We show that deterministic communication complexity can be superlogarithmic in the partition number of the associated communication matrix. We also obtain near-optimal deterministic lower bounds for the Clique vs. Independent Set problem, which in particular yields new lower bounds for the log-rank conjecture. All these results follow from a simple adaptation of a communication-to-query simulation theorem of Raz and McKenzie (Combinatorica 1999) together with lower bounds for the analogous query complexity questions.
We show that deterministic communication complexity can be superlogarithmic in the partition number of the associated communication matrix. We also obtain near-optimal deterministic lower bounds for the Clique vs. Independent Set problem, which in particular yields new lower bounds for the log-rank conjecture. All these results follow from a simple adaptation of a communication-to-query simulation theorem of Raz and McKenzie (Combinatorica 1999) together with lower bounds for the analogous query complexity questions.