
Efficient Indexing of Necklaces and Irreducible Polynomials over

Finite Fields

Swastik Kopparty∗ Mrinal Kumar† Michael Saks‡

April 2, 2015

Abstract

We study the problem of indexing irreducible polynomials over finite fields, and give the
first efficient algorithm for this problem. Specifically, we show the existence of poly(n, log q)-size
circuits that compute a bijection between {1, . . . , |S|} and the set S of all irreducible, monic,
univariate polynomials of degree n over a finite field Fq. This has applications in pseudoran-
domness, and answers an open question of Alon, Goldreich, H̊astad and Peralta [AGHP92].

Our approach uses a connection between irreducible polynomials and necklaces (equivalence
classes of strings under cyclic rotation). Along the way, we give the first efficient algorithm for
indexing necklaces of a given length over a given alphabet, which may be of independent interest.

1 Introduction

For a finite field Fq and an integer n, let S be the set of all irreducible polynomials in 1 variable over
Fq of degree exactly n. There is a well known formula for |S| (which is approximately qn

n). We con-
sider the problem of giving an efficiently computable indexing of irreduducible polynomials i.e., find-
ing a bijection f : {1, . . . , |S|} → S such that f(i) is computable in time poly(log |S|) = poly(n log q).
Our main result is that indexing of irreducible polynomials can be done efficiently given O(n log q)
advice. This answers a problem posed by Alon, Goldreich, H̊astad and Peralta [AGHP92], and is
the polynomial analogue of the the well-known problem of “giving a formula for the n-bit primes”.
Note that today it is not even known (in general) how to produce a single irreducible polynomial
of degree n in time poly(n log q) without the aid of either advice or randomness.

The main technical result we show en route is an efficient indexing algorithm for necklaces. Neck-
laces are equivalance classes of strings modulo cyclic rotation. We give an poly(n log |Σ|)-time
computable bijection g : {1, 2, . . . , |N |} → N , where N is the set of necklaces of length n over the
alphabet Σ.

∗Department of Computer Science and Department of Mathematics, Rutgers University. Research supported in
part by a Sloan Fellowship and NSF grant CCF-1253886. Email: swastik.kopparty@gmail.com.
†Department of Computer Science, Rutgers University. Research supported in part by NSF grant CCF-1253886.

Email: mrinal.kumar@rutgers.edu.
‡Department of Mathematics, Rutgers University. Research supported in part by NSF grants CCF-0832787 and

CCF-1218711. Email: msaks30@gmail.com

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 47 (2015)

1.1 The indexing problem

We define an indexing of a finite set S to be a bijection from the set {1, . . . , |S|} to S. Let us
formalize indexing as a computational problem. Suppose that L is an arbitrary language over
alphabet Σ and let Ln be the set of strings of L of length n. We want to “construct” an indexing
function An for each of the sets Ln. Formally, this means giving an algorithm A which takes as
input a size parameter n and an index j and outputs An(j), so that the following properties hold
for each n:

• An maps the set {1, . . . , |Ln|} bijectively to Ln.

• If j > |Ln| then An(j) returns too large.

An indexing algorithm is considered to be efficient if its running time is poly(n).

A closely related problem is reverse-indexing. A reverse-indexing of L a bijection from Ln to
{1, . . . , |Ln|}, and we say it is efficient if it can be computed in time poly(n).

We can use the above formalism for languages to formulate the indexing and reverse-indexing
problems for any combinatorial structure, such as permutations, graphs, partitions, etc. by using
standard efficient encodings of such structures by strings.

1.2 Indexing, enumeration, counting and ranking

Indexing is closely related to the well-studied counting, enumeration and ranking problems for
L. The counting problem is to give an algorithm that, on input n outputs the size of Ln. The
enumeration problem is to give an algorithm that, on input n, outputs a list containing all elements
of Ln. A counting or enumeration algorithm is said to be efficient if it runs in time poly(n) or
|Ln| · poly(n) respectively.

Other important algorithmic problems associated with combinatorial objects include the ranking
and unranking problems. For the ranking problem, one is given an ordering of Ln (such as the
lexicographic order) and the goal is to compute the rank (under this order) of a given element of
Ln. For the unranking problem, one has to compute the inverse of this ranking map. It is easy to
see that unranking algorithms for any ordering are automatically indexing algorithms, and ranking
algorithms for any ordering are automatically reverse-indexing algorithms1.

There is well developed complexity theory for counting problems, starting with the fundamental
work of Valiant [Val79]. For combinatorial structures, counting problems are (of course) at the
heart of combinatorics, and many basic identities in combinatorics (such as recurrence relations
that express the number of structures of a particular size in terms of the number of such structures
of smaller sizes) can also be viewed as giving efficient counting algorithms for these structures.

The enumeration and ranking problems for combinatorial structures has also received a large
amount of attention. See the books [NW78, KS99, Rus03, Arn11] for an overview of some of
the work on this topic.

1We use the terms indexing and reverse-indexing instead of the terms unranking and ranking to make an important
distinction: in indexing and reverse-indexing the actual bijection between {1, . . . , |S|} and S is of no importance
whatsoever, but in ranking and unranking the actual bijection is part of the problem. We feel this difference is worth
highlighting, and hence we introduced the new terms indexing and reverse-indexing for this purpose. Note that some
important prior work on ranking/unranking distinguishes between these notions [MR01].

2

Counting and enumeration can be easily reduced to indexing: Given an indexing algorithm A we
can compute |Ln| by calling An(j) on increasing powers of 2 until we get the answer ‘too large’
and then do binary search to determine the largest j for which An(j) is not too large. Enumeration
can be done by just running the indexing algorithm on the integers 1, 2, . . . until we get the answer
too large.

Conversely, in many cases, such as for subsets, permutations, set partitions, integer partitions,
trees, spanning trees, (and many many more) the known counting algorithms can be modified to
give efficient indexing (and hence enumeration) algorithms. This happens, for example, when the
counting problem is solved by a recurrence relation that is proved via a bijective proof.

However, it seems that not all combinatorial counting arguments lead to efficient indexing algo-
rithms. A prime example of this situation is when we have a finite group acting on a finite set, and
the set we want to count is the set of orbits of the action. The associated counting problem can
be solved using the Burnside counting lemma, and there seems to be no general way to use this to
get an efficient indexing algorithm.

This leads us to one of the indexing problems studied here: Fix an alphabet Σ and consider two
strings x and y in Σn to be equivalent if one is a rotation of the other, i.e. we can find strings x1, x2

such that x = x1x2 and y = x2x1 (here uv denotes the concatenation of the strings u and v). The
equivalence classes of strings are precisely the orbits under the natural action of the cyclic group
Zn on Σn. These equivalence classes are often called necklaces because if we view the symbols of
a string as arranged in a circle, then equivalent strings give rise to the same arrangement. We are
interested in the problem of efficiently indexing necklaces. We apply the indexing algorithm for
necklaces to the problem of indexing irreducible polynomials over a finite field.

1.3 Main results

Our main result is an efficient algorithm for indexing irreducible polynomials.

Theorem 1.1. Let q be a prime power, and let n ≥ 1 be an integer. Let Iq,n be the set of monic
irreducible polynomials of degree n over Fq.
There is an indexing algorithm for Iq,n, which takes O(n log q) bits of advice and runs in poly(n, log q)
time.

We remark that it is not known today how to deterministically produce (without the aid of advice
or randomness) even a single irreducible polynomial of degree n in time poly(n log q) for all choices
of n and q. Our result shows that once we take a little bit of advice, we can produce not just
one, but all irreducible polynomials. For constant q, where it is known how to deterministically
construct a single irreducible polynomial in poly(n) time without advice [Sho90a], our indexing
algorithm can be made to run with just poly(log n) bits of advice.

Using a known correspondence [Gol69] between necklaces and irreducible polynomials over finite
fields, indexing irreducible polynomials reduces to the problem of indexing necklaces. Our main
technical result (of independent interest) is an efficient algorithm for this latter problem.

Theorem 1.2. There is an algorithm for indexing necklaces of length n over the alphabet {1, . . . , q},
which runs in time poly(n log q).

Our methods also give an efficient reverse-indexing algorithm for necklaces (but unfortunately this

3

does not lead to an efficient reverse-indexing algorithm for irreducible polynomials; this has to do
with the the open problem of efficiently computing the discrete logarithm).

Theorem 1.3. There is an algorithm for reverse-indexing necklaces of length n over the alphabet
{1, . . . , q}, which runs in time poly(n log q).

The indexing algorithm for irreducible polynomials can be used to make a classical ε-biased set
construction from [AGHP92] based on linear-feedback shift register sequences constructible with
logarithmic advice (to put it at par with the other constructions in that paper). It can also be used
to make the explicit subspace designs of [GK13] very explicit (with small advice).

Agrawal and Biswas [AB03] gave a construction of a family of nearly-coprime polynomials, and
used this to give randomness-efficient black-box polynomial identity tests. The ability to efficiently
index irreducible polynomials enables one to do this even more randomness efficiently (using a small
amount of advice).

Similarly, the string fingerprinting algorithm by Rabin [Rab81], which is based on choosing a
random irreducible polynomial can be made more randomness efficient by choosing the random
irreducible polynomial via first choosing a random index and then indexing the corresponding
irreducible polynomial using our indexing algorithm. This application also requires a small amount
of advice.

As another application of the indexing algorithm for necklaces, we give a poly(n) time algorithm
for computing any given entry of the k × 2n generator matrix matrix or the (2n − k) × 2n parity
check matrix of BCH codes for all values of the designed distance (this is the standard notion of
strong explicitness for error-correcting codes). Earlier, it was only known how to compute this
entry explicitly for very small values of the designed distance (which is usually the setting where
BCH codes are used).

1.4 Related Work

There is an extensive literature on enumeration algorithms for combinatorial objects (see the books
[Rus03, Knu06, KS99, NW78, Arn11]). Some of these references discuss necklaces in depth, and
some also discuss the ranking/unranking problems for various combinatorial objects.

The lexicographically smallest element of a rotation class is called a Lyndon word, and much is
known about them. Algorithmically, the problem of enumerating/indexing necklaces is essentially
equivalent to the problem of enumerating/indexing Lyndon words. Following a long line of work
[FJK86, FM78, RSMYW92, Duv88, BP94, RS99, CRS+00], we now know linear time enumeration
algorithms for Lyndon words/necklaces.

In [MM04] and [Rus03], it was noted that the problem of efficient ranking/unranking of the lexico-
graphic order on Lyndon words is an open problem. Our indexing algorithms in fact give a solution
to this problem too: we get an efficient ranking/unranking algorithm for the lexicographic order
on Lyndon words.

Recent work of Andoni, Goldberger, McGregor and Porat [AGMP13] studied a problem that may
be viewed as an approximate version of reverse indexing of necklaces. They gave a randomized
algorithm for producing short fingerprints of strings, such that the fingerprints of rotations of a
string are determined by the fingerprint of the string itself. This fingerprinting itself was useful for
detecting proximity of strings under misalignment.

4

Recent independent work : A preliminary version of this paper appeared as [KKS14]. At about
the same time, similar results were published by Kociumaka, Radoszewski and Rytter [KRR14].
The work in these two papers was done independently. The papers both have polynomial time
algorithms for indexing necklaces; the authors in [KRR14] exercised more care in designing the
algorithm to obtain a better polynomial running time. Their approach to alphabets of size more
than 2 is cleaner than ours. On the other hand, we put the results in a broader context and have
some additional applications (indexing irreducible polynomials and explicit constructions).

1.5 Organization of the paper

The rest of the paper is organized as follows. We give the algorithm to index necklaces in Sec-
tion 2. In Section 3, we use our indexing algorithm for necklaces to give an indexing algorithm
for irreducible polynomials over finite fields. In Section 4, we give an application to the explicit
construction of generator and parity check matrices of BCH codes. We conclude with some open
problems in Section 5. In Appendix A, we give an alternate algorithm for indexing binary necklaces
of prime length. In Appendix B, we give some prelimary observations about the complexity theory
of indexing in general.

2 Indexing necklaces

2.1 Strategy for the algorithm

We first consider a very basic indexing algorithm which will inspire our algorithms. Given a
directed acyclic graph D on vertex set V and distinguished subsets S and T of nodes, there is a
straightforward indexing algorithm for the set of of paths that start in S and end in T : Fix an
arbitrary ordering on the nodes, and consider the induced lexicographic ordering on paths (i.e. path
P1P2 . . . is less than path Q1Q2 . . . if Pi < Qi where i is the least integer such that Pi 6= Qi). Our
indexing function will map the index j to the jth path from S to T in lexicographic order. There
is a simple dynamic program which computes for each node v, the number N(v) of paths from v to
a vertex in T . Let v1, . . . , vr be the nodes of S listed in order. Given the input index j, we find the
first source vi such that the number of paths to T starting at nodes v1, . . . , vi is at least j; if there
is no such source then the index j is larger than the number of paths being indexed. Otherwise, vi
is the first node of the desired path, and we can proceed inductively by replacing the set S by the
set of children of vi.

This approach can be adapted to the following situation. Suppose the set S we want to index is a
set of strings of fixed length n over alphabet Σ. A read-once branching program of length n over
alphabet Σ is an acyclic directed graph with vertex layers numbered from 0 to n, where (1) layer
0 has a single start node, (2) there is a designated subset of accepting nodes at level n, and (3)
every non-sink node has one outgoing arc corresponding to each alphabet symbol, and these arcs
connect the node to nodes at the next level. For nodes v and w and alphabet symbol σ we write
v →σ w to mean that there is an arc from v to w labelled by σ.

Such a branching program takes words from Σn and, starting from the start node, follows the
path corresponding to the word to either the accept or reject node. Given a read-once branching

5

program for S, there is a 1-1 correspondence between strings in S and paths from the start node
to an accepting node. We can use the indexing algorithm for paths given above to index S.

This suggests the following approach to indexing necklaces. For each equivalence class of strings
(necklace) identify a canonical representative string of the class (such as the lexicographically
smallest representative). Then build a branching program B which, given string y, determines
whether y is a canonical representative of its class. By the preceding paragraph, this would be
enough to index all of the canonical representatives, which is equivalent to indexing equivalence
classes.

In fact, we are able to implement this approach provided that q = 2 and n is prime (See appendix
A). However, we have not been able to make it work in general. For this we need another approach,
which still uses branching programs, but in a more involved way.

First some notation. For a given string y, we write the string obtained from y after cyclically
rotating it rightwards by i positions as Roti(y). We define Orbit(y) to be the set containing y and
all its distinct rotations. Orbit(y) will also be referred to as the equivalence class of y. A string y is
said to be periodic with period p if it can be written as y1

q for some y1 ∈ Σp and q = n
p . A string is

said to have fundamental period p if it is periodic with period p and not periodic with any period
smaller than p. We will denote the fundamental period of a string y by FP(y). Note that for any
string y, |Orbit(y)| = FP(y).

If E is an orbit and x is a string, we say that E < x if E contains at least one string y that is
lexicographically less than x. (Notice that under our definition, if x and y are strings then we might
have both that the orbit of x is less than y and the orbit of y is less than x).

Let t be the total number of orbits. Let Cx be the set of orbits that are less than x. Our main goal
will be to design an efficient algorithm which, given string x, returns |Cx|. We now show that if we
can do this then we can solve both the indexing and reverse indexing problems.

For the indexing problem, we want a 1-1 function ψ that maps j ∈ {1, . . . , t} to a string so that all
of the image strings are in different orbits. The map ψ will be easily computabile given a subroutine
for |Cx|.
Define the minimal representative of an orbit to be the lexicographically least string in the orbit.
Let y1 < · · · < yt denote the minimal representatives in lex order. Our map ψ will map j to yj .
This clearly maps each index to a representative of a different orbit.

It suffices to show how to compute ψ(j). Note that |Cx| is equal to the number of yi that precede
x, and is thus a nondecreasing function of x. Therefore, ψ(j) = yj is equal to the lexicographically
largest string with |Cx| < j. Furthermore, since |Cx| is a nondecreasing function of x, we can find
ψ(j) by doing binary search on the set of strings according to the value of |Cx|.
Simiarly, we can solve the reverse indexing problem: given a string x we can find the index of the
orbit to which it belongs by first finding the lexicographically minimal representative yi of its orbit
and then computing |Cyi |+ 1.

Lemma 2.1. To efficiently index and reverse index necklaces of length n over an alphabet Σ, it
suffices to have an efficient algorithm that takes as input a string x ∈ Σn and outputs |Cx|.

The next section gives our algorithm to determine |Cx| fpr any input string x.

6

2.2 Computing |Cx|

Let us define:

• Gx,p =
⋃
E∈Cx:|E|=pE.

• Gx,≤p =
⋃
E∈Cx:|E| divides pE.

In Section 2.2.2 we reduce the problem of computating of |Cx| to the problem of computing |Gx,≤p|
for various p. The main component of the indexing algorithm is a subroutine that computes |Gx,≤p|
given a string x and an integer p. This subroutine works by building a branching program with
nO(1) nodes, which when given a string y accepts if and only if (1) the orbit of y has size dividing
p and (2) Orbit(y) < x. The quantity we want to compute, |Gx,≤p|, is therefore simply the number
of y accepted by this branching program (which, as noted above can be computed in polynomial
time via a simple dynamic program).

2.2.1 Notation and Preliminaries

Preliminaries: We state some basic facts about periodic strings without proof.

Fact 2.2. Let y be a string of length n and let p be positive integer dividing n. Then, |Orbit(y)| = p

if and only if y has fundamental period p. In particular, y can be written as y1
n
p for an aperiodic

string y1 ∈ Σp.

Fact 2.3. The fundamental period of a string is a divisor of any period of the string.

In particular, the fundamental period of a string is unique. We denote the fundamental period of
y by FP(y).

2.2.2 Reduction to computing |Gx,≤p|

We begin with some simple transformations that reduce the computation of |Cx| to the computation
of |Gx,≤p| (for various p).

Lemma 2.4. For all x ∈ Σn,

|Cx| =
∑

y∈Gx,≤n

1

|Orbit(y)|
=

∑
y∈Gx,≤n

1

FP(y)
.

Proof. For y ∈ Gx,≤n, Roti(y) ∈ Gx,≤n for every positive integer i. Note that there are exactly
|Orbit(y)| distinct strings of the form Roti(y). Thus for any orbit E ∈ Cx, we have

∑
y∈E

1
|Orbit(y)| =

1. Therefore: ∑
y∈Gx,≤n

1

|Orbit(y)|
=
∑
E∈Cx

∑
y∈E

1

|Orbit(y)|
=
∑
E∈Cx

1 = |Cx|.

7

The sum on the right hand side can be split on the basis of the period of y. From Lemma 2.4 and
Fact 2.2, we have the following lemma.

Lemma 2.5. For all x ∈ Σn,

|Cx| =
∑
i|n

|Gx,i|
i

So, to count |Cx| efficiently, it suffices to compute |Gx,i| efficiently for each i|n. Now, from the
definitions, we have the following lemma.

Lemma 2.6. For all x ∈ Σn,

|Gx,≤p| =
∑
i|p

|Gx,i|

From the Möbius Inversion Formula (see Chapter 3 in [Sta11] for more details), we have the following
equality.

Lemma 2.7.
|Gx,p| =

∑
i|p

µ
(p
i

)
|Gx,≤i|

Lemma 2.7 implies that it suffices to compute |Gx,≤p| efficiently for every divisor p of n. In the next
few sections, we will focus on this sub-problem and design an efficient algorithm for this problem.
We will first describe the algorithm when the alphabet is binary, and then generalize to larger
alphabets.

2.2.3 Computing |Gx,≤n| efficiently for the binary alphabet

In this section, we will design an efficient algorithm that given a string x ∈ {0, 1}n computes |Gx,≤n|.
On input x the algorithm will construct a branching program with the property that |Gx,≤n| is
the number of accepting paths in the branching program. This number of accepting paths can be
computed by a simple dynamic program as described at the beginning of Section 2.1.

Lemma 2.8. Given as input a branching program B of length n over alphabet Σ, we can compute
the size of the set of accepted strings in time poly(|B|, log n).

Proof. The number accepted strings is the number of paths from the start node to the accept node,
and all such paths have length exactly n. Thus the number of accepted strings is the i, j entry in
the nth power of the adjacency matrix of the graph. and can thus be computed in time polynomial
in the size of the graph and log n (by repeated squaring).

We now describe how to construct, for each fixed string x ∈ {0, 1}n, a branching program Bx of
size polynomial in n such that the strings accepted by Bx are exactly those in Gx,≤n. Lemma 2.8
then implies that we can compute |Gx,≤n| in time polynomial in n.

For strings x, y, when is y<lexx? This happens and only if there exists an i ∈ {1, 2, . . . , n− 1} such
that yj = xj for every j ≤ i and xi+1 > yi+1. In the case of binary strings of length n, we must
have xi+1 = 1 and yi+1 = 0.

8

Definition 2.9. The set of witnesses for x, denoted Lx, is defined by:

Lx = {s0 : s1 is a prefix of x}

We can summarize the discussion from the paragraph above as follows:

Observation 2.10. For x, y ∈ {0, 1}n, we have y<lexx if and only if some prefix of y lies in Lx.

We will now generalize this observation to strings under rotation. For strings x, y, when is Orbit(y) <
x? Recall that Orbit(y) < x if for some y′ ∈ Orbit(y), we have y′<lexx. From Observation 2.10, we
know that this happens if and only if some y′ ∈ Orbit(y) has some prefix w in Lx. Rotating back to
y, two situations can arise. Either y contains w as a contiguous substring, or w appears as a “split
substring” wrapped around the end of y. In the latter case, y has a prefix w1 and a suffix w2 such
that w2w1 = w ∈ Lx.

Recall that Gx,≤n is the set of y with Orbit(y) < x. Thus, y ∈ Gx,≤n if and only if it has a contiguous
substring as a witness, or it has a witness that is wrapped around its end. Let us separate these
two cases out.

Definition 2.11. For a string x ∈ {0, 1}n,

Gcx,≤n = {y ∈ {0, 1}n : y contains a string in Lx as a contiguous substring }

Gwx,≤n = {y ∈ {0, 1}n : y has a prefix w1 and suffix w2 such that w2w1 ∈ Lx}

From the discussion in the paragraph above, we have the following observation:

Observation 2.12.
Gx,≤n = Gcx,≤n ∪Gwx,≤n

The branching program Bx will be obtained by combining two branching programs Bc
x and Bw

x ,
where the first accepts the strings in Gcx,≤n and the second accepts the strings in Gwx,≤n. Each layer
j of the branching program Bx is the product of layer j of Bc

x and layer j of Bw
x and we have arcs

(v, v′)→σ (w,w′) when v →σ v
′ and w →σ w

′. The accepting nodes at level n+ 1 are nodes (v, v′)
where v is an accepting node of Bc

x or v′ is an accepting node of Bw
x . The resulting branching

program clearly accepts the set of strings accepted by Bc
x or Bw

x .

Note that the branching programs Bx produced by the algorithm are never actually “run”, but are
given as input to the algorithm of Lemma 2.8 in order to determine |Gx,≤n|.
For a set of strings W , we will use Prefix(W) to denote the set of all prefixes of all strings in W
(including the empty string ε). Similarly, Suffix(W) denotes the set of all suffixes of of all strings
in W (including the empty string ε). Similarly, we will use Substring(W) for set of all contiguous
substrings of strings in W .

For a string r, Q(r) is the set of suffixes of r that belong to Prefix(Lx).

Constructing branching program Bc
x We now present an algorithm which on input x ∈

{0, 1}n,runs in time polynomial in n and outputs a branching program Bc
x that recognizes Lcx.

Definition 2.13. Branching program Bc
x

9

1. Nodes at level j are triples (j, s, b) where s ∈ Prefix(Lx) and b ∈ {0, 1}. (We want string s to
be the longest suffix of z1z2 . . . zj that belongs to Prefix(Lx), and b = 1 iff z1z2 . . . zj contains
a substring that belongs to Lx.)

2. The start node is (0,Λ, 0) where Λ is the empty string.

3. The accepting nodes (n, s, b) are those with b = 1.

4. For j ≤ n, the arc out of nodes (j − 1, s, b) labeled by alphabet symbol α is (j, s′, b′) where s′

is the longest string in Q(sα) and b′ = 1 if s′ contains a suffix in Lx and otherwise b′ = b.

It is clear that the branching program can be constructed (as a directed graph) in time polynomial
in n. It remains to show that it accepts those z that have a substring that belongs to (Lx).

Fix a string z ∈ {0, 1}n. Let (j, sj , bj) be the jth vertex visited by the branching program on input
z. Note that sj is a suffix of z1 . . . zj . Let hj be the index such that s = zhj . . . zj ; if s is empty,
we set hj = j + 1. For j between 1 and n let ij be the least index such that zij . . . zj belongs to
Prefix(Lx) (so ij = j + 1 if there is no such string). Note that ij ≥ ij−1 since if zi . . . zj belongs to
Prefix(Lx) so does zi . . . zj−1.

The branching program is designed to make the following true:

Claim 2.14. For j between 1 and n, hj = ij and bj = 1 if and only if a substring of z1 . . . zj belongs
to Lx.

The claim for bj = 1 implies that the branching program accepts the desired set of strings.

Proof. The claim follows easily by induction, where the basis j = 0 is trivial. Assume j > 0. First
we show that hj = ij . By induction hj−1 = ij−1 and by definition of hj and ij we have ij ≤ hj .
To show hj ≤ ij , note that since ij ≥ ij−1 = hj−1, the string zij . . . zj is in Q(tj−1α) and so is
considered in the choice of sj and thus hj = ij .

For the claim on bj , if z has no substring in Lx then bj remains 0 by induction. If z has a substring
in Lx let zi . . . zk be such a substring with k minimum. Then by the claim on tk, hk ≤ i, and so
zi . . . zk is a suffix of sk and so bk = 1, and for all j ≥ k, bj continues to be 1.

Constructing branching program Bw
x We now present an algorithm which on input x ∈

{0, 1}n,runs in time polynomial in n and outputs a branching program Bw
x that accepts the set of

strings z that have a nonempty suffix u and nonemtpy prefix v such that uv belongs to Lx.

Definition 2.15. Branching program Bw
x

1. Nodes at level j are triples (j, s, p) where p, s ∈ Prefix(Lx). (String s will be the longest suffix
of z1z2 . . . zj that belongs to Prefix(Lx) (as in Bc

x) and p is the longest prefix of z1z2 . . . zj that
belongs to Prefix(Lx).

2. The start node is (0,Λ,Λ) where Λ is the empty string.

3. The accepting states are those states (n, s, p) such that p has a nonempty prefix p′ and s has
a nonempty suffix s′ such that s′p′ ∈ Lx.

10

4. For j ≤ n, the arc out of state (j − 1, s, p) labeled by alphabet symbol α is (j, s′, p′) where s′

is the longest string in Q(sα) and p′ = pα if |s| = j − 1 and pα ∈ Prefix(Lx) and p′ = p
otherwise.

It is clear that the branching program can be constructed (as a directed graph) in time polynomial
in n. It remains to show that it accepts Lwx .

Fix a string z ∈ {0, 1}n. Let (j, sj , pj) be the jth node visited by the branching program on input
z. Notice that sj is calculated the same way in Bw

x as in Bc
x and so sj is the longest suffix of z1 . . . zj

that belongs to Prefix(Lx).

An easy induction shows that pj is the longest prefix of z1 . . . zj belonging to Prefix(Lx): Let k be
the length of the longest prefix of z belonging to Prefix(Lx). For j ≤ k we have pj = z1 . . . zj and
for j > k, pj = z1 . . . zk.

Finally, we need to show that the branching program accepts z if and only if z has a a nonempty
suffix s′ and z has a nonempty prefix p′ such that s′p′ ∈ Lx. If the program accepts then the
acceptance condition and the fact that sn is a suffix of z and pn is a prefix of z implies that z has
the required suffix and prefix. Conversely, if z has such a prefix p′ and suffix s′, then they each
belong to Prefix(Lx). Since pn is the longest prefix of z belonging to Prefix(Lx), p′ is a prefix of pn
and since sn is the longest suffix of z belonging to Prefix(Lx), s′ is a suffix of tn. So the branching
program will accept.

Putting things together From the constructions, it is clear that the size of the branching
programs Bw

x and Bc
x are polynomial in the size of Lx and hence polynomial in n = |x|. Moreover,

by a product construction, we can efficiently construct the deterministic finite branching program
Bx which accepts the strings accepted by Bw

x or Bc
x, which is Gx,≤n. This observation, along with

Lemma 2.8 implies the following lemma.

Lemma 2.16. There is an algorithm which takes as input a string x in {0, 1}n and outputs the
size of Gx,≤n in time polynomial in n.

2.2.4 Computing |Gx,≤p| efficiently

In this section, we will show that for every p|n, we can compute the quantity |Gx,≤p| efficiently.
The algorithm will be a small variation of our algorithm for computing |Gx,≤n| from the previous

section. Let p be a divisor of n with p < n. Every string y ∈ Gx,≤p is of the form a
n
p for some

a ∈ {0, 1}p, and every string in Orbit(y) is of the form (Roti(a))
n
p , for some i ≤ p. Let us write the

string x as x1x2 . . . xn
p

where for each i, xi is of length exactly p. We will now try to characterize the

strings in Gx,≤p. From the definitions, y = a
n
p ∈ Gx,≤p if and only if there is a rotation 0 ≤ i < p

such that (Roti(a))
n
p has a prefix in Lx. This, in turn, can happen if and only if there is an i < p

such that one of the following is true.

• Roti(a) < x1 in lexicographic order, or

• there is j, 0 < j < n
p , such that Roti(a) = x1 = x2 = x3 = . . . = xi and Roti(a) < xi+1

in lexicographic order.

11

The strings y = a
n
p for which a has a rotation which is less than x1 in lexicographic order are

exactly the strings of the form c
n
p with c ∈ Gx1,≤p. Via the algorithm of the previous subsection,

there is a polynomial in n time algorithm which outputs a branching program recognizing Gx1,≤p.

The only strings which satisfy the second condition are of the form c
n
p , where c is a rotation of x1

and x1 < xi+1 in lexicographic order. There are at most |Orbit(x1)| such strings, and we can count
them directly given x.

This gives us our algorithm for computing |Gx,≤p|:
Computing |Gx,≤p|:
Input:

• Integers n, p such that p|n

• A string x ∈ {0, 1}n

Algorithm:

1. Write x as x = x1x2 . . . xn
p

where |xi| = p∀i ∈ [np]

2. Construct a branching program Ax1 such that L(Axi) ∩ {0, 1}p = Gx1,≤p

3. Let M be the number of strings of length p accepted by Ax1

4. If there is an 0 < i < n
p such that x1 = x2 = x3 = . . . xi and x1 < xi+1 in lexicographic order,

and x1 /∈ L(Ax1), then output M + |Orbit(x1)|, else output M .

From the construction in Section 2.2.3 and Lemma 2.16, it follows that we can construct Ax1 and
count M in time polynomial in n. We thus have the following lemma.

Lemma 2.17. For any divisor p of n and string x ∈ {0, 1}x, we can compute the size of the set
Gx,≤p in time poly(n).

We now have all the ingredients for the proof of the following theorem, which is a special case of
Theorem 1.2 when the alphabet under consideration is {0, 1}.

Theorem 2.18. There is an algorithm for indexing necklaces of length n over the alphabet {0, 1},
which runs in time poly(n).

Proof. The proof simply follows by plugging together the conclusions of Lemma 2.5, Lemma 2.6,
Lemma 2.7, Lemma 2.8 and Lemma 2.17.

It is not difficult to see that the indexing algorithm can be used to obtain a reverse indexing
algorithm as well and hence, we also obtain a special case of Theorem 1.3 for the binary alphabet.

2.2.5 Indexing necklaces over large alphabets

In this subsection we how to handle the case of general alphabets Σ (with |Σ| = q). A direct
generalization of the algorithm for the case of the binary alphabet, where the set Lx is appropriately
defined, will run in time polynomial in n and q. Our goal here is to improve the running time to
polynomial in n and log q.

12

The basic idea is to represent the elements in Σ by binary strings of length t
def
= dlog qe. Let

Bin : Σ → {0, 1}t be an injective map whose image is the set Γ of q lexicographically smallest
strings in {0, 1}t. Extend this to a map Bin : Σn → {0, 1}tn in the natural way.

We now use the map Bin to convert our indexing/counting problems over the large alphabet Σ to a
related problem over the small alphabet {0, 1}. For x ∈ Σn, we have Bin(Roti(x)) = Rotti(Bin(x)).
For an orbit E ⊆ Σn and x ∈ {0, 1}tn, we say E < x if some element z ∈ E satisfies Bin(z)<lexx.

Let Cx be the set of orbits E ⊆ Σn which are less than x. For each x ∈ {0, 1}tn and p | n, define:

1.
Gx,p =

⋃
E<x,|E|=p

E.

2.
Gx,≤p =

⋃
E<x,|E| divides p

E.

The following identity allows us to count Gx,≤n:

|Gx,≤n| = |{y ∈ {0, 1}tn | y ∈ Γn, ∃i < n s.t. Rotit(y)<lexx}|.

It is easy to efficiently produce a branching program A0 such that L(A0)∩{0, 1}tn = Γn. As we will
describe below, the methods of the previous section can be easily adapted to efficiently produce a
branching program Ax such that

L(Ax) ∩ {0, 1}tn = {y ∈ {0, 1}tn | ∃i < n s.t. Rotit(y)<lexx}.

The following lemma will be crucial in the design of this branching program.

Lemma 2.19. Let y ∈ {0, 1}tn. There exists i < n such that Rotit(y)<lexx if and only if at least
one of the following events occurs:

1. there exists w ∈ Lx such that w appears as a contiguous substring of y starting at a coordinate
j with j ≡ 0 mod t (where the coordinates of x are 0, 1, . . . , (tn− 1)).

2. there exist strings w1, w2 such that w1w2 ∈ Lx, w2 is a prefix of y, w1 is a suffix of y, and
|w1| ≡ 0 mod t.

Given this lemma, the construction of Ax follows easily via the techniques of the previous subsec-
tions. The main addition is that one needs to remember the value of the current coordinate mod
t, which can be done by blowing up the number of states of the branching program by a factor t.

Intersecting the accepted sets of Ax and A0 gives us our desired branching program which allows
us to count |Gx,≤n|. This easily adapts to also count |Gx,≤p| for each p | n.

We conclude using the ideas of Section 2.2.2. We can now compute |Gx,p| for each x and each p | n.
From Lemma 2.5, Lemma 2.6 and Lemma 2.7, it follows that for every x, we can compute |Cx|
efficiently. We thus get our main indexing theorem for necklaces from Lemma 2.1.

Theorem 2.20. There are poly(n, log |Σ|)-time indexing and reverse-indexing algorithms for neck-
laces of length n over Σ.

Furthermore, there are poly(n, log |Σ|)-time indexing and reverse-indexing algorithms for necklaces
of length n over Σ with fundamental period exactly n.

13

3 Indexing irreducible polynomials

In the previous section, we saw an algorithm for indexing necklaces of length n over an alphabet
Σ of size q, which runs in time polynomial in n and log q. In this section, we will see how to use
this algorithm to efficiently index irreducible polynomials over a finite field. More precisely, we will
use an indexing algorithm for necklaces with fundamental period exactly equal to n (which is also
given by the methods of the previous sections).

Let q be a prime power, and let Fq denote the finite field of q elements. For an integer n > 0, let
Iq,n denote the set of monic, irreducible polynomials of degree n in Fq[T].

Theorem 3.1. For every q, n as above, there is an algorithm that runs in poly(n, log q) time, takes
O(n log q) bits of advice, and indexes Iq,n.

Proof. To prove this theorem, we start by first describing the connection between the tasks of
indexing necklaces and indexing irreducible polynomials. Let P (T) ∈ Iq,n. Note that P (T) has
all its roots in the field Fqn . Let α ∈ Fqn be one of the roots of P (T). Then we have that

α, αq, . . . , αq
n−1

are all distinct, and:

P (T) =
n−1∏
i=0

(T − αqi).

Conversely, if we take α ∈ Fqn such that α, αq, . . . , αq
n−1

are all distinct, then the polynomial

P (T) =
∏n−1
i=0 (T − αqi) is in Iq,n.

Define an action of Zn on F∗qn as follows: for k ∈ Zn and α ∈ (Fqn)∗, define:

k[α] = αq
k
.

This action partitions F∗qn into orbits. By the above discussion, Iq,n is in one-to-one correspondence
with the orbits of this action with size exactly n. Thus it suffices to index these orbits.

Let g be a generator of the the multiplicative group (Fqn)∗. Define a map E : Zqn−1 → F∗qn by:

E(a) = ga.

We have that E is a bijection. Via this bijection, we have an action of Zn on Zqn−1, where for
k ∈ Zn and a ∈ Zqn−1,

k[a] = qk · a.

Now represent elements of Zqn−1 by integers in {0, 1, . . . , qn− 2}. Define Σ = {0, 1, . . . , q− 1}. For
a ∈ Zqn−1, consider its base-q expansion aσ ∈ Σn. This gives us a bijection between Zqn−1 and
Σn \ {(q − 1, . . . , q − 1)}. Via this bijection, we get an action of Zn on Σn \ {(q − 1, . . . , q − 1)}.
This action is precisely the standard rotation action!

This motivates the following algorithm.
The Indexing Algorithm:
Input: q (a prime power), n ≥ 0, i ∈ [|Iq,n|]
Advice: 1. A description of Fq
2. An irreducible polynomial F (T) ∈ Fq[T] of degree n, whose root is a generator g of (Fqn)∗ (a.k.a.
primitive polynomial).

14

1. Let Σ = {0, 1, . . . , q − 1}.

2. Use i to index an necklace σ ∈ Σn \{(q−1, q−1, . . . , q−1)} with fundamental period exactly
n (via Theorem 2.20).

3. View σ as the base q expansion of an integer a ∈ {0, 1, . . . , qn − 2}.

4. Use F (T) to construct the finite field Fqn and the element g ∈ F∗qn . (This can be done by
setting Fqn = Fq[T]/F (T), and taking the class of the element T in that quotient to be the
element g.)

5. Set α = ga.

6. Set P (T) =
∏n−1
i=0 (T − αqi).

7. Output P (T).

For constant q, this algorithm can be made to work with poly(log n) advice. Indeed, one can
construct the finite field Fqn in poly(q, n) time, and a wonderful result of Shoup [Sho90b] constructs
a set of qpoly(logn) elements in Fqn , one of which is guaranteed to be a generator. The advice is then
the index of an element of this set which is a generator.

4 Explicit Generator Matrices and Parity Check Matrices for BCH
codes

In this section, we will apply the indexing algorithm for necklaces to give a strongly explicit con-
struction for generator and the parity check matrices for BCH codes. More precisely, we use the
fact that our indexing algorithm is in fact an unranking algorithm for the lexicgraphic ordering on
(lexicographically least representatives of) necklaces.

BCH codes [MS78] are classical algebraic error-correcting codes based on polynomials over finite
extension fields. They have played a central role since the early days of coding theory due to their
remarkable properties (they are one of the few known families of codes that has better rate/distance
tradeoff than random codes in some regimes). Furthermore, their study motivated many advances
in algebraic algorithms.

Using our indexing algorithm for necklaces, we can answer a basic question about BCH codes: we
construct strongly explicit explicit generator matrices and parity check matrices for BCH codes. For
the traditionally used setting of parameters (constant designed distance), it is trivial to construct
generator matrices and parity check matrices for BCH codes. But for large values of the designed
distance, as far as we are aware, this problem was unsolved.

Let q be a prime power, and let n ≥ 1 and 0 ≤ d < qn − 1. The BCH code associated with these
parameters will be of length qn over the field Fq, where the qn coordinates are identified with the
big field Fqn . Let:

V = {〈P (α)〉α∈Fqn
| P (X) ∈ Fqn [X], deg(P) ≤ d, s.t. ∀α ∈ Fqn , P (α) ∈ Fq}.

In words: this is the Fq-linear space of all Fqn-evaluations of Fqn-polynomials of low degree, which
have the property that all their evaluations lie in Fq. In coding theory terminology, this is a subfield
subcode of Reed-Solomon codes.

15

The condition that P (α) ∈ Fq for each α ∈ Fqn can be expressed as follows:

P (X)q = P (X) mod Xqn −X.

Thus, if P (X) =
∑d

i=0 aiX
i, then the above condition is equivalent to:

d∑
i=0

aqiX
iq =

d∑
i=0

aiX
i mod Xqn −X,

which simplifies to:
∀i, aiq mod (qn−1) = aqi .

Thus:

1. For every i, if ` is the smallest integer such that iq` mod (qn − 1) = i, then ai ∈ V` = {α ∈
Fqn | αq

`
= α},

2. Specifying ai ∈ V` automatically determines aiq mod (qn−1), aiq2 mod (qn−1), . . .,

3. ai can take any value in V`.

This motivates the following choice of basis for BCH codes. Let F = {S ⊆ {0, 1, . . . , d} | i ∈ S ⇒ (iq
mod (qn − 1)) ∈ S}. Let αS,1, . . . , αS,|S| be a basis for V|S| over Fq (note that when j | n, we have

that V` = {α ∈ Fqn | αq
`

= α} is an Fq-linear subspace of Fqn of dimension `). For S ∈ F , define
mS = mini∈S i. For S ∈ F and j ∈ [|S|], define:

PS,j(X) =

|S|−1∑
k=0

αq
k

j X
mSq

k mod (qn−1).

It is easy to see from the above description that (PS,j)S∈F ,j∈[n] forms an Fq basis for the BCH code
V . Thus it remains to show that one can index the sets of F .

If we write all the elements of S ∈ F in base q, we soon realize that the S are precisely in one-to-one
correspondence with those rotation orbits of Σn (with Σ = {0, 1, . . . , q − 1}) where all elements of
the orbit are lexicographically ≤ some fixed string in Σn (in this case the fixed string turns out
to be the base q representation of the integer d). By our indexing algorithm for orbits, F can be
indexed efficiently. Thus we can compute any given entry of a generator matrix for BCH codes.

The parity check matrices can be constructed similarly. For a given designed distance d, one starts
with d× F∗qn matrix M whose i, α entry equals αi. Note that every d columns of this matrix form
a van der Monde matrix: thus they are linearly independent over Fqn (and hence also over Fq).
Define an equivalence ∼ relation on [d] as follows: i1 ∼ i2 iff i2 = i1 · qk mod (qn − 1) for some k.
Now amongst the rows of M , for each equivalance class E ⊆ d, keep only one row from E (i.e., for
some i ∈ E, keep the i’th row of M and delete the j’th row for all j ∈ E \ {i}). The remarkable
dimension-distance tradeoff of BCH codes is based on the fact that this operation, while it reduces
the dimension of the ambient space in which the columns of this matrix lie, preserves the property
that every d columns of this matrix are linearly independent over the small field Fq. This reduced
matrix M̃ is the parity-check matrix of the BCH code.

16

We now give a direct construction of the parity-check matrix M̃ . Let F = {S ⊆ [qn−1] | i ∈ S =⇒
iq ∈ S}. For S ∈ F , let mS = mini∈S i. Then the rows of M̃ are indexed by those S ∈ F for which
mS ≤ d. The (S, α) entry of M̃ equals αmS . Writing all the integers of [qn−1] in base q, we see that
the elements of F are orbits of the Zn action on Σn, where Σ = {0, 1, . . . , q− 1}. Furthermore, the
S with mS ≤ d are precisely those orbits which have some element lexicographically at most a given
fixed element x (which in this case is the base q representation of d). By our indexing algorithm,
the rows of M̃ can be indexed efficiently, and hence each entry of the M̃ can be computed in time
poly(n), as desired.

5 Open Problems

We conclude with some open problems.

1. Can the orbits of group actions be indexed in general?

One formulation of this problem is as follows: Let G be a finite group acting on a set X,
both of size poly(n). Suppose G and its action on X are given as input explicitly. For a
finite alphabet Σ, consider the action of G on ΣX (by permuting coordinates according to
the action on X). Can the orbits of this action be indexed? Can they be reverse-indexed?

2. Let G be the symmetric group Sn. Consider its action on {0, 1}(
[n]
2), where G acts by permut-

ing coordinates. The orbits of this action correspond to the isomorphism classes of n-vertex
graphs. Can these orbits be indexed?

More ambitiously, can these orbits be reverse-indexed? This would imply that graph isomor-
phism is in P .

3. It would be interesting to explore the complexity theory of indexing and reverse-indexing.
Which languages can be indexed efficiently? Can this be characterized in terms of known
complexity classes?

In particular, it would be nice to disprove the conjecture: “Every pair-language L ∈ P for
which the counting problem can be solved efficiently can be efficiently indexed”.

Acknowledgements

We would like to thank Joe Sawada for making us aware of the work of Kociumaka et al [KRR14].

References

[AB03] Manindra Agrawal and Somenath Biswas. Primality and identity testing via chinese
remaindering. J. ACM, 50(4):429–443, 2003.

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple construction of
almost k-wise independent random variables. Random Struct. Algorithms, 3(3):289–
304, 1992.

17

[AGMP13] Alexandr Andoni, Assaf Goldberger, Andrew McGregor, and Ely Porat. Homomor-
phic fingerprints under misalignments: sketching edit and shift distances. In STOC,
pages 931–940, 2013.

[Arn11] Jörg Arndt. Matters computational. Springer, 2011.

[BP94] Jean Berstel and Michel Pocchiola. Average cost of duval’s algorithm for generating
lyndon words. Theoretical computer science, 132(1):415–425, 1994.

[CRS+00] Kevin Cattell, Frank Ruskey, Joe Sawada, Micaela Serra, and C.Robert Miers. Fast
algorithms to generate necklaces, unlabeled necklaces, and irreducible polynomials
over gf(2). Journal of Algorithms, 37(2):267 – 282, 2000.

[DM47] A. Dvoretzky and Th. Motzkin. A problem of arrangements. Duke Mathematical
Journal, 14(2):305–313, 06 1947.

[Duv88] Jean-Pierre Duval. Génération d’une section des classes de conjugaison et arbre des
mots de lyndon de longueur bornée. Theoretical computer science, 60(3):255–283,
1988.

[FJK86] Harold Fredricksen and Irving J Kessler. An algorithm for generating necklaces of
beads in two colors. Discrete mathematics, 61(2):181–188, 1986.

[FM78] Harold Fredricksen and James Maiorana. Necklaces of beads in k colors and k-ary de
bruijn sequences. Discrete Mathematics, 23(3):207–210, 1978.

[GK13] Venkatesan Guruswami and Swastik Kopparty. Explicit subspace designs. Electronic
Colloquium on Computational Complexity (ECCC), 20:60, 2013.

[Gol69] Solomon W. Golomb. Irreducible polynomials, synchronizing codes, primitive neck-
laces and cyclotomic algebra. In Conference on Combinatorial Math. and Its Appli-
cations, pages 358–370, 1969.

[KKS14] Swastik Kopparty, Mrinal Kumar, and Michael Saks. Efficient indexing of necklaces
and irreducible polynomials over finite fields. In Automata, Languages, and Program-
ming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July
8-11, 2014, Proceedings, Part I, pages 726–737, 2014.

[Knu06] Donald E Knuth. Art of Computer Programming, Volume 4, Fascicle 4, The: Gener-
ating All Trees–History of Combinatorial Generation. Addison-Wesley Professional,
2006.

[KRR14] Tomasz Kociumaka, Jakub Radoszewski, and Wojciech Rytter. Computing k-th lyn-
don word and decoding lexicographically minimal de bruijn sequence. In Combinato-
rial Pattern Matching - 25th Annual Symposium, CPM 2014, Moscow, Russia, June
16-18, 2014. Proceedings, pages 202–211, 2014.

[KS99] Donald L. Kreher and Douglas Robert Stinson. Combinatorial algorithms: genera-
tion, enumeration, and search, volume 7. CRC press, 1999.

18

[MM04] Conrado Mart́ınez and Xavier Molinero. An efficient generic algorithm for the gener-
ation of unlabelled cycles. In Mathematics and Computer Science III, pages 187–197.
Springer, 2004.

[MR01] Wendy Myrvold and Frank Ruskey. Ranking and unranking permutations in linear
time. Information Processing Letters, 79(6):281–284, 2001.

[MS78] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-
holland Publishing Company, 2nd edition, 1978.

[NW78] Albert Nijenhuis and Herbert S Wilf. Combinatorial algorithms for computers and
calculators. Computer Science and Applied Mathematics, New York: Academic Press,
1978, 2nd ed., 1, 1978.

[Rab81] M.O. Rabin. Fingerprinting by Random Polynomials. Center for Research in Comput-
ing Technology: Center for Research in Computing Technology. Center for Research
in Computing Techn., Aiken Computation Laboratory, Univ., 1981.

[RS99] Frank Ruskey and Joe Sawada. An efficient algorithm for generating necklaces with
fixed density. SIAM Journal on Computing, 29(2):671–684, 1999.

[RSMYW92] Frank Ruskey, Carla Savage, and Terry M. Y. Wang. Generating necklaces. Journal
of Algorithms, 13(3):414–430, 1992.

[Rus03] Frank Ruskey. Combinatorial generation. Draft of a book, available at
http://www.1stworks.com/ref/RuskeyCombGen.pdf, 2003.

[Sho90a] Victor Shoup. New algorithms for finding irreducible polynomials over finite fields.
Mathematics of Computation, 54(189):435–447, 1990.

[Sho90b] Victor Shoup. Searching for primitive roots in finite fields. In STOC, pages 546–554,
1990.

[Sta11] Richard Stanley. Enumerative combinatorics, volume 1. 2011.

[Tod91] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on
Computing, 20(5):865–877, October 1991.

[Val79] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,
8:189–201, 1979.

A Alternative indexing algorithm for binary necklaces of prime
length

In this section we give another algorithm for indexing necklaces in {0, 1}n in the special case where
n is prime.

For convenience, we will denote the n coordinates of {0, 1}n by 0, 1, . . . , n − 1, and identify them
with elements of Zn.

19

Definition A.1. Let x ∈ {0, 1}n. We say x is top-heavy if for every j, 0 ≤ j < n:

j∑
k=0

(
xk −

wt(x)

n

)
≥ 0.

In words: every prefix of x has normalized Hamming weight at least as large as the normalized
Hamming weight of x.

The next lemma by Dvoretzky and Motzkin [DM47] shows that every string has a unique top-heavy
rotation.

Lemma A.2 ([DM47]). Let n be prime. For each x ∈ {0, 1}n \ {0n, 1n}, there exists a unique i,
0 ≤ i < n such that Roti(x) is top-heavy.

Proof. Define f : {0, 1}n × N→ R by:

f(x, j) =

j∑
k=0

(
xk mod n −

wt(x)

n

)
.

Then the top-heaviness of x is equivalent to f(x, j) ≥ 0 for all j ∈ N.

We make two observations:

1. If j = j′ mod n, then f(x, j) = f(x, j′). This follows from the fact that:

n−1∑
k=0

(
xk −

wt(x)

n

)
= 0.

2. For nonnegative integers j, ` with j < n, we have:

f(Rotj(x), `) = f(x, j + `)− f(x, j).

Putting these two facts together, we get that:

f(Rotj(x), `) = f(x, (j + `) mod n)− f(x, j). (1)

Now fix x ∈ {0, 1}n \ {0n, 1n}. Define i ∈ {0, 1, . . . , n− 1} to be such that f(x, i) is minimized. By
Equation (1), we get that f(Roti(x), `) ≥ 0 for all nonnegative integers `. This proves the existence
of i.

For uniqueness of i, we make two more observations:

1. If f(x, j) > f(x, i), then

f(Rotj(x), n+ i− j) = f(x, n+ i)− f(x, j) = f(x, i)− f(x, j) < 0,

and thus Rotj(x) is not top-heavy.

20

2. If f(x, j) = f(x, j′), then j = j′ mod n. To see this, first note that we may assume j < j′.
Then:

0 = f(x, j′)− f(x, j)

=

j′∑
k=j+1

(
xk mod n −

wt(x)

n

)

=

 j′∑
k=j+1

xk mod n

− (j′ − j) · wt(x)

n
.

Thus, since the first term is an integer, we must have that (j′ − j) · wt(x) must be divisible
by n, and by our hypothesis on x, we have that j′ = j mod n.

Thus i ∈ {0, 1, . . . , n− 1}, for which Roti(x) is top-heavy, is unique.

The above lemma implies that each orbit E contains a unique top-heavy string. We define the
canonical element of E to be that element.

We now show that there is a branching program A such that L(A) ∩ {0, 1}n precisely equals the
set of top-heavy strings. By the discussion in the introduction, this immediately gives an indexing
algorithm for orbits of E.

How does a branching program verify top-heaviness? In parallel, for each ` ∈ {1, . . . , n − 1}, the
branching program checks if condition C` holds, where C` is:

“∀0 ≤ j < n,

j∑
k=0

xk ≥
k · `
n

”.

At the same time, it also computes the weight of x. At the final state, it checks if Cwt(x) is true. x
is top-heavy if and only if it is true.

This completes the description of the indexing algorithm.

We also know an extension of this approach that can handle n which have O(1) prime factors. The
key additional ingredient of this extension is a new encoding of strings that enables verification of
properties like top-heaviness by automata.

B Complexity of indexing

In this section, we explore some basic questions about the complexity theory of indexing and reverse
indexing. We would like to understand what sets can be indexed/reverse-indexed efficiently.

The outline of this section is as follows. We first deal with indexing and reverse-indexing in a nonuni-
form setting. Based on some simple observations about what cannot be indexed/reverse-indexed,
we make some naive, optimistic conjectures characterizing what is efficiently indexable/reverse-
indexable, and then proceed to disprove these conjectures. We then make some natural definitions
for indexing and reverse-indexing in a uniform setting, and conclude with some analogous naive,
optimistic conjectures.

21

B.1 Indexing and reverse-indexing in the nonuniform setting

By simple counting, most sets S ⊆ {0, 1}n cannot be indexed or reverse-indexed by circuits of size
poly(n). We now make two naive and optimistic conjectures:

• If S ⊆ {0, 1}n has a poly(n)-size circuit recognizing it, then there is a poly(n)-size circuit for
indexing S.

• If S ⊆ {0, 1}n has a poly(n)-size circuit recognizing it, then there is a poly(n)-size circuit for
reverse-indexing S.

Note that the simple observations about indexing made in the introduction are consistent with
these conjectures.

We now show that these conjectures are false (unless the polynomial hierarchy collapses). Assuming
the conjectures, we will give Σ4 algorithms to count the number of satisfying assignments of a given
boolean formula φ. By Toda’s theorem [Tod91], this would imply that the polynomial hierarchy
collapses.

Let S ⊆ {0, 1}n be the set of satisfying assignments of a given boolean formula φ of size m (m ≥ n).
We know that S can be recognized by a circuit of size m (namely φ). By the conjectures, there are
circuits Ci and Cr of size poly(m) for indexing S and reverse-indexing S. We will now see that a
Σ4 algorithm can get its hands on these circuits, and then use these circuits to count the number
of elements in S.

Indexing Consider the Σ4 algorithm that does the following on input φ. Guess a circuit C :
{0, 1}n → {0, 1}n ∪ {“too large”} of size poly(m), and an integer K < 2n and then verify the
following properties:

• for all i ∈ [K], C(i) 6= too large and φ(C(i)) = 1.

• for all i /∈ [K], C(i) = too large.

• for all x ∈ {0, 1}n, if φ(x) = 1, then there exists a unique i ∈ [K] for which C(i) = x.

If C = Ci, and K = |S|, then these properties hold. It is also easy to see that if all these properties
hold, then C is an indexing circuit for S, and K = |S|. Thus the above gives a Σ4 algorithm to
compute |S|.

Reverse-indexing Consider the Σ4 algorithm that does the following on input φ. Guess a
circuit C : {0, 1}n → {0, 1}n ∪ {“false”} of size poly(m), and an integer K < 2n and then verify
the following properties:

• for all x ∈ {0, 1}n, either (φ(x) = 1 and C(x) ∈ [K]) or (φ(x) = 0 and C(x) = false).

• for all i ∈ [K], there exists a unique x ∈ {0, 1}n such that C(x) = i.

If C = Cr, and K = |S|, then these properties hold. It is also easy to see that if all these properties
hold, then C is a reverse-indexing circuit for S, and K = |S|. Thus the above gives a Σ4 algorithm
to compute |S|.

22

B.2 Indexing and reverse-indexing in the uniform setting

We now introduce a natural framework for talking about indexing in the uniform setting.

Let L ⊆ Σ∗ × Σ∗ be a pair-language. For x ∈ Σ∗, define Lx = {y | (x, y) ∈ L}. An algorithm
M(x, i) is said to be an indexing algorithm for L if for every x ∈ Σ∗, the function M(x, ·) is an
indexing of the set Lx. An algorithm M(x, y) is said to be a reverse indexing algorithm for L if for
every x ∈ Σ∗, the function M(x, ·) is a reverse indexing of the set Lx. Indexing/reverse-indexing
algorithms are said to be efficient if they run in time poly(|x|).
We now make some preliminary observations about the limitations of efficient indexing/reverse-
indexing.

1. If L can be efficiently indexed, then the counting problem for L can be solved efficiently (recall
that the counting problem for L is the problem of determining |Lx| when given x as input.
The counting problem can be solved via binary search using an indexing algorithm).

2. If L can be efficiently reverse indexed, then L must be in P . Indeed, the reverse indexing
algorithm M(x, y) immediately tells us whether (x, y) ∈ L.

In the absence of any other easy observations, we gleefully made the following optimistic conjectures.

1. Every pair-language L ∈ P for which the counting problem can be solved efficiently can be
efficiently indexed.

2. Every pair-language L ∈ P can be efficiently reverse indexed.

Using ideas similar to those used in the nonuniform case, one can show that the latter of these
conjectures is not true (unless the polynomial hierarchy collapses). However we have been unable
to say anything interesting about the first conjecture, and we leave the conjecture that it is false
as an open problem.

23

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

