Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Paper:

TR15-012 | 24th January 2015 19:26

Lower Bounds for Clique vs. Independent Set

RSS-Feed




TR15-012
Authors: Mika Göös
Publication: 25th January 2015 12:53
Downloads: 6944
Keywords: 


Abstract:

We prove an $\omega(\log n)$ lower bound on the conondeterministic communication complexity of the Clique vs. Independent Set problem introduced by Yannakakis (STOC 1988, JCSS 1991). As a corollary, this implies superpolynomial lower bounds for the Alon--Saks--Seymour conjecture in graph theory. Our approach is to first exhibit a query complexity separation for the decision tree analogue of the UP vs. coNP question---namely, unambiguous DNF width vs. CNF width---and then "lift" this separation over to communication complexity using a result from prior work.



ISSN 1433-8092 | Imprint