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Abstract

Understanding the power of negation gates is crucial to bridge the exponential gap between
monotone and non-monotone computation. We focus on the model of formulas over the De
Morgan basis and consider it in a negation-limited setting.

We prove that every formula that contains t negation gates can be shrunk using a random
restriction to a formula of size O(t) with the shrinkage exponent of monotone formulas. As a
result, the shrinkage exponent of formulas that contain a constant number of negation gates
is equal to the shrinkage exponent of monotone formulas. Moreover, we show that average-
case lower bounds for monotone formulas can be extended to get average-case lower bounds for
formulas with few negations. Using the average-case lower bound for polynomial-size monotone
formulas of Rossman (CCC ’15), we obtain an average-case lower bound for polynomial-size
formulas with n1/2−o(1) negations, where n is the input size.

Recently, circuits with few negations have drawn much attention in various areas of theo-
retical computer science. Specifically, Blais et al. (ECCC ’14) studied the uniform-distribution
learnability of circuits with few negations, and Guo et al. (TCC ’15) proved lower bounds on the
number of negations required to represent many cryptographic primitives as circuits. Following
Guo et al., we study how many negations are required to implement cryptographic primitives
using formulas, and provide lower bounds for pseudorandom functions, one-way permutations,
hardcore predicates and extractors. In particular, we show that every formula that computes
a one-way permutation on n inputs must have ω(log n) negations, and that any formula that
computes a pseudorandom function on n inputs must contain Ω(n) negations (which is optimal
up to a constant factor). Following Blais et al., we show that formulas with t negations can be
learned as fast as circuits with log t negations.
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1 Introduction

Understanding the complexity of classical computational models for Boolean functions is the holy
grail of theoretical computer science. We focus on one of the simplest and most well studied models
known as Boolean formulas over the De Morgan basis. Such a formula is a Boolean formula over
the basis that includes AND, OR and NOT gates, where the former two are of fan in 2. The size of
a formula is defined as the number of leaves it contains. A formula is said to be monotone if it does
not contain any negation gate.

One of the things that makes it so difficult to prove lower bounds on the size of formulas is
the presence of negation gates. The best such lower bound known for formulas is almost cubic
[And87, H̊as98, Tal14], whereas in the setting of monotone formulas, exponential lower bounds are
known [Raz85, And85, AB87, Tar88, BU99, HR00].1 Bridging this gap is a major challenge since
even a super-polynomial lower bound on the size of formulas (for a function that is constructible
deterministically in polynomial-time) would separate P from NC1.

In 1962 Nechiporuk [Nec62] considered the model of formulas with a limited number of negation
gates and proved the following classical result: dn/2e negation gates are sufficient to compute any
Boolean function on n variables by a formula, and moreover, such a transformation can be made
efficiently (see [Nec62, Mor09] and [Juk12]). In this paper, we continue this line of research of
negation-limited formulas in three different contexts: complexity, cryptography and learning.

1.1 Our Contributions

We start by considering negation-limited formulas as a complexity-theoretic object and prove two
structural results. Then, following on Guo et al. [GMOR15], we study the question of how many
negation gates are required to implement fundamental cryptographic primitives as formulas. Lastly,
following on Blais et al. [BCO+14], we study how efficiently negation-limited formulas can be learned
from uniformly distributed examples.

Complexity of Negation-Limited Formulas

Shrinkage under random restrictions. One of the most successful methods for proving lower
bounds in several computational models is the method of shrinkage under random restrictions.2 This
method was invented and first used by Subbotovskaya [Sub61] that proved a lower bound of Ω(nΓ)
on the size of formulas that compute the parity function on n variables, where Γ ≥ 1.5 is referred
to as the shrinkage exponent of (De Morgan) formulas under random restrictions. Subsequent
improvements on the constant Γ led to improved lower bounds on the formula size. Impagliazzo
and Nisan [IN93] and Paterson and Zwick [PZ93] proved that Γ ≥ 1.55 and Γ ≥ 1.63, respectively,
H̊astad [H̊as98] proved that Γ ≥ 2 − o(1) and very recently Tal [Tal14] closed the gap and proved
that Γ = 2. Apart from being useful for proving lower bounds, shrinkage results have a broad scope

1More precisely, there exists an explicit Boolean function on n inputs such that every formula that computes it
must be of size n3−o(1) (see [H̊as98, Tal14]). Moreover, there exists an explicit Boolean function on n inputs such that

every monotone formula that computes it must be of size 2Ω((n/ logn)1/3) (see [HR00]).
2A random restriction with parameter p ∈ [0, 1] is a vector ρ ∈ {0, 1, ?}n such that with probability p each entry

gets the value ? and with probability 1− p each entry is assigned, with equal probabilities, to 0 or 1. Given a function
f : {0, 1}n → {0, 1} and a random restriction ρ as above, the restricted function f |ρ is defined in the following way: if
ρi ∈ {0, 1} then the ith input variable of f is fixed to 0 or 1, respectively, and otherwise it is still an unfixed variable.
We say that formulas have shrinkage exponent Γ if for every function f the expected formula size of f |ρ is at most
O(pΓ · L(f) + 1), where L(f) is the formula size of f and the expectation is over the choice of ρ.
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of applications in other areas including pseudorandomness [IMZ12], Fourier concentration [IK14]
and #SAT algorithms [CKK+14, CKS14].

A major open problem (mentioned e.g., in [PZ93, H̊as98, Tal14]) is to understand what is the
shrinkage exponent of monotone formulas.3 We study the related question of understanding the
shrinkage exponent of negation-limited formulas and provide a trade-off between the number of
negations and the shrinkage exponent. More precisely, we prove that every formula that contains t
negation gates can be shrunk using a random restriction to size O(t) with the shrinkage exponent
of monotone formulas. As a simple instantiation of our result, we get that the shrinkage exponent
of formulas that contain a constant number of negation gates is exactly the same as the shrinkage
exponent of monotone formulas. We refer to Section 4.1 for more background, precise definitions
and the exact statement of our result.

Average-case lower bounds extension. An average-case computation (a.k.a. approximate com-
putation) of a function f : {0, 1}n → {0, 1} is a computation that is required to agree with f only
on a 1/2 + δ fraction of the inputs. Besides being interesting in their own right, average-case lower
bounds (a.k.a. correlation bounds) have proved useful in many fields of complexity theory, such as
derandomization (e.g., [Nis91, NW94]).

Recently, Rossman [Ros15] proved the first average-case lower bound for mNC1, the class of
polynomial-size logarithmic-depth monotone circuits, or equivalently, polynomial-size monotone for-
mulas. More precisely, for every ε > 0, Rossman gives an explicit monotone function on n variables
which is (1/2 + n−1/2+ε)-hard to approximate in mNC1 under the uniform distribution. Moreover,
he showed that any average-case lower bound for monotone circuits, can be extended to get an
average-case lower bound for circuits with few negations. That is, he showed that if a monotone
function can be approximated by a circuit of a given size and depth and t negations with probability
1/2 + δ (over the uniform distribution), then it can be approximated by a monotone circuit of the
same size and depth with probability 1/2 + δ/2t. Thus, his bound for mNC1 extends to circuits in
NC1 with at most (1/2− ε) log n negations.

In the setting of formulas we get exponential improvement in the approximation factor, and
hence, in the number of negations needed. Namely, we show that if a monotone function can be
approximated by a formula of a given size and depth and t negations with probability 1/2 + δ, then
it can be approximated by a monotone formula of the same size and depth with probability roughly
1/2+δ/t. Combining this with the average-case lower bound for polynomial-size monotone formulas
of Rossman [Ros15], we get for any ε > 0, an average-case lower bound for polynomial-size formulas
with roughly n1/2−ε negations. We refer to Section 4.2 for more details.

Cryptography and Learning of Negation-Limited Formulas

One of the goals of cryptography is to study how simple cryptographic primitives can be, where
simplicity can be measures by e.g., the required assumptions, the circuit depth and more.

Goldreich and Izsak [GI12] were the first to study whether basic primitives can be monotone.
They showed that one-way functions and pseudorandom generators admit an inherent gap. On
the one hand, if one-way functions can be computed by a polynomial-size circuit, then there are
one-way functions that can be computed by monotone polynomial-size circuits. On the other hand,
it is impossible for a pseudorandom generator to be monotone.

Recently, Guo et al. [GMOR15] extended the results of [GI12] for other cryptographic primitives.
In particular, they showed that one-way permutations cannot be monotone (unlike one-way func-

3It is conjectured that the shrinkage exponent of monotone formulas is equal to 3.27, the shrinkage exponent of
read-once formulas (see Conjecture 3 in [PZ93]).
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tions). Moreover, they initiated the study of the negation complexity of basic primitives, where they
defined the negation complexity of a function f to be the minimal number of negation gates needed
to compute the function by a Boolean circuit. They proved several interesting results including (to
mention a few) that every pseudorandom function requires log n − O(1) negations and that every
hardcore predicate requires (1/2− o(1)) log n negations.

The simplicity of a cryptographic primitive can also be measured by the simplicity of the model
in which it can be implemented (see e.g., [AIK06]). Since formulas seem to be simpler than gen-
eral circuits and many concrete cryptographic constructions instantiations are actually described
as formulas (e.g., [H̊as87, NR04]), we study the complexity and negation complexity of basic cryp-
tographic primitives represented as formulas, ask the analogous questions to the ones asked by
[GI12, GMOR15] and prove the following results.

Pseudorandom functions. We show that any formula that computes a pseudorandom function
on n bits must contain at least Ω(n) negation gates (which is tight up to a constant factor [Nec62,
Mor09]). This bound is exponentially higher than the bound obtained by Guo et al. [GMOR15] in
the setting of circuits. Moreover, we prove a lower bound on the formula size of any pseudorandom
function, that is, we show that any pseudorandom function on n bits requires a formula of size at
least Ω(n2).

One-way functions and permutations. We start with a simple observation that if there are
one-way functions in NC1 (which is a relatively mild assumption, implied by most number-theoretic
or algebraic intractability assumptions commonly used in cryptography), then there are one-way
functions computable by monotone formulas of logarithmic-depth. Then, we show that every per-
mutation on n bits that can be computed by a formula of size s that contains t negations can be
inverted (on every image) in time 22t · s. This shows, in particular, that every implementation
of a one-way permutation using a polynomial-size formula must have at least ω(log n) negations.
As a comparison, Guo et al. [GMOR15] left open the question whether one-way permutations are
computable by circuits that contain just one negation gate.

Hardcore predicates and extractors. We also prove that other basic primitives are highly non-
monotone when implemented as formulas. A Boolean function h : {0, 1}n → {0, 1} is a hardcore
predicate for a function f : {0, 1}n → {0, 1} if, given f(x), it is hard to compute h(x). A strong
extractor is a function that produces almost uniform bits from weak sources of randomness, even
when the truly random seed used for extraction is revealed (see Section 2 for the exact definitions).
We prove that any hardcore predicate on n bits requires roughly Ω(

√
n) negation gates. In addition,

we show that any extractor of 100 bits on n-bit sources of min-entropy n1/2−ε requires formulas with
at least Ω(nε) negation gates. As before, these bounds are exponentially higher than the bounds
obtained by Guo et al. [GMOR15] in the setting of circuits.

We refer to Sections 4.3 to 4.5 for the exact details and precise statements.

Uniform-distribution learnability. Monotone functions are known to be somewhat efficiently
learnable with high accuracy given uniformly distributed examples. Namely, Bshouty and Tamon
[BT96] showed that any monotone Boolean function on n variables can be learned from uniformly
distributed examples to error ε in time O(n

√
n/ε). Recently, Blais et al. [BCO+14] studied the

question of learning negation-limited circuits. They showed that any function on n variables that
can be computed by a circuit with t negations can be learned from uniformly distributed examples
to error ε in time nO(2t·

√
n/ε).

We study the question of learning formulas from uniformly distributed examples and show that
formulas with t negations can be learned, roughly, as fast as circuits with log t negations. More
precisely, we show that any function f on n variables that can be computed by a formula with t
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negations can be learned given labeled examples (x, f(x)) (where the x’s are chosen uniformly at
random) to error ε in time nO(t·

√
n/ε). We refer to Theorem 4.18 for the precise statement of our

result.

1.2 Related Work

Extensive research has been devoted to the study of negation gates and their power. We start
by mentioning the previous efforts that are directly relevant to the results and techniques used
in this paper. First, it is the work of Guo et al. [GMOR15] that studied the complexity of some
basic cryptographic primitives in the general model of Boolean circuits with a limited number of
negations. Second, it is the work of Blais et al. [BCO+14] that studied the efficiency of learning
general circuits with a limited number of negation gates. Our results in the context of cryptography
and learning theory are influenced by the above papers but require different tools and new ideas
(see Sections 4.3 to 4.5).

In addition, we mention the recent result of Rossman [Ros15] that proved an average-case lower
bound under product distributions for mNC1. His average-case lower bound also extends to the
negation-limited regime to get an average-case lower bound under the uniform distribution for NC1

circuits with (1/2 − ε) log n negation gates (improving upon [AM05]). We use some of his ideas to
get an average-case lower bounds for formulas with n1/2−ε negations in Section 4.2.

Besides the above, the question about the power of negation gates in different models has been
studied in many works some of which we mention here. Markov [Mar58] showed that dlog2(n+ 1)e
negation gates are enough to compute every function by a circuit and Fischer [Fis75] proved that
any circuit can be efficiently transformed into a circuit with dlog2(n + 1)e negation gates. Santha
and Wilson [SW91] studied negation-limited constant-depth circuits and showed that dlog2(n+ 1)e
negation gates are not enough to compute some Boolean functions. Raz and Wigderson [RW89]
showed that there exists an explicit monotone function that can be computed by polynomial-size,
depth O(log2 n) circuits, but cannot be computed by any polynomial-size, depth k · log n circuit
that only uses o(n/2k) negated variables (and is not allowed to have any additional negation gate).
Tanaka, Nishino and Beals [TNB96] studied the negation complexity of symmetric function and their
techniques were extended [BNT98] to improved the overhead of Fischer’s transformation [Fis75].
Sung and Tanaka [ST04] proved a generalization of Markov’s theorem for bounded-depth circuits.
Iwama, Morizumi and Tarui [IMT09] proved lower bounds on the size of negation-limited inverters
and circuits computing the parity function. For more information on negations we refer to Jukna’s
book [Juk12, §10] and references therein.

1.3 Overview of Our Techniques

In this section we present a high-level overview of the techniques used to obtain some of our results.
We begin by explaining the starting point of this work: how to improve upon some of the results
of Blais et al. [BCO+14] and Guo et al. [GMOR15] when we restrict the model to formulas (rather
than circuits).

Blais et al. and Guo et al. used as their main tool a decomposition theorem for circuits that
states that any function f that can be computed using a circuit with t negations can be decomposed
using T+1 functions h, g1, . . . , gT such that f(x) ≡ h(g1(x), . . . , gT (x)), where T = O(2t), h is either
the parity function or its negation and each gi is a monotone function. Morally, this theorem can be
thought of as (an inefficient) transformation that pushes negation gates to the root of the circuit.
Using this decomposition, Guo et al. and Blais et al. were able to prove a non-trivial bound on the
total influence (denoted by Inf(·)) of functions that can be computed with few negations. Namely,
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by a simple application of the union bound they showed that if a function f : {0, 1}n → {0, 1} can
be computed using a circuit with t negations, then Inf(f) ≤ O(2t ·

√
n). This bound along with

some additional ideas enabled [GMOR15] and [BCO+14] to prove lower bounds for extractors and
hardcore predicates, and upper bounds on learning, respectively.

Our starting point is the observation that when the underlying model is formulas, the above
decomposition can be made almost the same except for one crucial improvement: any function
f that can be computed using a formula that contains t negation gates can be decomposed into
T + 1 functions h, g1, . . . , gT as before except that T = O(t). Roughly speaking, the reason for the
exponential improvement in T stems from a theorem of Nechiporuk [Nec62] that is tight for formulas
(whereas [GMOR15, BCO+14] used a theorem of Markov [Mar58] that is tight for circuits). Using
this decomposition theorem one can (as before) get a bound on the total influence of functions
f : {0, 1}n → {0, 1} that can be computed by formulas with t negations of the form Inf(f) ≤ O(t·

√
n).

By carefully adjusting the proofs of [GMOR15, BCO+14] one can get exponential improvements in
the setting of formulas.4

Interestingly, we observe that the above connection between total influence and negation com-
plexity is deeper, more general and does not have to go through the above decompositions. The
literature on negation complexity defines a measure, a(·), called “alternation complexity” which
denotes the maximal number of times a function f : {0, 1}n → {0, 1} changes its value along a chain
(i.e., a monotone sequence of strings) starting at 0n and ending at 1n. We give a direct probabilistic
argument for the fact that for any function f it holds that Inf(f) ≤ O(a(f) ·

√
n). The bounds used

in [GMOR15, BCO+14] follow by using a theorem of Markov [Mar58] that states that a(f) = O(2t),
where t is the number of negations required to compute f using a circuit. The bound for formulas
follows by using a theorem of Nechiporuk [Nec62] (see also [Mor09]) that states that a(f) = O(t),
where t is the number of negations required to compute f using a formula. Using the latter bound
and ideas from [GMOR15, BCO+14], we are able to get lower bounds for extractors and hardcore
predicates and an upper bound on learning in the setting of negation-limited formulas. We refer to
Theorem 3.2 and Section 4.5 for additional information.

Unfortunately, none of the above techniques seems to be enough to prove our shrinkage theorem
and the average-case lower bounds extension theorem for formulas with few negations. First, it
is unclear how to use the influence bound to get such structural results. Second, the resulting
decomposition is inefficient in the sense that there is no non-trivial bound on the sizes of the
resulting gi’s, and implementing h as a formula has a large overhead.5

To overcome these issues we prove an efficient version of the above decomposition theorem.
Specifically, we prove that any function f that can be computed using a formula of size s that
contains t negation gates can be decomposed using T + 1 functions h, g1, . . . , gT such that f(x) ≡
h(g1(x), . . . , gT (x)), where T = O(t), h is a read-once formula, each gi is a monotone function and
the total (monotone) formula size of all the gi’s is at most 2s. In other words, we are able to push all
the negation gates to the root of the formula while increasing its size only by a small constant factor
(i.e., 2). This decomposition is more involved than the inefficient version and is influenced by ideas
and techniques used in recent papers on De Morgan formulas [IMZ12, KRT13, Tal14] (see Section 3

4A different approach to get most of the lower bounds of [GMOR15] and the upper bound of [BCO+14] in the
formula setting is (roughly speaking) to use the above decomposition theorem for formulas, view h as a circuit
on t inputs, apply Fischer’s transformation [Fis75] to implement h with dlog2(t + 1)e negations and reduce to the
corresponding result on circuits. We choose to give direct proofs since they give more intuition to why the results
are correct and sometimes provide stronger statements. For example, in our lower bound on the number of negations
needed to implement a pseudorandom function, as in [GMOR15], our proof gives an efficient statistical test that can
be executed given black-box access to any proposed candidate described as a formula.

5The efficiency of the decomposition was not an issue in [GMOR15, BCO+14]. Moreover, shrinkage is a combina-
torial property that, unlike e.g., formulas, general circuits do not have.
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for further details). Intuitively, to get our shrinkage result we first apply the above decomposition
and then apply a random restriction. The analysis relies on two properties of the decomposition:
it does not introduce much overhead in the formula size, and the gi’s are monotone and, thus,
shrink as well as monotone formulas (see Section 4.1 for further details). To get the average-case
lower bounds extension theorem, we plug-in our efficient decomposition theorem into a framework
of Rossman [Ros15].

We remark that some of our proofs do not rely on any of the above mentioned techniques but
require other ideas. Specifically, in Section 4.3, the proof of the lower bound on the size of any
formula that computes a pseudorandom function uses a general bound on the total influence of
small formulas [Shi00, Lee09, GKR12]. Moreover, in Section 4.4, the proof of the lower bound on
the number of negations required to compute one-way permutations relies on Talagrand’s inequality
[Tal96] and the structure of formulas. We note again that Guo et al. [GMOR15] left open the
question whether one-way permutations are computable by circuits that contain just one negation
gate.

1.4 Paper Organization.

The remainder of this paper is organized as follows. In Section 2 we provide an overview of the
notation, definitions, and tools underlying our proofs. In Section 3 we present our decomposition
theorem for negation-limited formulas as well as the relation between total influence and negation
complexity that will be useful to get our main results. Section 4.1 is devoted to the proof of
the shrinkage result, Section 4.2 is devoted to the average-case lower bounds extension theorem,
Sections 4.3 and 4.4 contain our results for pseudorandom functions, and one-way functions and
permutations, respectively, Section 4.5 contains our bounds for hardcore predicates, extractors, and
learning. In Section 5 we conclude with some open problems.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For an
integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we denote by x ← X the
process of sampling a value x from the distribution X. Similarly, for a set X we denote by x← X
the process of sampling a value x from the uniform distribution over X . Unless explicitly stated, we
assume that the underlying probability distribution in our equations is the uniform distribution over
the appropriate set. Further, we let U` denote the uniform distribution over {0, 1}`. We use log x
to denote a logarithm in base 2. We denote by wt(x) the Hamming weight of a string x ∈ {0, 1}n
(i.e., the number of 1’s in the string).

Proposition 2.1 (Chernoff bound). Let X =
∑n

i=1Xi be a sum of identically distributed inde-
pendent random variables X1, . . . , Xn ∈ {0, 1}. Let µ = E[X] =

∑n
i=1 E[Xi]. It holds that for

δ ∈ (0, 1),

Pr[X < (1− δ)µ] ≤ exp
(
−δ2µ/2

)
and

Pr[X > (1 + δ)µ] ≤ exp
(
−δ2µ/3

)
.
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Boolean Circuits and Formulas

We recall some standard definitions and notation regarding formulas. We refer to [Juk12] for a
thorough introduction. We consider formulas over the De Morgan basis BDM = {AND,OR,NOT},
where the AND and OR gates are of fan-in two. Whenever we refer to formulas we actually refer to
De Morgan formulas.

A Boolean formula is a Boolean circuit whose fan-out is at most one. A De Morgan formula is
represented by a tree such that every leaf is labeled by an input variable and every internal node is
labeled by an operation from B2. A formula is said to compute a function f : {0, 1}n → {0, 1} if on
input x ∈ {0, 1}n it outputs f(x). The computation is done in the natural way from the leaves to
the root. The size of a formula F , denoted by L(F ), is defined as the number of leaves it contains.
For a function f , we denote by L(f) the size of the smallest formula that computes the function f .

A formula is called read-once if every input variable labels at most one leaf. A formula F
that does not contain negation gates is called a monotone formula. We say that a formula F is
anti-monotone if F is the negation of a monotone formula.

Consider a formula F . Let q be a node in F (q can be either an internal node or a leaf). We
refer to the tree rooted at q as a subformula of F or a subtree of F .

Let f : {0, 1}n → {0, 1}m be a Boolean multi-bit output function. Such a function can be
computed by m formulas F1, . . . , Fm such that Fi computes the ith output bit of f . The size of the
formula that computes f is the sum of the sizes of F1, . . . , Fm. Moreover, the number of negation
gates in f is the sum of the number of negation gates in F1, . . . , Fm.

Decrease, Alternating and Inversion Complexity

For two strings x, y ∈ {0, 1}n, we write x � y if xi ≤ yi for every i ∈ [n]. If x � y and x 6= y,
then we write x ≺ y. A chain X = (x1, . . . , xt) is a monotone sequence of strings over {0, 1}n, i.e.,
xi � xi+1 for every i ∈ [t]. We say i is a jump-down position of f along a chain X = (x1, x2, . . . , xt)
if f(xi) = 1 and f(xi+1) = 0. We let d(f,X ) be the number of all jump-down positions of f on chain
X We say a chain X = (x1, x2, . . . , xt) is k-alternating with respect to a function f if there exist
indexes i0 < i1 < . . . < ik such that f(xij ) 6= f(xij+1), for every j ∈ [0, k − 1]. We let a(f,X ) be
the size of the largest set of indexes satisfying this condition. The decrease complexity of a Boolean
function f is given by d(f)

def
= maxX d(f,X ) and the alternating complexity of a Boolean function f

is given by a(f)
def
= maxX a(f,X ), where X is a chain over {0, 1}n. Note that a(f) ≤ 2d(f) + 1.

For a Boolean function f , we define the inversion complexity of f , denoted by I(f), as the
minimum number of NOT gates in any formula that computes f . The relation between the inversion
complexity and decrease complexity is stated in the following theorem.

Theorem 2.2 ([Nec62, Mor09]). For every Boolean function f it holds that

I(f) = d(f),

where I(f) is the inversion complexity of f and d(f) is the decrease of f .

Fourier Basis, Influence and Sensitivity

For each S ⊆ [n], define χS : {0, 1}n → {−1, 1} as χS(x) =
∏
i∈S(−1)xi . It is well known that

the set {χS}S⊆[n] is an orthonormal basis (called the Fourier basis) for the space of all functions
f : {0, 1}n → R. It follows that every function f : {0, 1}n → R can be represented as

f(x) =
∑
S⊆[n]

f̂(S)χS(x)

8



where f̂ : {0, 1}n → R, and f̂(S)
def
= Ex[(−1)

∑
i∈S xi+f(x)] is called the Fourier coefficient of f at

S ⊆ [n].
We use Infi(f) to denote the influence of the i-th input variable on f , i.e.,

Infi(f)
def
= Pr

x
[f(x) 6= f(x⊕i)],

where x⊕i denotes the string obtained from x by flipping its i-th coordinate. The influence of f
(also known as average-sensitivity) is defined as Inf(f)

def
=
∑

i∈[n] Infi(f).
We let NSp(f) denote the noise sensitivity of f under noise rate p ∈ [0, 1/2], which is defined as

Pr[f(X⊕Y ) 6= f(X)], where X is distributed uniformly over {0, 1}n, and Y is the p-biased binomial
distribution over {0, 1}n, i.e., each coordinate of Y is set to 1 independently with probability p. We
refer to O’Donnell’s book [O’D14] for an introduction to Fourier analysis.

Some of our proofs rely on the following inequality for monotone Boolean functions.

Proposition 2.3 (Talagrand [Tal96]). For any pair of monotone Boolean functions f, g : {0, 1}n →
{0, 1}, it holds that

Pr
x

[f(x) = 1 ∧ g(x) = 1] ≥ Pr
x

[f(x) = 1] · Pr
x

[g(x) = 1] + ψ
(∑
i∈[n]

Infi(f) · Infi(g)
)
,

where ψ(x)
def
= c · x/ log (e/x), e is the base of the natural logarithm and c > 0 is a fixed constant

independent of n.

One-Way Functions, Hardcore Bits and Pseudorandom Functions

We say that a function f : {0, 1}n → {0, 1}m is an (s, ε)-secure one-way function (OWF) if for every
circuit C of size at most s,

Pr
x←{0,1}n, y=f(x)

[C(y) ∈ f−1(y)] ≤ ε.

If m = n, we say that f is length-preserving. If f is an (s, ε)-secure one-way function that is
lengh-preserving and one-to-one, we say that f is an (s, ε)-secure one-way permutation (OWP).

We say that a function h : {0, 1}n → {0, 1} is an (s, ε)-secure hardcore bit for a function
f : {0, 1}n → {0, 1}m if, for every circuit C of size s,∣∣∣∣ Pr

x←{0,1}n
[C(f(x)) = h(x)]− 1

2

∣∣∣∣ ≤ ε.
Let Πn be the set of all Boolean functions on n variables, and f : {0, 1}λ × {0, 1}n → {0, 1}. We

say that f is an (s, ε)-secure pseudorandom function (PRF) if, for every (non-uniform) algorithm A
that can be implemented by a circuit of size at most s,∣∣∣∣ Pr

K←{0,1}λ
[Df(K,·)(1λ) = 1]− Pr

f←Πn
[Df(·)(1λ) = 1]

∣∣∣∣ ≤ ε.
where Ah denotes the execution of A with oracle access to a Boolean function h : {0, 1}n → {0, 1}
(circuits with access to oracle gates are defined in the natural way).
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Extractors

The min-entropy of a random variable X, denoted by H∞(X), is the largest real number k such
that Pr[X = x] ≤ 2−k for every x in the range of X. A distribution X over {0, 1}n with H∞(X) ≥ k
is said to be an (n, k)-source. Given random variables X and Y with range {0, 1}m, we let

δ(X,Y )
def
= max

S⊆{0,1}m

∣∣Pr[X ∈ S]− Pr[Y ∈ S]
∣∣

denote their statistical distance. We say that X and Y are ε-close if δ(X,Y ) ≤ ε.
We say that a function Ext : {0, 1}n × {0, 1}s → {0, 1}m is a (strong) (k, ε)-extractor if, for any

(n, k)-source X, the distributions Us+m and (Us,Ext(X,Us)) are ε-close.6

3 Tools for Negation-Limited Formulas

In this section we present two basic tools for analyzing negation-limited formulas. First, in The-
orem 3.1 we prove an efficient decomposition theorem for formulas which, intuitively, pushes all
negation gates to the root of the formula. Second, in Theorem 3.2 we prove a relation between the
total influence of a function and its alternation complexity.

Theorem 3.1. Let f : {0, 1}n → {0, 1} be a Boolean function computed by a formula F of size s
containing t > 0 negation gates. Then, there exist T ≤ 15(t + 1) functions g1, . . . , gT : {0, 1}n →
{0, 1} and a function h : {0, 1}T → {0, 1} such that f(x) = h(g1(x), . . . , gT (x)), h is computable by
a read-once formula and g1, . . . gT are computable by monotone formulas of total size at most 2s.

Theorem 3.2. For any function f : {0, 1}n → {0, 1}, it holds that

Inf(f) ≤ O
(
a(f) ·

√
n
)
,

where Inf is the total influence of f and a(f) is the alternating complexity of f .

Using Nechiporuk’s theorem (see Theorem 2.2) we get the following corollary.

Corollary 3.3. For any function f : {0, 1}n → {0, 1} that can be computed by a formula with t
negations, it holds that

Inf(f) ≤ O
(
t ·
√
n
)
.

We begin with the proof of Theorem 3.1. We first need the following claim that states that any
formula that has t negation gates can be decomposed into 2(t + 1) subformulas such that each of
them is monotone or anti-monotone (i.e., either it has zero negations or it has one negation in the
root). Moreover, each such subformula has at most two “special” children which are subformulas
by themselves. We note that the proof of Theorem 3.1 draws ideas from a proof of a different
decomposition theorem used by Tal [Tal14] which, in turn, is partially built on ideas that were used
before in [IMZ12] and then in [KRT13]. However, since the properties of our decomposition are very
different, we cannot use the other theorems as a black box.

Claim 3.4. Any formula F of size s that contains t > 0 negations can be decomposed into at
most 2(t + 1) subformulas of total size s, such that each has at most one negation gate in its root.
Moreover, each such subformula has at most two “special” children which are other subformulas.

6Two occurrences of the same random variable in an expression refer to the same instance of the variable.
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Proof. Execute the following step t times: let g1, . . . , gs be the nodes of the formula F sorted by
their distance from the root gs. For any i = 1, . . . s if gi = NOT we set Fi to be the subformula
rooted at gi and set F = F \ Fi. This process results with T = t+ 1 subformulas F1, . . . , FT whose
total size is s and each is either monotone or rooted by a NOT gate.

For each subformula Fi with more than two subtree children, find a subtree F ′i of Fi with exactly
two subtree children, and divide Fi into F ′i and Fi \F ′i . Note that Fi \F ′i now has one fewer subtree
children. Continue doing this until all subtrees have at most two subtree children. This process
results with the desired number of subtrees, 2(t+ 1), since the above process can continue at most
the original number of subtrees.

Proof of Theorem 3.1. Let F be as in the lemma. Apply the decomposition from Claim 3.4 on
F to get the subtrees F1, . . . , FT ′ , where T ′ = 2(t + 1). We show by induction on T ′ that one can
construct a read-once formula H of size T ≤ 7T ′ and T monotone formulas G1, . . . , GT of size s
such that F (x) = H(G1(x), . . . , GT (x)). For t = 0 (and T ′ = 1) the statement holds trivially.

Assume that the root of the formula F is a node in the subtree F1, and that the subtree F1 has
two subformula children F2 and F3. (The case in which F1 has only one subformula child is handled

similarly). Denote by k
(1)
2 , k

(1)
3 ∈ F1, k

(2)
1 ∈ F2 and k

(3)
1 ∈ F3 the nodes such that k

(1)
2 is the father

of k
(2)
1 and k

(1)
3 is the father of k

(3)
1 . Disconnect F2 and F3 from F1 and add two new leaves labeled

by z2 and z3 to F1 as a child of k
(1)
2 and k

(1)
3 , respectively.

Call the formula F1 with the two new leaves F ′. Notice that by Claim 3.4, F ′ is either monotone
or anti-monotone, namely a negation of a monotone function. We prove the case when F ′ is anti-
monotone and the argument for monotone case is similar. Let F ′1 be the minimal subformula
of F ′ that contain both z2 and z3 and let F ′2 and F ′3 be the corresponding subtrees such that
F ′1 = F ′2 gate F ′3, where gate ∈ {AND,OR}, and F ′2 contains z2 (but not z3) and F ′3 contains z3 (but
not z2). We will construct a formula which is equivalent to F ′1.

We observe that F ′2 = F ′2|z2=0 OR (F ′2|z2=1 AND z2). This is true since F ′2 is monotone (i.e., does
not contain any negation gates). Similarly, F ′3 = F ′3|z3=0 OR (F ′3|z3=1 AND z3). Thus,

F ′1 = (F ′2|z2=0 OR (F ′2|z2=1 AND z2)) gate (F ′3|z3=0 OR (F ′3|z3=1 AND z3)).

Replacing F ′1 with a new leaf z (where z is a new special variable) we have (by a similar argument)
that F1 = F1|z=1 OR (F1|z=0 AND z) (this follows by the anti-monotonicity of F1). By expanding
according to the definition of z we get that

F1 = F1|z=1 OR (F1|z=0 AND ((F ′2|z2=0 OR (F ′2|z2=1 AND z2)) gate

(F ′3|z3=0 OR (F ′3|z3=1 AND z3)))).

Now, we observe that the right hand side can be rewritten as F ′′(G1, ,̇G6, z2, z3), where F ′′ is read-
once and G1, ,̇G6 are formulas of size at most s (defined over the same set of variables as the initial
F ).

Let t2 and t3 be the number of subformulas which are descendants of F2 and F3 in the for-
mula decomposition, respectively. By induction the subformula of F rooted at k

(2)
1 is equivalent to

F ′2(G
(2)
1 (x), . . . , G

(2)
6t2

(x)), where F ′2 is read-once and G
(2)
i is of size at most s. Similarly, the subfor-

mula of F rooted at k
(3)
1 is equivalent to F ′3(G

(3)
1 (x), . . . , G

(3)
6t3

(x)), where F ′3 is read-once and G
(3)
i is

of size at most s. Thus,

F (x) = F ′′(G1(x), . . . , G6(x), F ′2(G
(2)
1 (x), . . . , G

(2)
6t2

(x)), G
(3)
1 (x), . . . , G

(3)
6t3

(x))).
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By rearranging the right hand size we get a read-once formula of size T ≤ 6 + 6t2 + 6t3 ≤ 7T ′ and T
monotone subformulas each of size at most s such that their composition is equivalent to F . To see
that the total size of the subformulas is bounded by 2s notice that every subformula was duplicated
at most once.

We proceed with the proof of Theorem 3.2.

Proof of Theorem 3.2. Denote by D the set of all pairs of points in {0, 1}n that differ at one
coordinate. Namely, (x, y) ∈ D if and only if there exists an i ∈ [n] such that x⊕i = y.

We define two ways to sample edges from D and show that they define the same distribution.
The first way to sample an edge from D is by first sampling a point x ∈ {0, 1}n and then sampling
a random direction i ∈ [n]. This gives rise to the edge (x, x⊕i). Notice that for any edge e ∈ D it
holds that

Pr
x←{0,1}n,i←[n]

[(x, x⊕i) = e] =
1

n · 2n−1
.

Moreover, observe that by the definition of total influence, we have that

Inf(f)

n
= Pr

x←{0,1}n,i←[n]
[f(x) 6= f(x⊕i)]. (3.1)

The second way is defined as follows. Denote by C the set of all valid chains starting from 0n and
ending at 1n. First, we sample a random chain X = (x0 = 0n, x1, . . . , xn−1, xn = 1n) from C. Notice
that wt(xi) = i for all i ∈ [n] ∪ {0}. Then, we pick the edge e(i) = (xi, xi+1) for i ∈ [n− 1] ∪ {0} on
the chain with probability

(
n−1
i

)
/2n−1. Notice that this is a probability distribution since we have

that
∑n−1

i=0

(
n−1
i

)
/2n−1 = 1. Also, observe that a random chain X from C contains an arbitrary edge

(x, x′) ∈ D with probability 1/(
(
n−1
wt(x)

)
·n). In total, using the above process, the probability to pick

an edge e ∈ D is

Pr
X←C,(xi,xi+1)←X

[(xi, xi+1) = e] = Pr
(xi,xi+1)←X

[(xi, xi+1) = e | e ∈ X ] · Pr
X←C

[e ∈ X ]

=

(
n−1
wt(x)

)
2n−1

· 1(
n−1
wt(x)

)
· n

=
1

n · 2n−1
.

Therefore, we got that the two ways to sample an edge on the cube have the same distribution.
Thus, using Equation (3.1), we get that

Inf(f)

n
= Pr
X←C,(xi,xi+1)←X

[f(xi) 6= f(xi+1)]. (3.2)

However, notice that for any X ∈ C it holds that

Pr
(xi,xi+1)←X

[f(xi) 6= f(xi+1)] ≤ a(f) · max
i∈[n−1]∪{0}

{(
n−1
i

)
2n−1

}
≤ O

(
a(f)/

√
n
)
,

where the first inequality follows by the definition of a(f) (the maximum number of alternations
at any chain) and the second inequality holds since the second term is maximized roughly when
i ≈ n/2 and it is known (by e.g., Stirling’s approximation) that

(
n
n/2

)
= O(2n/

√
n). Plugging this

back into Equation (3.2) we get that

Inf(f) ≤ O(a(f) ·
√
n).
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We note that the bound in Theorem 3.2 is tight up to constants. Indeed, for any n ∈ N, any
constant c ∈ N (independent of n) and any t ≤ c ·

√
n consider the function f : {0, 1}n → {0, 1}

defined as

f(x) =

{
wt(x) mod 2 if |wt(x)− n/2| ≤ t/2,
0 otherwise.

First, it is easy to see that t − 1 ≤ a(f) ≤ t + 1. Moreover, a simple analysis shows that Inf(f) ≥
Ω(t·
√
n). To see this observe that since t ≤ O(

√
n), then Prx←{0,1}n [|wt(x)− n/2| ≤ t/2] ≥ Ω(t/

√
n),

and that if x satisfies that |wt(x)− n/2| ≤ t/2, then changing each of its n coordinates will flip the
value of the function.

4 The Complexity of Negation-Limited Formulas

4.1 Shrinkage under Random Restrictions

A well known property of formulas is called shrinkage. We begin with several definitions.

Definition 4.1 (Restriction). Let f : {0, 1}n → {0, 1} be a Boolean function. A restriction ρ is a
vector of length n of elements from {0, 1, ?}. We denote by f |ρ the function f restricted according
to ρ in the following sense: if ρi = ? then the i-th input bit of f is unassigned and otherwise the
i-th input bit of f is assigned to be ρi.

Definition 4.2 (p-Random restriction). A p-random restriction is a restriction as in Definition 4.1
that is sampled as follows. For every i ∈ [n], independently with probability p set ρi = ? and with
probability 1−p

2 set ρi to be 0 and 1, respectively. We denote this distribution of restrictions by Rp.

Definition 4.3 (Shrinkage exponent). Let F be a class of functions associated with a size function
size : F → N. The shrinkage exponent of F is said to be Γ if for any F ∈ F

E
ρ←Rp

[size(F |ρ)] ≤ O
(
pΓ · size(F ) + 1

)
.

Denote by Γ,Γ0,Γ
∗ the shrinkage exponent of (De Morgan) formulas, monotone formulas and

read-once formulas, respectively. Denote by Γt the shrinkage exponent of formulas that contain at
most t negation gates.

Fact 4.4. The following facts are known:

1. Γ = 2 [H̊as98, Tal14].

2. Γ∗ = log√5−1 2 ≈ 3.27 [DZ94, HRY95].

3. For every t ≥ 0 it holds that Γ∗ ≥ Γt ≥ Γ = 2.

Figuring out the value of Γ0, the shrinkage exponent of monotone Boolean formulas, is a major
open problem [PZ93, H̊as98, Tal14].

Our main theorem of this section is a trade-off between the number of negations in the formula
and its shrinkage exponent. In particular, we get that the shrinkage exponent of formulas that
contain a constant number of negation gates is equal to Γ0.

Theorem 4.5. Let F be a formula that contains t > 0 negation gates. It holds that

E
ρ←Rp

[L(F |ρ)] ≤ O(pΓ0 · L(F ) + t).
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Proof. Given a formula F we decompose it using Theorem 3.1 to get H,G1, . . . , GT , where T ≤
15(t+1),

∑T
i=1 L(Gi) ≤ 2·L(F ) and F (x) = H(G1(x), . . . , GT (x)). Clearly we have that the formula

size of F is at most the sum of the sizes of the Gi’s. Namely,

L(F ) ≤
T∑
i=1

L(Gi) ≤ 2 · L(F ), (4.1)

where the second inequality is true by the guarantee of the decomposition from Theorem 3.1. Let
ρ← Rp be a random restriction. For each i ∈ [T ] since Gi is monotone, we have that Eρ[L(Gi|ρ)] ≤
O(pΓ0 · L(Gi) + 1). Thus, the expected size of L(F ) after applying ρ is upper bounded as follows:

E
ρ
[L(F |ρ)] ≤

T∑
i=1

E
ρ
[L(Gi|ρ)] (Linearity of expectation)

≤
T∑
i=1

O(pΓ0 · L(Gi) + 1) (Each Gi is monotone)

≤O(pΓ0 · L(F ) + t). (Equation (4.1))

Notice that when t = O(1) we get that Eρ[L(F )|ρ] ≤ O(pΓ0 · L(F ) + 1) which means that
the shrinkage exponent of such formulas is exactly equal to the shrinkage exponent of monotone
formulas. More generally, Theorem 4.5 implies that every formula F that contains t > 0 negation
gates can be shrunk in two steps of random restrictions such that in the first step the formula F
shrinks to size O(t) as monotone formulas shrink (i.e., with Γ0 as the shrinkage exponent) and in the
second step the formula (of size O(t)) shrinks as formulas shrink (with Γ as the shrinkage exponent).
To be more precise, F can be restricted with a random restriction ρ1 ← Rp1 , where p1 = Γ0

√
t/L(F ),

to get a formula F1 of size O(t) and then it can be restricted with a random restriction ρ2 ← Rp for
any p to get a formula F2 of size O(pΓ · t+ 1).

4.2 Average-Case Lower Bounds Extension

In this section we study average-case lower bounds for negation-limited formulas. We adapt a proof
of Rossman [Ros15] to the setting of formulas and prove that if one can approximate a function
using a formula with few negations, then it is also possible to approximate it quite well using a
monotone formula. Such a statement is useful to extend average-case lower bounds for monotone
formulas to average-case lower bounds for formulas with few negation gates.

Theorem 4.6. Let µ be any product distribution over {0, 1}n.7 Let m : {0, 1}n → {0, 1} be a
monotone function which is balanced under the uniform distribution, namely m−1(0) = m−1(1) =
2n−1. Suppose that there exists a function f : {0, 1}n → {0, 1} computable by a formula of size s,
depth d and t > 0 negations such that

Pr
x←µ

[f(x) = m(x)] ≥ 1

2
+ δ.

7The statement can be generalized to hold for any distribution µ which satisfies that µ(x)µ(y) ≤ µ(x ∧ y)µ(x ∨ y)
for any x, y ∈ {0, 1}n. This condition is known as the FKG condition and is clearly satisfied by product distributions.
See [Ros15] for more details.
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Then, there exists a function g computably by a monotone formulas of size s and depth d such that

Pr
x←µ

[g(x) = m(x)] ≥ 1

2
+ Ω

(
δ

t

)
.

Proof. For a function h : {0, 1}n → {0, 1}, let mpairs(h) = {(x, y) ∈ h−1(0)× h−1(1) | x ≺ y}, i.e.,
the set of all the pairs x, y ∈ {0, 1}n such that x ≺ y and h(x) < h(y).

Rossman [Ros15] proved the following claim which states that there exists a probability distribu-
tion ν (defined according to m) supported on mpairs(m) such that the correlation between any (not
necessarily monotone) function h and m is related with the probability mass of v over the monotone
pairs of h.

Claim 4.7 ([Ros15, §F]). There exists a probability distribution ν (defined according to m) supported
on mpairs(m) such that for any function h : {0, 1}n → {0, 1}

ν(mpairs(h)) ≥ 2 · Pr
x←µ

[h(x) = m(x)]− 1,

where ν(mpairs(h))
def
= Pr(x,y)←ν [(x, y) ∈ mpairs(h)]. Moreover, equality holds when h is a monotone

function.

Using the assumption of the theorem, it follows that ν(mpairs(f)) ≥ 2 ·Prx←µ[f(x) = m(x)]−1 ≥
δ. Next, we show that there exists a monotone formula g of size at most s and depth d such that
ν(mpairs(g)) ≥ ν(mpairs(f))/T , where T = O(t). This implies (using Claim 4.7 and the fact that g
is monotone) the desired conclusion, namely,

Pr
x←µ

[g(x) = m(x)] =
1

2
· (1 + ν(mpairs(g))) ≥ 1

2
+ Ω

(
δ

t

)
.

To prove the existence of g we use the following claim.

Claim 4.8. There exist T = O(t) monotone formulas g1, . . . , gT of size at most s and depth at most
d such that mpairs(h) ⊆

⋃
i∈[T ] mpairs(gi).

Proof. By Theorem 3.1, we can write f(x) = h′(g1(x), . . . , gT (x)), where T ≤ 15(t+1) = O(t), gi are
monotone formulas each of size at most s and depth d.8 For any (x, y) ∈ mpairs(h), since f(x) 6= f(y),
there must exist an i ∈ [T ] such that gi(x) 6= gi(y). Then, since gi is monotone, it must be that
gi(x) = 0 and gi(y) = 1, and hence, (x, y) ∈ mpairs(gi). Therefore, mpairs(h) ⊆

⋃
i∈[T ] mpairs(gi).

Claim 4.8 implies that ν(mpairs(h)) ≤
∑T

i=1 ν(mpairs(gi)). Therefore, by averaging, there exists an
i ∈ [T ] such that ν(mpairs(gi)) ≥ ν(mpairs(h))/T , which completes the proof.

We recall the average-case lower bound of Rossman [Ros15].

Theorem 4.9 ([Ros15, Corollary 1.2]). For every ε > 0, there is an explicit monotone func-
tion f : {0, 1}n → {0, 1} such that for every polynomial-size monotone formula F+ it holds that
Prx←{0,1}n [F+(x) = f(x)] ≤ 1/2 + n−1/2+ε.

Using Theorem 4.6 and Theorem 4.9 we obtain the following corollary.

Corollary 4.10. For every ε > ω(log−1 n), there is an explicit function f : {0, 1}n → {0, 1} such
that for every polynomial-size formula F with n1/2−ε negations it holds that Prx←{0,1}n [F (x) =
f(x)] ≤ 1/2 + o(1).

8The original statement of Theorem 3.1 only bounds the total size of g1, . . . , gT , however it is easy to see that the
same decomposition results with formulas g1, . . . , gT each of size at most s and depth at most d.
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4.3 Pseudorandom Functions

In this section we study the negation-limited complexity of pseudorandom functions. In Theo-
rem 4.11 we prove that any formula that computes a pseudorandom function on n input bits (where
the seed is not counted as part of the input) must contain at least Ω(n) negation gates. The proof of
the theorem follows the proof of [GMOR15] that was proved in the setting of general Boolean circuits
but using the theorem of Nechiporuk (see Theorem 2.2) which gives better results for formulas.

Then, in Theorem 4.13 we prove that any formula that computes a pseudorandom function must
be of size at least Ω(n2). We prove this using the fact that small formulas have low total influence,
and giving an adversary that distinguishes any function f with somewhat low influence from a
random function.

Theorem 4.11. If f : {0, 1}λ × {0, 1}n → {0, 1} is a (poly(n), 1/3)-secure pseudorandom function,
then any Boolean formula computing f contains at least Ω(n) negation gates.

Proof. Let Πn be the set of all Boolean functions on n input bits. By the definition of a secure
pseudorandom function we have that for any probabilistic polynomial-time algorithm D it holds
that ∣∣∣∣ Pr

K←{0,1}λ
[Df(K,·)(1λ) = 1]− Pr

f←Πn
[Df(·)(1λ) = 1]

∣∣∣∣ ≤ 1

3
. (4.2)

Let ei
def
= 1i0n−i and let X = (e0, . . . , en) be a chain over {0, 1}n. We define the algorithm D that

has oracle access to a function h as follows: D starts by querying f at each of e0, . . . , en, computes
d(f,X ) and outputs 1 if and only if d(f,X ) ≥ n/8. It is easy to see that D can be implemented in
polynomial time.

If f is a completely random function, we have that Ef←Πn [d(f,X )] = n/4 and by Chernoff’s
bound (see Proposition 2.1) we have that

Pr
f←Πn

[|d(f,X )− n/4| < n/8] ≥ 1− exp(−n).

Thus, using Equation (4.3) we have that

Pr
K←{0,1}m

[Df(K,·)(1λ) = 1] ≥ 2

3
− o(1).

Therefore, there must exist a seed K∗ ∈ {0, 1}λ for which d(fK ,X ) ≥ n/4, where fK
def
= f(K, ·).

Using Theorem 2.2 we have that if F is a formula with t negations that computes fK , then

n/4 ≤ d(fK ,X ) ≤ d(fK) = t.

Finally, it is easy to conclude that any formula for f also requires at least Ω(n) negation gates.

In the following theorem we show that pseudorandom functions must be computed by formula
of size at least Ω(n2) (even non-monotone ones). Our proof relies on the following theorem which
says that the total influence of a function f that can be computed by a formula of size s is at most
O(
√
s). This theorem follows from [Shi00, Lee09] who used a quantum approach or from [GKR12]

who gave an alternative classical proof.

Theorem 4.12 ([Shi00, Lee09],[GKR12]). Let f : {0, 1}n → {0, 1} be a Boolean function. Then

Inf(f) ≤ O(
√
L(f)).

16



Theorem 4.13. If f : {0, 1}λ × {0, 1}n → {0, 1} is a (poly(n), 1/3)-secure pseudorandom function,
then any Boolean formula that compute f must be of size at least Ω(n2).

Proof. Let Πn be the set of all functions that map strings of length n to bits. By the definition of
a secure pseudorandom function we have that for any probabilistic polynomial-time algorithm D it
holds that ∣∣∣∣ Pr

K←{0,1}λ
[Df(K,·)(1λ) = 1]− Pr

f←Πn
[Df(·)(1λ) = 1]

∣∣∣∣ ≤ 1

3
. (4.3)

We define the algorithm D that has oracle access to a function h as follows: D picks a random
point x and computes s(f, x) which we define as the number of inputs x⊕i such that f(x) 6= f(x⊕i),
and outputs 1 if and only if s(f, x) ≥ n/4. It is easy to see that D can be implemented in polynomial
time.

If f is a completely random function, we have that Ef←Πn,x←{0,1}n [s(f, x)] = n/2 and by Cher-
noff’s bound (see Proposition 2.1) we have that

Pr
f←Πn,x←{0,1}n

[|s(f, x)− n/2| < n/4] ≥ 1− exp(−n).

Thus, using Equation (4.3) we have that

Pr
K←{0,1}m

[Df(K,·)(1λ) = 1] ≥ 2

3
− o(1).

Therefore, there must exist a seed K∗ ∈ {0, 1}λ for which Prx←{0,1}n [s(fK , x) ≥ n/4] ≥ 2/3− o(1),

where fK
def
= f(K, ·). Then, by the definition of total influence and using Markov’s inequality, we

have that

Inf(fK) = E
x←{0,1}n

[s(fK , x)] ≥ Pr
x←{0,1}n

[
s(fK , x) ≥ n

4

]
· n

4
= Ω(n).

Using Theorem 4.12 we have that if f can be computed by a formula of size s, then

Inf(f) ≤ O(
√
s).

Thus, we conclude that L(f) ≥ Ω(n2).

We remark that a somewhat different approach to prove Theorem 4.13 is to use Kraphchenko’s
bound [Khr71]. In addition, we note that one can combine the natural-proofs technique of Razborov
and Rudich [RR97] and known lower bounds for formulas [H̊as98, Tal14] to rule out the existence

of super strong (say (2n
1−O(1)

, 2−n
1−O(1)

)-secure) PRFs computable by formulas of size O(n3−o(1)).
We note that the constant 1/3 in both statements (Theorems 4.11 and 4.13) is arbitrary and can
be replaced with any other constant in [0, 1).

4.4 One-Way Functions and Permutations

In this section we study the negation-limited complexity of one-way functions and one-way permu-
tations in the model of Boolean formulas.

We start with a simple observation (see Observation 4.14) that if one-way functions in NC1 exist,
then there exist one-way functions that can be computed by monotone logarithmic-depth formulas.
Then, we consider the negation-limited complexity of permutations. Guo et al. [GMOR15] showed
that one-way permutations cannot be monotone but they left open the question whether one-way
permutations are computable by circuits that contain just one negation gate. In Theorem 4.15, we
show that any one-way permutation is not computable by a formula that has O(log n) negations.
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Observation 4.14. Assume that there is a one-way function in NC1. Then, there is a one-way
function computable by a logarithmic-depth monotone formula.

Proof. Recall the transformation of Goldreich and Izsak [GI12] that transformed every one-way
function into a monotone one-way function. Let C be a circuit that computes a one-way function
and let C ′ be a circuit obtained from C by pushing all negation gates to the leaves and replacing
negated variables by auxiliary variables, namely, C(x) = C ′(x, x̄), where x̄i = ¬xi. Let Thk :
{0, 1}n → {0, 1} be a function such that Thk(x) = 1 if and only if the hamming weight of x is
at least k. Notice that for any x of hamming weight k it holds that ¬xi = Thk(x ∧ 1i−101n−i).
Therefore, N(x) = (Thk(x ∧ 01n−1), . . . ,Thk(x ∧ 1n−10)) and we get that

C ′′(x) = (Thn/2 ∧ C ′(x,N(x))) ∨ Th(n/2)+1(x)

is a monotone function which is efficiently computable and weakly one-way. Then, applying the
standard hardness amplification process they obtain a one-way function (we refer to [GI12] for the
exact detail).

We observe that if we start with a one-way functions in NC1, then the reduction of [GI12] results
with a monotone one-way function which is in NC1. Then, we use the standard transformation
from circuits in NC1 to formulas. Since this transformation preserves monotonicity and depth, we
complete the proof. We note that the above transformation of [GI12] uses threshold functions which
are computable by (uniform) formula of logarithmic depth (using sorting networks [AKS83]).

Theorem 4.15. Let f : {0, 1}n → {0, 1}n be a permutation. If f is computable by a formula of size
s that contains t negations, then there exists a deterministic algorithm whose running time is 22t · s
such that given as input any y = f(x) outputs x. In particular, if s ∈ poly(n) and t = O(log n),
then the algorithm runs in polynomial-time.

Proof. Let fi : {0, 1}n → {0, 1} be the Boolean function corresponding to the i-th output bit of f
and Fi : {0, 1}n → {0, 1} be a formula computing fi. Let S = {i ∈ [n] | Fi is monotone}, i.e., the
collection of indices i ∈ [n] for which Fi contains no negations. Since f has t < n negations, we
obtain |S| ≥ n − t. Let S1 = {i ∈ S | ∃j ∈ [n],∀x ∈ {0, 1}n : Fi(x) = xj}, i.e., the collection of
indices i ∈ S for which Fi is a dictator function. Let Ii = {j ∈ [n] | Infj(fi) 6= 0}, i.e., the set of
input variables that fi depends on.

Consider functions f` and fk, where ` 6= k ∈ S. By Talagrand’s inequality (Proposition 2.3),

Pr
x

[f`(x) = 1 ∧ fk(x) = 1] ≥ Pr
x

[f`(x) = 1] · Pr
x

[fk(x) = 1] + ψ
(∑
i∈[n]

Infi(f`) · Infi(fk)
)
.

Since f is a permutation, Prx[f`(x) = 1 ∧ fk(x) = 1] = 1/4 and Prx[f`(x) = 1] = Prx[fk(x) = 1] =
1/2. Thus, since f` and fk are monotone and using the definition of ψ, we get that∑

i∈[n]

Infi(f`) · Infi(fk) = 0.

Therefore, I` ∩ Ik = ∅, i.e., f` and fk depend on a disjoint set of input variables. Since the above
holds for every pair `, k such that ` 6= k ∈ S, we obtain

n ≥
∣∣∣ ⋃
i∈S

Ii

∣∣∣ =
∑
i∈S
|Ii| =

∑
i∈S1

|Ii|+
∑

i∈S\S1

|Ii| . (4.4)
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For i ∈ S \ S1, since the function fi is non-constant we have that |Ii| ≥ 2. Plugging this into
Equation (4.4), we obtain

n ≥
∑
i∈S1

1 +
∑

i∈S\S1

2 = 2 |S| − |S1| ≥ 2(n− t)− |S1| ,

which implies that |S1| ≥ n− 2t.
Given y = f(x), we can invert y and find x′ = x using following algorithm:

1. For every i ∈ S1, we set x′j to be yi where j is the only element in the set Ii.

2. Go over all possible assignments on the unassigned variables in x′ until f(x′) = y,

3. Output x′.

After the first step, |S1| ≥ n−2t variables are assigned correctly. The number of unassigned variables
is at most 2t, so that we can try all possible assignments on the remaining unassigned variables in
time 22t · s, where s is the evaluation time of the permutation. If s ∈ poly(n) and t = O(log n), we
get that the above algorithm runs in polynomial-time.

4.5 Hardcore Predicates, Extractors and Learning

In this section we use Corollary 3.3 to generalize the results of [GMOR15, BCO+14] to the setting
of formulas. Our proofs rely on Corollary 3.3 and the high-level ideas of [GMOR15, BCO+14].

First, we prove that any formula that computes a hardcore bit must use roughly
√
n negation

gates. Second, we show that any strong (n
1
2
−α, 1/2)-extractor with output length m can only be

computed by formulas with Ω(m·nα) negation gates.9 Lastly, we show that formulas with t negations
can be learned as fast as circuits with log t negations. More precisely, we show that any function
that can be computed by a formula with t negations can be learned in time nO(t·

√
n/ε) to error ε.

Theorem 4.16. Assume that there exists a family f = {fn}n∈N of (poly(n), n−ω(1))-secure one-way
functions, where each fn : {0, 1}n → {0, 1}n. Then, for every ε > 0, there exists a family gε =
{gn}n∈N of (length-preserving) (poly(n), n−ω(1))-secure one-way functions for which the following
holds. If h = {hn}n∈N is a (poly(n), n−ω(1))-secure hardcore predicate for gε, then for every n
sufficiently large, any formula computing hn contains at least Ω(n1/2−ε) negations.

Theorem 4.17. Let 0 < α < 1/2 be a constant, and m = m(n) ≥ 100. Further, suppose that
H ⊆ {h | h : {0, 1}n → {0, 1}m} is a family of functions such that each output bit hi : {0, 1}n → {0, 1}
of a function h ∈ H is computed by a formula and the total number of negations of a function h ∈ H
is at most t. Then, if H is an (n

1
2
−α, 1/2)-extractor, then t = Ω(m · nα).

Theorem 4.18. There is a uniform-distribution learning algorithm that learns any unknown func-
tion f : {0, 1}n → {0, 1} that can be computed by a formula with t negations to error ε in time
nO(t·

√
n/ε).

Proof of Theorem 4.16. It follows from a result of Goldmann and Russell [GR00] that under the
existence of one-way functions, there exists a one-way function family gε = {gn}n∈N that only admits
hardcore predicates with total influence Ω(n1−ε). Our result follows easily using Corollary 3.3 which
states that the total influence of formulas computed with t negations is O(t ·

√
n).

9We remark that, as [GMOR15], we view the extractor Ext : {0, 1}n × {0, 1}s → {0, 1}m as a family of functions

HExt
def
= {hw : {0, 1}n → {0, 1}m | hw = Ext(·, w), where w ∈ {0, 1}s}, i.e., the family of functions obtained from the

extractor by fixing its seed. Similarly, every such family can be viewed as a strong extractor in the natural way.
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Proof of Theorem 4.17. First, we state a lemma from [GMOR15] (building on techniques of
[BG13]) and then we prove the theorem.

Lemma 4.19 ([GMOR15, Lemma 5.7]). Let 0 ≤ p ≤ 1/2, 0 ≤ γ ≤ 1/4, and H ⊆ {h | h : {0, 1}n →
{0, 1}m} be a family of functions. Assume that10 Ei←[m][NSp(hi)] ≤ γ where hi : {0, 1}n → {0, 1}
computes the i-th output bit of some function in H, where i ∈ [m]. Then there exists a distribution
D over {0, 1}n with min-entropy H∞(D) = n · log( 1

1−p) such that the statistical distance between

(H,H(D)) and (H,Um) is at least (1− 2
√
γ − 2−0.1m)(1− 2

√
γ).

At this point we are ready to prove the theorem. It is known that for any function g : {0, 1}n →
{0, 1} and p(n) ∈ (0, 1/2), NSp(g) = Inf(g) · p (see e.g., [O’D14]). Thus, it follows from Corollary 3.3
that if hi : {0, 1}n → {0, 1}m is a function computed by a formula with ti negations, then

NSp(hi) = O(ti ·
√
n · p).

Therefore, Ei←[m][NSp(hi)]] = O(
∑m
i=1 ti
m ·

√
n · p) = O( tm ·

√
n · p). This upper bound on the noise

sensitivity and our assumption on H allow us to apply Lemma 4.19 with an appropriate choice of
parameters, which we describe next. We choose a 0 ≤ p ≤ 1

2 such that n · log 1
(1−p) = n

1
2
−α. Observe

that we can take p = O(n−
1
2
−α). If t = o( tm · n

α), then we obtain γ = O(t ·
√
n · p) = o(1). By

Lemma 4.19, there exists a distribution D of min-entropy H∞(D) = n log 1
1−p = n

1
2
−α for which

δ((H,H(D)), (H,Um)) ≥ (1− 2
√
γ − 2−0.1m)(1− 2

√
γ)

= 1− 2−0.1m − o(1) > 1/2,

which contradicts our assumption that H is an (n
1
2
−α, 1/2)-extractor. Therefore, t = Ω(m · nα).

Proof of Theorem 4.18. The proof of the theorem follows by combining Corollary 3.3 with the
following fact. By [LMN93], any class of functions F for which for any f ∈ F it holds that∑

S⊂[n],|S|≥τ f̂(S)2 ≤ ε for ε > 0 and τ = τ(ε, n), then F can be learned from uniform examples

in time poly(nτ , 1/ε). Using Corollary 3.3 we have that Inf(f) ≤ O(t) ·
√
n for every f as in the

statement. This implies that ∑
S⊂[n],|S|≥Ω(t)·

√
n/ε

f̂(S)2 ≤ ε

from which the theorem follows by [LMN93].

5 Open Problems

In this paper we study the power of negation gates in the model of Boolean De Morgan formulas.
Among other results, we proved that any hardcore predicate on n bits requires roughly Ω(

√
n) nega-

tion gates, that any extractor of 100 bits on n-bit sources of min-entropy n1/2−ε requires formulas
with at least Ω(nε) negation gates and that any one-way permutation on n bits requires ω(log n)
negations. One the other hand, the best upper bound we are aware of for these primitives is the uni-
versal bound of O(m ·n) negations that applies for any function that outputs m bits [Nec62, Mor09].
Improving these lower bounds or providing matching upper bounds would be very interesting.

10The original statement in [GMOR15, Lemma 5.7] assumes that NSp(hi)] ≤ γ for every i ∈ [m]. We observe that
a simple extension of their proofs also work with the assumption Ei←[m][NSp(hi)] ≤ γ.
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Morizumi [Mor09] showed that any formula F can be transformed into a formula F ′ that has
only dn/2e negations and such that L(F ′) ≤ L(F ) · O(n6.3). His transformation uses as a building
block the monotone formula that compute the threshold function of Valiant [Val84] which gives a
short but non-explicit construction. We leave open the question whether one can come up with an
explicit and efficient transformation from any formula to a formula with few negations.

Lastly, we mention the important open problem of determining the shrinkage exponent of mono-
tone formulas.
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