, this implies that the sensitivity and
block sensitivity of gi is equal to the corresponding sensitivity in the zero vertex,
which is the assignment of all 4i variables to 0. Consider the tree structure of
the formula φi, which defines gi. Every internal node of the tree computes the
connective α, whose arguments correspond to the 4 successors of the node in the
tree. In this sense, every edge in the tree corresponds to one of the arguments
of α and we will refer to these arguments using their indices.

The value of gi for the zero input is 0. There are 2i variables of gi, such
that the path from the root of the formula to the considered variable consists
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only of edges, which correspond to arguments 2 and 4 of α. Clearly, changing
any of these variables to 1 leads to an assignment, for which the value of gi is 1.
Hence, the sensitivity of gi in the zero vertex is at least 2i. One can also verify
that changing any other variable to 1 in the zero assignment does not change
the value of the whole formula. Hence, the sensitivity of gi in the zero vertex
is at most 2i. Altogether, the sensitivity of gi is 2i.

In the rest of the proof, we use the following notation. For any set of
variables V of gi, let aV be the assignment, which assigns 1 to the variables in
V and 0 to the remaining variables.

In order to get a lower bound on the block sensitivity of gi in the zero vertex,
consider the subtrees of the formula, which contain the root of the formula, the
leaves of the subtree are leaves of the formula and the following is satisfied. For
every internal node of the subtree, the set of the indices of the successors, which
are contained in the subtree, is precisely one of the sets {2}, {4}, and {1, 3}.
Moreover, the choice of the set of the successors is the same for all nodes at
the same level of the tree. Since there are i levels in the tree and for each of
them, we choose one of the three sets, there are 3i such subtrees and the sets
of the leaves of these subtrees are disjoint. Hence, the sets of the leaves of the
subtrees define 3i different sets of variables, which are disjoint. If V is one of
these sets, then gi(aV ) = 1. Hence, the block sensitivity of gi in the zero vertex
is at least 3i.

For an upper bound on the block sensitivity of gi in the zero vertex, consider
the weights of the arguments of α, which appear as coefficients in (19). Every
edge of the tree φi corresponds to an argument of α, so, we may assign these
weights also to the edges of the tree. Moreover, we assign to every variable of
gi the weight, which is the product of the weights of the edges, which form the
path from the root of φi to the leaf with the considered variable. Since the sum
of the weights of the edges from any given vertex is 3, the sum of the weights
of all variables is 3i. Consider the sets of variables V , such that gi(aV ) = 1.
In the next paragraph, we prove that the sum of the weights of the variables
in every such V is at least 1. Since the total sum over all variables is 3i, this
implies that there are at most 3i disjoint sets V satisfying gi(aV ) = 1. This
implies the upper bound 3i on the block sensitivity of gi.

In order to prove a lower bound on the sum of the weigths of the variables
in V satisfying gi(aV ) = 1, we may assume that V is an inclusion minimal set
with this property. Consider the subtree, which is the union of the paths from
the root to the variables in V . Since V is inclusion minimal, every node of the
subtree evaluates to 1 for the assignment aV . Using (19), we obtain that for
every node of the subtree, the sum of the weights of the edges to the successors
of the node, which also belong to the subtree, is at least 1. Hence, the sum of
the weights of the variables in V is at least 1. 2

7 Groups of isometries

In Section 2, a vertex-transitive or, simply, a transitive function was defined as
a Boolean function, which satisfies a system of identities. These identities gen-
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erate a group of automorphisms of the function. In this section, we investigate
the properties of these groups. For this purpose, the isometries are understood
as permutations of the vertices of the hypercube and the transitive functions
are characterized using the notion of a block system of a permutation group.

Recall that a block for a group G of permutations of a domain Ω is a subset
B ⊆ Ω, such that for every π ∈ G, we have either Bπ = B or Bπ ∩ B = ∅,
where Bπ = {bπ ; b ∈ B}. A block system for G is a partition of Ω, which is
preserved by permutations in G. Clearly, the elements of a block system are
blocks in the sense above. If G is transitive on Ω and B is a block, then the
sets Bπ for π ∈ G are blocks and the set of the different blocks among them
forms a partition of Ω. Moreover, this partition is preserved by G and, hence,
is a block system. These considerations are the basis for the statement (i) of
Lemma 7.1 below. For more information, see, for example, [5], [8].

Lemma 7.1 ([5], [8]) Let G be a transitive group of permutations of a domain
Ω and u ∈ Ω. Then, the following three statements hold.

(i) Every block system for G is uniquely specified by the block in it, which
contains u.

(ii) A subset B of Ω containing u is a block of G, if and only if B = OrbitH(u)
for a subgroup H, which contains StabG(u). Moreover, there is a bijection
between the blocks of G, which contain u, and the subgroups H of G, which
contain StabG(u).

(iii) If H is a subgroup of G, which contains StabG(u), then the orbits of H
form a block system of G. In particular, all the orbits of H have the same
size.

Lemma 7.2 A non-constant function f of n variables is transitive, if and only
if there is a transitive group G of isometries of {0, 1}n, such that the partition
of {0, 1}n to the sets {f−1(0), f−1(1)} is a block system of G.

Proof. Let f be transitive and let s ∈ {0, 1}n. By Definition 2.1, there is a
permutation p ∈ Sn and a ∈ {0, 1}, such that the isometry τ = τ(p, s) satisfies
for every x

f(τ(x)) = f(x) ⊕ a . (20)

Let G be the group generated by the isometries, which appear as τ in (20) for
some s. Clearly, G is transitive on the vertices of the hypercube, since for every
s, there is τ ∈ G such that τ(0) = s.

Consider the partition {f−1(0), f−1(1)}. If a = 0, then the identity (20) is
equivalent to the condition that x and τ(x) belong to the same block of the
partition. On the other hand, if a = 1, then (20) is equivalent to the condition
that x and τ(x) belong to different blocks of the partition. Hence, the considered
partition is invariant under the generators of G and, consequently, is a block
system for G.

For the opposite direction, let f be any non-constant function of n vari-
ables and G a transitive group of isometries of {0, 1}n, for which the partition
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{f−1(0), f−1(1)} is a block system. Let s ∈ {0, 1}n be arbitrary. Since G is
transitive, there is τ ∈ G, such that τ(0) = s and, hence, τ = τ(p, s) for some
p ∈ Sn. Clearly, τ either preserves the blocks of the partition or exchanges
them. Using the same analysis as in the previous paragraph, this implies that
there is a ∈ {0, 1}, such that (20) holds for all x. Hence, the requirement of
Definition 2.1 is satisfied. 2

A transitive group G may have several two-element block systems. In this
case, G does not define a transitive function uniquely. In fact, the parity of
all variables represents a block system of any transitive group of isometries of
{0, 1}n. Hence, no other function can be determined uniquely only by the group
G. In order to specify a unique transitive function, we can use a pair of groups
as follows.

Definition 7.3 Let u be any vertex of the Boolean cube {0, 1}n and f a non-
constant Boolean function of n variables, which satisfies f(u) = 0. Let the
groups G and H of isometries of {0, 1}n be such that

• G is transitive,

• H ≤ G, |G : H| = 2,

• H is not transitive and its orbits are equal to f−1(0) and f−1(1).

Then, we say that G, H and u define f .

Before we prove that this definition characterizes transitive functions, we
prove a simple lemma.

Lemma 7.4 Let G and H be groups of isometries of {0, 1}n such that

• G is transitive,

• H ≤ G, |G : H| = 2,

• H is not transitive.

Then, for every vertex x, we have |OrbitH(x)| = 2n−1 and StabG(x) ≤ H.

Proof. Let G and H be groups satisfying the assumptions and let x be any
vertex of the hypercube. By the orbit-stabilizer theorem, we have

|OrbitG(x)| =
|G|

|StabG(x)|
= 2n

and

|OrbitH(x)| =
|H|

|StabH(x)|
=

|G|

2 |StabH(x)|
.

Since StabH(x) = H ∩ StabG(x), we have either StabH(x) = StabG(x) or
|StabH(x)| ≤ 1

2 |StabG(x)|. In the latter case, we would have |OrbitH(x)| = 2n,
which is not possible, since H is intransitive. Hence, StabH(x) = StabG(x),
which implies that the size of OrbitH(x) is 2n−1 and StabG(u) ≤ H. 2
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Theorem 7.5 A non-constant Boolean function f is transitive, if and only if
there are groups G and H of isometries of {0, 1}n and a vertex u, which define
f .

Proof. Let G, H and u define f . By Lemma 7.4, H contains StabG(u). Hence,
Lemma 7.1(ii) implies that OrbitH(u) is a block of G. Since G is transitive,
the partition into the orbits of H is a block system by Lemma 7.1(iii). Hence,
the complement of OrbitH(u) is also an orbit of H and a block of G. The
assumption implies that the blocks are equal to the sets f−1(0) and f−1(1).
Hence, by Lemma 7.2, the function f is transitive. This implies the “if” part
of the theorem.

Let f be a non-constant transitive function. By Lemma 7.2, the partition
{f−1(0), f−1(1)} is a block system of a transitive group G of isometries. Let
B = f−1(0) and let u be any element of B. By Lemma 7.1(ii), there is a
subgroup H of G, which contains StabG(u), and such that B = OrbitH(u).
Since |B| = 2n−1 and StabH(u) = StabG(u), we have |G : H| = 2 and the
blocks f−1(0), f−1(1) are orbits of H. Hence, the groups G, H and vertex u
define f . This implies the “only if” part of the theorem. 2

In order to verify that groups G and H define f , it is not necessary to verify
that H is transitive on each of the sets f−1(0), f−1(1).

Lemma 7.6 Let u be any vertex of {0, 1}n and f a non-constant Boolean func-
tion of n variables, which satisfies f(u) = 0. Let the groups G and H of isome-
tries of {0, 1}n be such that

• G is transitive,

• H ≤ G, |G : H| = 2,

• for every h ∈ H and x ∈ {0, 1}n, we have f(xh) = f(x).

Then G, H and u define f .

Proof. The assumptions imply that H is not transitive. By Lemma 7.4, the
size of the orbits of H is 2n−1. This implies that H has two orbits and, hence,
the third requirement of Definition 7.3 is satisfied. 2

A minimally transitive group is a group, which is transitive, but no its
proper subgroup is transitive.

Lemma 7.7 For every non-constant transitive function f , there are groups G
and H and a vertex u, which define f , and G is minimally transitive.

Proof. If f is transitive, then Theorem 7.5 guarantees the existence of groups
G and H and a vertex u, which define f . If G is not minimally transitive, let
G′ be any minimally transitive subgroup of G and H ′ = H ∩ G′. Since H ′ is
intransitive, it follows that |G′ : H ′| > 1. Moreover, since |G′ : H ′| ≤ |G : H|,
we have |G′ : H ′| = 2. Clearly, f(xh) = f(x) for every h ∈ H ′. Hence, the
groups G′ and H ′ define the same function as the groups G and H. 2
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The minimally transitive groups G satisfy further conditions, which are
based on the following consequence of a more general Theorem 3.4 from [7].

Theorem 7.8 (Wielandt, 1964) If G is a transitive group of permutations
of a domain Ω, such that |Ω| = pn, where p is a prime, then every Sylow
p-subgroup of G is also transitive on Ω.

Specifically, we use the following consequence of this theorem.

Lemma 7.9 Every minimally transitive group of isometries of {0, 1}n is a 2-
group.

Proof. Let G be a minimally transitive group of isometries. If G is not a
2-group, then every its Sylow 2-subgroup is a proper subgroup, which is also
transitive by Theorem 7.8. Since this is in contradiction with the assumptions,
G is a 2-group. 2

This allows to strengthen the characterization of the transitive functions.

Theorem 7.10 A non-constant function f is transitive if and only if there are
groups G and H and a vertex u, which define f , and such that G is a minimally
transitive 2-group.

Proof. Let u be any vertex satisfying f(u) = 0. By Lemma 7.7, the function
f is defined by G, H and u, such that G is minimally transitive. By Lemma
7.9, G is a 2-group. 2

Minimally transitive groups of isometries of {0, 1}n can be characterized as
follows.

Theorem 7.11 A transitive group G of isometries of {0, 1}n is minimally tran-
sitive, if and only if G is a 2-group and for some vertex u, every maximal proper
subgroup of G contains StabG(u).

Proof. Due to Lemma 7.9, in order to characterize the minimally transitive
groups of isometries, it is sufficient to consider 2-groups.

Assume, G is a transitive 2-group and u is a vertex. Group G is minimally
transitive, if and only if there is no maximal proper subgroup K, which is
transitive. Since G is a 2-group, the maximal proper subgroups of G are exactly
the subgroups K, for which |G : K| = 2. A subgroup K of G is transitive,
if and only if OrbitG(u) and OrbitK(u) have the same size. By the orbit-
stabilizer theorem, this is equivalent to |StabG(u) : StabK(u)| = |G : K|. On
the other hand, for every subgroup K, we have |StabG(u) : StabK(u)| ≤ |G : K|.
Altogether, G is minimally transitive, if and only if for every subgroup K such
that |G : K| = 2, we have |StabG(u) : StabK(u)| < 2.

Since the index |StabG(u) : StabK(u)| is an integer power of 2, the condition
from the previous paragraph is equivalent to the condition that for all subgroups
K, such that |G : K| = 2, we have |StabG(u) : StabK(u)| = 1 or, equivalently,
StabG(u) ≤ K. This implies the theorem. 2
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For a minimally transitive group G of isometries of {0, 1}n, the characteri-
zation of the set of subgroups H of G, which define a transitive function, can
be simplified, since every maximal proper subgroup H of G is intransitive and
has index 2 in G. The intersection of all the maximal subgroups of G is the
Frattini subgroup Φ(G). Using the properties of the Frattini subgroup of a
2-group from [3], we obtain the following theorem.

Theorem 7.12 If G is a minimally transitive 2-group of isometries, such that
k is the minimal number of its generators, then there are 2k −1 maximal proper
subgroups H of G. If u is a vertex, then there are 2k − 1 different transitive
functions satisfying f(u) = 0 and defined by G and some of its maximal sub-
groups.

Proof. Let u be a vertex. Since G is a minimally transitive 2-group, every
maximal proper subgroup H of G has index |G : H| = 2 and is intransitive.
Hence, by Lemma 7.4, every maximal proper subgroup H of G defines, together
with G and u, a transitive function. Moreover, every such subgroup H of G
contains StabG(u). Hence, Lemma 7.1(ii) implies that the transitive functions
obtained for different subgroups H are different.

There is a bijection between the maximal subgroups of G and the maximal
subgroups of G/Φ(G). Since G is a 2-group, the factor group G/Φ(G) is iso-
morphic to Zk

2 , see [3]. There is a bijection between the maximal subgroups of
Zk

2 and the subspaces of F k
2 of dimension k−1. The number of these subspaces

is 2k − 1. Hence, also the number of the maximal subgroups of G is 2k − 1.
Each of these groups defines a transitive function satisfying f(u) = 0 and these
functions are different. 2

8 Uniquely transitive functions

If G is a transitive group of isometric transformations of {0, 1}n, then its size
is a multiple of 2n, since G is a transitive group of permutations of {0, 1}n and,
hence, its size is |StabG(u)|2n for any vertex u of the hypercube. Some of the
transitive functions are defined by a transitive group G of size equal to 2n.

Definition 8.1 A Boolean function is uniquely transitive, if it is defined by
groups G and H and a vertex u, such that G has size 2n, or, equivalently, if G
is a regular group of permutations of the vertices of the hypercube.

It is easy to prove that every linear and quadratic transitive function is
uniquely transitive. In fact, the groups of isometries used to verify transitivity
of these functions in the previous sections have size 2n. Using computer search,
it was possible to find about 60 non-isomorphic transitive functions of at most
12 variables and degree 3. Each of these functions appeared to be uniquely
transitive.

Question. Is there a transitive function, which is not uniquely transitive?
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