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Abstract

In the first part of this work, we introduce a new type of pseudo-random function for which
“aggregate queries” over exponential-sized sets can be efficiently answered. An example of an
aggregate query may be the product of all function values belonging to an exponential-sized
interval, or the sum of all function values on points for which a polynomial time predicate holds.
We show how to use algebraic properties of underlying classical pseudo random functions, to
construct aggregatable pseudo random functions for a number of classes of aggregation queries
under cryptographic hardness assumptions. On the flip side, we show that certain aggregate
queries are impossible to support.

In the second part of this work, we show how various extensions of pseudo-random functions
considered recently in the cryptographic literature, yield impossibility results for various exten-
sions of machine learning models, continuing a line of investigation originated by Valiant and
Kearns in the 1980s and 1990s. The extended pseudo-random functions we address include con-
strained pseudo random functions, aggregatable pseudo random functions, and pseudo random
functions secure under related-key attacks.
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1 Introduction

Pseudo-random functions (PRF), introduced by Goldreich, Goldwasser and Micali [GGM86], are
a family of indexed functions for which there exists a polynomial-time algorithm that, given an
index (which can be viewed as a secret key) for a function, can evaluate it, but no probabilistic
polynomial-time algorithm without the secret key can distinguish the function from a truly random
function – even if allowed oracle query access to the function. Pseudo-random functions have been
shown over the years to be useful for numerous cryptographic applications. Interestingly, aside from
their cryptographic applications, PRFs have also been used to show impossibility of computational
learning in the membership queries model [Val84], and served as the underpinning of the proof of
Razborov and Rudich [RR97] that natural proofs would not suffice for unrestricted circuit lower
bounds.

Since their inception in the mid eighties, various augmented pseudo random functions with ex-
tra properties have been proposed, enabling more sophisticated forms of access to PRFs and more
structured forms of PRFs. In this vein, we mention the work of [GGN10] on constructing “huge
random objects” which designs PRFs that are guaranteed to maintain some global combinatorial
property; the recent works on constrained PRFs1 [KPTZ13a, BGI14a, BW13a] which can release
auxiliary secret keys whose knowledge enables computing the PRF in a restricted number of loca-
tions without compromising pseudo-randomness elsewhere; the construction of a PRF [BLMR13]
family which is homomorphic with respect to its key; and the construction of related key secure
PRFs [BC10, ABPP14]. These constructions yield fundamental objects with often surprising ap-
plications to cryptography and elsewhere. A case in point is the truly surprising use of constrained
PRFs [SW14], to show that indistinguishability obfuscation can be used to resolve a long-standing
problem of deniable encryption, among many others.

In the first part of this paper, we introduce a new type of augmented PRF which we call
aggregate pseudo random functions (AGG-PRF). An AGG-PRF is a family of indexed functions each
associated with a secret key, such that given the secret key, one can compute aggregates of the values
of the function over super-polynomially large sets in polynomial time; and yet without the secret
key, access to such aggregated values cannot enable a polynomial time adversary (distinguisher)
to distinguish the function from random, even when the adversary can make aggregate queries.
Note that the distinguisher can request and receive an aggregate of the function values over sets
(of possibly super-polynomial size) that she can specify. Examples of aggregate queries can be the
sum/product of all function values belonging to an exponential-sized interval, or more generally,
the sum/product of all function values on points for which some polynomial time predicate holds.
Since the sets over which our function values are aggregated are super-polynomial in size, they
cannot be directly computed by simply querying the function on individual points.

We show AGG-PRFs under various cryptographic hardness assumptions (one-way functions and
DDH) for a number of types of aggregation operators such as sums and products and for a number of
set systems including intervals, hypercubes, and (the supports of) restricted computational models
such as decision trees and read-once Boolean formulas. We also show negative results: there are no
AGG-PRFs for more expressive set systems such as (the supports of) CNF formulas. For a detailed
description of our results, see Section 1.1.

In the second part of this paper, we embark on a study of the connection between the new
augmented PRF constructions of recent years (constrained, related-key, aggregate) and the theory

1Constrained PRFs are also known as Functional PRFs and as Delegatable PRFs.
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of computational learning. We recall at the outset that the fields of cryptography and machine
learning share a curious historical relationship. The goals are in complete opposition and at the
same time the aesthetics of the models, definitions and techniques bear a striking similarity. For
example, a cryptanalyst can attack a cryptosystem using a range of powers from only seeing cipher-
text examples to requesting to see decryptions of ciphertexts of her choice. Analogously, machine
learning allows different powers to the learner such as random examples versus membership queries
and shows that certain powers allow learners to learn concepts in polynomial time whereas others
will fail. Even more directly, problems which pose challenges for machine learning such as Learning
Parity with Noise (LPN) have been used as the underpinning for building secure cryptosystems,
and as mentioned above [Val84] observes that the existence of PRFs in a complexity class C implies
the existence of concept classes in C which can not be learned under membership queries, and
[KV94] extends this direction to some public key constructions.

In the decades since the introduction of PAC learning, new computational learning models have
been proposed, such as the recent “restriction access” model [DRWY12] which allows the learner to
interact with the target concept by asking membership queries, but also to obtain an entire circuit
that computes the concept on a random subset of the inputs. For example, in one shot, the learner
can obtain a circuit that computes the concept class on all n-bit inputs that start with n/2 zeros.
At the same time, the cryptographic research landscape has been swiftly moving in the direction of
augmenting traditional PRFs and other cryptographic primitives to include higher functionalities.
This brings to mind natural questions:

• Can one leverage augmented pseudo-random function constructions to establish limits on what
can and cannot be learned in augmented machine learning models?

• Going even further afield, can augmented cryptographic constructs suggest interesting learning
models?

We address these questions in the second part of this paper. For a detailed description of our
findings, see Section 1.2.

1.1 Our Results: Aggregate Pseudo Random Functions

Aggregate Pseudo Random Functions (AGG-PRF) are indexed families of pseudo-random functions
for which a distinguisher (who runs in time polynomial in the security parameter) can request and
receive the value of an aggregate (for example, the sum or the product) of the function values over
certain large sets and yet cannot distinguish oracle access to the function from oracle access to a
truly random function. At the same time, given the function index (in other words, the secret key),
one can compute such aggregates over potentially super-polynomial size sets in polynomial time.
Such an efficent aggregation algorithm cannot possibly exist for random functions. Thus, this is
a PRF family that is very unlike random functions (in the sense of being able to efficiently ag-
gregate over superpolynomial size sets), and yet is computationally indistinguishable from random
functions.

To make this notion precise, we need two ingredients. Let F = {Fλ}λ>0 where each Fλ = {fK :
Dλ → Rλ}K∈Kλ is a collection of functions on a domain Dλ to a range Rλ, computable in time
poly(λ).2 The first ingredient is a collection of sets (also called a set system) S = {S ⊆ D} over

2In this informal exposition, for the sake of brevity, we will sometimes omit the security parameter and refrain
from referring to ensembles.
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which the aggregates can be efficiently computed given the index K of the function. The second
ingredient is an aggregation function Γ : R∗ → {0, 1}∗ which takes as input a tuple of function
values {f(x) : x ∈ S} for some set S ∈ S and outputs the aggregate Γ(f(x1), . . . , f(x|S|)).

The sets are typically super-polynomially large, but are efficiently recognizable. That is, for each
set S, there is a corresponding poly(λ)-size circuit CS that takes as input an x ∈ D and outputs 1 if
and only if x ∈ S. 3 Throughout this paper, we will consider relatively simple aggregate functions,
namely we will treat the range of the functions as an Abelian group, and will let Γ denote the
group operation on its inputs. Note that the input to Γ is super-polynomially large (in the security
parameter λ), making the aggregate computation non-trivial.

This family of functions, equipped with a set system S and an aggregation function Γ is called
an aggregate PRF family (AGG-PRF) if the following two requirements hold:

1. Aggregatability: There exists a polynomial (in the security parameter λ) time algorithm that
given an index K to the PRF fK ∈ F and a circuit CS that recognizes a set S ∈ S, can
compute Γ over the PRF values fK(x) for all x ∈ S. That is, it can compute

AGGK,Γ(S) := Γx∈S fK(x)

2. Pseudorandomness: No polynomial-time distinguisher which can specify a set S ∈ S as a
query and can receive as an answer either AGGK,Γ(S) for a random function fK ∈ F or
AGGh,Γ(S) for a truly random functions h, can distinguish between the two cases.

We remark that our notion of aggregate PRFs bears some resemblance to the notion of “algebraic
PRFs” defined in the work of Benabbas, Gennaro and Vahlis [BGV11]. In a nutshell, there are
two main differences. First, algebraic PRFs support efficient aggregation over very specific subsets,
whereas our constructions of aggregate PRFs support expressive subset classes, such as subsets
recognized by hypercubes, decision trees and read-once Boolean formulas. Secondly, in the security
notion for aggregate PRFs, the adversary obtains access to an oracle that computes the function as
well as one that computes the aggregate values over super-polynomial size sets, whereas in algebraic
PRFs, the adversary is restricted to accessing the function oracle alone. Our constructions from
DDH use an algebraic property of the Naor-Reingold PRF in a similar manner as in [BGV11].

We show a number of constructions of AGG-PRF for various set systems under different cryp-
tographic assumptions. We describe our constructions below, starting from the least expressive set
system.

Interval Sets. We first construct AGG-PRFs over interval set systems with respect to aggrega-
tion functions that compute any group operation. The construction can be based on any (standard)
PRF family.

Theorem 1.1 (Intervals from one-way functions). Assume one-way functions exist. Then, there
exists an AGG-PRF family that maps Zp to a group G, with respect to a collection of sets defined
by intervals [a, b] ⊆ Zp and the aggregation function computing the group operation on G.

3All the sets we consider are efficiently recognizable, and we use the corresponding circuit as the representation
of the set. We occasionally abuse notation and use S and CS interchangeably.
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The construction works as follows. Let F : {0, 1}n × {0, 1}n → {0, 1} be a (standard) pseudo-
random function family based on the existence of one-way functions [GGM86, HILL99]. Construct
an AGG-PRF family G supporting efficient computation of group aggregation functions. Define

G(k, x) = F (k, x)− F (k, x− 1)

To aggregate G, set ∑
x∈[a,b]

G(k, x) = F (k, b)− F (k, a− 1)

Given k, this can be efficiently evaluated. This construction can also be easily constrained to allow
evaluation on any point or sub-interval of any interval [a, b].

Hypercubes. As a warmup, we next construct AGG-PRFs over hypercube set systems. Through-
out this section, we take Dλ = {0, 1}` for some polynomial ` = `(λ). A hypercube Sy is defined by
a vector y ∈ {0, 1, ?}` as

Sy = {x ∈ {0, 1}` : ∀i, yi = ? or xi = yi}

We present a construction under the sub-exponential DDH assumption.

Theorem 1.2 (Hypercubes from DDH). Let HC = {HC`(λ)}λ>0 where HC` = {0, 1, ?}` be the set

of hypercubes on {0, 1}`. Then, there is a construction of AGG-PRF supporting the set system HC
with the product aggregation function, assuming the subexponential DDH assumption.

We sketch the construction from DDH below. Our DDH construction is the Naor-Reingold
PRF [NR04]. Namely, the function is parametrized by an `-tuple ~k = (k1, . . . , k`) and is defined as

F (~k, x) = g
∏
i:xi=1 ki

Let us illustrate aggregation over the hypercube y = (1, 0, ?, ?, . . . , ?). To aggregate the function
F , observe that ∏

{x: x1=1,x2=0}

F (~k, x) =
∏

{x: x1=1,x2=0}

g
∏
i:xi=1 ki

= g
∑
{x:x1=1,x2=0}

∏
i:xi=1 ki

= g(k1)(1)(k2+1)(k3+1)···(k`+1)

which can be efficiently computed given ~k.

Decision Trees. A decision tree T on ` variables is a binary tree where each internal node is
labeled by a variable xi, the leaves are labeled by either 0 or 1, one of the two outgoing edges of
an internal node is labeled 0, and the other is labeled 1. Computation of a decision tree on an
input (x1, . . . , x`) starts from the root, and at each internal node n, proceeds by taking either the
0-outgoing edge or 1-outgoing edge depending on whether xn = 0 or xn = 1, respectively. Finally,
the output of the computation is the label of the leaf reached through this process. The size of a
decision tree is the number of nodes in the tree.
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A decision tree T defines a set S = ST = {x ∈ {0, 1}` : T (x) = 1}. We show how to compute
product aggregates over sets defined by polynomial size decision trees, under the subexponential
DDH assumption.

The construction is simply a result of the observation that the set S = ST can be written as a
disjoint union of polynomially many hypercubes. Computing aggregates over each hypercube and
multiplying the results together gives us the decision tree aggregate.

Theorem 1.3 (Decision Trees from DDH). Assuming the sub-exponential hardness of the decisional
Diffie-Hellman assumption, there is an AGG-PRF that supports aggregation over sets recognized by
polynomial-size decision trees.

Read-Once Boolean Formulas. Finally, we show a construction of AGG-PRF over read-once
Boolean formulas, the most expressive of our set systems, under the subexponential DDH assump-
tion. A read-once Boolean formula a Boolean circuit composed of AND, OR and NOT gates with
fan-out 1, namely each input literal feeds into at most one gate, and each gate output feeds into at
most one other gate. Thus, a read-once formula can be written as a binary tree where each internal
node is labeled with an AND or OR gate, and each literal (variable or its negation) appears in at
most one leaf.

Theorem 1.4 (Read-Once Boolean Formulas from DDH). Under the subexponential decisional
Diffie-Hellman assumption, there is an AGG-PRF that supports aggregation over sets recognized by
read-once Boolean formulas.

Our aggregate PRF is, once again, the Naor-Reingold PRF. The index of the PRF consists of
a (`+ 1)-tuple of integers in Zp, namely ~K = (K0, . . . ,K`) ∈ Z`+1

p . The function is defined as

f ~K(x) = gK0
∏
i∈[`]K

xi
i

We compute aggregates by recursion on the levels of the formula. We start by noting that it is
enough to compute

A(C, 1) :=
∑

x:C(x)=1

∏
i∈[1...`]

Kxi
i

because once this is done, it is easy to compute∏
x:C(x)=1

f~k(x) = gK0·A(C,1)

For the purposes of this informal exposition, assume that ` is a power of two. Let C be the
formula, with either C = CL ∧ CR or C = CL ∨ CR for subformula CL and CR. We show how to
recursively compute A(C, 1) for these sub-circuits and thus for C.

Limits of Aggregation. A natural question to ask is whether one can support aggregation over
sets defined by general circuits. It is however easy to see that you cannot support any class of circuits
for which deciding satisfiability is hard (for example, AC0), or even ones for which counting the
number of SAT assignments is hard (DNFs, for example) as follows. Suppose C is a circuit which is
either unsatisfiable or has a unique SAT assignment. Solving satisfiability for such circuits is known
to be sufficient to solve SAT in general [VV86]. The algorithm for SAT simply runs the aggregator
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with a random PRF key K, and outputs YES if and only if the aggregator returns a non-zero value.
Note that if the formula is unsatisfiable, we will always get 0 from the aggregator. Otherwise, we get
fk(x), where x is the (unique) satisfying assignment. Now, this might end up being 0 accidentally,
but cannot be 0 always since otherwise, we will turn it into a PRF distinguisher. The distinguisher
has the satisfying assignment hardcoded into it non-uniformly, and it simply checks if PRFK(x) is
0.

Theorem 1.5 (Impossibility for General Set Systems). Suppose there is an efficient algorithm
which on an index for f ∈ F , a set system defined by {x : C(x) = 1} for a polynomial size
Boolean circuit C, and an aggregation function Γ, outputs the Γx:C(x)=1f(x). Then, there is efficient
algorithm that takes circuits C as input and w.h.p. over its coins, decides satisfiability for C.

1.2 Our Results: Augmented PRFs and Computational Learning

As discussed above, connections between PRFs and learning theory date back to the 80’s in the
pioneering work of [Val84] showing that PRF in a complexity class C implies the existence of
concept classes in C which can not be learned with membership queries. In the second part
of this work, we study the implications of the slew of augmented PRF constructions of recent
years [BW13a, BGI14a, KPTZ13b, BC10, ABPP14] and our new aggregate PRF to computational
learning.

1.2.1 Constrained PRFs and limits on Restriction Access learnability

Recently, Dvir, Rao, Wigderson, and Yehudayoff [DRWY12] introduced a new learning model
where the learner is allowed non-black-box information on the computational device (such as cir-
cuits, DNF,formulas) that decides the concept; their learner receives a simplified device resulting
from partial assignments to input variables (i.e. restrictions). These partial restrictions lie some-
where in between function evaluation (full restrictions) which correspond to learning with mem-
bership queries and the full description of the original device (the empty restriction). The work of
[DRWY12] studies a PAC version of restriction access, called PACRA, where the learner receives
the circuit restricted with respect to random partial assignments. They show that both decision
trees and DNF formulas can be learned efficiently in this model. Indeed, the PACRA model seems
like quite a powerful generalization, if not too unrealistic, of the traditional PAC learning model,
as it returns to the learner a computational description of the simplified concept.

Yet, in this section we will show limitations of this computational model under cryptographic
assumptions. We show that the constrained pseudo-random function families introduced recently
in [BW13b, BGI14b, KPTZ13a] naturally define a concept class which is not learnable by an even
stronger variant of the restriction access learning model which we define. In the stronger variant,
which we name membership queries with restriction access (MQRA) the learner can adaptively spec-
ify any restriction of the circuit from a specified class of restrictions S and receive the simplified
device computing the concept on this restricted domain in return. As this setting requires sub-
stantial notation, we define this new model very informally, and defer the formal definitions and
theorems to the full version.

Definition 1.1 (Membership queries with restriction access (MQRA)). Let C : X → {0, 1} be a
concept class, and S = {S ⊆ X} be a collection of subsets of the domain. S is the set of allowable

6



restrictions for concepts f ∈ C. Let Simp be “simplification rule” which, for a concept f and
restriction S outputs a “simplification” of f restricted to S.

An algorithm A is an (ε, δ, α)-MQRAlearning algorithm for representation class C with respect
to a restrictions in S and simplification rule Simp if, for every f ∈ C, Pr[ASimp(f,·) = h] ≥ 1 − δ
where h is an ε-approximation to f – and furthermore, A only requests restrictions for an α-fraction
of the whole domain X.

Informally, constrained PRFs are PRFs with two additional properties: 1) for any subset S
of the domain in a specified collection S, a constrained key KS can be computed, knowledge of
which enables efficient evaluation of the PRF on S; and 2) even with knowledge of constrained keys
KS1 , . . . ,KSm for the corresponding subsets, the function retains pseudo-randomness on all points
not covered by any of these sets. Connecting this to restriction access, the constrained keys will
allow for generation of restriction access examples (restricted implementations with fixed partial
assignments) and the second property implies that those examples do not aid in the learning of the
function.

Theorem 1.6 (Informal). Suppose F is a family of constrained PRFs which can be constrained
to sets in S. If F is computable in circuit complexity class C, then C is hard to MQRA-learn with
restrictions in S.

Corollary 1.7 (Informal). Existing constructions of constrained PRFs [BW13a] yield the following
corollaries:

• If one-way functions exist, then poly-sized circuits can not be learned with restrictions on
sub-intervals of the input-domain; and

• Assuming the sub-exponential hardness of the multi-linear Diffie-Hellman problem, NC1 can-
not be learned with restriction on hypercubes.

1.2.2 New Learning Models Inspired by the Study of PRFs

We proceed to define two new learning models inspired by recent directions in cryptography. The
first model is the related concept model inspired by work into related-key attacks in cryptography.
While we have cryptography and lower bounds in mind, we argue that this model is in some ways
natural. The second model, learning with aggregate queries, is directly inspired by our development
of aggregate pseudo-random functions in this work; rather than being a natural model in its own
right, this model further illustrates how cryptography and learning are duals in many senses.

The Related Concept Learning Model The idea that some functions or concepts are related
to one another is quite natural. For a DNF formula, for instance, related concepts may include
formulas where a clause has been added or formulas where the roles of two variables are swapped.
For a decision tree, we could consider removing some accepting leaves and examining the resulting
behavior. For a circuit, a related circuit might alter internal gates or fix the values on some wires.
A similar phenomena occurs in cryptography, where secret keys corresponding to different instances
of the same cryptographic primitive or even secret keys of different cryptographic primitives are
related (if, for example, they were generated by a pseudo random process on the same seed).

We propose a new computational learning model where the learner is explicitly allowed to specify
membership queries not only for the concept to be learned, but also for “related” concepts, given by
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a class of allowed transformations on the concept. We will show both a separation from membership
queries, and a general negative result in the new model. Based on recent constructions of related-
key secure PRFs by Bellare and Cash [BC10] and Abdalla et al [ABPP14], we demonstrate concept
classes for which access to these related concepts is of no help.

To formalize the related concept learning model, we will consider keyed concept classes – classes
indexed by a set of keys. This will enable the study of related concepts by instead considering
concepts whose keys are related in some way. Most generally, we think of a key as a succinct
representation of the computational device which decides the concept. This is a general framework;
for example, we may consider the bit representation of a particular log-depth circuit as a key for
a concept in the concept class NC1. For a concept fk in concept class C, we allow the learner to
query a membership oracle for fk and also for ‘related’ concepts fφ(k) ∈ CK for φ in a specified class

of allowable functions Φ. For example: let K = {0, 1}λ and let Φ⊕ = {φ∆ : k 7→ k ⊕∆}∆∈{0,1}λ .
Informally:

Definition 1.2 (Φ-Related-Concept Learning Model (Φ-RC)). For CK a keyed concept class, let
Φ = {φ : K → K} be a set of functions on K that contains the identity function id. A related-
concept oracle RCk, on query (φ, x), responds with fφ(k)(x), for all φ ∈ Φ and x ∈ X.

An algorithm A is an (ε, δ)-Φ-RK learning algorithm for a Ck if, for every k ∈ K, when given
access to the oracle RKk(·), the algorithm A outputs with probability at least 1 − δ a function
h : {0, 1}n → {0, 1} that ε-approximates fk.

Yet again, we are able to demonstrate the limitations of this model using the power of a
strong type of pseudo-random function. We show that related-key secure PRF families (RKA-
PRF) defined and instantiated in [BC10] and [ABPP14] give a natural concept class which is not
learnable with related key queries. RKA-PRFs are defined with respect to a set Φ of functions on
the set of PRF keys. Informally, the security notion guarantees that for a randomly selected key
k, no efficient adversary can distinguish oracle access to fk and fφ(k) (for many adaptively chosen
functions φ ∈ Φ) from an oracle that returns completely random values. We leverage this strong
pseudo-randomness property to show hard-to-learn concepts in the related concept model.

Theorem 1.8 (Informal). Suppose F is a family of RKA-PRFs with respect to related-key functions
Φ. If F is computable in circuit complexity class C, then C is hard to learn in the Φ′-RC model for
some Φ′.

Existing constructions of RKA-PRFs [ABPP14] yield the following corollary:

Corollary 1.9 (Informal). Assuming the hardness of the DDH problem, and collision-resistant
hash functions, NC1 is hard to Φ-RC-learn for an class of affine functions Φ.

The Aggregate Learning Model The other learning model we propose is inspired by our
aggregate PRFs. Here, we consider a new extension to the power of the learning algorithm. Whereas
membership queries are of the form “What is the label of an example x?”, we grant the learner the
power to request the evaluation of simple functions on tuples of examples (x1, ..., xn) such as “How
many of x1, . . . , xn are in C?” or “Compute the product of the labels of x1, ..., xn?”. Clearly, if
n is polynomial then this will result only a polynomial gain in the query complexity of a learning
algorithm in the best case. Instead, we propose to study cases when n may be super-polynomial,
but the description of the tuples is succinct. For example, the learning algorithm might query the
number of x’s in a large interval that are positive examples in the concept.
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As with the restriction access and related concept models – and the aggregate PRFs we define
in this work – the Aggregate Queries (AQ) learning model will be considered with restrictions to
both the types of aggregate functions Γ the learner can query, and the sets S over which the learner
may request these functions to be evaluated on. We now present the AQ learning model informally:

Definition 1.3 ((Γ,S)-Aggregate Queries (AQ) Learning). Let C : X → {0, 1} be a concept class,
and let S be a collection of subsets of X. Let Γ : {0, 1}∗ → V be an aggregation function. For
f ∈ C, let AGGf be an “aggregation” oracle, which for S ∈ S, returns Γx∈Sf(x). Let MEMf be the
membership oracle, which for input x returns f(x).

An algorithm A is an (ε, δ)-(Γ,S)-AQ learning algorithm for C if for every f ∈ C,

Pr[AMEMf (·),AGGf (·) = h] ≥ 1− δ

where h is an ε-approximation to f .

Initially, AQ learning is reminiscent of learning with statistical queries (SQ). In fact, this ap-
parent connection inspired this portion of our work. But the AQ setting is in fact incomparable to
SQ learning, or even the weaker “statistical queries that are independent of the target” as defined
in [BF02]. On the one hand, AQ queries provide a sort of noiseless variant of SQ, giving more
power to the AQ learner; on the other hand, the AQ learner is restricted to aggregating over sets
in S, whereas the SQ learner is not restricted in this way, thereby limiting the power of the AQ
learner. The AQ setting where S contains every subset of the domain is indeed a noiseless version
of “statistical queries independent of the target,” but even this model is a restricted version of SQ.
This does raise the natural question of a noiseless version of SQ and its variants; hardness results
in such models would be interesting in that they would suggest that the hardness comes not from
the noise but from an inherent loss of information in statistics/aggregates.

We will show both a simple separation from learning with membership queries (in the full
version), and under cryptographic assumptions, a general lower bound on the power of learning
with aggregate queries. The negative examples will use the results in Section 1.1.

Theorem 1.10. Let F be a boolean-valued aggregate PRF with respect to set system S and aggre-
gation function Γ. If F is computable in complexity class C, then C is hard to (Γ,S)-AQ learn.

Corollary 1.11. Using the results from Section 3, we get the following corollaries:

• The existence of one way functions implies that P/poly is hard to (
∑
,S[a,b])-AQ learn, with

S[a,b] the set of sub-intervals of the domain as defined in Section 3.

• The DDH assumption implies that NC1 is hard to (
∑
,S[a,b])-AQ learn, with S[a,b] being the

set of sub-intervals of the domain as defined in Section 3.

• The subexponential DDH Assumption implies that NC1 is hard to (
∏
,R)-AQ learn, with R

the set of read-once boolean formulas defined in Section 3.

Open Questions. As discussed in the introduction, augmented pseudo-random functions often
have powerful and surprising applications, perhaps the most recent example being constrained
PRFs [BW13a, KPTZ13a, BGI14a]. Perhaps the most obvious open question that emerges from
this work is to find applications for aggregate PRFs. We remark that a primitive similar to aggregate
PRFs was used in [BGV11] to construct delegation protocols.
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Perhaps a more immediate concern is that all our aggregate PRF constructions (except for
intervals) requires sub-exponential hardness assumptions. We view it as an important open question
to base these constructions on polynomial assumptions.

In this work we restricted our attention to particular types of aggregation functions and subsets
over which the aggregation takes place, although our definition captures more general scenarios.
We looked at aggregation functions that compute group operations over Abelian groups. Can we
support more general aggregation functions that are not restricted to group operations, for example
the majority aggregation function, or even non-symmetric aggregation functions? We show positive
results for intervals, hypercubes, and sets recognized by read-once formulas and decision trees. On
the other hand, we show that it is unlikely that we can support general sets, for example sets
recognized by CNF formulas. This almost closes the gap between what is possible and what is
hard. A concrete open question in this direction is to construct an aggregate PRF computing
summation over an Abelian group for sets recognized by DNFs, or provide evidence that this
cannot be done.

Organization. This paper is organized into two parts that can be read essentially independently
of each other. In the first part (Sections 2 and 3), we present the definition and constructions of
aggregate pseudo-random functions. In the second part (Section 4), we show connections between
various notions of augmented PRFs and their applications to augmented learning models.

2 Aggregate PRF

We will let λ denote the security parameter throughout this paper.
Let F = {Fλ}λ>0 be a function family where each function f ∈ Fλ maps a domain Dλ to a

range Rλ. An aggregate function family is associated with two objects:

1. an ensemble of sets S = {Sλ}λ>0 where each Sλ is a collection of subsets of the domain
S ⊆ Dλ; and

2. an “aggregation function” Γλ : (Rλ)∗ → Vλ that takes a tuple of values from the range Rλ of
the function family and “aggregates” them to produce a value in an output set Vλ.

Let us now make this notion formal. To do so, we will impose restrictions on the set ensembles
and the aggregation function. First, we require set ensemble Sλ to be efficiently recognizable. That
is, there is a polynomial-size Boolean circuit family C = {Cλ}λ>0 such that for any set S ∈ Sλ
there is a circuit C = CS ∈ Cλ such that x ∈ S if and only if C(x) = 1. Second, we require our
aggregation functions Γ to be efficient in the length of its inputs, and symmetric; namely the output
of the function does not depend on the order in which the inputs are fed into it. Summation over an
Abelian group is an example of a possible aggregation function. Third and finally, elements in our
sets Dλ, Rλ, and Vλ are all representable in poly(λ) bits, and the functions f ∈ Fλ are computable
in poly(λ) time.

Define the aggregate function AGG = AGGλf,Sλ,Γλ that is indexed by a function f ∈ Fλ, takes as
input a set S ∈ Sλ and “aggregates” the values of f(x) for all x ∈ Sλ. That is, AGG(S) outputs

Γ
(
f(x1), f(x2), . . . , f(x|S|)

)
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where S = {x1, . . . , x|S|}. More precisely, we have

AGGλf,Sλ,Γλ :Sλ → Vλ
S 7→ Γxi∈S

(
f(x1), . . . , f(x|S|)

)
We will furthermore require that the AGG can be computed in poly(λ) time. We require this

in spite of the fact that the sets over which the aggregation is done can be exponentially large!
Clearly, such a thing is impossible for a random function f but yet, we will show how to construct
pseudo-random function families that support efficient aggregate evaluation. We will call such a
pseudo-random function (PRF) family an aggregate PRF family. In other words, our objective is
two fold:

1. Allow anyone who knows the (polynomial size) function description to efficiently compute the
aggregate function values over exponentially large sets; but at the same time,

2. Ensure that the function family is indistinguishable from a truly random function, even given
an oracle that computes aggregate values.

A simple example of aggregates is that of computing the summation of function values over
sub-intervals of the domain. That is, let domain and range be Zp for some p = p(λ), let the
family of subsets be Sλ = {[a, b] ⊆ Zp : a, b ∈ Zp; a ≤ b}, and the aggregation function be

Γλ(y1, . . . , yk) =
∑k

i=1 yi (mod p). In this case, we are interested in computing

AGGλf,Sλ,sum([a, b]) =
∑
a≤x≤b

f(x)

We will, in due course, show both constructions and impossibility results for aggregate PRFs, but
first let us start with the formal definition.

Definition 2.1 (Aggregate PRF). Let F = {Fλ}λ>0 be a function family where each function
f ∈ Fλ maps a domain Dλ to a range Rλ, S be an efficiently recognizable ensemble of sets {Sλ}λ>0,
and Γλ : (Rλ)∗ → Vλ be an aggregation function. We say that F is an (S,Γ)-aggregate pseu-
dorandom function family (also denoted (S,Γ)-AGG-PRF) if there exists an efficient algorithm
Aggregatek,S,Γ(S): On input a subset S ∈ S of the domain, outputs v ∈ V, such that

• Efficient aggregation: For every S ∈ S, Aggregatek,S,Γ(S) = AGGk,S,Γ(S) where AGGk,S,Γ(S) :=
Γx∈S Fk(x).45

• Pseudorandomness: For all probabilistic polynomial-time (in security parameter λ) algo-
rithms A, and for randomly selected key k ∈ K:

| Pr
f←Fλ

[Afk,AGGfk,S,Γ(1λ)]− Pr
h←Hλ

[Ah,AGGh,S,Γ(1λ)]| ≤ negl(λ)

where Hλ is the set of all functions Dλ → Rλ.

4We omit subscripts on AGG and Aggregate when clear from context.
5AGG is defined to be the correct aggregate value, while Aggregate is the algorithm by which we compute the value

AGG. We make this distinction because while a random function cannot be efficiently aggregated, the aggregate value
is still well-defined.
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Remark. In this work, we restrict our attention to aggregation functions that treat the range
Vλ = Rλ as an Abelian group and compute the group sum (or product) of its inputs. We denote
this setting by Γ =

∑
(or

∏
, respectively). Supporting other types of aggregation functions (ex:

max, a hash) is a direction for future work.

2.1 A General Security Theorem for Aggregate PRFs

How does the security of a function family in the AGG-PRF game relate to security in the normal
PRF game (in which A uses only the oracle f and not AGGf )?

In this section, we show a general security theorem for aggregate pseudo-random functions.
Namely, we show that any “sufficiently secure” PRF is also aggregation-secure (for any collection of
efficiently recognizable sets and any group-aggregation operation), in the sense of Definition 2.1, by
way of an inefficient reduction (with overhead polynomial in the size of the domain). In Section 3,
we will use this to construct AGG-PRFs from a subexponential-time hardness assumption on the
DDH problem. We also show that no such general reduction can be efficient, by demonstrating
a PRF family that is not aggregation-secure. As a general security theorem cannot be shown
without the use of complexity leveraging, this suggests a natural direction for future study: to
devise constructions for similarly expressive aggregate PRFs from polynomial assumptions.

Lemma 2.1. Let F = {Fλ}λ>0 be a pseudo-random function family where each function f ∈ Fλ
maps a domain Dλ to a range Rλ. Suppose there is an adversary A that runs in time tA = tA(λ)
and achieves an advantage of εA = εA(λ) in the aggregate PRF security game for the family F
with an efficiently recognizable set system Sλ and an aggregation function Γλ that is computable
in time polynomial in its input length. Then, there is an adversary B that runs in time tB =
tA + poly(λ, |Dλ|) and achieves an advantage of εB = εA in the standard PRF game for the family
F .

Proof. Let fK ← Fλ be a random function from the family Fλ. We construct the adversary B which
is given access to an oracle O which is either fK or a uniformly random function h : Dλ → Rλ.

B works as follows: It queries the PRF on all inputs x ∈ Dλ, builds the function table TK of
fK and runs the adversary A, responding to its queries as follows:

1. Respond to its PRF query x ∈ Dλ by returning TK [x]; and

2. Respond to its aggregate query (Γ, S) by (a) going through the table to look up all x such
that x ∈ S; and (b) applying the aggregation function honestly to these values.

Finally, when A halts and returns a bit b, B outputs the bit b and halts.
B takes O(|Dλ|) time to build the truth table of the oracle. For each aggregate query (Γ, S), B
first checks for each x ∈ Dλ whether x ∈ S. This takes |Dλ| · poly(λ) time, since S is efficiently
recognizable. It then computes the aggregation function Γ over f(x) such that x ∈ S, taking
poly(|Dλ|) time, since Γ is computable in time polynomial in its input length. The total time,
therefore, is

tB = tA + poly(λ, |Dλ|)

Clearly, when O is the pseudo-random function fK , B simulates an aggregatable PRF oracle
to A, and when O is a random function, B simulates an aggregate random oracle to A. Thus, B
has the same advantage in the PRF game as A does in the aggregate PRF game.
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The above gives an inefficient reduction from the PRF security of a function family F to the
AGG-PRF security of the same family running in time polynomial in the size of the domain. Can
this reduction be made efficient; that is, can we replace tB = tA + poly(λ) into the Lemma 2.1?

This is not possible. Such a reduction would imply that every PRF family that supports
efficient aggregate functionality AGG is AGG-PRF secure; this is clearly false. Take for example a
pseudorandom function family F0 = {f : Z2p → Zp} such that for all f , there is no x with f(x) = 0.
It is possible to construct such a pseudorandom function family F0 (under the standard definition).
While 0 is not in the image of any f ∈ F0, a random function with the same domain and range will,
with high probability, have 0 in the image. For an aggregation oracle AGGf computing products
over Zp: AGGf (Z2p) 6= 0 if f ∈ F0, while AGGf (Z2p) = 0 with high probability for random f .

Thus, access to aggregates for products over Zp6 would allow an adversary to trivially distinguish
f ∈ F0 from a truly random map.

2.2 Impossibility of Aggregate PRF for General Sets

It is natural to ask whether whether an aggregate PRF might be constructed for more general sets
than we present in Section 3. There we constructed aggregate PRF for the sets of all satisfying
assignments for read-once boolean formula and decision trees. As we show in the following, it is
impossible to extend this to support the set of satisfying assignmnets for more general circuits.

Theorem 2.2. Suppose there is an algorithm that has a PRF description K, a circuit C, and a
fixed aggregation rule (sum over a finite field, say), and outputs the aggregate value∑

x:C(x)=1

fK(x)

Then, there is an algorithm that takes circuits C as input and w.h.p. over it coins, decides the
satisfiability of C.

Proof. The algorithm for SAT simply runs the aggregator with a randomly chosen K, and outputs
YES if and only if the aggregator returns 1. The rationale is that if the formula is unsatisfiable,
you will always get 0 from the aggregator.7 Otherwise, you will get fK(x), where x is the satisfying
assignment. (More generally,

∑
x:C(x)=1 fK(x)). Now, this might end up being 0 accidentally, but

cannot be 0 always since otherwise, you will get a PRF distinguisher. The distinguisher has the
satisfying assignment hardcoded into it non-uniformly,8 and it simply checks if fK(x) = 0.

This impossibility result can be generalized for efficient aggregation of functions that are not
pseudo-random. For instance, if f(x) ≡ 1 was the constant function 1, the same computing the
aggregate over f satisfying inputs to C would not only reveal the satisfiability of C, but even the
number of satisfying assignments! In the PRF setting though, it seems that aggregates only reveal
the (un)satisfiability of a circuit C, but not the number of satisfying assignments. Further studying

6Taken with respect to a set ensemble S containing, as an element, the whole domain Z2p. While this is not
necessary (a sufficiently large subset would suffice), it is the case for the ensembles S we consider in this work.

7This proof may be extended to the case when the algorithm’s output is not restricted to be 0 when the input
circuit C is unsatisfiable, and even arbitrary outputs for sufficiently expressive classes of circuits.

8As pointed out by one reviewer, for sufficiently expressive classes of circuits C, this argument can be made
uniform. Specifically, we use distinguish the challenge y from a pseudo-random generator from random by choosing
C := Cy that is satisfiable if and only if y is in the PRG image, and modify the remainder of the argument accordingly.
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the relationship between the (not necessarily pseudo-random) function f , the circuit representation
of C, and the tractability of computing aggregates is an interesting direction. A negative result for a
class for which satisfiability (or even counting assignments) is tractable would be very interesting.

3 Constructions of aggregate PRF

In this section, we show several constructions of aggregate PRFs. In Section 3.1, we show a generic
construction of aggregate PRFs for intervals (where the aggregation is any group operation). This
construction is black-box: given any PRF with the appropriate domain and range, we construct a
related family of aggregate PRFs and with no loss in security. In Section 3.2, we show a construction
of aggregate PRFs for products over bit-fixing sets (hypercubes), from a strong decisional Diffie-
Hellman assumption. We then generalize the DDH construction: in Section 3.3, to the class of sets
recognized by polynomial-size decision trees; and in Section 3.4, to sets recognized by read-once
Boolean formulas. In these last three constructions, we make use of Lemma 2.1 to argue security.

3.1 Generic Construction for Interval Sets

Our first construction is adapted from [GGN10]9. The construction is entirely black-box: from
any appropriate PRF family G, we construct a related AGG-PRF family F . Unlike the proofs in
the sequel, this reduction exactly preserves the security of the starting PRF.

Let Gλ = {gK : Zn(λ) → Rλ}K∈Kλ be a PRF family, with R = Rλ being a group where
the group operation is denoted by ⊕10. We construct an aggregatable PRF Fλ = {fK}K∈Kλ
for which we can efficiently compute summation of fK(x) for all x in an interval [a, b], for any
a ≤ b ∈ Zn. Let S[a,b] = {[a, b] ⊆ Zn : a, b ∈ Zn; a ≤ b} be the set of all interval subsets of Zn,
[a, b] = {x ∈ Zn : a ≤ x ≤ b}. Define F = {fK : Zn → R}K∈K as follows:

fK(x) =

{
gK(0) : x = 0
gK(x)	 gK(x− 1) : x 6= 0

Lemma 3.1. Assuming that G is a pseudo-random function family, F is a (S[a,b],⊕)-aggregate
pseudo-random function family.

Proof. It follows immediately from the definition of fK that one can compute the summation of
fK(x) over any interval [a, b]. Indeed, rearranging the definition yields∑

x∈[0,b]

fK(x) = gK(b) and
∑
x∈[a,b]

fK(x) = gK(b)⊕−gK(a− 1)

We reduce the pseudo-randomness of F to that of G. The key observation is that each query
to the fK oracle as well as the aggregation oracle for fK can be answered using at most two black-
box calls to the underlying function gK . By assumption on G, replacing the oracle for gK with
a uniformly random function h : Zn → R is computationally indistinguishable. Furthermore, the
function f defined by replacing g by h, namely

f ′(x) =

{
h(0) : x = 0
h(x)	 h(x− 1) : x 6= 0

9See Example 3.1 and Footnote 18
10The only structure of Zn we us is the total order. Our construction directly applies to any finite, totally-ordered

domain D by first mapping D to Zn, preserving order.
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is a truly random function. Thus, the simulated oracle with gK replaced by h implements a
uniformly random function that supports aggregate queries. Security according to Definition 2.1
follows immediately.

3.2 Bit-Fixing Aggregate PRF from DDH

We now construct an aggregate PRF computing products for bit-fixing sets. Informally, our PRF
will have domain {0, 1}poly(λ), and support aggregation over sets like {x : x1 = 0∧x2 = 1∧x7 = 0}.
We will naturally represent such sets by a string in {0, 1, ?}poly(λ) with 0 and 1 indicating a fixed
bit location, and ? indicating a free bit location. We call each such set a ‘hypercube.’ The PRF
will have a multiplicative group G as its range, and the aggregate functionality will compute group
products.

Our PRF is exactly the Naor-Reingold PRF [NR04], for which we demonstrate efficient aggre-
gation and security. We begin by stating the decisional Diffie-Hellman assumption.

Let G = {Gλ}λ>0 be a family of groups of order p = p(λ). The decisional Diffie-Hellman
assumption for G says that the following two ensembles are computationally indistinguishable:{

(Gλ, g, ga, gb, gab) : G← Gλ; g ← G; a, b← Zp
}
λ>0

≈c
{

(G, g, ga, gb, gc) : G← Gλ; g ← G; a, b, c← Zp
}
λ>0

We say that the (t(λ), ε(λ))-DDH assumption holds if for every adversary running in time t(λ), the
advantage in distinguishing between the two distributions above is at most ε(λ).

3.2.1 Construction

Let G = {Gλ}λ>0 be a family of groups of order p = p(λ), each with a canonical generator g,
for which the decisional Diffie Hellman (DDH) problem is hard. Let ` = `(λ) be a polynomial
function. We will construct a PRF family F` = {F`,λ}λ>0 where each function f ∈ F`,λ maps
{0, 1}`(λ) to Gλ. Our PRF family is exactly the Naor-Reingold PRF [NR04]. Namely, each function
f is parametrized by `+ 1 numbers ~K := (K0,K1, . . . ,K`), where each Ki ∈ Zp.

f ~K(x1, . . . , x`) = gK0
∏`
i=1K

xi
i = g

K0
∏
i:xi=1 Ki ∈ Gλ

The aggregation algorithm Aggregate for bit-fixing functions gets as input the PRF key ~K and a
bit-fixing string y ∈ {0, 1, ?}` and does the following:

• Define the strings K ′i as follows:

K ′i =


1 if yi = 0
Ki if yi = 1
1 +Ki otherwise

• Output gK0
∏`
i=1K

′
i as the answer to the aggregate query.

Letting HC = {HC`(λ)}λ>0 where HC` = {0, 1, ?}` is the set of hypercubes on {0, 1}`, we now prove
the following:
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Theorem 3.2. Let ε > 0 be a constant, choose the security parameter λ = Ω(`1/ε), and assume the
(2λ

ε
, 2−λ

ε
)-hardness of DDH over the group G. Then, the collection of functions F defined above is

a secure aggregate PRF with respect to the subsets HC and the product aggregation function over
G.

Correctness. We show that the answer we computed for an aggregate query y ∈ {0, 1, ?}λ is
correct. Define the sets

Match(y) := {x ∈ {0, 1}λ : ∀i, yi = ? or xi = yi} and Fixed(y) := {i ∈ [λ] : yi ∈ {0, 1}}

Thus, Match(y) is the set of all 0-1 strings x that match all the fixed locations of y, but can take
any value on the wildcard locations of y. Fixed(y) is the set of all locations i where the bit yi is
fixed. Note that:

AGG( ~K, y) =
∏
x∈Match(y) f ~K(x) (by definition of AGG)

=
∏
x∈Match(y) g

K0
∏`
i=1K

xi
i (by definition of f ~K)

= gK0
∑
x∈Match(y)

∏`
i=1 K

xi
i

= gK0

(∏
i∈Fixed(y)K

yi
i

)
·
(∏

i∈[`]\Fixed(y)(1+Ki)
)

(inverting sums and products)

= gK0
∏`
i=1 K

′
i (by definition of K ′i)

= Aggregate( ~K, y) (by definition of Aggregate)

Security. We will rely on the following theorem from [NR04].

Theorem 3.3 (Theorem 4.1, [NR04]). Suppose there is an adversary A that runs in time t(λ) and
has an advantage of γ(λ) in the (regular) PRF game. Then, there is an adversary B that runs in
time poly(λ) · t(λ) and breaks the DDH assumption with advantage γ(λ)/λ.

The aggregate PRF security proof proceeds as follows. First, we choose the security parameter
λ = Ω(`1/ε) as in the theorem statement. We use Lemma 2.1 to conclude that if there is an
adversary distinguisher D breaking the aggregate PRF security of F in poly(λ) time with 1/poly(λ)
advantage, then there is an adversary A that breaks the regular PRF security of F in poly(λ)·2O(`) =
poly(λ) · 2λε = 2O(λε) time with 1/poly(λ) advantage. Using Theorem 3.3 now tells us that there is
an adversary B that wins the DDH distinguishing game in 2O(λε) time with 1/poly(λ) advantage,
breaking the subexponential DDH assumption. This establishes the aggregate security of the PRF
and thus Theorem 3.2.

Obtaining a security proof based on polynomial assumptions is an interesting open question.

3.3 Decision Trees

We generalize the previous construction from DDH to support sets specified by polynomial-sized
decision trees by observing that such decision trees can be written as disjoint unions of hypercubes.

A decision tree family Tλ of size p(λ) over `(λ) variables consists of binary trees with at most
p(λ) nodes, where each internal node is labeled with a variable xi for i ∈ [`], the two outgoing
edges of an internal node are labeled 0 and 1, and the leaves are labeled with 0 or 1. On input
an x ∈ {0, 1}`, the computation of the decision tree starts from the root, and upon reaching an
internal node n labeled by a variable xi, takes either the 0-outgoing edge or the 1-outgoing edge
out of the node n, depending on whether xi is 0 or 1, respectively.
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We now show how to construct a PRF family F` = {F`,λ}λ>0 where each F`,λ consists of
functions that map Dλ := {0, 1}` to a group Gλ, that supports aggregation over sets recognized by
decision trees. That is, let Sλ = {S ⊆ {0, 1}` : ∃ a decision tree TS ∈ Tλ that recognizes S}.

Our construction uses a hypercube-aggregate PRF family F ′` as a sub-routine. First, we need
the following simple lemma.

Lemma 3.4 (Decision Trees as Disjoint Unions of Hypercubes). Let S ⊆ {0, 1}` be recognized by a
decision tree TS of size p = p(λ). Then, S is a disjoint union of at most p hybercubes Hy1 , . . . ,Hyp,
where each yi ∈ {0, 1, ?}` and Hyi = Match(yi). Furthermore, given TS, one can in polynomial time
compute these hypercubes.

Given the lemma, Aggregate is simple: on input a set S represented by a decision tree TS , com-
pute the disjoint hypercubes Hy1 , . . . ,Hyp . Run the hypercube aggregation algorithm to compute

gi ← AggregateF (K, yi)

and outputs g :=
∏p
i=1 gi.

Basing the construction on the hypercube-aggregate PRF scheme from Section 3.2, we get a
decision tree-aggregate PRF based on the sub-exponential DDH assumption. The security of this
PRF follows from Lemma 2.1 by an argument identical to the one in Section 3.2.

3.4 Read-once formulas

Read-once boolean formula provide a different generalization of hypercubes and they too admit an
efficient aggregation algorithm for the Naor-Reingold PRF, with a similar security guarantee.

A boolean formula on ` variables is a circuit on x = (x1, . . . , x`) ∈ {0, 1}` composed of only
AND, OR, and NOT gates. A read-once boolean formula is a boolean formula with fan-out 1,
namely each input literal feeds into at most one gate, and each gate output feeds into at most one
other gate.11 Let Rλ be the family of all read-once boolean formulas over `(λ) variables. Without
loss of generality, we restrict these circuits to be in a standard form: namely, composed of fan-in 2
and fan-out 1 AND and OR gates, and any NOT gates occurring at the inputs.

In this form, the circuit for any read-once boolean formula can be identified with a labelled
binary tree; we identify a formula by the label of its root Cφ. Nodes with zero children are
variables or their negation, labelled by xi or x̄i, while all other nodes have 2 children and represent
gates with fan-in 2. For such a node with label C, its children have labels CL and CR. Note that
each child is itself a read-once boolean formula on fewer inputs, and their inputs are disjoint Let
the gate type of a node C be type(C) ∈ {AND,OR}.

We describe a recursive aggregation algorithm for computing products of PRF values over all
accepting inputs for a given read-once boolean formula Cφ. Looking forward, we require the formula
to be read-once in order for the recursion to be correct. The algorithm described reduces to that
of Section 3.2 in the case where φ describes a hypercube.

3.4.1 Construction

The aggregation algorithm for read-once Boolean formulas takes as input the PRF key ~K =
(K0, . . . ,K`) and a formula Cφ ∈ Rλ where Cφ only reads the variables x1, . . . , xm for some m ≤ `.
We abuse notation and interpret Cφ to be a formula on both {0, 1}` and {0, 1}m in the natural way.

11We allow a formula to ignore some inputs variables; this enables the model to express hypercubes directly.
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AGGk,
∏(Cφ) =

∏
x:Cφ(x)=1

gK0
∏
i∈[`] K

xi
i (1)

= g
K0

∑
x:Cφ(x)=1

∏
i∈[`] K

xi
i (2)

= gK0·A(Cφ,1)·
∏
m<j≤`(1+Ki) (3)

where we define A(C, 1) :=
∑
{x∈{0,1}m:C(x)=1}

∏
i∈[m]K

xi
i . If A(C, 1) is efficiently computable, then

Aggregate will simply compute it and return (3). To this end, we provide a recursive procedure for
computing A(C, 1).

Generalizing the definition for any sub-formula C with variables named x1 to xm, define the
values A(C, 0) and A(C, 1):

A(C, b) :=
∑

{x∈{0,1}m: C(x)=b}

∏
i∈[m]

Kxi
i .

Recursively compute A(C, b) as follows:

• If C is a literal for variable xi, then by definition:

A(C, b) =

{
Ki if C = xi
1 if C = x̄i

• Else, if type(C) = AND: Let CL and CR be the children of C. By hypothesis, we can
recursively compute A(CL, b) and A(CR, b) for b ∈ {0, 1}. Compute A(C, b) as:

A(C, 1) = A(CL, 1) ·A(CR, 1)

A(C, 0) = A(CL, 0) ·A(CR, 0) +A(CL, 1) ·A(CR, 0) +A(CL, 0) ·A(CR, 1)

• Else, type(C) = OR: Let CL and CR be the children of C. By hypothesis, we can recursively
compute A(CL, b) and A(CR, b) for b ∈ {0, 1}. Compute A(C, b) as:

A(C, 1) = A(CL, 1) ·A(CR, 1) +A(CL, 1) ·A(CR, 0) +A(CL, 0) ·A(CR, 1)

A(C, 0) = A(CL, 0) ·A(CR, 0))

Lemma 3.5. A(C, b) as computed above is equal to
∑
{x∈{0,1}m: C(x)=b}

∏
i∈[m]K

xi
i

Proof. For C a literal, the correctness is immediate. We must check the recursion for each type(C) ∈
{AND,OR} and b ∈ {0, 1}. We only show the case for b = 1 when C is an OR gate; the other
three cases can be shown similarly.

Let SbL,bR = {x = (xL, xR) : (CL(xL), CR(xR) = (bL, bR)} be the set of inputs (xL, xR) to C
such that CL(xL) = bL and CR(xR) = bR. The set {x : C(x) = 1} can be decomposed into the
disjoint union S0,1 t S1,0 t S1,1. Furthermore,

A(C, 1) =
∑
x∈S0,1

∏
i∈[m]

Kxi
i +

∑
x∈S1,0

∏
i∈[m]

Kxi
i +

∑
x∈S1,1

∏
i∈[m]

Kxi
i

Because C is read-once, the sets of inputs on which CL and CR depend are disjoint; this implies
that A(CL, bL) ·A(CR, bR) =

∑
x∈SbL,bR

∏
i∈[m]K

xi
i , yielding the desired recursion.
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Theorem 3.6. Let ε > 0 be a constant, choose the security parameter λ = Ω(`1/ε), and assume
(2λ

ε
, 2−λ

ε
)-hardness of the DDH assumption. Then, the collection of functions Fλ defined above is

a secure aggregate PRF with respect to the subsets Rλ and the product aggregation function over
the group G.

Proof. Correctness is immediate from Lemma 3.5, and Equation (3). Security follows from the
decisional Diffie-Hellman assumption in much the same way it did in the case of bit-fixing functions.

4 Connection to Learning

4.1 Preliminaries

Notation: For a probability distribution D over a set X, we denote by x ← D to mean that x is
sampled according to D, and x← X to denote uniform sampling form X. For an algorithm A and
a function O, we denote that A has oracle access to O by AO(·).

We recall the definition of a “concept class”. In this section, we will often need to explicitly
reason about the representations of the concept classes discussed. Therefore we make use of the
notion of a “representation class” as defined by [KV94] alongside that of concept classes. This
unified formalization enables us to discuss both these traditional learning models (namely, PAC
and learning with membership queries) as well as the new models we present below. Our definitions
are parametrized by λ ∈ N.12

Definition 4.1 (Representation class [KV94]). Let K = {Kλ}λ∈N be a family of sets, where each
k ∈ Kλ has description in {0, 1}sk(λ) for some polynomial sk(·). Let X = {Xλ}λ∈N be a set, where
each Xλ is called a domain and each x ∈ Xλ has description in {0, 1}sx(λ) for some polynomial
sx(·). With each λ and each k ∈ Kλ, we associate a Boolean function fk : Xλ → {0, 1}.13 We
call each such function fk a concept, and k its index or its description. For each λ, we define the
concept class Cλ = {fk : k ∈ Kλ} to be the set of all concepts with index in Kλ. We define the
representation class C = {Cλ} to be the union of all concept classes Cλ.

This formalization allows us to easily associate complexity classes with concepts in learning
theory. For example, to capture the set of all DNF formulas on λ inputs with size at most p(λ) for

a polynomial p, we will let Xλ = {0, 1}λ, and K
p(λ)
λ be the set of descriptions of all DNF formulas

on λ variables with size at most p(λ) under some reasonable representation. Then a concept fk(x)

evaluates the formula k on input x. Finally, DNF
p(λ)
λ = {fk : k ∈ Kp(λ)

λ } is the concept class, and

DNFp(λ) = {DNF p(λ)
λ }λ∈N. DNF p(λ) is the representation class that computes all DNF formulas

on λ variables with description of size at most p(λ) in the given representation.
As a final observation, note that a Boolean-valued PRF family F = {Fλ} where Fλ = {fk :

Xλ → {0, 1}} with keyspace K = {Kλ} and domain X = {Xλ} satisfies the syntax of a represen-
tation class as defined above. This formalization is useful precisely because it captures both PRF
families and complexity classes, enabling lower bounds in various learning models.

In proving lower bounds for learning representation classes, it will be convenient to have a
notion of containment for two representation classes.

12When clear from the context, we will omit the subscript λ.
13This association is an efficient procedure for evaluating fk. Concretely, we might consider that there is a universal

circuit Fλ such that for each λ, fk(·) = Fλ(k, ·).
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Definition 4.2 (⊆). For two representation classes F = {Fλ} and G = {Gλ} on the same domain
X = {Xλ}, and with indexing sets I = {Iλ} and K = {Kλ} respectively, we say F ⊆ G if for all
sufficiently large λ, for all i ∈ Iλ, there exists k ∈ Kλ such that gk ≡ fi.

Informally, if a representation class contains a PRF family, then this class is hard to MQ-learn
(as in [Val84]). We apply similar reasoning to more powerful learning models. For example, if G is
the representation class DNF p(λ) as defined above, then F ⊆ DNF p(λ) is equivalent to saying that
for all sufficiently large λ, the concept class Fλ can be decided by a DNF on λ inputs of p(λ) size.

We now recall some standard definitions.

Definition 4.3 (ε-approximation). Let f, h : X → {0, 1} be arbitrary functions. We say h ε-
approximates f if Prx←X [h(x) 6= f(x)] ≤ ε.

In general, ε-approximation is considered under a general distribution on X, but we will consider
only the uniform distribution in this work.

Definition 4.4 (PAC learning). For a concept f : Xλ → {0, 1}, and a probability distribution
Dλ over Xλ, the example oracle EX(f,Dλ) takes no input and returns (x, f(x)) for x ← Dλ. An
algorithm A is an (ε, δ)-PAC learning algorithm for representation class C if for all sufficiently large
λ, ε = ε(λ) > 0, δ = δ(λ) > 0 and f ∈ Cλ,

Pr[AEX(f,Dλ) = h : h is an ε-approximation to f ] ≥ 1− δ

Definition 4.5 (MQ learning). For a concept f : Xλ → {0, 1}, the membership oracle MEM(f)
takes as input a point x ∈ Xλ and returns f(x). An algorithm A is an (ε, δ)-MQ learning algorithm
for representation class C if for all sufficiently large λ, ε = ε(λ) > 0, δ = δ(λ) > 0, and f ∈ Cλ,

Pr[AMEM(f) = h : h is an ε-approximation to f ] ≥ 1− δ

We consider only PAC learning with uniform examples, where Dλ is the uniform distribution
over Xλ. In this case, MQ is strictly stronger than PAC: everything that is PAC learnable is MQ
learnable.

Observe that for any f : Xλ → {0, 1}, either h(x) = 0 or h(x) = 1 will 1
2 -approximate f .

Furthermore, if A is inefficient, f may be learned exactly. For a learning algorithm to be non-
trivial, we require that it is efficient in λ, and that it at least weakly learns C.

Definition 4.6 (Efficient- and weak- learning). .

• A is said to be efficient if the time complexity of A and h are polynomial in 1/ε, 1/δ, and λ.

• A is said to weakly learn C if there exist some polynomials pε(λ), pδ(λ) for which ε ≤ 1
2−

1
pε(λ)

and δ ≤ 1− 1
pδ(λ) .

• We say a representation class is learnable if it is both efficiently and weakly learnable. Oth-
erwise, it is hard to learn.

Lastly, we recall the efficiently recognizable ensembles of sets as defined in Section 2. We
occasionally call such ensembles indexed, or succinct. Throughout this section, we require this
property of our set ensembles S. Both the MQRA and AQ learning models that we present are
defined with respect to S = {Sλ}, an efficiently recognizable ensemble of subsets of the domain Xλ.
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4.2 Membership queries with restriction access

In the PAC-with-Restriction Access model of learning of Dvir, et al [DRWY12], a powerful gener-
alization of PAC learning is studied: rather than receiving random examples of the form (x, f(x))
for the concept f , the learning algorithm receives a random ”restriction” of f - an implementation
of the concept for a subset of the domain. Given this implementation of the restricted concept, the
learning algorithm can both evaluate f on many related inputs, and study the properties of the
restricted implementation itself. We consider an even stronger setting: instead of receiving random
restrictions, the learner can adaptively request any restriction from a specified class S. We call this
model membership queries with restriction access (MQRA).

As a concrete example to help motivate and understand the definitions, we consider DNF
formulas. For a DNF formula φ, a natural restriction might set the values of some of the variables.
Consequently, some literals and clauses may have their values determined, yielding a simpler DNF
formula φ′ which agrees with φ on this restricted domain. This is the ‘restricted concept’ that the
learner receives.

This model is quite powerful; indeed, decision trees and DNFs are efficiently learnable in the
PAC-with-restriction-access learning model whereas neither is known to be learnable in plain PAC
model [DRWY12]. Might this access model be too powerful or are there concepts that cannot be
learned?

Looking forward, we will show that constrained PRFs correspond to hard-to-learn concepts in
the MQRAlearning model. In the remainder, we will formally define the learning model, define
constrained PRFs, and prove the main lower bound of this section.

4.2.1 MQRAlearning

While the original restriction access model only discusses restrictions fixing individual input bits
for a circuit, we consider more general notions of restrictions.

Definition 4.7 (Restriction). For a concept f : Xλ → {0, 1}, a restriction S ⊆ Xλ is a subset of
the domain. The restricted concept f |S : S → {0, 1} is equal to f on S.

While general restrictions can be studied, we consider the setting in which all restrictions S are
in a specified set of restrictions S. For a DNF formula φ, a restriction might be S = {x : x1 =
1 ∧ x4 = 0}. This restriction is contained in the set of ‘bit-fixing’ restrictions in which individual
input bits are fixed. In fact, this class of restrictions is all that is considered in [DRWY12]; we
generalize their model by allowing more general classes of restrictions.

In the previous example, a restricted DNF can be naturally represented as another DNF. More
generally, we allow a learning algorithm to receive representations of restricted concepts. These
representations are computed according to a Simplification Rule.14

Definition 4.8 (Simplification Rule). For each λ, let Cλ = {fk : Xλ → {0, 1}}k∈Kλ be a concept
class, Sλ an efficiently recognizable ensemble of subsets of Xλ, and S ∈ Sλ be a restriction. A
simplification of fk ∈ Cλ according to S is the description kS ∈ Kλ of a concept fKS such that
fkS = fk|S. A simplification rule for C = {Cλ} and S = {Sλ} is a mapping Simpλ : (k, S) 7→ kS for
all k ∈ Kλ, S ∈ Sλ.

14 Whereas a DNF with some fixed input bits is naturally represented by a smaller DNF, wehen considering general
representation classes and general restrictions, this is not always the case. Indeed, the simplification of f according
to S may be in fact more complex. We use the term “Simplification Rule” for compatibility with [DRWY12].
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In the PAC-learning with restriction access (PACRA) learning model considered in [DRWY12],
the learner only receives random restrictions. Instead, we consider the setting where the learner can
adaptively request any restriction from a specified class S. This model – which we call membership
queries learning with restriction access (MQRA) – is a strict generalization of PACRA for efficiently
samplable distributions over restrictions (including all the positive results in [DRWY12]). Further
observe that this strictly generalizes the membership oracle of MQ learning if S is such that for
each x, it is easy to find a restriction S covering x.

In traditional learning models (PAC, MQ) it is trivial to output a hypothesis that 1
2 -approximates

any concept f ; a successful learning algorithm is required to learn substantially more than half of
the concept. With restriction queries, the learning algorithm is explicitly given the power to com-
pute on some fraction α of the domain. Consequently, outputting an ε ≥ (1−α

2 )-approximation to
f is trivial; we require a successful learning algorithm to do substantially better. This reasoning is
reflected in the definition of weak MQRAlearning below.

Definition 4.9 (Membership queries with restriction access (MQRA)). In a given execution of
an oracle algorithm A with access to a restriction oracle Simp, let XS ⊆ Xλ be the union of all
restrictions S ∈ Sλ queried by A. S is an efficiently recognizable ensemble of subsets of the domain
Xλ.

An algorithm A is an (ε, δ, α)-MQRAlearning algorithm for representation class C with respect
to a restrictions in S and simplification rule Simp if, for all sufficiently large λ, for every fk ∈ Cλ,
Pr[ASimp(k,·) = h] ≥ 1− δ where h is an ε-approximation to f , – and furthermore – |XS | ≤ α|Xλ|.
A is said to weakly MQRA-learn if α ≤ 1− 1

pα(λ) , ε ≤ (1−α)(1
2 −

1
pε(λ)), δ ≤ 1− 1

pδ(λ) for some
polynomials pα, pε, pδ.

4.2.2 Constrained PRFs

We look to constrained pseudorandom functions for hard-to-learn concepts in the restriction access
model. To support the extra power of the restriction access model, our PRFs will need to allow
efficient evaluation on restrictions of the domain while maintaining some hardness on the remainder.
Constrained PRFs [KPTZ13a, BGI14a, BW13a] provide just this power. For showing hardness of
restriction access learning, the constrained keys will correspond to restricted concepts; the strong
pseudorandomness property will give the hardness result.

Definition: Syntax A family of functions F = {Fλ : Kλ×Xλ → Yλ} is said to be constrained
with respect to a set system S, if it supports the additional efficient algorithms:

• Constrainλ(k, S): A randomized algorithm, on input (k, S) ∈ Kλ×Sλ, outputs a constrained
key kS . We K̃λ , Support(Constrain(k, S)) the set of all constrained keys.

• Evalλ(kS , x): A deterministic algorithms taking input (kS , x) ∈ K̃λ ×Xλ, and satisfying the
following correctness guarantee:

Eval(Constrain(k, S), x) =

{
F (k, x) if x ∈ S
⊥ 6∈ Y otherwise.

Definition: Security Game

• C picks a random key k ∈ Kλ and initializes two empty subsets of the domain: C, V = ∅. C
and V are subsets of Xλ which must satisfy the invariant that C ∩ V = ∅. C will keep track
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the inputs x ∈ Xλ to the Challenge oracle, and V will be the union of all sets S queries to
Constrain plus all points x ∈ Xλ to the Eval oracle.

• C picks b ∈ {0, 1} to run EXP(b), and exposes the following three oracles to A :

Eval(x): On input x ∈ Xλ, outputs F (k, x). V ← V ∪ {x}.
Constrain(S): On input S ∈ Sλ, outputs kS . V ←W ∪ S.

Challenge(x): On input x ∈ Xλ, outputs:

F (k, x) in EXP(0)
y ← Yλ in EXP(1)

.

In EXP(1), the responses to Challenge are selected uniformly at random from the range, with
the requirement that the responses be consistent for identical inputs x.

• The adversary queries the oracles with the requirement that C ∩ V = ∅, and outputs a bit
b′ ∈ {0, 1}.

Definition 4.10. The advantage is defined as ADV cPRF
λ (A) := Pr[b′ = b] in the above

security game.

Definition 4.11 (Constrained PRF (cPRF)). A family of functions F = {Fλ : Kλ × Xλ →
Yλ} constrained with respect to S is a constrained PRF if for all probabilistic polynomial-time
adversaries A and for all sufficiently large λ and all polynomials p(n):

ADV cPRF
λ (A) <

1

2
+

1

p(n)
,

over the randomness of C and A.

4.2.3 Hardness of restriction access Learning

We will now prove that if a constrained PRF F with respect to set system S is computable in
representation class C, then C hard to MQRA-learn with respect to S and some simplification rule.

Theorem 4.1. Let F = {Fλ} be a Boolean-valued constrained PRF (also interpreted as a represen-
tation class) with respect to sets S and key-space K. Let EV AL = {EV ALλ} be a representation
class where each EV ALλ is defined as:

EV ALλ =
{
gkS (·) : gkS (x) = PRF.Eval(kS , x)

}
.

Namely, each concept in the class EV ALλ is indexed by kS ∈ K̃λ and has Xλ as its domain. For
any representation class C = {Cλ} such that F ⊆ C and EV AL ⊆ C, there exists a simplification
rule Simp such that C is hard to MQRA-learn with respect to the set of restrictions S and the
simplification rule Simp.

Existing constructions of constrained PRFs [BW13a] yield the following corollaries:
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Corollary 4.2. Let n = n(λ) be a polynomial, and assume that for the n + 1-MDDH problem,
every adversary time poly(λ) the advantage is at most ε(λ)/2n. Then there is a simplification rule
such that NC1 is hard to MQRA-learn with respect to restrictions in HC15.

Corollary 4.3. Assuming the existence of one-way functions, there is a simplification rule such
that P/poly is hard to MQRA-learn with respect to restrictions in S[a,b]

16.

Remarks: The Simplification Rule here is really the crux of the issue. In our theorem, there
exists a simplification rule under which we get a hardness result. This may seem somewhat artificial.
On the other hand, this implies that the restriction-access learnability (whether PAC- or MQ-RA)
of a concept class crucially depends on the simplification rule, as the trivial simplification rule of
Simp(k, S) = k admits a trivial learning-algorithm in either setting. This work reinforces that the
choice simplification rule can affect the learnability of a given representation class. Positive results
for restriction access learning that were independent of the representation would be interesting.

Proof of Theorem 4.1. We interpret F = {Fλ} as a representation class. For each λ, the concepts
fk ∈ Fλ are indexed by Kλ and have domain Xλ. Let EV AL = {EV ALλ} be a representation class
defined as in the theorem statement. The indexing set for EV ALλ is K̃λ, the set of constrained
keys kS for k ∈ Kλ, S ∈ Sλ.

Let C = {Cλ} be a representation class, with domain Xλ and indexing set Iλ. For i ∈ Iλ, ci is a
concept in Cλ.

By hypothesis, F ⊆ C: for sufficiently large λ, for all k ∈ Kλ there exists i ∈ Iλ such that
ci ≡ fk. Similarly, for all kS ∈ K̃λ there exists i ∈ Iλ such that ci ≡ Evalλ(kS , ·). For concreteness,
let Mλ be this map from Kλ ∪ K̃λ to Iλ.17

We can now specify the simplification rule Simpλ : Iλ × Sλ → Iλ. Letting Mλ(Kλ) ⊆ Iλ be the
image of Kλ under Mλ:

Simpλ(i, S) =

{
Mλ(Constrainλ(M−1

λ (i), S)) if i ∈Mλ(Kλ)
i otherwise.

For example, i may be a circuit computing the PRF fk for some k = M−1(i). The simplifica-
tion computes the circuit corresponding to a constrained PRF key, if the starting circuit already
computes a member of the PRF family Fλ.18

Reduction: Suppose, for contradiction, that there exists an such an efficient learning algorithm
A for C as in the statement of the theorem. We construct algorithm B breaking the constrained
PRF security. In the PRF security game, B is presented with the oracles fk(·), Constrainλ(k, ·),
and Challengeλ(·), for some k ← Kλ. Run A, and answer queries S ∈ Sλ to the restriction oracle
by querying Constrainλ(k, S), receiving kS , and returning Mλ(kS). Once A terminates, it outputs
hypothesis h. By assumption on A, with probability at least 1− δ > 1

pδ(λ) , the hypothesis h is an

ε-approximation of cM(k) ≡ fk with ε ≤ 1−α
2 and α < 1− 1

pα(λ) .

After receiving hypothesis h, B estimates the probability Prx←X\XS [h(x) = Challengeλ(x)]. In
EXP(0), this probability is at least 1−ε with probability at least 1−δ; in EXP(1), it is exactly 1/2.

15as defined in Section 3.
16as defined in Section 3.
17 This is a non-uniform reduction.
18Note that while the inverse map M−1

λ may be inefficient, in our reduction, the concept in question is represented
by a PRF key k. Thus B must only compute the forward map Mλ.
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To sample uniform x ∈ X \XS , we simply take a uniform x ∈ X: with probability 1−α ≥ 1/pα(n),
x ∈ X \XS . Thus, B runs in expected polynomial time. If the estimate is close to ε, guess EXP(0);
otherwise, flip an fair coin b′ ∈ {0, 1} and guess EXP(b′). The advantage ADV cPRF

λ of B in the
PRF security game is at least 1

3pδ(λ) for all sufficiently large λ (see Analysis for details), directly
violating the security of F .

Analysis: Let pb , Prx∈X\XS [h(x) 6= Challengeλ(x)|EXP (b)] be the probability taken with
respect to experiment EXP(b). In EXP(1), Challengeλ is a uniformly random function. Thus,
p1 = 1

2 . With high probability, B will output a random bit b′ ∈ {0, 1}, guessing correctly with
probability 1/2.

In EXP(0), h is an ε-approximation to fk, and thus to Challengeλ, with probability at least
1 − δ. In this case, p0 ≥ 1 − ε ≥ 1

2 + 1
pε(λ) . By a Hoeffding bound, B will guess b′ = 0 with high

probability by estimating p using only polynomial in λ, pε(λ) samples. On the other hand, if h is
not an ε-approximation, B will b′ = 0 with probability at least 1/2.

Let negl(λ) be the error probability from the Hoeffding bound, which can be made exponentially
small in λ. The success probability is: Pr[b = b′|b = 0] ≥ (1 − δ)(1 − negl(λ)) + δ

2 which, for
1 − δ ≥ 1

pδ(λ) is at least 1
3pδ(λ)

+ 1
2 for sufficiently large λ. Thus B a non-negligible advantage of

1/3pδ(λ) in the constrained PRF security game.

4.3 Learning with related concepts

The idea that some functions or concepts are related to one another is very natural. For a DNF
formula, for instance, related concepts may include formulas where a clause has been added or
formulas where the roles of two variables are swapped. For a decision tree, we could consider
removing some accepting leaves and examining the resulting behavior. We might consider a circuit;
related circuits might alter internal gates or fix the values of specific input or internal wires.

Formally, we consider indexed representation classes. As discussed in the preliminaries, general
classes of functions are easily represented as a indexed family. For example, we may consider the bit
representation of a function (say, a log-depth circuit) as an index into a whole class (NC1). This
formalism enables the study of related concepts by instead considering concepts whose keys are
related in some way. The related concept setting shares an important property with the restriction
access setting: different representations of the same functions might have very different properties.
Exploring the properties of different representations – and perhaps their RC learnability as defined
below – is a direction for future work.

In our model of learning with related concepts, we allow the learner to query a membership
oracle for the concept fk ∈ Cλ and also for some ‘related’ concepts fφ(k) ∈ Cλ for some functions φ.
The related-concept deriving (RCD) function φ is restricted to be from a specified class, Φλ. For
each φ ∈ Φλ, a learner can access the membership oracle for fφ(k). For example: let Kλ = {0, 1}λ
and let

Φ⊕λ = {φ∆ : k 7→ k ⊕∆}∆∈{0,1}λ (4)

Definition 4.12 (Φ-Related-Concept Learning Model). For C a representation class indexed by
{Kλ}, let Φ = {Φλ}, with each Φλ = {φ : Kλ → Kλ} a set of functions on Kλ containing the
identity function idλ. The related-concept oracle RCk, on query (φ, x), responds with fφ(k)(x), for
all φ ∈ Φλ and x ∈ Xλ.

An algorithm A is an (ε, δ)-Φ-RC learning algorithm for a C if, for all sufficiently large λ, for
every k ∈ Kλ, Pr[ARKk(·,·) = h] ≥ 1− δ where h is an ε-approximation fk.
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Studying the related-concept learnability of standard representation classes (ex: DNFs and
decision trees) under different RCD classes Φ is an interesting direction for future study.

4.3.1 RKA PRFs

Again we look to pseudorandom functions for hard-to-learn concepts. To support the extra power of
the related concept model, our PRFs will need to maintain their pseudorandomness even when the
PRF adversary has access to the function computed with related keys. Related-key secure PRFs
[BC10, ABPP14] provide just this guarantee. As in the definition of RC learning, the security of
related-key PRFs is given with respect to a class Φ of related-key deriving functions. As we describe
in the remainder of the section, related-key secure PRFs prove hard to weakly Φ-RC learn.

Definition: Security Game
Let Φλ ⊆ Fun(Kλ,Kλ) be a subset of functions on Kλ. The set Φ = {Φλ} is called the

Related-Key Deriving (RKD) class and each function φ ∈ Φλ is an RKD function.

• C picks a random key k ∈ Kλ, a bit b ∈ {0, 1}, and exposes the oracle according to EXP(b):

RKFnλ(φ, x): On input (φ, x) ∈ Φλ ×Xλ, outputs:

F (φ(k), x) in EXP(0)
y ← Yλ in EXP(1)

.

In EXP(1), the responses to RKFnλ are selected uniformly at random from the range, with
the requirement that the responses be consistent for identical inputs (φ, x).

• The adversary interacts with the oracle, and outputs a bit b′ ∈ {0, 1}.

Definition 4.13. The advantage is defined as ADV Φ-RKA
λ (A) := Pr[b′ = b] in the above

security game.

Definition 4.14 (Φ Related-key attack PRF (Φ-RKA-PRF)). Let F = {Fλ : Kλ ×Xλ → Yλ} be
family of functions and let Φ = {Φλ} with each Φλ ⊆ Fun(Kλ,Kλ) be a set of functions on Kλ. F
is a Φ related-key attack PRF family if for all probabilistic polynomial-time adversaries A and for
all sufficiently large λ and all polynomials p(n):

ADV Φ-RKA
λ (A) <

1

2
+

1

p(n)
,

over the randomness of C and A.

4.3.2 Hardness of related concept learning

In the Appendix C, we present a concept that can be RC-learned under Φ⊕ (Equation 4), but is
hard to weakly learn with access to membership queries. We construct the concept F from a PRF
G and a PRP P . Informally, the construction works by hardcoding the the PRF key in the function
values on a related PRF. With the appropriate related-concept access, a learner can learn the PRF
key.

We now present a general theorem relating RKA-PRFs to hardness of RC learning. This
connection yields hardness for a class C with respect to restricted classes of relation functions Φ.
More general hardness results will require new techniques.
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Theorem 4.4. Let F be a boolean-valued Φ-RKA-PRF with respect to related-key deriving class
Φ and keyspace K. For a representation class C, if F ⊆ C, then there exists an related-concept
deriving class Ψ such that C is hard to Ψ-RC.

As a corollary, we get a lower bound coming from the RKA-PRF literature. For a group (G,+),
and K = Gm, define the the element-wise addition RKD functions as

Φm
+ = {φ∆ : k[1], . . . , k[m] 7→ k[1] + ∆[1], . . . , k[m] + ∆[m]}∆∈Gm (5)

Notice that Φm
+ directly generalizes Φ⊕ with G = Z2. For this natural RKD function family, we

are able to provide a strong lower bound based on the hardness of DDH and the existence of
collision-resistant hash functions using the RKA-PRF constructions from [ABPP14].

Corollary 4.5 (Negative Result from RKA-PRF). If the DDH assumption holds and collision-
resistant hash functions exist NC1 is hard to Φm

+ -RKA-learn.

Proof of Theorem 4.4. We interpret F = {Fλ} as a representation class. For each λ, the concepts
fk ∈ Fλ are indexed by Kλ and have domain Xλ. Let C = {Cλ} be a representation class, with
domain Xλ and indexing set Iλ. For i ∈ Iλ, ci is a concept in Cλ.

By hypothesis, F ⊆ C: for sufficiently large λ, for all k ∈ Kλ there exists i ∈ Iλ such that
ci ≡ fk. For concreteness, let Mλ be this map from Kλ to Iλ.19

We can now specify the RCD class Ψλ : Iλ → Iλ. Let Mλ(Kλ) ⊆ Iλ be the image of Kλ under
Mλ. We define Ψλ = {ψφ : φ ∈ Φλ}:

ψφ(i) =

{
Mλ ◦ φ ◦M−1

λ (i) if i ∈Mλ(Kλ)
i otherwise.

Reduction: Suppose, for contradiction, that there exists an efficient Ψ-RC learning algorithm A
for C as in the statement of the theorem. We construct algorithm B breaking the Φ-RKA-PRF
security of F . In the PRF security game, B is presented with the oracle RKFn(·, ·); A is presented
with the oracle RC(·, ·). Run A, and answer queries (ψφ, x) ∈ Ψλ ×Xλ to RC by querying RKFn
on (φ, x) and passing the response along to A. Let XA = {x ∈ Xλ : A queried (ψ, x) for some ψ}.
Once A terminates, it outputs hypothesis h. In EXP(0), RKFn() responds according to fk for
some k ∈ Kλ; in this case, B simulates the RC oracle for the concept cM(k).

After receiving hypothesis h, B estimates the probability Prx←X\XA [h(x) = RKFnλ(x)]. In
EXP(0), this probability is at least 1 − ε with probability at least 1 − δ; in EXP(1), it is exactly
1/2. To sample uniform x ∈ X \ XA, we simply take a uniform x ∈ X: with high probability
x ∈ X \XA. If the estimate is close to ε, guess EXP(0); otherwise, flip an fair coin b′ ∈ {0, 1} and
guess EXP(b′). The advantage ADV Φ-RKA

λ of B in the PRF security game is at least 1
3pδ(n) (see

Analysis for details) for all sufficiently large λ, directly violating the security of F .
Analysis: Let pb , Prx∈X\XA [h(x) 6= RKFn(idλ, x)|EXP (b)] be the probability taken with

respect to experiment EXP(b). In EXP(1), RKFn is a uniformly random function. Thus, p1 = 1
2 .

With high probability, B will output a random bit b′ ∈ {0, 1}, guessing correctly with probability
1/2.

In EXP(0), h is an ε-approximation to RKFn(id, ·) with probability at least 1− δ. In this case,
p0 ≥ 1−ε ≥ 1

2 + 1
pε(λ) . By a Hoeffding bound, B will guess b′ = 0 with high probability by estimating

19 This is a non-uniform reduction in general, but in most cases, the map M is known. That is, Mλ is the map
that takes a key and outputs a circuit computing the function.
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p using only polynomial in λ, pε(λ) samples. On the other hand, if h is not an ε-approximation, B
will b′ = 0 with probability at least 1/2.

Let negl(λ) be the error probability from the Hoeffding bound, which can be made exponentially
small in λ. The success probability is: Pr[b = b′|b = 0] ≥ (1 − δ)(1 − negl(λ)) + δ

2 which, for
1 − δ ≥ 1

pδ(λ) is at least 1
3pδ(λ)

+ 1
2 for sufficiently large λ. Thus B a non-negligible advantage of

1/3pδ(λ) in the Φ-RKA-PRF security game.

Proof. For n ∈ N let G = 〈g〉 be a group of prime order p = p(n), Xn = {0, 1}m(n) \ {0n},
Kn = Zmp (n), and define Fk(x) as in Theorem 4.5 of [Abdalla] (). Let φm+ be as above over K.

4.4 Learning with Aggregate Queries

This computational learning model is inspired by our aggregate PRFs. Rather than being a natural
model in its own right, this model further illustrates how cryptography and learning are in some
senses duals. Here, we consider a new extension to the power of the learning algorithm. Whereas
membership queries are of the form “What is the label of an example x?”, we grant the learner the
power to request the evaluation of simple functions on tuples of examples (x1, ..., xk) such as “How
many of (x1...xk) are in C?” or “Compute the product of the labels of (x1, ..., xk)?”. Clearly, if
k is polynomial then this will result only a polynomial gain in the query complexity of a learning
algorithm in the best case. Instead, we propose to study cases when k may be super polynomial,
but the description of the tuples is succinct. For example, the learning algorithm might query the
number of x’s in a large interval that are positive examples in the concept.

As with the restriction access and related concept models – and the aggregate PRFs we define
in this work – the Aggregate Queries (AQ) learning model will be considered with restrictions to
both the types of aggregate functions Γ the learner can query, and the sets S over which the learner
may request these functions to be evaluated on. We now present the AQ learning model informally:

Definition 4.15 ((Γ,S)-Aggregate Queries (AQ) Learning). Let C be a representation class with
domains X = {Xλ}, and S = {Sλ} where each Sλ is a collection of efficiently recognizeable subsets
of the Xλ. Γ : {0, 1}∗ → Vλ be an aggregation function [as in def:]. Let AGGλk , AGGλfk,Sλ,Γλ be the
aggregation oracle for fk ∈ Cλ, for S ∈ Sλ and Γλ.

An algorithm A is an (ε, δ)-(Γ,S)-AQ learning algorithm for C if, for all sufficiently large λ,

for every fk ∈ Cλ, Pr[AMEMfk
(·),AGGλfk (·)

= h] ≥ 1− δ where h is an ε-approximation to fk.

4.4.1 Hardness of aggregate query learning

Theorem 4.6. Let F be a boolean-valued aggregate PRF with respect to set system S = {Sλ}
and accumulation function Γ = {Γλ}. For a representation class C, if F ⊆ C, then C is hard to
(Γ,S)-AQ learn.

Looking back to our constructions of aggregate pseudorandom function families from the pre-
quel, we have the following corollaries.

Corollary 4.7. The existence of one-way functions implies that P/poly is hard to (
∑
,S[a,b])-AQ

learn, with S[a,b] the set of sub-intervals of the domain as defined in Section 3.

Corollary 4.8. The DDH Assumption implies that NC1 is hard to (
∑
,S[a,b])-AQ learn, with S[a,b]

the set of sub-intervals of the domain as defined in Section 3.
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Corollary 4.9. The subexponential DDH Assumption implies that NC1 is hard to (
∏
,R)-AQ

learn, with R the set of read-once boolean formulas defined in Section 3.

Proof of Theorem 4.6. Interpreting F itself as a concept class, we will show an efficient reduction
from violating the pseudorandomness property of F to weakly (Γ,S)-AQ learning F . By assump-
tion, F ⊆ C, implying that C is hard to learn as well.

Reduction: Suppose for contradiction that there exists an efficient weak learning algorithm A for
F . We define algorithm B violating the aggregate PRF security of F . In the PRF security game,
B is presented with two oracles: F (·) and AGGλF for a function F chosen according to the secret
bit b ∈ {0, 1}. In EXP(0), F = fk for random k ∈ Kλ; by assumption fk ∈ Cλ. In EXP(1), F is a
uniformly random function from X to {0, 1}. The learning algorithm A is presented with precisely
the same oracles. B runs A, simulating its oracles by passing queries and responses to its own
oracles. XA = {x ∈ Xλ : A queried (ψ, x) for some ψ}. Once A terminates, it outputs hypothesis
h.

After receiving hypothesis h, B estimates the probability

p = Pr
x←X\XA

[h(x) = F (x)]

(using polynomial in λ, pε(λ) samples). In EXP(0), this probability is at least 1−ε with probability
at least 1 − δ; in EXP(1), it is exactly 1/2. To sample uniform x ∈ X \ XA, we simply take a
uniform x ∈ X: with high probability x ∈ X \ XA. If the estimate is close to ε, guess EXP(0);
otherwise, flip an fair coin b′ ∈ {0, 1} and guess EXP(b′). The advantage ADV APRF

λ of B in the
PRF security game is at least 1

3pδ(n) for all sufficiently large λ (as shown below), directly violating
the security of F .

Let
pb , Pr

x∈X\XA
[h(x) 6= F (x)|EXP (b)]

be the probability taken with respect to experiment EXP(b). In EXP(1), F is a uniformly random
function. Thus, p1 = 1

2 . With high probability, B will output a random bit b′ ∈ {0, 1}, guessing
correctly with probability 1/2.

In EXP(0), h is an ε-approximation to F with probability at least 1 − δ. In this case, p0 ≥
1 − ε ≥ 1

2 + 1
pε(λ) . By a Hoeffding bound, B will guess b′ = 0 with high probability by estimating

p using only polynomial in λ, pε(λ) samples. On the other hand, if h is not an ε-approximation, B
will b′ = 0 with probability at least 1/2.

Let negl(λ) be the error probability from the Hoeffding bound, which can be made exponentially
small in λ. The success probability is:

Pr[b = b′|b = 0] ≥ (1− δ)(1− negl(λ)) +
δ

2

which, for 1 − δ ≥ 1
pδ(λ) is at least 1

3pδ(λ)
+ 1

2 for sufficiently large λ. Thus B a non-negligible

advantage of 1/3pδ(λ) in the (Γ,S)-aggregate-PRF security game.
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A Simple Positive Results

In the following, we present examples of concept classes separating the Related Concept and Ag-
gregate Query learning models from learning with Membership Queries. We emphasize that the
learnability of many traditional concept classes in these models has not been studied, and more
general positive results may exist. In order to exhibit separations, we present generic, contrived
constructions from simple cryptographic primitives to exhibit our separations. In each case, a MQ
learner cannot succeed better than a trivial algorithm, while the stronger model manages to exactly,
and properly learn the function.

A.1 Related-concept

While some existing pseudorandom functions are known to suffer from related-key attacks [BK03],
these vulnerabilities do not seem directly useful for a proper learning algorithm. Instead we con-
struct a family of PRFs for which the secret key can be recovered under related-key attacks.

We demonstrate a concept that can be RC-learned under additive Φ (defined below), but is
hard to weakly learn with access to membership queries. We construct the concept F from a PRF
G and a PRP P . Informally, the construction works by hardcoding the the PRF key in the function
values under a related PRF key. With the appropriate related-key access, a learner can learn the
PRF key.

Let G = {Gk : Z2λ → {0, 1}}k∈K be a PRF with keyspace K = {0, 1}λ and let P = {π : K → K}
be a pseudorandom permutation family on K. For each gk ∈ GK and π ∈ P , we define the following
function:

Fk,π =


xth bit of (π(k)⊕ k) if x ∈ [0, λ− 1]

(x− λ)th bit of π−1(k) if x ∈ [λ, 2λ− 1]
gk(x) otherwise

Let F = {Fk,π : k ∈ K,π ∈ P}. We interpret F as a keyed concept with elements indexed by a
pairs (k, π).

We need to choose a RKD class Φ that will enable recovery of the PRF key k by accessing the
PRF for key π(k)⊕ k. We choose Φ = Φ⊕ from Section 4.3.1:

Φ⊕ = {φ∆ : k 7→ k ⊕∆}∆∈K

Note that in that section, we prove a negative result for a strictly stronger RC adversary, but with
a different concept class.
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Theorem A.1 (Separating RC and MQ). The keyed concept F defined above can be (efficiently)
exactly Φ⊕-RC-learned, but is hard to even weakly MQ learn efficiently.

Proof. Let Fk,π ∈ Fn.
Φ⊕-RC Learning: Let RCk,π be the related-concept oracle, taking queries (φ, x) ∈ Φ⊕ × Z2λ

and returning Fφ(k),π(x). Define ∆ ∈ K such that ∆[i] = Fk,x(i) for all i ∈ [λ − 1]; compute the

ith bit by querying the oracle at (id, i), where id = 0λ is the identity function. By construction,
k⊕∆ = π(k). Let k′ ∈ K such that k′[i] = Fπ(k),i+λ for all i ∈ [λ− 1]; we find bit k′[i] by querying
(φ∆, i+ λ). By construction, k′ = π−1(π(k)) = k. Given the PRF key k, we may compute Fk,π on
all inputs in X \ [2λ− 1]; simply querying those remaining points yields an exact characterization
of Fk,π.

MQ Learning: (Informally) Given a weakly-MQ learning algorithm A for F , an algorithm B
violating the security of the pseudorandom function can be constructed. By assumption, A is an
(ε, δ)-MQ learning algorithm with ε and 1 − δ both non-negligible in n. First, observe that A is
an (ε′, δ′)-MQ-learning algorithm for the following concept class, indexed by k ∈ K and uniformly
random r1 ∈ {0, 1}λ, with ε′ ≥ ε− negl(λ) and δ′ ≥ δ − negl(λ):

F 1
k,r1 =


xth bit of r1 if x ∈ [0, λ− 1]

(x− λ)th bit of π−1(k) if x ∈ [λ, 2λ− 1]
gk(x) otherwise

Otherwise, the quality of the hypothesis output by A would be noticeably different for random
functions Fk,π and Fk,r1 . By the security of the pseudorandom permutation, π(k) ⊕ k should be
indistinguishable from uniformly random r1; this difference could be used to violate the security of
the pseudorandom permutation π.

A similar argument will show that A is an (ε′′, δ′′)-MQ-learning algorithm for the following
concept class, indexed by k ∈ K and r1, r2 ∈ {0, 1}λ, with ε′′ ≥ ε′ − negl(λ) and δ′′ ≥ δ′ − negl(λ):

F 2
k,r1 =


xth bit of r1 if x ∈ [0, λ− 1]

(x− λ)th bit of r2 if x ∈ [λ, 2λ− 1]
gk(x) otherwise

Furthermore, weak learning of this concept requires weak learning of this concept even when re-
stricting the domain to require x 6∈ [0, 2λ− 1].

This last oracle can be simulated by B with only oracle access to a random PRF gk ∈ Gλ. That
this concept is weakly learnable violates the security of the PRF G in the usual way.

A.2 Aggregate queries

We turn to a positive result for learning in the AQ model. Our starting point is the intuition that
with aggregate queries, it is easy to distinguish a point function from an everywhere-zero function.

Formally, consider the case when D = Z2λ , R = {0, 1}, Γ =
∑

is summation modulo 2, and
S[a,b] = {[a, b] : a, b ∈ Z2λ ; a ≤ b} the set of intervals on Zλ. By AQ-learning with respect to
summation over intervals, we mean (

∑
,S[a,b])-AQ learning. Let the concept class Dλ of point

functions be defined:
Dλ := {δy : y ∈ Z2λ}

where each δy is nonzero only at y.
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Lemma A.2 (Point functions). The concept class of point functions Dλ is efficiently, exactly, and
properly (

∑
,S[a,b])-AQ-learnable.

Proof. Observe that for δy ∈ Dλ and interval [a, b] ⊆ Z2λ : AGG∑
,δy([a, b]) = 1 ⇐⇒ y ∈ [a, b].

This allows us to perform binary search over the domain and find y with at most λ queries to the
AGG∑

,δy(·) oracle.

But if we don’t require exact-learning, point functions are trivially learnable with no queries
at all; indeed, the hypothesis h(x) = 0 agrees with δy(x) at all but a single point! But Dλ is not
exactly MQ-learnable. More importantly, for two uniformly selected concepts δy, δw ← Dλ, MQ
cannot distinguish membership oracle access to δy and δw. We will leverage this to construct a
much stronger separation.

Let Gλ = {gk : {0, 1}λ−1 → {0, 1}}k∈{0,1}λ−1 be a pseudorandom function family with (λ−1)-bit
keys k and inputs x.

Functions in our concept class fk ∈ Fλ will be indexed by an (λ − 1)-bit key, but take inputs
from {0, 1}λ. On half the domain, fk behaves as the PRF gk, while on the other half it behaves as
the point function δk. Letting x[2 : λ] = (x[2], . . . , x[λ]):

fk(x) =

{
δk(x[2 : λ]) if x[0] = 0
Gk(x[2 : λ]) if x[1] = 1

Theorem A.3 (Separating AQ from MQ). The concept class F is exactly and (properly) AQ-
learnable with respect to summation over intervals. For any polynomials pε(λ), pδ(λ), this concept
class is hard to (ε, δ)-MQ learn for ε ≤ 1

4 −
1

pε(λ) and 1− δ ≥ 1
pδ(λ) .

Note that it while it easy to (1/4, 1/4)-MQ learn C (for example, outputting the constant 0
function), the theorem above claims that we cannot do appreciably better in ε with non-negligible
probability 1− δ. This has the flavor of a ‘hardness of weakly learning’ theorem.

Proof. For λ ∈ N, let fk ∈ Fλ. The first part of the theorem follows as a corollary to the previous
lemma. After exactly learning δk by binary search, the function fk is uniquely specified by k.

For the second part, we reduce to the hardness of MQ learning the pseudorandom function,
gk. Suppose for contradiction that there exists an algorithm A that, when given access to an
oracle O = gk(·), with probability at least 1

pδ(λ) , outputs hypothesis h : {0, 1}λ → {0, 1} with

Prx←{0,1}λ [h(x) = fk(x)] ≥ 3
4 + 1

pε
. We describe B – a weak MQ-learning algorithm for the concept

G = {gk}k∈K . Given access to oracles Oδ = δk(·) and OG = gk(·), B can exactly simulate oracle
access to O and thus output hypothesis h with the same distribution. But with only t(λ)-many
queries for any t, the probability (over the random choice of k) of querying a non-zero point in Oδ
is at most t(λ)/2λ−1; thus, with high probability, all queries to Oδ will be zero. Therefore it is
computationally infeasible to distinguish between the pair of oracles (Oδ,OG) and (O0,OG), where
O0 is the constant zero oracle.

If B answers A’s oracle queries with (O0,OG) instead of (Oδk ,OG), A will successfully output
h which ε′ approximates fk with probability 1 − δ′. By the indistinguishability argument, ε′ ≥
ε− negl(λ) ≥ ε/2 and 1− δ′ ≥ 1− δ − negl(λ) ≥ 1− δ/2.

Let h|b be the restriction of h to the set {x : x[1] = b} for b ∈ {0, 1}.

Pr
x

[h(x) 6= fk(x)] =
1

2
(Pr
x

[h|0(x) = 0] + Pr
x

[h|1(x) = gk(x[2 : n])]) ≥ 3

4
+

1

2pε
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=⇒ Pr
x

[h|1(x) = gk(x[2 : n])] ≥ 1

2
+

1

pε(n)
.

Outputting h|1, B manages to weakly MQ learn the concept Gλ. That this concept is weakly
learnable violates the security of the PRF G in the usual way.
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