
An average-case depth hierarchy theorem for Boolean circuits

Benjamin Rossman
NII, Simons Institute
rossman@nii.ac.jp

Rocco A. Servedio∗

Columbia University
rocco@cs.columbia.edu

Li-Yang Tan†

Simons Institute
liyang@cs.columbia.edu

April 17, 2015

Abstract

We prove an average-case depth hierarchy theorem for Boolean circuits over the standard
basis of AND, OR, and NOT gates. Our hierarchy theorem says that for every d ≥ 2, there is
an explicit n-variable Boolean function f , computed by a linear-size depth-d formula, which is
such that any depth-(d − 1) circuit that agrees with f on (1/2 + on(1)) fraction of all inputs
must have size exp(nΩ(1/d)). This answers an open question posed by H̊astad in his Ph.D. thesis
[H̊as86b].

Our average-case depth hierarchy theorem implies that the polynomial hierarchy is infinite
relative to a random oracle with probability 1, confirming a conjecture of H̊astad [H̊as86a],
Cai [Cai86], and Babai [Bab87]. We also use our result to show that there is no “approximate
converse” to the results of Linial, Mansour, Nisan [LMN93] and Boppana [Bop97] on the to-
tal influence of small-depth circuits, thus answering a question posed by O’Donnell [O’D07],
Kalai [Kal12], and Hatami [Hat14].

A key ingredient in our proof is a notion of random projections which generalize random
restrictions.

∗Supported by NSF grants CCF-1319788 and CCF-1420349.
†Part of this research was done while visiting Columbia University.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 65 (2015)



Contents

1 Introduction 1
1.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Our main lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Application #1: Random oracles separate the polynomial hierarchy 4
2.1 Background: PSPACE 6= PH relative to a random oracle . . . . . . . . . . . . . . . . 4
2.2 Background: The polynomial hierarchy is infinite relative to some oracle . . . . . . . 4
2.3 This work: The polynomial hierarchy is infinite relative to a random oracle . . . . . 5

3 Application #2: No approximate converse to Boppana–Linial–Mansour–Nisan 6
3.1 Background: BKS conjecture and O’Donnell–Wimmer’s counterexample . . . . . . . 7
3.2 This work: Disproving a weak variant of the BKS conjecture . . . . . . . . . . . . . 7

4 Our techniques 8
4.1 Background: Lower bounds via random restrictions . . . . . . . . . . . . . . . . . . . 9
4.2 Our main technique: Random projections . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Preliminaries 12
5.1 Basic mathematical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Restrictions and random restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4 Projections and random projections . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 The Sipser function and its basic properties 14

7 Setup for and overview of our proof 16
7.1 Key parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.2 The initial and subsequent random projections . . . . . . . . . . . . . . . . . . . . . 17
7.3 Overview of our proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8 Composition of projections complete to uniform 22

9 Approximator simplifies under random projections 25
9.1 The projection switching lemma and its proof . . . . . . . . . . . . . . . . . . . . . . 26
9.2 Canonical projection decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.3 Encoding bad restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.4 Decodability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.5 Proof of Proposition 9.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.6 Approximator simplifies under random projections . . . . . . . . . . . . . . . . . . . 35

10 Sipser retains structure under random projections 37
10.1 Typical restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10.2 Sipser survives random projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



11 Proofs of main theorems 47
11.1 “Bottoming out” the argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
11.2 Approximators with small bottom fan-in . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.3 Approximators with the opposite alternation pattern . . . . . . . . . . . . . . . . . . 50

A Proof of Lemma 7.1 55



1 Introduction

The study of small-depth Boolean circuits is one of the great success stories of complexity the-
ory. The exponential lower bounds against constant-depth AND-OR-NOT circuits [Yao85, H̊as86a,
Raz87, Smo87] remain among our strongest unconditional lower bounds against concrete models of
computation, and the techniques developed to prove these results have led to significant advances in
computational learning theory [LMN93, Man95], pseudorandomness [Nis91, Baz09, Raz09, Bra10],
proof complexity [PBI93, Ajt94, KPW95], structural complexity [Yao85, H̊as86a, Cai86], and even
algorithm design [Wil14a, Wil14b, AWY15].

In addition to worst-case lower bounds against small-depth circuits, average-case lower bounds,
or correlation bounds, have also received significant attention. As one recent example, Impagliazzo,
Matthews, Paturi [IMP12] and H̊astad [H̊as14] independently obtained optimal bounds on the
correlation of the parity function with small-depth circuits, capping off a long line of work on the
problem [Ajt83, Yao85, H̊as86a, Cai86, Bab87, BIS12]. These results establish strong limits on
the computational power of constant-depth circuits, showing that their agreement with the parity
function can only be an exponentially small fraction better than that of a constant function.

In this paper we will be concerned with average-case complexity within the class of small-depth
circuits: our goal is to understand the computational power of depth-d circuits relative to those of
strictly smaller depth. Our main result is an average-case depth hierarchy theorem for small-depth
circuits:

Theorem 1. Let 2 ≤ d ≤ c
√

logn
log logn , where c > 0 is an absolute constant, and Sipserd be the explicit

n-variable read-once monotone depth-d formula described in Section 6. Then any circuit C of

depth at most d − 1 and size at most S = 2n
1

6(d−1)
over {0, 1}n agrees with Sipserd on at most

(1
2 + n−Ω(1/d)) · 2n inputs.

(We actually prove two incomparable lower bounds, each of which implies Theorem 1 as a
special case. Roughly speaking, the first of these says that Sipserd cannot be approximated by size-
S, depth-d circuits which have significantly smaller bottom fan-in than Sipserd, and the second of
these says that Sipserd cannot be approximated by size-S, depth-d circuits with a different top-level
output gate than Sipserd.)

Theorem 1 is an average-case extension of the worst-case depth hierarchy theorems of Sipser,
Yao, and H̊astad [Sip83, Yao85, H̊as86a], and answers an open problem of H̊astad [H̊as86a] (which
also appears in [H̊as86b, H̊as89]). We discuss the background and context for Theorem 1 in Sec-
tion 1.1, and state our two main lower bounds more precisely in Section 1.2.

Applications. We give two applications of our main result, one in structural complexity and the
other in the analysis of Boolean functions. First, via a classical connection between small-depth
computation and the polynomial hierarchy [FSS81, Sip83], Theorem 1 implies that the polynomial
hierarchy is infinite relative to a random oracle:

Theorem 2. With probability 1, a random oracle A satisfies ΣP,A
d ( ΣP,A

d+1 for all d ∈ N.

This resolves a well-known conjecture in structural complexity, which first appeared in [H̊as86a,
Cai86, Bab87] and has subsequently been discussed in a wide range of surveys [Joh86, Hem94,
ST95, HRZ95, VW97, Aar], textbooks [DK00, HO02], and research papers [H̊as86b, H̊as89, Tar89,
For99, Aar10a]. (Indeed, the results of [H̊as86a, Cai86, Bab87], along with much of the pioneering

1



work on lower bounds against small-depth circuits in the 1980’s, were largely motivated by the
aforementioned connection to the polynomial hierarchy.) See Section 2 for details.

Our second application is a strong negative answer to questions of Kalai, Hatami, and O’Donnell
in the analysis of Boolean functions. Seeking an approximate converse to the fundamental results of
Linial, Mansour, Nisan [LMN93] and Boppana [Bop97] on the total influence of small-depth circuits,
Kalai asked whether every Boolean function with total influence polylog(n) can be approximated by
a constant-depth circuit of quasipolynomial size [Kal10, Kal12, Hat14]. O’Donnell posed a variant
of the same question with a more specific quantitative bound on how the size of the approximating
circuit depends on its influence and depth [O’D07]. As a consequence of Theorem 1 we obtain the
following:

Theorem 3. There are functions d(n) = ωn(1) and S(n) = exp((log n)ωn(1)) such that there is a
monotone f : {0, 1}n → {0, 1} with total influence Inf(f) = O(log n), but any circuit C that has
depth d(n) and agrees with f on at least (1

2 + on(1)) · 2n inputs in {0, 1}n must have size greater
than S(n).

Theorem 3 significantly strengthens O’Donnell and Wimmer’s counterexample [OW07] to a
conjecture of Benjamini, Kalai, and Schramm [BKS99], and shows that the total influence bound
of [LMN93, Bop97] does not admit even a very weak approximate converse. See Section 3 for
details.

1.1 Previous work

In this subsection we discuss previous work related to our average-case depth hierarchy theorem.
We discuss the background and context for our applications, Theorems 2 and 3, in Sections 2 and 3
respectively.

Sipser was the first to prove a worst-case depth hierarchy theorem for small-depth circuits [Sip83].
He showed that for every d ∈ N, there exists a Boolean function Fd : {0, 1}n → {0, 1} such that Fd
is computed by a linear-size depth-d circuit, but any depth-(d − 1) circuit computing Fd has size

Ω(nlog(3d) n), where log(i) n denotes the i-th iterated logarithm. The family of functions {Fd}d∈N
witnessing this separation are depth-d read-once monotone formulas with alternating layers of
AND and OR gates with fan-in n1/d — these came to be known as the Sipser functions. Following
Sipser’s work, Yao claimed an improvement of Sipser’s lower bound to exp(ncd) for some constant
cd > 0 [Yao85]. Shortly thereafter H̊astad proved a near-optimal separation for (a slight variant
of) the Sipser functions:

Theorem 4 (Depth hierarchy of small-depth circuits [H̊as86a]; see also [H̊as86b, H̊as89]). For
every d ∈ N, there exists a Boolean function Fd : {0, 1}n → {0, 1} such that Fd is computed by a
linear-size depth-d circuit, but any depth-(d− 1) circuit computing Fd has size exp(nΩ(1/d)).

The parameters of H̊astad’s theorem were subsequently refined by Cai, Chen, and H̊astad [CCH98],
and Segerlind, Buss, and Impagliazzo [SBI04]. Prior to the work of Yao and H̊astad, Klawe, Paul,
Pippenger, and Yannakakis [KPPY84] proved a depth hierarchy theorem for small-depth monotone
circuits, showing that for every d ∈ N, depth-(d−1) monotone circuits require size exp(Ω(n1/(d−1)))
to compute the depth-d Sipser function. Klawe et al. also gave an upper bound, showing that every
linear-size monotone formula — in particular, the depth-d Sipser function for all d ∈ N — can be
computed by a depth-k monotone formula of size exp(O(k n1/(k−1))) for all k ∈ N.

2



To the best of our knowledge, the first progress towards an average-case depth hierarchy theorem
for small-depth circuits was made by O’Donnell and Wimmer [OW07]. They constructed a linear-
size depth-3 circuit F and proved that any depth-2 circuit that approximates F must have size
2Ω(n/ logn):

Theorem 5 (Theorem 1.9 of [OW07]). For w ∈ N and n := w2w, let Tribes : {0, 1}n → {0, 1}
be the function computed by a 2w-term read-once monotone DNF formula where every term has
width exactly w. Let Tribes† denote its Boolean dual, the function computed by a 2w-clause read-
once monotone CNF formula where every clause has width exactly w, and define the 2n-variable
function F : {0, 1}2n → {0, 1} as

F (x) = Tribes(x1, . . . , xn) ∨ Tribes†(xn+1, . . . , x2n).

Then any depth-2 circuit C on 2n variables that has size 2O(n/ logn) agrees with F on at most a
0.99-fraction of the 22n inputs. (Note that F is computed by a linear-size depth-3 circuit.)

Our Theorem 1 gives an analogous separation between depth-d and depth-(d+ 1) for all d ≥ 2,
with (1/2 − on(1))-inapproximability rather than 0.01-inapproximability. The [OW07] size lower
bound of 2Ω(n/ logn) is much larger, in the case d = 2, than our exp(nΩ(1/d)) size bound. However,
we recall that achieving a exp(ω(n1/(d−1))) lower bound against depth-d circuits for an explicit
function, even for worst-case computation, is a well-known and major open problem in complexity
theory (see e.g. Chapter §11 of [Juk12] and [Val83, GW13, Vio13]). In particular, an extension of
the 2Ω(n/polylog(n))-type lower bound of [OW07] to depth 3, even for worst-case computation, would
constitute a significant breakthrough.

1.2 Our main lower bounds

We close this section with precise statements of our two main lower bound results, a discussion of
the (near)-optimality of our correlation bounds, and a very high-level overview of our techniques.

Theorem 6 (First main lower bound). For 2 ≤ d ≤ c
√

logn
log logn , the n-variable Sipserd function has

the following property: Any depth-d circuit C : {0, 1}n → {0, 1} of size at most S = 2n
1

6(d−1)
and

bottom fan-in logn
10(d−1) agrees with Sipserd on at most (1

2 + n−Ω(1/d)) · 2n inputs.

Theorem 7 (Second main lower bound). For 2 ≤ d ≤ c
√

logn
log logn , the n-variable Sipserd function has

the following property: Any depth-d circuit C : {0, 1}n → {0, 1} of size at most S = 2n
1

6(d−1)
and

the opposite alternation pattern to Sipserd (i.e. its top-level output gate is OR if Sipserd’s is AND
and vice versa) agrees with Sipserd on at most (1

2 + n−Ω(1/d)) · 2n inputs.

Clearly both these results imply Theorem 1 as a special case, since any size-S depth-(d − 1)
circuit may be viewed as a size-S depth-d circuit satisfying the assumptions of Theorems 6 and 7.

(Near)-optimality of our correlation bounds. For constant d, our main result shows that
the depth-d Sipserd function has correlation at most (1/2 + n−Ω(1)) with any subexponential-size
circuit of depth d−1. Since Sipserd is a monotone function, well-known results [BT96] imply that its
correlation with some input variable xi or one of the constant functions 0,1 (trivial approximators

3



of depth at most one) must be at least (1/2 + Ω(1/n)); thus significant improvements on our
correlation bound cannot be achieved for this (or for any monotone) function.

What about non-monotone functions? If {fd}d≥2 is any family of n-variable functions computed
by poly(n)-size, depth-d circuits, the “discriminator lemma” of Hajnal et al. [HMP+93] implies that
fd must have correlation at least (1/2+n−O(1)) with one of the depth-(d−1) circuits feeding into its
topmost gate. Therefore a “d versus d− 1” depth hierarchy theorem for correlation (1/2 + n−ω(1))
does not hold.

Our techniques. Our approach is based on random projections, a generalization of random
restrictions. At a high level, we design a carefully chosen (adaptively chosen) sequence of random
projections, and argue that with high probability under this sequence of random projections, (i) any
circuit C of the type specified in Theorem 6 or Theorem 7 “collapses,” while (ii) the Sipserd function
“retains structure,” and (iii) moreover this happens in such a way as to imply that the circuit C
must have originally been a very poor approximator for Sipserd (before the random projections).
Each of (i)–(iii) above requires significant work; see Section 4 for a much more detailed explanation
of our techniques (and of why previous approaches were unable to successfully establish the result).

2 Application #1: Random oracles separate the polynomial hier-
archy

2.1 Background: PSPACE 6= PH relative to a random oracle

The pioneering work on lower bounds against small-depth circuits in the 1980’s was largely mo-
tivated by a connection between small-depth computation and the polynomial hierarchy shown
by Furst, Saxe, and Sipser [FSS81]. They gave a super-polynomial size lower bound for constant-
depth circuits, proving that depth-d circuits computing the n-variable parity function must have size

Ω(nlog(3d−6) n), where log(i) n denotes the i-th iterated logarithm. They also showed that an improve-

ment of this lower bound to super-quasipolynomial for constant-depth circuits (i.e. Ωd

(
2(logn)k

)
for all constants k) would yield an oracle A such that PSPACEA 6= PHA. Ajtai independently
proved a stronger lower bound of nΩd(logn) [Ajt83]; his motivation came from finite model theory.
Yao gave the first super-quasipolynomial lower bounds on the size of constant-depth circuits com-
puting the parity function [Yao85], and shortly after H̊astad proved the optimal lower bound of
exp(Ω(n1/(d−1))) via his influential Switching Lemma [H̊as86a].

Yao’s relativized separation of PSPACE from PH was improved qualitatively by Cai, who showed
that the separation holds even relative to a random oracle [Cai86]. Leveraging the connection made
by [FSS81], Cai accomplished this by proving correlation bounds against constant-depth circuits,
showing that constant-depth circuits of sub-exponential size agree with the parity function only on
a (1/2 + on(1)) fraction of inputs. (Independent work of Babai [Bab87] gave a simpler proof of the
same relativized separation.)

2.2 Background: The polynomial hierarchy is infinite relative to some oracle

Together, these results paint a fairly complete picture of the status of the PSPACE versus PH
question in relativized worlds: not only does there exist an oracle A such that PSPACEA 6= PHA,
this separation holds relative to almost all oracles. A natural next step is to seek analogous results

4



showing that the relativized polynomial hierarchy is infinite; we recall that the polynomial hierarchy
being infinite implies PSPACE 6= PH, and furthermore, this implication relativizes. We begin with
the following question, attributed to Albert Meyer in [BGS75]:

Meyer’s Question. Is there a relativized world within which the polynomial hierarchy is infinite?
Equivalently, does there exist an oracle A such that ΣP,A

d ( ΣP,A
d+1 for all d ∈ N?

Early work on Meyer’s question predates [FSS81]. It was first considered by Baker, Gill, and
Solovay in their paper introducing the notion of relativization [BGS75], in which they prove the
existence of an oracle A such that PA 6= NPA 6= coNPA, answering Meyer’s question in the af-
firmative for d ∈ {0, 1}. Subsequent work of Baker and Selman proved the d = 2 case [BS79].
Following [FSS81], Sipser noted the analogous connection between Meyer’s question and circuit
lower bounds [Sip83]: to answer Meyer’s question in the affirmative, it suffices to exhibit, for ev-
ery constant d ∈ N, a Boolean function Fd computable by a depth-d AC0 circuit such that any
depth-(d − 1) circuit computing Fd requires super-quasipolynomial size. (This is a significantly
more delicate task than proving super-quasipolynomial size lower bounds for the parity function;
see Section 4 for a detailed discussion.) Sipser also constructed a family of Boolean functions for

which he proved an n versus Ω(nlog(3d) n) separation — these came to be known as the Sipser func-
tions, and they play the same central role in Meyer’s question as the parity function does in the
relativized PSPACE versus PH problem.

As discussed in the introduction (see Theorem 4), H̊astad gave the first proof of a near-optimal n
versus exp(nΩ(1/d)) separation for the Sipser functions [H̊as86a], obtaining a strong depth hierarchy
theorem for small-depth circuits and answering Meyer’s question in the affirmative for all d ∈ N.

2.3 This work: The polynomial hierarchy is infinite relative to a random oracle

Given H̊astad’s result, a natural goal is to complete our understanding of Meyer’s question by
showing that the polynomial hierarchy is not just infinite with respect to some oracle, but in fact
with respect to almost all oracles. Indeed, in [H̊as86a, H̊as86b, H̊as89], H̊astad poses the problem
of extending his result to show this as an open question:

Question 1 (Meyer’s Question for Random Oracles [H̊as86a, H̊as86b, H̊as89]). Is the polynomial
hierarchy infinite relative to a random oracle? Equivalently, does a random oracle A satisfy ΣP,A

d (
ΣP,A
d+1 for all d ∈ N?

Question 1 also appears as the main open problem in [Cai86, Bab87]; as mentioned above, an
affirmative answer to Question 1 would imply Cai and Babai’s result showing that PSPACEA 6= PHA

relative to a random oracle A. Further motivation for studying Question 1 comes from a surprising
result of Book, who proved that the unrelativized polynomial hierarchy collapses if it collapses
relative to a random oracle [Boo94]. Over the years Question 1 has been discussed in a wide range
of surveys [Joh86, Hem94, ST95, HRZ95, VW97, Aar], textbooks [DK00, HO02], and research
papers [H̊as86b, H̊as89, Tar89, For99, Aar10a].

Our work. As a corollary of our main result (Theorem 1) — an average-case depth hierarchy
theorem for small-depth circuits — we answer Question 1 in the affirmative for all d ∈ N:

Theorem 2. The polynomial hierarchy is infinite relative to a random oracle: with probability 1,
a random oracle A satisfies ΣP,A

d ( ΣP,A
d+1 for all d ∈ N.

5



Prior to our work, the d ∈ {0, 1} cases were proved by Bennett and Gill in their paper initiating
the study of random oracles [BG81]. Motivated by the problem of obtaining relativized separations
in quantum structural complexity, Aaronson recently showed that a random oracle A separates
ΠP

2 from PNP [Aar10b, Aar10a]; he conjectures in [Aar10a] that his techniques can be extended
to resolve the d = 2 case of Theorem 2. We observe that O’Donnell and Wimmer’s techniques
(Theorem 5 in our introduction) can be used to prove the d = 2 case [OW07], though the authors
of [OW07] do not discuss this connection to the relativized polynomial hierarchy in their paper.

PSPACEA 6= PHA ΣP,A
d ( ΣP,A

d+1 for all d ∈ N

Connection to lower bounds
for constant-depth circuits

[FSS81] [Sip83]

Hard function(s) Parity Sipser functions

Relative to some oracle A [Yao85, H̊as86a] [Yao85, H̊as86a]

Relative to random oracle A [Cai86, Bab87] This work

Table 1: Previous work and our result on the relativized polynomial hierarchy

We refer the reader to Chapter §7 of H̊astad’s thesis [H̊as86b] for a detailed exposition (and com-
plete proofs) of the aforementioned connections between small-depth circuits and the polynomial
hierarchy (in particular, for the proof of how Theorem 2 follows from Theorem 1).

3 Application #2: No approximate converse to Boppana–Linial–
Mansour–Nisan

The famous result of Linial, Mansour, and Nisan gives strong bounds on Fourier concentra-
tion of small-depth circuits [LMN93]. As a corollary, they derive an upper bound on the to-
tal influence of small-depth circuits, showing that depth-d size-S circuits have total influence
(O(logS))d. (We remind the reader that the total influence of an n-variable Boolean function
f is Inf(f) :=

∑n
i=1 Inf i(f), where Inf i(f) is the probability that flipping coordinate i ∈ [n] of

a uniform random input from {0, 1}n causes the value of f to change.) This was subsequently
sharpened by Boppana via a simpler and more direct proof [Bop97]:

Theorem 8 (Boppana, Linial–Mansour–Nisan). Let f : {0, 1}n → {0, 1} be a computed by a size-S
depth-d circuit. Then Inf(f) = (O(logS))d−1.

(We note that Boppana’s bound is asymptotically tight by considering the parity function.)
Several researchers have asked whether an approximate converse of some sort holds for Theorem 8:

If f : {0, 1}n → {0, 1} has low total influence, is it the case that f can be approximated
to high accuracy by a small constant-depth circuit?

A result of this flavor, taken together with Theorem 8, would yield an elegant characterization of
Boolean functions with low total influence. In this section we formulate a very weak approximate
converse to Theorem 8 and show, as a consequence of our main result (Theorem 1), that even this
weak converse does not hold.

6



3.1 Background: BKS conjecture and O’Donnell–Wimmer’s counterexample

An approximate converse to Theorem 8 was first conjectured by Benjamini, Kalai, and Schramm,
with a very specific quantitative bound on how the size of the approximating circuit depends on
its influence and depth [BKS99] (the conjecture also appears in the surveys [Kal00, KS05]). They
posed the following:

Benjamini–Kalai–Schramm (BKS) Conjecture. For every ε > 0 there is a constant K =
K(ε) such that the following holds: Every monotone f : {0, 1}n → {0, 1} can be ε-approximated by
a depth-d circuit of size at most

exp
(
(K · Inf(f))1/(d−1)

)
for some d ≥ 2.

(We associate a circuit with the Boolean function that it computes, and we say that a circuit
ε-approximates a Boolean function f if it agrees with f on all but an ε-fraction of all inputs.) If
true, the BKS conjecture would give a quantitatively strong converse to Theorem 8 for monotone
functions.1 In addition, it would have important implications for the study of threshold phenomena
in Erdös–Rényi random graphs, which is the context in which Benjamini, Kalai, and Schramm made
their conjecture; we refer the reader to [BKS99] and Section 1.4 of [OW07] for a detailed discussion
of this connection. However, the BKS conjecture was disproved by O’Donnell and Wimmer [OW07].
Their result (Theorem 5 in our introduction) disproves the case d = 2 of the BKS conjecture, and
the case d > 2 is disproved by an easy argument which [OW07] give.

3.2 This work: Disproving a weak variant of the BKS conjecture

A significantly weaker variant of the BKS conjecture is the following:

Conjecture 1. For every ε > 0 there is a d = d(ε) and K1 = K1(ε),K2 = K2(ε) such that the
following holds: Every monotone f : {0, 1}n → {0, 1} can be ε-approximated by a depth-d circuit of
size at most

exp
(
(K1 · Inf(f))K2

)
.

The [OW07] counterexample to the BKS conjecture does not disprove Conjecture 1; indeed,
the function f that [OW07] construct and analyze is computed by a depth-3 circuit of size O(n).2

Observe that Conjecture 1, if true, would yield the following rather appealing consequence: every
monotone f : {0, 1}n → {0, 1} with total influence at most polylog(n) can be approximated to any
constant accuracy by a quasipolynomial-size, constant-depth circuit (where both the constant in
the quasipolynomial size bound and the constant depth of the circuit may depend on the desired
accuracy).

Following O’Donnell and Wimmer’s disproof of the BKS conjecture, several researchers have
posed questions similar in spirit to Conjecture 1. O’Donnell asked if the BKS conjecture is true if
the bound on the size of the approximating circuit is allowed to be exp

(
(K · Inf(f))1/d

)
instead

1We remark that although the BKS conjecture was stated for monotone Boolean functions, it seems that (a priori)
it could have been true for all Boolean functions: prior to [OW07], we are not aware of any counterexample to the
BKS conjecture even if f is allowed to be non-monotone.

2As with the BKS conjecture, prior to our work we are not aware of any counterexample to Conjecture 1 even if
f is allowed to be non-monotone.

7



of exp
(
(K · Inf(f))1/(d−1)

)
[O’D07]. This is a weaker statement than the original BKS conjec-

ture (in particular, it is not ruled out by the counterexample of [OW07]), but still significantly
stronger than Conjecture 1. Subsequently Kalai asked if Boolean functions with total influence
polylog(n) (resp. O(log n)) can be approximated by constant-depth circuits of quasipolynomial size
(resp. AC0) [Kal12] (see also [Kal10] where he states a qualitative version). Kalai’s question is a
variant of Conjecture 1 in which f is allowed to be non-monotone, but Inf(f) is only allowed to
be polylog(n); furthermore, K2(ε) is only allowed to be 1 if Inf(f) = O(log n). Finally, H. Hatami
recently restated the Inf(f) = O(log n) case of Kalai’s question:

Problem 4.6.3 of [Hat14]. Is it the case that for every ε, C > 0, there are constants d, k such
that for every f : {0, 1}n → {0, 1} with Inf(f) ≤ C log n, there is a size-nk, depth-d circuit which
ε-approximates f?

Our work. As a corollary of our main result (Theorem 1), we show that Conjecture 1 is false
even for (suitable choices of) ε = 1

2 − on(1). Our counterexample also provides a strong negative
answer to O’Donnell’s and Kalai–Hatami’s versions of Conjecture 1. We prove the following:

Theorem 3. Conjecture 1 is false. More precisely, there is a monotone f : {0, 1}n → {0, 1} and
a δ(n) = on(1) such that Inf(f) = O(log n) but any circuit of depth d(n) =

√
log log n that agrees

with f on (1
2 + δ(n)) fraction of all inputs must have size at least S(n) = 22

Ω̃

(
2
√

log logn
)

.

Proof of Theorem 3 assuming Theorem 1. Consider the monotone Boolean function f : {0, 1}n →
{0, 1} corresponding to Sipserd of Theorem 1 defined over the first m = 22b

√
log lognc

variables, and
of depth d = blog logmc+ 1 = b

√
log log nc+ 1. By Boppana’s theorem (Theorem 8), we have that

Inf(f) = O(logm)d−1 = O
(

2b
√

log lognc
)b√log lognc

= O(log n).

On the other hand, our main theorem (Theorem 1) implies that even circuits of depth d − 1 =

b
√

log log nc which agree with f on (1
2+δ(n)) fraction of all inputs, where δ(n) = 2−Ω(2b

√
log lognc/b

√
log lognc),

must have size at least

S(n) = 2m
Ω(1/d)

= 2

(
22
√

log logn
)Ω(1/

√
log logn)

= 22
Ω̃

(
2
√

log logn
)
.

4 Our techniques

The method of random restrictions dates back to Subbotovskaya [Sub61] and continues to be an
indispensable technique in circuit complexity. Focusing only on small-depth circuits, we mention
that the random restriction method is the common essential ingredient underlying the landmark
lower bounds discussed in the previous sections [FSS81, Ajt83, Sip83, Yao85, H̊as86a, Cai86, Bab87,
IMP12, H̊as14].

We begin in Section 4.1 by describing the general framework for proving worst- and average-
case lower bounds against small-depth circuits via the random restriction method. Within this
framework, we sketch the now-standard proof of correlation bounds for the parity function based
on H̊astad’s Switching Lemma. We also recall why the lemma is not well-suited for proving a
depth hierarchy theorem for small-depth circuits, hence necessitating the “blockwise variant” of

8



the lemma that H̊astad developed and applied to prove his (worst-case) depth hierarchy theorem.
In Section 4.2 we highlight the difficulties that arise in extending H̊astad’s depth hierarchy theorem
to the average-case, and how our techniques — specifically, the notion of random projections —
allow us to overcome these difficulties.

4.1 Background: Lower bounds via random restrictions

Suppose we would like to show that a target function f : {0, 1}n → {0, 1} has small correlation
with any size-S depth-d approximating circuit C under the uniform distribution U over {0, 1}n.
A standard approach is to construct a series of random restrictions {Rk}k∈{2,...,d} satisfying three
properties:

– Property 1: Approximator C simplifies. The randomly-restricted circuit C � ρ(d) · · ·ρ(2),
where ρ(k) ← Rk for 2 ≤ k ≤ d, should “collapse to a simple function” with high probability.
This is typically shown via iterative applications of an appropriate “Switching Lemma for the
Rk’s ”, which shows that each random restriction ρ(k) decreases the depth of the circuit C �
ρ(d) · · ·ρ(k−1) by one with high probability. The upshot is that while C is a depth-d size-S
circuit, C � ρ(d) · · ·ρ(2) will be a small-depth decision tree, a “simple function”, with high
probability.

– Property 2: Target f retains structure. In contrast with the approximating circuit, the
target function f should (roughly speaking) be resilient against the random restrictions ρ(k) ←
Rk. While the precise meaning of “resilient” depends on the specific application, the key property
we need is that f � ρ(d) · · ·ρ(2) will with high probability be a “well-structured” function that
is uncorrelated with any small-depth decision tree.

Together, these two properties imply that random restrictions of f and C are uncorrelated with
high probability. Note that this already yields worst-case lower bounds, showing that f : {0, 1}n →
{0, 1} cannot be computed exactly by C. To obtain correlation bounds, we need to translate such
a statement into the fact that f and C themselves are uncorrelated. For this we need the third key
property of the random restrictions:

– Property 3: Composition of Rk’s completes to U . Evaluating a Boolean function h :
{0, 1}n → {0, 1} on a random input X ← U is equivalent to first applying random restrictions
ρ(d), . . . ,ρ(2) to h, and then evaluating the randomly-restricted function h � ρ(d) · · ·ρ(2) on
X′ ← U .

Correlation bounds for parity. For uniform-distribution correlation bounds against constant-
depth circuits computing the parity function, the random restrictions are all drawn from R(p), the
“standard” random restriction which independently sets each free variable to 0 with probability
1
2(1 − p), to 1 with probability 1

2(1 − p), and keeps it free with probability p. The main technical
challenge arises in proving that Property 1 holds — this is precisely H̊astad’s Switching Lemma —
whereas Properties 2 and 3 are straightforward to show. For the second property, we note that

Parityn � ρ ≡ ±Parity(ρ−1(∗)) for all restrictions ρ ∈ {0, 1, ∗}n,

and so Parityn � ρ(d) · · ·ρ(2) computes the parity of a random subset S ⊆ [n] of coordinates (or its
negation). With an appropriate choice of the ∗-probability p we have that |S| is large with high

9



probability; recall that ±Parityk (the k-variable parity function or its negation) has zero correlation
with any decision tree of depth at most k − 1. For the third property, we note that for all values
of p ∈ (0, 1), a random restriction ρ ← R(p) specifies a uniform random subcube of {0, 1}n (of
dimension |ρ−1(∗)|). Therefore, the third property is a consequence of the simple fact that a uniform
random point within a uniform random subcube is itself a uniform random point from {0, 1}n.

H̊astad’s blockwise random restrictions. With the above framework in mind, we notice a
conceptual challenge in proving AC0 depth hierarchy theorems via the random restriction method:
even focusing only on the worst-case (i.e. ignoring Property 3), the random restrictions Rk will
have to satisfy Properties 1 and 2 with the target function f being computable in AC0. This is
a significantly more delicate task than (say) proving Parity /∈ AC0 since, roughly speaking, in the
latter case the target function f ≡ Parity is “much more complex” than the circuit C ∈ AC0 to
begin with. In an AC0 depth hierarchy theorem, both the target f and the approximating circuit C
are constant-depth circuits; the target f is “more complex” than C in the sense that it has larger
circuit depth, but this is offset by the fact that the circuit size of C is allowed to be exponentially
larger than that of f (as is the case in both H̊astad’s and our theorem). We refer the reader to
Chapter §6.2 of Hastad’s thesis [H̊as86b] which contains a discussion of this very issue.

H̊astad overcomes this difficulty by replacing the “standard” random restrictions R(p) with
random restrictions specifically suited to Sipser functions being the target : his “blockwise” random
restrictions are designed so that (1) they reduce the depth of the formula computing the Sipser
function by one, but otherwise essentially preserve the rest of its structure, and yet (2) a switching
lemma still holds for any circuit with sufficiently small bottom fan-in. These correspond to Prop-
erties 2 and 1 respectively. However, unlike R(p), H̊astad’s blockwise random restrictions are not
independent across coordinates and do not satisfy Property 3: their composition does not complete
to the uniform distribution U (and indeed it does not complete to any product distribution). This
is why H̊astad’s construction establishes a worst-case rather than average-case depth hierarchy
theorem.

4.2 Our main technique: Random projections

The crux of the difficulty in proving an average-case AC0 depth hierarchy theorem therefore lies in
designing random restrictions that satisfy Properties 1, 2, and 3 simultaneously, for a target f in
AC0 and an arbitrary approximating circuit C of smaller depth but possibly exponentially larger
size. To recall, the “standard” random restrictions R(p) satisfy Properties 1 and 3 but not 2, and
H̊astad’s blockwise variant satisfies Properties 1 and 2 but not 3.

In this paper we overcome this difficulty with projections, a generalization of restrictions. Given
a set of formal variables X = {x1, . . . , xn}, a restriction ρ either fixes a variable xi (i.e. ρ(xi) ∈ {0, 1})
or keeps it alive (i.e. ρ(xi) = xi, often denoted by ∗). A projection, on the other hand, either fixes
xi or maps it to a variable yj from a possibly different space of formal variables Y = {y1, . . . , yn′}.
Restrictions are therefore a special case of projections where Y ≡ X , and each xi can only be fixed
or mapped to itself. (See Definition 4 for precise definitions.) Our arguments crucially employ
projections in which Y is smaller than X , and where moreover each xi is only mapped to a specific
element yj where j depends on i in a carefully designed way that depends on the structure of the
formula computing the Sipser function. Such “collisions”, where blocks of distinct formal variables
in X are mapped to the same new formal variable yi ∈ Y, play a crucial role in our approach. (We
remark that ours is not the first work to consider such a generalization of restrictions. Random

10



projections are also used in the work of Impagliazzo and Segerlind, which establishes lower bounds
against constant-depth Frege systems with counting axioms in proof complexity [IS01].)

At a high level, our overall approach is structured around a sequence Ψ of (adaptively chosen)
random projections satisfying Properties 1, 2, and 3 simultaneously, with the target f being Sipser,
a slight variant of the Sipser function which we define in Section 6. We briefly outline how we
establish each of the three properties (it will be more natural for us to prove them in a slightly
different order from the way they are listed in Section 4.1):

– Property 3: Ψ completes to the uniform distribution. Like H̊astad’s blockwise random
restrictions (and unlike the “standard” random restrictions R(p)), the distributions of our ran-
dom projections are not independent across coordinates: they are carefully correlated in a way
that depends on the structure of the formula computing Sipser. As discussed above, there is
an inherent tension between the need for such correlations on one hand (to ensure that Sipser
“retains structure”), and the requirement that their composition completes to the uniform dis-
tribution on the other hand (to yield uniform-distribution correlation bounds). We overcome
this difficulty with our notion of projections: in Section 8 we prove that the composition Ψ
of our sequence of random projections completes to the uniform distribution (despite the fact
that every one of the individual random projections comprising Ψ is highly-correlated among
coordinates.)

– Property 1: Approximator C simplifies. Next we prove that approximating circuits C of
the types specified in our main lower bounds (Theorems 6 and 7) “collapse to a simple function”
with high probability under our sequence Ψ of random projections. Following the standard
“bottom-up” approach to proving lower bounds against small-depth circuits, we establish this
by arguing that each of the individual random projections comprising Ψ “contributes to the
simplification” of C by reducing its depth by (at least) one.

More precisely, in Section 9 we prove a projection switching lemma, showing that a small-width
DNF or CNF “switches” to a small-depth decision tree with high probability under our random
projections. (The depth reduction of C follows by applying this lemma to every one of its
bottom-level depth-2 subcircuits.) Recall that the random projection of a depth-2 circuit over
a set of formal variables X yields a function over a new set of formal variables Y, and in our
case Y is significantly smaller than X . In addition to the structural simplification that results
from setting variables to constants (as in H̊astad’s Switching Lemma for random restrictions),
the proof of our projection switching lemma also crucially exploits the additional structural
simplification that results from distinct variables in X being mapped to the same variable in Y.

– Property 2: Target Sipser retains structure. Like H̊astad’s blockwise random restrictions,
our random projections are defined with the target function Sipser in mind; in particular, they
are carefully designed so as to ensure that Sipser “retains structure” with high probability under
their composition Ψ.

In Section 10.1 we define the notion of a “typical” outcome of our random projections, and prove
that with high probability all the individual projections comprising Ψ are typical. (Since our
sequence of random projections is chosen adaptively, this requires a careful definition of typicality
to facilitate an inductive argument showing that our definition “bootstraps” itself.) Next, in
Section 10.2 we show that typical projections have a “very limited and well-controlled” effect
on the structure of Sipser; equivalently, Sipser is resilient against typical projections. Together,

11



the results of Section 10.1 and 10.2 show that with high probability, Sipser reduces under Ψ to
a “well-structured” formula, in sharp contrast with our results from Section 9 showing that the
approximator “collapses to a simple function” with high probability under Ψ.

We remark that the notion of random projections plays a key role in ensuring all three properties
above. (We give a more detailed overview of our proof in Section 7.3 after setting up the necessary
terminology and definitions in the next two sections.)

5 Preliminaries

5.1 Basic mathematical tools

Fact 5.1 (Chernoff bounds). Let Z1, . . . ,Zn be independent random variables satisfying 0 ≤ Zi ≤ 1
for all i ∈ [n]. Let S = Z1 + · · ·+ Zn, and µ = E[S]. Then for all γ ≥ 0,

Pr[S ≥ (1 + γ)µ] ≤ exp

(
− γ2

2 + γ
· µ
)

Pr[S ≤ (1− γ)µ] ≤ exp

(
−γ

2

2
· µ
)
.

We will use the following fact implicitly in many of our calculations:

Fact 5.2. Let δ = δ(n) > 0 and n ∈ N, and suppose δn = on(1). The following inequalities hold
for sufficiently large n:

1− δn ≤ (1− δ)n ≤ 1− 1
2δn.

Finally, the following standard approximations will be useful:

Fact 5.3. For x ≥ 2, we have

e−1

(
1− 1

x

)
≤
(

1− 1

x

)x
≤ e−1, or equivalently,

(
1− 1

x

)x
≤ e−1 ≤

(
1− 1

x

)x−1

,

and for 0 ≤ x ≤ 1, we have 1 + x ≤ ex ≤ 1 + 2x.

We write log to denote logarithm base 2 and ln to denote natural log.

5.2 Notation

A DNF is an OR of ANDs (terms) and a CNF is an AND of ORs (clauses). The width of a
DNF (respectively, CNF) is the maximum number of variables that occur in any one of its terms
(respectively, clauses). We will assume throughout that our circuits are alternating, meaning that
every root-to-leaf path alternates between AND gates and OR gates, and layered, meaning that for
every gate G, every root-to-G path has the same length. By a standard conversion, every depth-d
circuit is equivalent to a depth-d alternating layered circuit with only a modest increase in size
(which is negligible given the slack on our analysis). The size of a circuit is its number of gates,
and the depth of a circuit is the length of its longest root-to-leaf path.

For p ∈ [0, 1] and symbols •, ◦, we write “{•p, ◦1−p}” to denote the distribution over {•, ◦} which
outputs • with probability p and ◦ with probability 1 − p. We write “ {•p, ◦1−p}k ” to denote the

12



product distribution over {•, ◦}k in which each coordinate is distributed independently according
to {•p, ◦1−p}. We write “ {•p, ◦1−p}k \{•}k ” to denote the product distribution conditioned on not
outputting {•}k.

Given τ ∈ {0, 1, ∗}A×[`] and a ∈ A, we write τa to denote the `-character string (τa,i)i∈[`] ∈
{0, 1, ∗}[`], and we sometimes refer to this as the “a-th block of τ .”

Throughout the paper we use boldfaced characters such as ρ, X, etc. to denote random variables.
We write “a = b± c” as shorthand to denote that a ∈ [b− c, b+ c], and similarly a 6= b± c to denote
that a /∈ [b− c, b+ c]. For a positive integer k we write “[k]” to denote the set {1, . . . , k}.

The bias of a Boolean function f under an input distribution Z is defined as

bias(f,Z) := min

{
Pr
Z

[f(Z) = 0],Pr
Z

[f(Z) = 1]

}
.

5.3 Restrictions and random restrictions

Definition 1 (Restriction). A restriction ρ of a finite base set {xα}α∈Ω of Boolean variables is
a string ρ ∈ {0, 1, ∗}Ω. (We sometimes equivalently view a restriction ρ as a function ρ : Ω →
{0, 1, ∗}.) Given a function f : {0, 1}Ω → {0, 1} and restriction ρ ∈ {0, 1, ∗}Ω, the ρ-restriction of
f is the function (f � ρ) : {0, 1}Ω → {0, 1} where

(f � ρ)(x) = f(x � ρ), and (x � ρ)α :=

{
xα if ρα = ∗
ρα otherwise

for all α ∈ Ω.

Given a distribution R over restrictions {0, 1, ∗}Ω the R-random restriction of f is the random
function f � ρ where ρ← R.

Definition 2 (Refinement). Let ρ, τ ∈ {0, 1, ∗}Ω be two restrictions. We say that τ is a refinement
of ρ if ρ−1(1) ⊆ τ−1(1) and ρ−1(0) ⊆ τ−1(0), i.e. every variable xα that is set to 0 or 1 by ρ is set
in the same way by τ (and τ may set additional variables to 0 or 1 that ρ does not set).

Definition 3 (Composition). Let ρ, ρ′ ∈ {0, 1, ∗}Ω be two restrictions. Their composition, denoted
ρρ′ ∈ {0, 1, ∗}Ω, is the restriction defined by

(ρρ′)α =

{
ρα if ρα ∈ {0, 1}
ρ′α otherwise.

Note that ρρ′ is a refinement of ρ.

5.4 Projections and random projections

A key ingredient in this work is the notion of random projections which generalize random restric-
tions. Throughout the paper we will be working with functions over spaces of formal variables
that are partitioned into disjoint blocks of some length ` (see Section 6 for a precise description
of these spaces). In other words, our functions will be over spaces of formal variables that can be
described as X = {xa,i : a ∈ A, i ∈ [`]}, where we refer to xa,i as the i-th variable in the a-th block.
We associate with each such space X a smaller space Y = {ya : a ∈ A} containing a new formal
variable for each block of X . Given a function f over X , the projection of f yields a function over
Y, and the random projection of f is the projection of a random restriction of f (which again is a
function over Y). Formally, we have the following definition:

13



Definition 4 (Projection). The projection operator proj acts on functions f : {0, 1}A×[`] → {0, 1}
as follows. The projection of f is the function (proj f) : {0, 1}A → {0, 1} defined by

(proj f)(y) = f(x) where xa,i = ya for all a ∈ A and i ∈ [`].

Given a restriction ρ ∈ {0, 1, ∗}A×[`], the ρ-projection of f is the function (projρ f) : {0, 1}A →
{0, 1} defined by

(projρ f)(y) = f(x) where xa,i =

{
ya if ρa,i = ∗
ρa,i otherwise

for all a ∈ A and i ∈ [`].

Equivalently, (projρ f) ≡ (proj (f � ρ)). Given a distribution R over restrictions in {0, 1, ∗}A×[`],

the associated random projection operator is projρ where ρ ← R, and for f : {0, 1}A×[`] → {0, 1}
we call projρ f its R-random projection.

Note that when ` = 1, the spaces X and Y are identical and our definitions of a ρ-projection
and R-random projection coincide exactly with that of a ρ-restriction and R-random restriction in
Definition 1 (in this case the projection operator proj is simply the identity operator).

Remark 9. The following interpretation of the projection operator will be useful for us. Let f be
a function over X , and consider its representation as a circuit C (or decision tree) accessing the
formal variables xa,i in X . The projection of f is the function computed by the circuit C ′, where C ′

is obtained from C by replacing every occurrence of xa,i in C by ya for all a ∈ A and i ∈ [`]. Note
that this may result in a significant simplification of the circuit: for example, an AND gate (OR
gate, respectively) in C that access both xa,i and xa,j for some a ∈ A and i, j ∈ [`] will access both
ya and ya in C ′, and therefore can be simplified and replaced by the constant 0 (1, respectively).
This is a fact we will exploit in the proof of our projection switching lemma in Section 9.1.

6 The Sipser function and its basic properties

For 2 ≤ d ∈ N, in this subsection we define the depth-d monotone n-variable read-once Boolean
formula Sipserd and establish some of its basic properties. The Sipserd function is very similar to the
depth-d formula considered by H̊astad [H̊as86b]; the only difference is that the fan-ins of the gates
in the top and bottom layers have been slightly adjusted, essentially so as to ensure that the formula
is very close to balanced between the two output values 0 and 1 (note that such balancedness is a
prerequisite for any (1/2−on(1))-inapproximability result.) The Sipserd formula is defined in terms
of an integer parameter m; in all our results this is an asymptotic parameter that approaches +∞,
so m should be thought of as “sufficiently large” throughout the paper.

Every leaf of Sipserd occurs at the same depth (distance from the root) d; there are exactly
n leaves (n will be defined below) and each variable occurs at precisely one leaf. The formula is
alternating, meaning that every root-to-leaf path alternates between AND gates and OR gates; all
of the gates that are adjacent to input variables (i.e. the depth-(d−1) gates) are AND gates, so the
root is an OR gate if d is even and is an AND gate if d is odd. The formula is also depth-regular,
meaning that for each depth (distance from the root) 0 ≤ k ≤ d− 1, all of the depth-k gates have
the same fan-in. Hence to completely specify the Sipserd formula it remains only to specify the
fan-in sequence w0, . . . , wd−1, where wk is the fan-in of every gate at depth k. These fan-ins are as
follows:

14



– The bottommost fan-in is
wd−1 := m. (1)

We define
p := 2−wd−1 = 2−m, (2)

and we observe that p is the probability that a depth-(d − 1) AND gate is satisfied by a
uniform random choice of X← {01/2, 11/2}n.

– For each value 1 ≤ k ≤ d− 2, the value of wk is wk = w where

w := bm2m/ log(e)c. (3)

– The value w0 is defined to be

w0 := the smallest integer such that (1− t1)qw0 is at most
1

2
, (4)

where t1 and q will be defined in Section 7.1, see specifically Equations (8) and (7). Roughly
speaking, w0 is chosen so that the overall formula is essentially balanced under the uniform
distribution (i.e. Sipserd satisfies (6) below); see (9) and the discussion thereafter.

The number of input variables n for Sipserd is n =
∏d−1
k=0wk = wd−2wd−1w0. The estimates for

t1 and q given in (10) imply that w0 = 2m ln(2) · (1± om(1)), so we have that

n =
1± om(1)

log e
·
(
m2m

log e

)d−1

. (5)

We note that for the range of values 2 ≤ d ≤ c
√

logn
log logn that we consider in this paper, a direct

(but somewhat tedious) analysis implies that the Sipserd function is indeed essentially balanced, or
more precisely, that it satisfies

Pr
X←{01,2,11,2}n

[Sipserd(X) = 1] =
1

2
± on(1). (6)

However, since this fact is a direct byproduct of our main theorem (which shows that Sipserd cannot
be (1/2− on(1))-approximated by any depth-(d− 1) formula, let alone by a constant function), we
omit the tedious direct analysis here.

We specify an addressing scheme for the gates and input variables of our Sipserd formula which
will be heavily used throughout the paper. Let A0 = {output}, and for 1 ≤ k ≤ d, let Ak =
Ak−1× [wk−1]. An element of Ak specifies the address of a gate at depth (distance from the output
node) k in Sipserd in the obvious way; so Ad = {output}× [w0]× · · · × [wd−1] is the set of addresses
of the input variables and |Ad| = n.

We close this section by introducing notation for the following family of formulas related to
Sipserd:

Definition 5. For 1 ≤ k ≤ d, we write Sipser
(k)
d : {0, 1}Ak → {0, 1} to denote the depth-k formula

obtained from Sipserd by discarding all gates at depths k + 1 through d − 1, and replacing every
depth-k gate at address a ∈ Ak with a fresh formal variable ya.

Note that Sipser
(1)
d is the top gate of Sipserd; in particular, Sipser

(1)
d is an w0-way OR if d is even,

and an w0-way AND if d is odd. Note also that Sipser
(d)
d is simply Sipserd itself, although we stress

that Sipser
(k)
d is not the same as Sipserk for 1 ≤ k ≤ d− 1.

15



7 Setup for and overview of our proof

7.1 Key parameter settings

The starting point for our parameter settings is the pair of fixed values

λ :=
(logw)3/2

w5/4
and q :=

√
p = 2−m/2. (7)

Given these fixed values of λ and q, we define a sequence of parameters td−1, . . . , t1 as

td−1 :=
p− λ
q

, tk−1 :=
(1− tk)qw − λ

q
for k = d− 1, . . . , 2. (8)

Each of our d − 1 random projections will be defined with respect to an underlying product
distribution. Our first random projection projρ(d) will be associated with the uniform distribu-
tion over {0, 1}n; this is because our ultimate goal is to establish uniform-distribution correlation
bounds. For k ∈ {2, . . . , d− 1} the subsequent random projections projρ(k) will be associated with
either the tk-biased or (1 − tk)-biased product distribution (depending on whether d − k is even
or odd). Recalling our discussion in Section 4 of the framework for proving correlation bounds
— in particular, the three key properties our random projections have to satisfy — the values for
t1, . . . , td−1 are chosen carefully so that the compositions of our d− 1 random projections complete
to the uniform distribution, satisfying Property 3 (we prove this in Section 8).

The next lemma gives bounds on td−1, . . . , t1 which show that these values “stay under control”.
By our definitions of λ, p and q in (7), we have that td−1 = q − o(q), and we will need the fact
that the values of tk for k = d − 1, . . . , 2 remain in the range q ± o(q). Roughly speaking, since
each tk−1 is defined inductively in terms of tk from k = d − 1 down to 1, we have to argue that
these values do not “drift” significantly from the initial value of td−1 = q − o(q). We need to keep
these values under control for two reasons: first, the magnitude of these values directly affects the
strength of our Projection Switching Lemma — as we will see in Section 9.1, our error bounds
depend on the magnitude of these tk’s. Second, since the top fan-in w0 of our Sipserd function
is directly determined by t1 (recall (4)), we need a bound on t1 to control the structure of this
function.

Lemma 7.1. There is a universal constant c > 0 such that for 2 ≤ d ≤ cm
logm , we have that

tk = q ± q1.1 for all k ∈ [d− 1].

We defer the proof of Lemma 7.1 to Appendix A. The k = 1 case of Lemma 7.1 along with our
definition of w0 (recall (4)) give us the bounds

1

2
≥ (1− t1)qw0 ≥ 1

2
(1− tq) =

1

2

(
1− Θ(logw)

w

)
=

1

2

(
1−Θ(2−m)

)
. (9)

These bounds (showing that (1 − t1)qw0 is very close to 1/2) will be useful for our proof in Sec-
tion 10.2 that Sipserd remains essentially unbiased (i.e. it remains “structured”) under our random
projections, which in turn implies our claim (6) that Sipserd is essentially balanced (see Remark 17).

We close this subsection with the following estimates of our key parameters in terms of w for
later reference:

p = Θ

(
logw

w

)
, q = Θ

(√
logw

w

)
, tk = Θ

(√
logw

w

)
for all k ∈ [d− 1]. (10)

16



7.2 The initial and subsequent random projections

As described in Section 4, our overall approach is structured around a sequence of random pro-
jections which we will apply to both the target function Sipserd and the approximating circuit C.
Both are functions over {0, 1}n ≡ {0, 1}Ad , and our d − 1 random projections will sequentially
transform them from being over {0, 1}Ak to being over {0, 1}Ak−1 for k = d down to k = 1. Thus,
at the end of the overall process both the randomly projected target and the randomly projected
approximator are functions over {0, 1}A1 ≡ {0, 1}w0 .

We now formally define this sequence of random projections; recalling Definition 4, to define a
random projection operator it suffices to specify a distribution over random restrictions, and this
is what we will do. We begin with the initial random projection:

Definition 6 (Initial random projection). The distribution Rinit over restrictions ρ in {0, 1, ∗}Ad−1×[m] ≡
{0, 1, ∗}n (recall that wd−1 = m) is defined as follows: independently for each a ∈ Ad−1,

ρb ←


{1}m with probability λ
{∗1/2, 11/2}m \ {1}m with probability q

{01/2, 11/2}m \ {1}m with probability 1− λ− q.
(11)

Remark 10. The description of Rinit given in Definition 6 will be most convenient for our argu-
ments, but we note here the following equivalent view of an Rinit-random projection. Let R′init be
the distribution over restrictions ρ′ in {0, 1, ∗}Ad−1×[m] ≡ {0, 1, ∗}n where

ρ′a ← {∗1/2, 11/2}m \ {1}m independently for each a ∈ Ad−1,

and R′′init be the distribution of restrictions ρ′′ in {0, 1, ∗}Ad−1 where

ρ′′a ←


1 with probability λ
∗ with probability q
0 with probability 1− λ− q

independently for each a ∈ Ad−1.

Then for all f : {0, 1}n → {0, 1} we have that projρ f , where ρ ← Rinit, is distributed identically
to

(projρ′ f) � ρ′′ where ρ′ ← R′init and ρ′′ ← R′′init.

7.2.1 Subsequent random projections

Our subsequent random projections will alternate between two types, depending on whether d−k is
even or odd. These types are dual to each other in the sense that their distributions are completely
identical, except with the roles of 1 and 0 swapped; in other words, the bitwise complement of a draw
from the first type yields a draw from the second type. To avoid redundancy in our definitions we
introduce the notation in Table 2: we represent {0, 1}Ak as {•, ◦}Ak , where a ◦-value corresponds to
either 1 or 0 depending on whether d−k is even or odd, and the •-value is simply the complement of
the ◦-value. For example, the string (◦, ◦, •, ◦) translates to (1, 1, 0, 1) if d−k is even, and (0, 0, 1, 0)
if d− k is odd.

In an interesting contrast with H̊astad’s proofs of the worst-case depth hierarchy theorem (The-
orem 4) and of Parity /∈ AC0, our stage-wise random projection process is adaptive: apart from
the initial Rinit-random projection, the distribution of each random projection depends on the out-
come of the previous. We will need the following notion of the “lift” of a restriction to describe
this dependence:

17



Gates of Sipserd at depth k − 1 ◦ •

d− k ≡ 0 mod 2 AND 1 0

d− k ≡ 1 mod 2 OR 0 1

Table 2: Conversion table for τ ∈ {•, ◦, ∗}Ak where 1 ≤ k ≤ d.

Definition 7 (Lift). Let 2 ≤ k ≤ d and τ ∈ {•, ◦, ∗}Ak−1×[wk−1] ≡ {•, ◦, ∗}Ak . The lift of τ is the
string τ̂ ∈ {•, ◦, ∗}Ak−1 defined as follows: for each a ∈ Ak−1, the coordinate τ̂a of τ̂ is

τ̂a =


◦ if τa,i = • for any i ∈ [wk−1]

• if τa = {◦}wk−1

∗ if τa ∈ {∗, ◦}wk−1 \ {◦}wk−1 .

We remind the reader that τ ∈ {•, ◦, ∗}Ak and τ̂ ∈ {•, ◦, ∗}Ak−1 belong to adjacent levels (i.e. they
fall under different rows in Table 2). Consequently, for example, if 1 corresponds to • as a symbol
in τ then it corresponds to ◦ as a symbol in τ̂ , and vice versa.

Later this notion of the “lift” of a restriction will also be handy when we describe the effect of
our random projections on the target function Sipserd. The high-level rationale behind it is that

τ̂ ∈ {•, ◦, ∗}Ak−1 denotes the values that the bottom-layer gates of Sipser
(k)
d take on when its input

variables are set according to τ ∈ {•, ◦, ∗}Ak . As a concrete example, suppose d − k ≡ 0 mod 2
and let τ ∈ {0, 1, ∗}Ak be a restriction. Since d− k ≡ 0 mod 2, recalling Table 2 we have that the

bottom-layer gates of Sipser
(k)
d (or equivalently, the gates of Sipserd at depth k− 1) are AND gates.

For every block a ∈ Ak−1,

– If τa,i = 0 for some i ∈ [wk−1], the AND gate at address a is falsified and has value 0.

– If τa,i = {1}wk−1 , the AND gate at address a is satisfied and has value 1.

– If τa ∈ {∗, 1} \ {1}wk−1 , the value of the AND gate at address a remains undetermined (which
we denote as having value ∗).

These three cases correspond exactly to the three branches in Definition 7, and so indeed τ̂a ∈
{0, 1, ∗} represents the value that the AND gate at address a takes when its input variables are set
according to τa ∈ {0, 1, ∗}wk−1 .

We shall require the following technical definition:

Definition 8 (k-acceptable). For 2 ≤ k ≤ d−1 and a set S ⊆ [wk−1], we say that S is k-acceptable
if

|S| = qw ± wβ(k,d), where β(k, d) :=
1

3
+
d− k − 1

12d
.

Note that 1
3 ≤ β(k, d) ≤ 5

12 <
1
2 for all d ∈ N and 2 ≤ k ≤ d− 1.

For intuition, in the above definition S should be thought of as specifying those children of a
particular depth-(k − 1) gate of Sipserd that take the value ∗ under certain restrictions (defined

18



below). We want the size of this set to be essentially qw, and as k gets smaller (closer to the root),
for technical reasons we allow more and more — but never too much — deviation from this desired
value. See Section 10.1 for a detailed discussion.

We are now ready to give the key definition for our subsequent random projections:

Definition 9 (Subsequent random projections). Let τ ∈ {•, ◦, ∗}Ak where 2 ≤ k ≤ d − 1. We
define a distribution R(τ) over refinements ρ ∈ {•, ◦, ∗}Ak of τ as follows. Independently for each
a ∈ Ak−1, writing Sa = Sa(τ) to denote τ−1

a (∗) = {i ∈ [wk−1] : τa,i = ∗} and ρ(Sa) to denote the
substring of ρa with coordinates in Sa,

– If τ̂a = ◦ (i.e. if τa,i = • for some i ∈ [wk−1]) or if Sa is not k-acceptable, then

ρ(Sa)← {•tk , ◦1−tk}
Sa .

– If τ̂a = ∗ (i.e. if τa,i ∈ {∗, ◦}wk−1 \ {◦}wk−1) and Sa is k-acceptable, then

ρ(Sa)←


◦Sa with probability λ
{∗tk , ◦1−tk}Sa \ {◦}Sa with probability qa
{•tk , ◦1−tk}Sa \ {◦}Sa with probability 1− λ− qa,

(12)

where

qa :=
(1− tk)|Sa| − λ

tk−1
is chosen to satisfy (1− tk)|Sa| = λ+ qatk−1. (13)

(Note that if τ̂a = • then τa,i = ◦ for all i ∈ [wk−1], and so τa cannot be refined further.)
For all a ∈ Ak−1 and i ∈ [wk−1] such that τa,i ∈ {•, ◦}, we set ρa,i = τa,i and so ρ is indeed a

refinement of τ .

Remark 11. We remark that qa as defined in (13) is indeed a well-defined quantity in [0, 1] if Sa is
k-acceptable. We omit the straightforward verification here since our analysis in Section 10.1 will
in fact establish a stronger statement showing that qa = q ± o(q); see Lemma 10.5.

Remark 12. By inspecting Definition 6, we see that for all ρ ∈ supp(Rinit) and blocks a ∈ Ad−1

ρa,i = ∗ for some i ∈ [m] iff ρa ∈ {∗, 1}m \ {1}m, or equivalently,

ρa,i = ∗ for some i ∈ [m] iff ρ̂a = ∗,

and hence for all h : {0, 1}n → {0, 1} the projection projρ h : {0, 1}Ad−1 → {0, 1} depends only
on the coordinates in (ρ̂)−1(∗) ⊆ Ad−1. Likewise, by inspecting Definition 9 we have that for all
τ ∈ {•, ◦, ∗}Ak , ρ ∈ supp(R(τ)), and blocks a ∈ Ak−1,

ρa,i = ∗ for some i ∈ [wk−1] iff ρa ∈ {∗, ◦}wk−1 \ {◦}wk−1 , or equivalently,

ρa,i = ∗ for some i ∈ [wk−1] iff ρ̂a = ∗,

and hence for all h : {0, 1}Ak → {0, 1} the projection projρh : {0, 1}Ak−1 → {0, 1} depends only on
the coordinates in (ρ̂)−1(∗) ⊆ Ak−1. Our proof that our sequence of random projections (based on
Definitions 6 and 9 as described in Definition 4) completes to the uniform distribution will rely on
these properties; see Section 8.

19



7.3 Overview of our proof

With the definitions from Section 7.2 in hand, we are (finally) in a position to give a detailed
overview of our proof. Let C be a depth-d approximating circuit for Sipserd, where C either
has significantly smaller bottom fan-in than Sipserd (in the case of Theorem 6) or the opposite
alternation pattern to Sipserd (in the case of Theorem 7), and C satisfies the size bounds given in
the respective theorem statements. In both cases our goal is to show that C has small correlation
with Sipserd, i.e. to prove that

Pr[Sipserd(X) 6= C(X)] ≥ 1

2
− on(1) (14)

for a uniform random input X← {01/2, 11/2}n. At a high level, we do this by analyzing the effect
of d − 1 random projections on the target and the approximator: we begin with an Rinit-random

projection projρ(d) where ρ(d) ← Rinit, followed by projρ(d−1) where ρ(d−1) ← R(ρ̂(d)), and then

projρ(d−2) where ρ(d−2) ← R(ρ̂(d−1)), and so on. It is interesting to note that unlike H̊astad’s proofs

of the worst-case depth hierarchy theorem (Theorem 4) and of Parity /∈ AC0, the distribution of
our k-th random projection is defined adaptively depending on the outcome of the (k − 1)-st. For
notational concision we introduce the following definition for this overall (d− 1)-stage projection:

Definition 10. Given a function f : {0, 1}n → {0, 1}, we write Ψ(f) : {0, 1}w0 → {0, 1} to denote
the following random projection of f :

Ψ(f) ≡ projρ(2) projρ(3) · · · projρ(d−1) projρ(d) f,

where ρ(d) ← Rinit and ρ(k) ← R(ρ̂(k+1)) for all 2 ≤ k ≤ d − 1. We will sometimes refer to the
overall process as a Ψ-random projection, and Ψ(f) as the Ψ-random projection of f . (We remind
the reader that the projection of a function over {0, 1}Ak yields a function over {0, 1}Ak−1 for all
2 ≤ k ≤ d, and in particular Ψ(f) is indeed a function over {0, 1}A1 ≡ {0, 1}w0.)

Recalling the framework for proving correlation bounds discussed in Section 4, the rest of the
paper is structured around showing that a Ψ-random projection satisfies the three key properties
outlined in Section 4:

Property 1. The approximating circuit C simplifies under a Ψ-random projection.

Property 2. The target Sipserd remains structured under a Ψ-random projection.

Property 3. Ψ completes to the uniform distribution.

Section 8. We begin in Section 8 with Property 3. We show that

Pr[Sipserd(X) 6= C(X)] = Pr[(Ψ(Sipserd))(Y) 6= (Ψ(C))(Y)] (15)

where Y is drawn from an appropriate product distribution D over {0, 1}w0 (D is the t1-biased
product distribution if d is even, and (1− t1)-biased product distribution if d is odd). This reduces
our goal of bounding the correlation between Sipserd and C (i.e. (14)) under the uniform distribu-
tion, to the task of bounding the correlation between their Ψ-random projections Ψ(Sipserd) and
Ψ(C) with respect to D.

20



Section 9. With the reduction (15) in hand, we turn our attention to Property 1, showing that
the approximating circuit C of the type specified in either Theorems 6 or 7 “collapses to a simple
function” under a Ψ-random projection. More precisely, for the case that the depth-d circuit C has
significantly smaller bottom fan-in than Sipserd we show that C collapses to a shallow decision tree,
and for the case that C has the opposite alternation pattern to Sipserd we show that C collapses to
a small-width depth-two circuit with top gate opposite to that of Ψ(Sipserd). (In both cases these
statements are with high probability under a Ψ-random projection.)

In close parallel with H̊astad’s “bottom-up” proof of Parity /∈ AC0, the main technical ingredient
in this section is a projection switching lemma showing that the random projection projρ(k) of a
small-width DNF or CNF “switches” to a small-depth decision tree with high probability. Applying
this lemma to every bottom-level depth-2 subcircuit of C, we are able to argue that each of the
d− 1 random projections comprising Ψ reduces the depth of C by one with high probability, and
thus Ψ(C) collapses to a small-depth decision tree or small-width depth-two circuit as claimed.

Section 10. It remains to argue that the target Sipserd — in contrast with the approximating
circuit C — “retains structure” with high probability under a Ψ-random restriction. This is a
high-probability statement because there is a nonzero failure probability introduced by each of the
d− 1 individual random projections projρ(k) that comprise Ψ ≡ {ρ(k)}k∈{2,...,d} (see Footnote 3 for
an example of a possible “failure event” for one of these restrictions). To reason about and bound
these failure probabilities, in Section 10.1 we introduce the notion of a “typical” restriction. The
parameters of our definition of typicality are chosen carefully to ensure that

(i) ρ(d) ← Rinit is typical with high probability, and

(ii) if ρ(k+1) is typical, then ρ(k) ← R(ρ̂(k+1)) is also typical with high probability.

We establish (i) and (ii) in Section 10.1. Together, (i) and (ii) imply that with high probability
Ψ ≡ {ρ(k)}k∈{2,...,d} is such that ρ(d), . . . ,ρ(2) are all typical; we use this in Section 10.2.

With the notion of typical restrictions in hand, in Section 10.2 we establish Property 2 showing
that Sipserd “survives” a Ψ-random projection (i.e. it “retains structure”) with high probability.
More formally, for outcomes Ψ ≡ {ρ(k)}k∈{2,...,d} of Ψ such that ρ(d), . . . , ρ(2) are all typical, we
prove that the Ψ-projected target Ψ(Sipserd) is “well-structured” in the following sense:

(i) Ψ(Sipserd) is a depth-one formula: an OR if d is even, an AND if d is odd.

(ii) The bias of Ψ(Sipserd) under D is close to 1/2; that is,

bias(Ψ(Sipserd),Y) =
1

2
− on(1).

Recall that we have shown in Subsection 10.1 that with high probability Ψ ≡ {ρ(k)}k∈{2,...,d} is such

that ρ(d), . . . ,ρ(2) are all typical. Therefore, the results of these two subsections together imply
that the randomly projected target Ψ(Sipserd) satisfies both (i) and (ii) with high probability.

Section 11. Having established Properties 1, 2, and 3, it remains to bound the correlation
between a depth-one formula with bias essentially 1/2 and a small-width CNF formula of opposite
alternation with respect to the product distribution D over {0, 1}w0 . (Recall that our results from
Section 10.2 show that Ψ(Sipserd) collapses to the former with high probability, and our results

21



from Section 9 shows that Ψ(C) collapses to the latter with high probability — this holds in both
cases since a shallow decision tree is a small-width CNF.) We prove this correlation bound using
a slight extension of an argument in [OW07], and with this final piece in hand our main theorems
follow from straightforward arguments putting the pieces together.

8 Composition of projections complete to uniform

Our goal in this section is to establish the following lemma:

Proposition 8.1. Consider f, g : {0, 1}n → {0, 1}. Let X← {01/2, 11/2}n. Let Y ← {01−t1 , 1t1}w0

if d is even, and Y ← {0t1 , 11−t1}w0 if d is odd. Then

Pr[f(X) 6= g(X)] = Pr[(Ψ(f))(Y) 6= (Ψ(g))(Y)].

As discussed in Section 7.3 we will ultimately apply Proposition 8.1 with f being our target
function Sipserd and g being the approximating circuit C. This allows us to translate the inap-
proximability of Ψ(Sipserd) by Ψ(C) (either with respect to the t1-biased or (1− t1)-based product
distribution, depending on whether d is even or odd) into the uniform-distribution inapproximabil-
ity of Sipserd by C.

Overview of proof. We will actually derive Proposition 8.1 as a consequence of a stronger claim,
which, roughly speaking, states that we can generate a uniformly random input X← {01/2, 11/2}n

via Ψ and Y in a stage-wise manner. In more detail, given Ψ ≡ {ρ(k)}k∈{2,...,d} and Y we consider
the following random {0, 1, ∗}-valued labeling ` of the leaves and non-root nodes of the depth-d
depth-regular tree corresponding to the depth-d formula computing Sipserd:

– The |Ad| = n leaves of the tree are each labeled {0, 1, ∗} according to ρ(d) ← Rinit.

– For 2 ≤ k ≤ d − 1, the |Ak| nodes at depth k are each labeled {0, 1, ∗} according to ρ(k) ←
R(ρ̂(k+1)).

– Finally, for each i ∈ [w0] = [|A1|], if ρ̂(2)
i = ∗ then the i-th node at depth 1 is labeled

Yi ∈ {0, 1}, and otherwise it is labeled ρ̂(2)
i ∈ {0, 1}. (The root of the tree is left unlabeled.)

Next, we let the {0, 1}-valued labels of ` “percolate down the tree” as follows: every node or
leaf that is labeled ∗ by ` inherits the ({0, 1}-valued) label from its closest ancestor that is not
labeled ∗. Note that this “percolation step” ensures that every leaf and non-root node of the tree
is labeled either 0 or 1, since every depth-1 node is assigned a {0, 1}-valued label by `.

Let `↓ denote this {0, 1}-valued random labeling of the leaves and non-root nodes. Our main
result in this section, Proposition 8.4, can be viewed as stating that the random string X ∈ {0, 1}n
defined by `↓’s labeling of the n leaves is distributed uniformly at random; Proposition 8.1 follows
as a straightforward consequence of this claim along with our definition of projections.

We begin with the following lemma, which explains our choice of td−1 in (8) in the definition of
Rinit (Definition 6). (Note that in the lemma each coordinate of Y is distributed as {01−td−1

, 1td−1
}

regardless of whether d is even or odd; this is because of our convention that the bottom-layer gates
of Sipserd are always AND gates.)

22



Lemma 8.2. Let ρ ← Rinit and Y ← {01−td−1
, 1td−1

}(ρ̂)−1(∗) , and consider the string X ∈
{0, 1}n ≡ {0, 1}Ad−1×[m] defined as follows:

Xa,i =

{
Ya if ρa,i = ∗
ρa,i otherwise

for all a ∈ Ad−1 and i ∈ [m].

The string X is distributed according to the uniform distribution {01/2, 11/2}n. (Recalling Remark 12
we have that ρa,i = ∗ if and only if ρ̂a = ∗, and so Ya in the equation above is indeed well-defined.)

Proof. Since the blocks of ρ are independent across a ∈ Ad−1 and the coordinates of Y are in-
dependent across a ∈ (ρ̂)−1(∗) ⊆ Ad−1, it suffices to prove that Xa is distributed according to
{01/2, 11/2}m for a fixed a ∈ Ad−1. We first observe that

Pr[Xa = 1m] = λ+ qPr[Ya = 1] = λ+ qtd−1 = p = 2−m,

where the λ is from the first line of (11), the qPr[Ya = 1] is from the second line of (11), and the
penultimate equality is by our choice of td−1 in (8). Next, for any string Z ∈ {0, 1}m \ {1}m, we
have that

Pr[Xa = Z] = (1− λ− q) · 2−m

1− 2−m
+ qPr[Ya = 0] · 2−m

1− 2−m
(16)

=
p

1− p
· ((1− λ− q) + q(1− td−1))

=
p

1− p
· (1− λ− qtd−1) =

p

1− p
· (1− p) = p = 2−m, (17)

where the first summand on the RHS of (16) is by the third line of (11), the second summand is
by the second line of (11), and (17) again uses our choice of td−1 in (8). Since this is exactly the
probability mass function of the uniform distribution {01/2, 11/2}m, the proof is complete.

The following lemma, the analogue of Lemma 8.2 for R(τ), explains our choice of qa in terms
of tk and tk−1 in (13):

Lemma 8.3. For 2 ≤ k ≤ d− 1 let τ ∈ {0, 1, ∗}Ak , ρ← R(τ), and{
Y ← {01−tk−1

, 1tk−1
}(ρ̂)−1(∗) if d− k ≡ 0 mod 2

Y ← {0tk−1
, 11−tk−1

}(ρ̂)−1(∗) if d− k ≡ 1 mod 2.

For each a ∈ Ak−1, writing Sa = Sa(τ) to denote τ−1
a (∗) = {i ∈ [wk−1] : τa,i = ∗} and ρ(Sa) to

denote the substring of ρa with coordinates in Sa, we consider the string Za ∈ {0, 1}Sa defined as
follows:

Za,i =

{
Ya if ρa,i = ∗
ρa,i otherwise

for all i ∈ Sa.

The string Za is distributed according to{
{0tk , 11−tk}Sa if d− k ≡ 0 mod 2

{01−tk , 1tk}Sa if d− k ≡ 1 mod 2,

and furthermore, Za and Za′ are independent for any two distinct a, a′ ∈ Ak−1. (Again, recalling
Remark 12 we have that ρa,i = ∗ if and only if ρ̂a = ∗, and so Ya in the equation above is indeed
well-defined.)

23



Proof. We prove the d − k ≡ 0 mod 2 case (the other case follows by a symmetric argument). If
τ̂a falls in the first case of Definition 9 (i.e. if τ̂a = 0 or if Sa is not k-acceptable) then the claim
is true since Za ≡ ρ(Sa) ← {0tk , 11−tk}Sa . Otherwise, if τ̂a falls in the second case of Definition 9
(i.e. if τ̂a = ∗ and Sa is k-acceptable) we first observe that

Pr[Za = 1Sa ] = λ+ qa Pr[Ya = 1]

= λ+ qatk−1

= (1− tk)|Sa|,

where as before the λ is from the first line of (12), the qa Pr[Ya = 1] is from the second line of (12),
and the final equality is by our definition of qa in (13). Next, for any string Z ∈ {0, 1}Sa \ {1}Sa
and u := |Z−1(0)| ∈ {1, . . . , |Sa|}, we have that

Pr[Za = Z] = (1− λ− qa) ·
tuk(1− tk)|Sa|−u

1− (1− tk)|Sa|
+ qa Pr[Ya = 0] ·

tuk(1− tk)|Sa|−u

1− (1− tk)|Sa|
(18)

=
tuk(1− tk)|Sa|−u

1− (1− tk)|Sa|
· (1− λ− qa + qa(1− tk−1))

=
tuk(1− tk)|Sa|−u

1− (1− tk)|Sa|
· (1− λ− qatk−1)

=
tuk(1− tk)|Sa|−u

1− (1− tk)|Sa|
·
(
1− (1− tk)|Sa|

)
= tuk(1− tk)|Sa|−u, (19)

where as before the first summand on the RHS of (18) is by the third line of (12), the second
summand is by the second line of (12), and (19) again uses our definition of qa. Therefore indeed,
the resulting string is distributed according to {0tk , 11−tk}Sa . Finally, since the blocks of ρ are
independent across a ∈ Ak−1 and the coordinates of Y are independent across a ∈ (ρ̂)−1(∗) ⊆ Ak−1,
we have that Za and Za′ are independent for any two distinct a, a′ ∈ Ak−1.

Together Lemmas 8.2 and 8.3 give us the following proposition, which in turn yields Proposi-
tion 8.1, our main result in this section.

Proposition 8.4. Let ρ(d) ← Rinit and ρ(k) ← R(ρ̂(k+1)) for 2 ≤ k ≤ d− 1. Let

Y(1) ←

{01−t1 , 1t1}(ρ̂
(2))−1(∗) if d is even

{0t1 , 11−t1}(ρ̂
(2))−1(∗) if d is odd,

and for 2 ≤ k ≤ d − 1 consider random strings Y(k) ∈ {0, 1}(ρ̂(k+1))−1(∗) defined inductively from
k = 2 up to d− 1 as follows:

Y
(k)
a,i =

{
Y

(k−1)
a if ρ

(k)
a,i = ∗

ρ
(k)
a,i otherwise

for all a ∈ Ak−1 and i ∈ [wk−1] s.t. ρ̂(k+1)
a,i = ∗. (20)

Then the string X ∈ {0, 1}n ≡ {0, 1}Ad−1×[m] defined by

Xa,i =

{
Y

(d−1)
a if ρa,i = ∗
ρ

(d)
a,i otherwise

for all a ∈ Ad−1 and i ∈ [m]

is distributed according to the uniform distribution {01/2, 11/2}n.

24



Proof. By the k = 2 case of Lemma 8.3, for all possible outcomes ρ(k) of ρ(k) for 3 ≤ k ≤ d,

conditioned on such an outcome the random string Y(2) is distributed according to {0t2 , 11−t2}ρ̂
(3)

if d is even and according to {01−t2 , 1t2}ρ̂
(3)

if d is odd. Applying this argument repeatedly and
arguing inductively from k = 2 up to k = d− 1, we have that conditioned on any outcome ρ(d) of

ρ(d) ← Rinit, the random string Y(d−1) is distributed according to {01−td−1
, 1td−1

}ρ̂(d)
. The claim

then follows by Lemma 8.2.

Proof of Proposition 8.1. Recall that X← {01/2, 11/2}n and Y ← {01−t1 , 1t1}w0 if d is even, Y ←
{0t1 , 11−t1}w0 if d is odd. Let ρ(d) ← Rinit and ρ(k) ← R(ρ̂(k+1)) for 2 ≤ k ≤ d−1. For 1 ≤ k ≤ d−1

let Y(k) ∈ {0, 1}(ρ̂(k+1))−1(∗) be defined as in Proposition 8.4. Recalling Remark 12, for all functions
h : {0, 1}n → {0, 1} and 1 ≤ k ≤ d− 1, the random projection

(projρ(k+1) · · · projρ(d) h) : {0, 1}Ak → {0, 1}

depends only on the coordinates in (ρ̂(k+1))−1(∗) ⊆ Ak, and so we may equivalently view it as

a function {0, 1}(ρ̂(k+1))−1(∗) → {0, 1}. By Proposition 8.4, the definition of the Y(k)’s, and the
definition of projections, we see that

Pr[f(X) 6= g(X)] = Pr[(projρ(d) f)(Y(d−1)) 6= (projρ(d) g)(Y(d−1))]

= Pr[(projρ(d−1) projρ(d) f)(Y(d−2)) 6= (projρ(d−1) projρ(d) g)(Y(d−2))]

= · · ·
= Pr[(projρ(2) · · · projρ(d) f)(Y(1)) 6= (projρ(2) · · · projρ(d) g)(Y(1))]

= Pr[(projρ(2) · · · projρ(d) f)(Y) 6= (projρ(2) · · · projρ(d) g)(Y)]

= Pr[(Ψ(f))(Y) 6= (Ψ(g))(Y)]

where the final inequality is by the definition of Ψ (Definition 10).

9 Approximator simplifies under random projections

With Proposition 8.1 in hand we next prove that the approximating circuit C of the type specified
in either Theorems 6 or 7 “collapses to a simple function” with high probability under a Ψ-random
restriction. For the case that the depth-d circuit C has significantly smaller bottom fan-in than
Sipserd we show that C collapses to a shallow decision tree with high probability, and for the case
that C has the opposite alternation pattern to Sipserd we show that C collapses to a small-width
depth-two circuit with top gate opposite to that of Ψ(Sipserd) with high probability.

We do so via a projection switching lemma, showing that each of the d − 1 individual random
projections projρ(k) comprising Ψ “contribute to the simplification” of C with high probability. We
state and prove our projection switching lemma in Sections 9.1 through 9.5, and in Section 9.6 we
show how the lemma can be applied iteratively to prove our structural claims about Ψ(C).

25



9.1 The projection switching lemma and its proof

Proposition 9.1 (Projection switching lemma for Rinit). Let F : {0, 1}n → {0, 1} be a depth-2
circuit with bottom fan-in r. Then for all s ≥ 1,

Pr
ρ←Rinit

[projρ F is not a depth-s decision tree] =
(
O
(
r2r · w−1/4

))s
.

Proposition 9.2 (Projection switching lemma for R(τ)). Let 2 ≤ k ≤ d − 1 and F : {0, 1}Ak →
{0, 1} be a depth-2 circuit with bottom fan-in r. Then for all τ ∈ {0, 1, ∗}Ak and s ≥ 1,

Pr
ρ←R(τ)

[projρ F is not a depth-s decision tree] =
(
O
(
rertk/(1−tk) · w−1/4

))s
.

The proofs of Propositions 9.1 and 9.2 have the same overall structure, and they share many of
the same ingredients. We will only prove (the slightly more involved) Proposition 9.2, and at the
end of this section we point out the essential differences in the proof of Proposition 9.1.

Furthermore, we will prove Proposition 9.2 assuming that F is a DNF and d − k ≡ 0 mod 2.
Both assumptions are without loss of generality. (For the first, we recall that F is a width-
r DNF if and only if its Boolean dual F † is a width-r CNF, and that a Boolean function is
computed by a depth-s decision tree if and only if its Boolean dual is as well, and we observe that
(projρ F )† = projρ (F †) for all ρ and all F . For the second we note that the definition of R(τ) when
d − k ≡ 0 mod 2 is dual to that of R(τ) when d − k ≡ 1 mod 2, and so applying the former to
F (x) is equivalent to applying the latter to F (x).)

Overview of proof. At a high level, we adopt Razborov’s strategy in his alternative proof [Raz95]
of H̊astad’s Switching Lemma. We briefly recall the overall structure of Razborov’s argument. Given
a DNF F : {0, 1}n → {0, 1} and a distribution R over restrictions in {0, 1, ∗}n, we let B ⊆ {0, 1, ∗}n
denote the set of all bad restrictions, namely the ones such that F � ρ is not computed by a small-
depth decision tree. Our goal in a switching lemma is to bound Prρ←R[ρ ∈ B], the weight of B
under R. To do so, we define an encoding of each bad restriction ρ ∈ B as a different restriction
ρ′ ∈ {0, 1, ∗}n and a small amount (say at most ` bits) of “auxiliary information”:

encode : B → {0, 1, ∗}n × {0, 1}`

encode(ρ) = (ρ′, auxiliary information).

This encoding should satisfy two key properties. First, it should be uniquely decodable, meaning
that one is always able to recover ρ given ρ′ and the auxiliary information; equivalently, the function
encode(·) is an injection. Second, the weight Prρ←R[ρ = ρ′] of ρ′ under R should be larger than
that of ρ by a significant multiplicative factor (say by a factor of Γ). It is not hard to see that
together, these two properties imply that total weight of all bad restrictions with the same auxiliary
information is at most 1/Γ. To complete the proof of the switching lemma, we then bound the
overall weight of B via a union bound over all 2` possible strings of auxiliary information. (For a
detailed exposition of Razborov’s proof technique see [Bea94, Tha09] and Chapter §14 of [AB09].)

The proof of our projection switching lemma follows this high-level strategy quite closely; specif-
ically, we build off of a reformulation (due to Thapen [Tha09]) of H̊astad’s proof of the blockwise
variant of his Switching Lemma in Razborov’s framework. In Section 9.3 we define our encoding,
specifying the restriction ρ′ and auxiliary information that is associated with every bad restriction

26



ρ; in Section 9.4 we prove that our encoding is an injection by describing a procedure for unique
decoding; in Section 9.5 we verify that every bad ρ is indeed paired with a ρ′ whose weight under
R(τ) is much larger, and show how this completes the proof of our projection switching lemma.

One important aspect in which we differ from H̊astad’s and Razborov–Thapen’s proof — and
indeed, this is the key distinction between our projection switching lemma and previous switch-
ing lemmas — is that we will be concerned with the complexity of the randomly projected DNF
projρ F ≡ proj (F � ρ), rather than the randomly restricted DNF F � ρ. Recalling our definition
of projections (Definition 4) and Remark 9 in particular, we see that the decision tree depth of
proj (F � ρ) can in general be significantly smaller than that of F � ρ, since groups of distinct
formal variables {xa,i : i ∈ [w]} of F � ρ get mapped to the same formal variable ya under the
projection operator. As we will see, the proof of our projection switching lemma crucially exploits
this fact.

9.2 Canonical projection decision tree

To emphasize the fact that the DNF F and its random projection projρ F are over two different
spaces of formal variables, we will let X = {xa,i : a ∈ Ak−1, i ∈ [wk−1]} denote the formal variables
of F , and Y = {ya : a ∈ Ak−1} denote the formal variables of projρ F . For notational clarity, from
this section through Section 9.4 we omit the subscripts on Ak−1 and wk−1 and simply write A
and w.

Definition 11. Let G : {0, 1}A×[w] → {0, 1} be a DNF over X and T be a term in G. We say
that a variable xa,i occurs positively in T if T contains the unnegated literal xa,i, and that it occurs
negatively in T if T contains the negated literal xa,i. We say that xa,i occurs in T if it either occurs
positively or negatively in T .

Definition 12. For any η ⊆ Y and assignment π ∈ {0, 1}η, the restriction (η 7→ π) ∈ {0, 1, ∗}A×[w]

to the variables in X is defined as follows: for all a ∈ A and i ∈ [w],

(η 7→ π)a,i =

{
π(ya) if ya ∈ η
∗ otherwise.

We stress that for a given a, the value of (η 7→ π)a,i is independent of the value of i ∈ [w].
Next, we define a procedure which, given any DNF G over X , returns a “canonical” decision

tree ProjDT(G) over Y computing its projection projG. The proof of our switching lemma will
establish that the depth of ProjDT(F � ρ) is small with high probability; this clearly implies that
the decision tree depth of projρ F ≡ proj (F � ρ) is small with high probability. (We remark that
both H̊astad’s and Razborov’s proofs of H̊astad’s Switching Lemma consider an analogous notion of
a canonical decision tree whose depth they bound; in their context, however, the canonical decision
tree computes the DNF itself, whereas the canonical decision tree we now define computes the
projection of the DNF.)

Definition 13 (Canonical projection decision tree). Let G : {0, 1}A×[w] → {0, 1} be a DNF over
X , where we assume a fixed but arbitrary ordering on its terms, and likewise on the literals within
each term. The canonical projection decision tree ProjDT(G) : {0, 1}A → {0, 1} associated with G
is defined recursively as follows:

1. If G ≡ 1 (i.e. if G(X) = 1 for all X ∈ {0, 1}A×[w]) output the trivial decision tree ProjDT(G) ≡
1, and likewise, if G ≡ 0 output ProjDT(G) ≡ 0.

27



2. Otherwise, let T be the first term in G such that T 6≡ 0, and let

η =
{
ya : xa,i occurs in T for some i ∈ [w]

}
⊆ Y

3. ProjDT(G) queries all the variables in η in its first |η| levels.

4. For each path π ∈ {0, 1}η, recurse on G � (η 7→ π).

We stress that while G is a DNF over the variables in X , the canonical projection decision
tree ProjDT(G) queries variables in Y. The following fact is a straightforward consequence of
Definition 13:

Fact 9.3. ProjDT(G) computes projG.

9.3 Encoding bad restrictions

Fix τ ∈ {0, 1, ∗}A×[w], and consider

B =
{
ρ ∈ {0, 1, ∗}A×[w] : ρ refines τ and projρ F is not a depth-s decision tree

}
,

We call these restrictions ρ ∈ B bad, and recall that our goal is to bound Pr[ρ ∈ B] for ρ← R(τ).
Fix a bad restriction ρ ∈ B. It will be convenient for us to adopt the equivalent view of projρ F
as proj (F � ρ) in this section. Since proj (F � ρ) is not computed by a depth-s DT over Y, this in
particular implies that the canonical projection decision tree ProjDT(F � ρ) has depth at least s
(recall by Fact 9.3 that ProjDT(F � ρ) computes proj (F � ρ)), and so we may let π ∈ {0, 1}≥s be
the leftmost root-to-leaf path of length at least s in ProjDT(F � ρ).

We now define a few objects associated with ρ and π: for some 1 ≤ j ≤ s, we define

– A collection of terms T1, . . . , Tj in F .

– Disjoint sets of variables η1, . . . , ηj ⊆ Y, and for each such η`, a bit string encode(η`) ∈
{0, 1}|η`|(log r+1).

– A restriction σ = σ1σ2 · · ·σj ∈ {0, 1, ∗}A×[w] such that σ−1({0, 1}) ⊆ ρ−1(∗) (i.e. σ only sets
to constants variables left free by ρ).

– Disjoint sets of variables γ1, . . . , γj ⊆ X , and for each such γ`, a bit string encode(γ`) of
Hamming weight |γ`| and length r.

– A decomposition of the length-s prefix π′ = π1π2 · · ·πj ∈ {0, 1}s of π.

These objects are defined inductively starting from ` = 1 up to ` = j, where j ∈ [s] is the smallest
integer such that the η`’s as defined below satisfy |η1 ∪ · · · ∪ ηj | ≥ s. For ` ∈ [j],

– T` is the first term in F such that T` � ρ (η1 7→ π1) · · · (η`−1 7→ π`−1) 6≡ 0 and

η` =
{
ya : xa,i occurs in T` � ρ (η1 7→ π1) · · · (η`−1 7→ π`−1) for some i ∈ [w]

}
⊆ Y.

We define encode(η`) ∈ {0, 1}|η`|(log r+1) as follows: for each ya ∈ η`, we use log |T`| ≤ log r bits
to encode the location of xa,i1 in T`, where

i1 := min
{
i ∈ [w] : xa,i occurs in T` � ρ (η1 7→ π1) · · · (η`−1 7→ π`−1)

}
,

along with a single bit to indicate whether ya is the last variable in η`.

28



– Let σ` ∈ {0, 1, ∗}A×[w] be defined as follows: for each ya ∈ η` and i ∈ [w],

σ`a,i =


1 if xa,i occurs positively in T` � ρ (η1 7→ π1) · · · (η`−1 7→ π`−1),
0 if xa,i occurs negatively in T` � ρ (η1 7→ π1) · · · (η`−1 7→ π`−1),
0 if ρa,i = ∗ and xa,i does not occur in T` � ρ (η1 7→ π1) · · · (η`−1 7→ π`−1).

(Note that if xa,i occurs in T` � ρ (η1 7→ π1) · · · (η`−1 7→ π`−1), then certainly ρa,i = ∗.) All
remaining entries of σ` not specified above have value ∗.
We make a few observations that will be useful for us later. First observe that for every ya ∈ η`,

(i) (ρ (η1 7→ π1) · · · (η`−1 7→ π`−1))a ≡ ρa

since ya /∈ η1∪· · ·∪η`−1. Furthermore, writing Sa = Sa(τ) to denote τ−1
a (∗) = {i ∈ [w] : τa,i = ∗}

and ρ(Sa) to denote the substring of ρa with coordinates in Sa, we claim that for every ya ∈ η`,

(ii) τa ∈ {∗, 1}w \ {1}w,

(iii) the set Sa is k-acceptable,

(iv) ρ(Sa) ∈ {∗, 1}Sa \ {1}Sa (and hence ρa ∈ {∗, 1}w \ {1}w by (ii)),

(v) (ρσ`)(Sa) ∈ {0, 1}Sa ,

(vi) (ρ(Sa))
−1(1) ⊆ ((ρσ`)(Sa))

−1(1).

To see this, first note that since ya ∈ η` it must be the case that ρa,i = ∗ for at least one i ∈ Sa,
and by inspecting (12) of Definition 9 we have that indeed (ii), (iii), and (iv) hold. Claims (v)
and (vi) follow from the fact that σ` is defined so that σ`a,i ∈ {0, 1} iff ρa,i = ∗. These claims
will be useful for us later in the proof of Lemma 9.7.

Second, we claim that
T` � ρ (η1 7→ π1) · · · (η`−1 7→ π`−1)σ` ≡ 1. (21)

To see this, we note that every variable that occurs in term T` � ρ (η1 7→ π1) · · · (η`−1 7→ π`−1)
is fixed by σ`, and furthermore, each is fixed in the unique way so as to satisfy the term. This
will be useful for us later in the proof of Proposition 9.4.

γ` = {xa,i : σ`a,i = 1} ⊆ X ,

and let encode(γ`) be the string encode(γ`) ∈ {0, 1}r of Hamming weight |γ`| and length r
indicating the location of the elements of γ` within T`.

– Let π` be the length-|η`| substring of π from index |η1 ∪ · · · ∪ η`−1| + 1 through |η1 ∪ · · · ∪ η`|
inclusive.

After the final iteration ` = j, if necessary, we trim ηj and πj so that |η1 ∪ · · · ∪ ηj | = |π1 · · ·πj |
is exactly s, and redefine σj and γj appropriately. We refer the reader to Figure 1 and its caption
for a concrete example and explanation of our encoding procedure.

29



Figure 1: Let T` be the first term not falsified by ρ (η1 7→ π1) · · · (η`−1 7→ π`−1), and suppose it
evaluates to xa,1∧xa,8∧xa′,4∧xa′′,2. In this example η` will be the set {ya, ya′ , ya′′} ⊆ Y. Focusing
on variables from the a-th block, we first recall our observation earlier that (ρ (η1 7→ π1) · · · (η`−1 7→
π`−1))a ≡ ρa since ya /∈ η1 ∪ · · · ∪ η`−1 (Claim (i) in Section 9.4). Furthermore, as illustrated
above, we have that ρa ∈ {∗, 1}w \ {1}w and ρa refines τa ∈ {∗, 1}w \ {1}w (Claims (ii) and (iv) of
Section 9.4).

Since xa,1 and xa,8 occur in T` � ρ (η1 7→ π1) · · · (η`−1 7→ π`−1) it certainly must be the case that
ρa,1 = ρa,8 = ∗; there may also be other coordinates i ∈ [w] such that ρa,i = ∗ and xa,i does not
occur in T` � ρ (η1 7→ π1) · · · (η`−1 7→ π`−1) (coordinates 2 through 7 in our example above). For
i ∈ [w] such that ρa,i = ∗ and xa,i occurs in T` � ρ (η1 7→ π1) · · · (η`−1 7→ π`−1), the restriction
σ` fixes xa,i so as to partially satisfy T` � ρ (η1 7→ π1) · · · (η`−1 7→ π`−1): in our example above,
σ`a,1 = 0 (since xa,1 occurs negatively) whereas σ`a,8 = 1 (since xa,8 occurs positively). The remaining

variables xa,2, . . . , xa,7 are set to 0 by σ`, yielding a completely fixed block (ρσ`)a ∈ {0, 1}w (Claim
(v) in Section 9.4). Intuitively, we “break symmetry” and set these variables to 0 (rather than 1)
so that the decoder will be able to “undo” them in (ρσ`)a without any auxiliary information: since
ρa ∈ {∗, 1}w \ {1}w, the decoder readily infers ρa,i = ∗ for all i ∈ [w] such that (ρσ`)a,i = 0. And
indeed, for the set γ` ⊆ X of variables xa,i that are set to 1 by σ`, we provide the decoder with the
auxiliary information encode(γ`) so that she is able to “undo” them in (ρσ`)a.

30



9.4 Decodability

Let η = η1 ∪ · · · ∪ ηj , encode(η) = encode(η1) · · · encode(ηj) ∈ {0, 1}s(1+log r), σ = σ1 · · ·σj , γ =
γ1 ∪ · · · ∪ γj , encode(γ) = encode(γ1) · · · encode(γj) ∈ {0, 1}rs, and π′ = π1 · · ·πj ∈ {0, 1}s. Our
main result in this subsection is the following proposition:

Proposition 9.4. The map θ : B → {0, 1, ∗}A×[w] × {0, 1}s × {0, 1}s(1+log r) × {0, 1}rs,

θ(ρ) = (ρσ, π′, encode(η), encode(γ)),

is an injection.

Before proving Proposition 9.4, we state a slight extension of an observation made above in the
definition of σ`:

Lemma 9.5. For all 1 ≤ ` ≤ j − 1 we have

T` � ρ (η1 7→ π1) · · · (η`−1 7→ π`−1)σ` · · ·σj ≡ 1,

and when ` = j we have Tj � ρ (η1 7→ π1) · · · (ηj−1 7→ πj−1)σj 6≡ 0.

Proof. As we observed in the definition of σ` above (c.f. (21)), we have that σ` is designed so that

T` � ρ (η1 7→ π1) · · · (η`−1 7→ π`−1)σ` ≡ 1,

and certainly this remains true when the restriction is further extended by σ`+1 · · ·σj . We do not
necessarily have this property for ` = j due to our possible trimming of ηj so that η1 ∪ · · · ∪ ηj has
cardinality exactly s; this results in a redefinition of σj where some of its coordinates are set from
{0, 1} back to ∗. However it is still the case that σj partially satisfies Tj � ρ (η1 7→ π1) · · · (ηj−1 7→
πj−1), and hence Tj � ρ (η1 7→ π1) · · · (ηj−1 7→ πj−1)σj 6≡ 0.

Proof of Proposition 9.4. We prove the proposition by describing a procedure that allows a “de-
coder” to uniquely obtain ρ given (ρσ, π′, encode(η), encode(γ)). Recall that T1 is defined to be the
first term in F not falsified by ρ. By Lemma 9.5, this remains true when ρ is extended by σ: that is,
the first term T ′1 in F such that T ′1 � ρσ 6≡ 0 is precisely T1 itself. Therefore, given ρσ the decoder is
able to identify T1 in F , and with T1 in hand she is able to then use encode(η1) and encode(γ1) to
recover η1 and γ1 respectively. Next, she “undoes” σ1 in ρσ = ρσ1σ2 · · ·σj and obtains ρσ2 · · ·σj
as follows: for every ya ∈ η1, she sets (ρσ)a,i back to ∗ for all i ∈ Ua, where

Ua = {i ∈ [w] : (ρσ)a,i = 0 or xa,i ∈ γ1}.

To see that this indeed “undoes” σ1, first recall that for every ya ∈ η1, the restriction σ1 is defined
so that σ1

a,i ∈ {0, 1} iff ρa,i = ∗, and furthermore, σ1
a,i = 1 iff xa,i ∈ γ1. (Recall the example in

Figure 1.) Therefore, to obtain ρσ2 · · ·σj from ρσ1σ2 · · ·σj , for every ya ∈ η1 and i ∈ [w] the
decoder sets (ρσ)a,i back to ∗ if either (ρσ)a,i = 0 or xa,i ∈ γ1. Finally, using π1 ∈ {0, 1}η1 she
constructs the hybrid restriction ρ (η1 7→ π1)σ2 · · ·σj .

By the same reasoning, for every 2 ≤ ` ≤ j the decoder is able to iteratively recover T`, η`, γ`,
and π` from the hybrid restriction

ρ (η1 7→ π1) · · · (η`−1 7→ π`−1)σ` · · ·σj .

31



With this information she “undoes” σ` within ρ (η1 7→ π1) · · · (η`−1 7→ π`−1)σ` · · ·σj , and constructs
the next hybrid restriction

ρ (η1 7→ π1) · · · (η` 7→ π`)σ`+1 · · ·σj .

Finally, having recovered ρ (η1 7→ π1) · · · (ηj 7→ πj) and η = η1 ∪ · · · ∪ ηj , the decoder will have all
the information she needs to recover the actual restriction ρ: she sets (ρ (η1 7→ π1) · · · (ηj 7→ πj))a,i
back to ∗ for every ya ∈ η and i ∈ Ua.

9.5 Proof of Proposition 9.2

For all possible outcomes ϑ2, ϑ3, ϑ4 of the second, third, and fourth coordinates of the map θ defined
in Proposition 9.4, we define

Bϑ2,ϑ3 = {ρ ∈ B : θ2(ρ) = ϑ2, θ3(ρ) = ϑ3} ⊆ B.
Bϑ2,ϑ3,ϑ4 = {ρ ∈ B : θ2(ρ) = ϑ2, θ3(ρ) = ϑ3, θ4(ρ) = ϑ4} ⊆ Bϑ2,ϑ3 .

We begin by bounding the probability that ρ ← R(τ) belongs to Bϑ2,ϑ3,ϑ4 for a fixed tuple
(ϑ2, ϑ3, ϑ4). The following fact, giving the probability mass function of R(τ), will be useful for
us (its proof is by inspection of Definition 9):

Fact 9.6. Fix τ ∈ {0, 1, ∗}Ak , and write Sa = Sa(τ) to denote τ−1
a (∗) = {i ∈ [wk−1] : τa,i = ∗}.

Then Prρ←R(τ)[ρ = ρ] = ξ(ρ) for all ρ ∈ {0, 1, ∗}Ak , where ξ : {0, 1, ∗}Ak → [0, 1] is the probability
mass function:

ξ(ρ) =
∏

a∈Ak−1

Sa 6=∅

ζa(ρ(Sa)),

and ρ(Sa) denotes the substring of ρa with coordinates in Sa, and ζa : {0, 1, ∗}Sa → [0, 1] is the
probability mass function:

ζa(%) =



λ if % = {1}Sa ,

qa ·
tk
|%−1(∗)|(1− tk)|%

−1(1)|

1− (1− tk)|Sa|
if % ∈ {∗, 1}Sa \ {1}Sa ,

(1− λ− qa) ·
tk
|%−1(0)|(1− tk)|%

−1(1)|

1− (1− tk)|Sa|
if % ∈ {0, 1}Sa \ {1}Sa .

Lemma 9.7. For all ϑ2, ϑ3, ϑ4,

Pr
ρ←R(τ)

[
ρ ∈ Bϑ2,ϑ3,ϑ4

]
=
(
O
(
w−1/4

))s( tk
1− tk

)‖ϑ4‖
,

where ‖ϑ4‖ denotes |ϑ−1
4 (1)|, the Hamming weight of ϑ4.

Proof. Fix ρ ∈ Bϑ2,ϑ3,ϑ4 . The restrictions ρ and θ1(ρ) = ρσ differ in exactly s blocks: these are
the blocks a ∈ Ak−1 such that ya ∈ η. Consider any such a ∈ Ak−1, and recall (as observed in the
definition of σ) that Sa is k-acceptable and ρ(Sa) ∈ {∗, 1}Sa \ {1}Sa whereas (ρσ)(Sa) ∈ {0, 1}Sa .

32



Let ∆a denote |(ρσ)−1
a (1)| − |ρ−1

a (1)|, the number of “new 1’s” that σ introduces into block a (note
that as observed earlier we have that ∆a ≥ 0). By Fact 9.6, we have that

ζa((ρσ)(Sa))

ζa(ρ(Sa))
=


λ

qa
· 1− (1− tk)|Sa|

t∆a
k (1− tk)|Sa|−∆a

if (ρσ)(Sa) = {1}Sa

1− λ− qa
qa

(
1− tk
tk

)∆a

if (ρσ)(Sa) ∈ {0, 1}Sb \ {1Sa}.
(22)

Since Sa is k-acceptable, we have that |Sa| = qw ± wβ(k,d) and therefore

(1− tk)|Sa| ≤
(1− tk)qw

(1− tk)wβ(k,d)

=
qtk−1 + λ

(1− tk)wβ(k,d)

≤ qtk−1 + λ

1− tkwβ(k,d)
≤ 2q2,

where the equality is by (8) and the final inequality uses Lemma 7.1, (7) and (10). Since qa ≤ 2q
by Lemma 10.5, we may lower bound the quantity in the first line of (22) by

λ

8q3

(
1− tk
tk

)∆a

= Ω(w1/4)

(
1− tk
tk

)∆a

,

where we have used our choice of λ in (7) and the estimates (10). Similarly, for the second quantity
in the second line of (22) we have the lower bound

1− λ− qa
qa

(
1− tk
tk

)∆a

= Ω

(√
w

logw

)(
1− tk
tk

)∆a

and so in both cases we may lower bound the ratio in (22) by

ζa((ρσ)(Sa))

ζa(ρ(Sa))
= Ω

(
w1/4

)(1− tk
tk

)∆a

.

Since
∑

a : ρa 6=(ρσ)a
∆a = ‖ϑ4‖, it follows from Fact 9.6 that

ξ(θ1(ρ))

ξ(ρ)
=
ξ(ρσ)

ξ(ρ)
=

∏
a∈Ak−1

Sa 6=∅

ζa((ρσ)(Sa))

ζa(ρ(Sa))
=
(

Ω
(
w1/4

))s(1− tk
tk

)‖ϑ4‖
. (23)

Finally, summing over all ρ ∈ Bϑ2,ϑ3,ϑ4 we conclude that

Pr
ρ←R(τ)

[
ρ ∈ Bϑ2,ϑ3,ϑ4

]
=

∑
ρ∈Bϑ2,ϑ3,ϑ4

ξ(ρ) =
(
O
(
w−1/4

))s( tk
1− tk

)‖ϑ4‖ ∑
ρ∈Bϑ2,ϑ3,ϑ4

ξ(θ1(ρ))

=
(
O
(
w−1/4

))s( tk
1− tk

)‖ϑ4‖
.

Here the first inequality is by (23), and the second uses the fact that θ is an injection (Proposi-
tion 9.4), and hence any two distinct ρ, ρ′ ∈ Bϑ2,ϑ3,ϑ4 map to distinct θ1(ρ), θ1(ρ′) ∈ {0, 1, ∗}A×[w],
so
∑

ρ∈Bϑ2,ϑ3,ϑ4
ξ(θ1(ρ)) is at most 1 since ξ is a probability mass function.

33



Proposition 9.2 follows as a straightforward consequence of Lemma 9.7:

Proof of Proposition 9.2. Summing over all ϑ4 ∈ {0, 1}rs and stratifying according to Hamming
weight, we have that

Pr
ρ←R(τ)

[ρ ∈ Bϑ2,ϑ3 ] =
rs∑
i=0

∑
ϑ4∈{0,1}rs
‖ϑ4‖=i

Pr
ρ←R(τ)

[ρ ∈ Bϑ2,ϑ3,ϑ4 ]

≤
rs∑
i=0

(
rs

i

)(
tk

1− tk

)i (
O
(
w−1/4

))s
=

(
1 +

tk
1− tk

)rs (
O
(
w−1/4

))s
=
(
O
(
ertk/(1−tk) · w−1/4

))s
.

Taking a union bound over all 2s possible ϑ2 ∈ {0, 1}s and (2r)s possible ϑ3 ∈ {0, 1}s(1+log r)

completes the proof.

Proof of Proposition 9.1. For Proposition 9.1, we first observe that Proposition 9.4 also holds
for ρ← Rinit (the proof is completely identical, with τ being the trivial restriction {∗}n). Proposi-
tion 9.1 then follows as a consequence of Proposition 9.4 in a very similar manner (the calculations
are in fact significantly simpler); we point out the essential differences in this section. We begin with
the following analogue of Fact 9.6, specifying the probability mass function of Rinit (like Fact 9.6,
its proof is by inspection of Definition 6):

Fact 9.8. Prρ←Rinit [ρ = ρ] = ξ(ρ) for all ρ ∈ {0, 1, ∗}Ad−1×[m] (recall that wd−1 = m), where
ξ : {0, 1, ∗}Ad−1×[m] → [0, 1] is the probability mass function:

ξ(ρ) =
∏

a∈Ad−1

ζ(ρa),

and ζ : {0, 1, ∗}m → [0, 1] is the probability mass function:

ζ(%) =


λ if % = {1}m,
q · p

1− p
if % ∈ {∗, 1}m \ {1}m,

(1− λ− q) · p

1− p
if % ∈ {0, 1}m \ {1}m.

Fact 9.8 gives us the following analogue of (22):

ζ((ρσ)a)

ζ(ρa)
=


λ(1− p)
qp

if (ρσ)a = {1}m

1− λ− q
q

if (ρσ)a ∈ {0, 1}m \ {1}m,

and so by our choice of λ in (7) and our estimates (10) this ratio is always at least Ω
(
w1/4

)
. (Unlike

the proof of Lemma 9.7, our lower bound here does not depend on ∆a = |(ρσ)−1
a (1)|−|ρ−1

a (1)|.) By
the same calculations as in the proof of Lemma 9.7, we have the following analogue of Lemma 9.7:

34



Lemma 9.9. For all ϑ2, ϑ3, ϑ4, we have that Pr
ρ←Rinit

[
ρ ∈ Bϑ2,ϑ3,ϑ4

]
=
(
O
(
w−1/4

))s
.

Proposition 9.1 follows by a union bound over all 2s possible ϑ2 ∈ {0, 1}s, (2r)s possible ϑ3 ∈
{0, 1}s(1+log r), and 2rs possible ϑ4 ∈ {0, 1}rs (unlike in the proof of Proposition 9.2 we do not have
to stratify the union bound over ϑ4 ∈ {0, 1}rs according to Hamming weight).

9.6 Approximator simplifies under random projections

The main results of this section are Theorems 13 and 14. The first of these theorems says that
any depth-d circuit whose size is not too large and whose bottom fan-in is significantly smaller
than that of Sipserd will collapse to a shallow decision tree with high probability under the random
projection Ψ from Definition 10:

Theorem 13. For 2 ≤ d ≤ c
√

logn
log logn , let C : {0, 1}n → {0, 1} be a depth-d circuit with bottom fan-in

at most logn
10(d−1) and size S ≤ 2n

1
6(d−1)

. Then Ψ(C) is computed by a decision tree of depth n
1

4(d−1)

with probability 1− exp
(
− Ω

(
n

1
6(d−1)

))
.

The second theorem is quite similar; it says that under the random projection Ψ, any depth-d
circuit C that is not too large, regardless of its bottom fan-in, will collapse to a depth-2 circuit
with bounded bottom fan-in and with top gate matching that of C:

Theorem 14. For 2 ≤ d ≤ c
√

logn
log logn , let C : {0, 1}n → {0, 1} be a depth-d circuit of size S ≤

2
1
2
n

1
6(d−1)

and unbounded bottom fan-in.

1. If the top gate of C is an AND, then Ψ(C) is (1/S)-close (with respect to the uniform distri-

bution on {0, 1}n) to a width-n
1

4(d−1) CNF with probability 1− exp
(
− Ω

(
n

1
6(d−1)

))
.

2. If the top gate of C is an OR, then Ψ(C) is (1/S)-close to a width-n
1

4(d−1) DNF with probability

1− exp
(
− Ω

(
n

1
6(d−1)

))
.

We first prove Theorem 13, which deals with depth-d circuits with bounded bottom fan-in. We
state the following simple lemma explicitly for convenience of later reference:

Lemma 9.10. Suppose that 3 ≤ d ≤ c logw
log logw . For 2 ≤ k ≤ d − 1 and ` ∈ N, let C : {0, 1}Ak+1 →

{0, 1} be a size-S depth-` circuit with bottom fan-in w1/5. For any τ ∈ {•, ◦, ∗}Ak+1, with probability

at least 1 − S · 4−w1/5
over ρ ← R(τ), we have that projρC is a depth-(` − 1) circuit with bottom

fan-in w1/5, and has the same number of gates at distance at least two from the input variables
as C.

Proof. The lemma follows from applying Proposition 9.2 with r = s = w1/5 and a union bound
over all gates of C (at most S many) that are at distance 2 from the input variables.

The following proposition directly implies Theorem 13 by straightforward translation of param-
eters, recalling (5):

35



Proposition 9.11. For 2 ≤ d ≤ c
√

logn
log logn , let C : {0, 1}Ad → {0, 1} be a depth-d circuit with

bottom fan-in 1
5m and size S ≤ 2w

1/5
. Then Ψ(C) is computed by a depth-(w1/5) decision tree with

probability 1− e−Ω(w1/5).

Proof. Applying Proposition 9.1 with r = 1
5m and s = w1/5 to each of the bottom-layer gates of

C, we have that projρ(d) C is a depth-(d − 1) circuit with bottom fan-in w1/5 with probability at

least 1−S · 4−w1/5 ≥ 1− 2−w
1/5

over ρ(d) ← Rinit. If d = 2, we observe that in fact Proposition 9.1
gives us that projρ(d) C is a decision tree of the desired depth, and we are done. If d ≥ 3, the claim
follows by a union bound over d− 2 applications of Lemma 9.10 (where we observe from the proof
of Lemma 9.10 that in the last application of Lemma 9.10 we may conclude that Ψ(C) is in fact a
decision tree of depth w1/5).

Next we turn to Theorem 14. We require the following standard lemma showing that any circuit
can be “trimmed” to reduce its bottom fan-in while changing its value on only a few inputs:

Lemma 9.12. Let C : {0, 1}n → {0, 1} be a circuit and let ε > 0. There exists a circuit C ′ :
{0, 1}n → {0, 1} such that

1. The size and depth of C ′ are both at most that of C;

2. The bottom fan-in of C ′ is at most log(S/ε);

3. C and C ′ are ε-close with respect to the uniform distribution.

Proof. C ′ is obtained from C by replacing each bottom-level AND (OR, respectively) gate whose
fan-in is too large with 0 (1, respectively). Each such gate originally takes its minority value on at
most an ε/S fraction of all inputs so the lemma follows from a union bound.

The following proposition directly implies Theorem 14 (by straightforward translation of pa-
rameters):

Proposition 9.13. For 2 ≤ d ≤ c
√

logn
log logn , let C : {0, 1}Ad → {0, 1} be a depth-d circuit of size

S ≤ 2
1
2
w1/5

and unbounded bottom fan-in.

1. If the top gate of C is an AND, then Ψ(C) is (1/S)-close to a width-(w1/5) CNF with proba-

bility 1− e−Ω(w1/5).

2. If the top gate of C is an OR, then Ψ(C) is (1/S)-close to a width-(w1/5) DNF with probability

1− e−Ω(w1/5).

Proof. By symmetry it suffices to prove the first claim. Applying Lemma 9.12 with ε = 1/S, we
have that C is (1/S)-close to a circuit C ′ : {0, 1}Ad → {0, 1} of size and depth at most that of C,
and with bottom fan-in log(S/ε) = 2 log(S) ≤ w1/5. Certainly the size, depth, and bottom fan-in of
projρ(d) C ′ is at most that of C ′ with probability 1 over the randomness of ρ(d) ← Rinit (note that
unlike in the proof of Proposition 9.11, we do not argue that the depth of C ′ decreases by one under
an Rinit-random projection; the bottom fan-in of C ′ is too large for us to apply Proposition 9.1).
If d = 2 then this already gives the result (in fact with no failure probability). If d ≥ 3, the
proposition then follows by a union bound over d− 2 applications of Proposition 9.10.

36



10 Sipser retains structure under random projections

Now we turn our attention to the randomly projected target Ψ(Sipserd). As discussed in Section 7.3,
we would like to establish Property 2 showing that Sipserd “retains structure” under a Ψ-random
projection: with high probability over Ψ, the randomly projected target Ψ(Sipserd) is a depth-one
formula whose bias remains very close to 1/2 (with respect to an appropriate product distribution
over {0, 1}w0). This is necessarily a high-probability statement; to establish it, we must account for
the failure probabilities introduced by each of the d−1 individual random projections projρ(k) that

comprise Ψ ≡ {ρ(k)}k∈{2,...,d}.3 To reason about these failure probabilities and carefully account
for them, in Section 10.1 we introduce the notion of a “typical” restriction and prove some useful
properties about how typicality interacts with our random projections. In Section 10.2 we use these
properties to establish the main results of this section, that Sipserd “retains structure” when it is
hit with the random projection Ψ.

10.1 Typical restrictions

Recalling the •, ◦ notation from Table 2, we begin with the following definition:

Definition 14. Let τ ∈ {•, ◦, ∗}Ak where 2 ≤ k ≤ d− 1. We say that τ is typical if it satisfies:

1. For every a ∈ Ak−1 the set τ−1
a (∗) ⊆ [wk−1] is k-acceptable, where we recall from Definition 8

that this means

|τ−1
a (∗)| = qw ± wβ(k,d) where β(k, d) :=

1

3
+
d− k − 1

12d
.

(Note that 1
3 ≤ β(k, d) ≤ 5

12 < 1
2 for all d ∈ N and 2 ≤ k ≤ d − 1.) We observe that by

Definition 7, this condition implies that for every α ∈ Ak−2, we have

τ̂α ∈ {∗, ◦}wk−2 . (24)

2. For every α ∈ Ak−2,
|(τ̂α)−1(∗)| ≥ wk−2 − w4/5.

We note that (24) and Condition (2) together imply that̂̂τα = ∗ for all α ∈ Ak−2.

See Figure 2 on the next page for an illustration of a typical τ . The rationale behind Definition 14
is that projections projρ such that ρ̂ is typical have a very limited (and well-controlled) effect on
the target Sipserd: roughly speaking, these projections “wipe out” the bottom-level gates of the
formula (reducing its depth by one), “trim” the fan-ins of the next-to-bottom-level gates from w
to approximately qw = Θ̃(

√
w), but otherwise essentially preserves the rest of the structure of the

formula. We give a precise description in Section 10.2; see Remark 16.

3As a concrete example of a failure event, consider an outcome ρ(d) ∈ supp(Rinit) ≡ {0, 1, ∗}Ad−1×[m] which is

such that (ρ
(d)
b )−1(0) is nonempty for all b ∈ Ad−1. In this case

projρ(d) Sipserd ≡ proj (Sipserd � ρ(d)) ≡ 0

(recall that the bottom-level gates of Sipserd are AND gates), and our target function is set to the constant 0 already
after the first Rinit-random projection.

37



Figure 2: The figure illustrates a typical τ ∈ {•, ◦, ∗}Ak . For a ∈ Ak−1, τa is a block of length
wk−1, i.e. a string in {•, ◦, ∗}wk−1 . We may think of the block τa as being located at level k. By
Condition (1) of Definition 14, for every a ∈ Ak−1 we have that |τ−1

a (∗)|, the number of ∗’s in
τa, is roughly qw = Θ̃(

√
w). The lift τ̂ of τ is a string in {•, ◦, ∗}Ak−1 , and for α ∈ Ak−2, τ̂α

is a block of length wk−2. We may think of the block τ̂α as being located at level k − 1. As
stipulated by (24), for every α ∈ Ak−2, the string τ̂α belongs to {∗, ◦}wk−2 . By Condition (2) of
Definition 14, for every α ∈ Ak−2, we have that |(τ̂α)−1(∗)|, the number of ∗’s in τ̂α, is at least
wk−2 − w4/5 = wk−2(1 − o(1)). Finally, we observe that (24) and Condition (2) of Definition 14

imply that ̂̂τα = ∗ for every α ∈ Ak−2.

38



To prove that Ψ(Sipserd) is a well-structured formula with high probability over the random
choice of Ψ ≡ {ρ(k)}k∈{2,...,d}, we will in fact establish the stronger statement showing that with high
probability, every single one of the individual random projections projρ(k) only has a limited and
well-controlled effect (in the sense described above) on the structure of Sipserd. By Definition 14,

this amounts to showing that the lifts ρ̂(d), . . . , ρ̂(2) associated with the d−1 individual projections
comprising Ψ are all typical with high probability. We prove this inductively: we first show that

for ρ(d) ← Rinit its lift ρ̂(d) is typical with high probability (Proposition 10.1), and then argue

that if ρ(k+1) is typical then the lift ρ̂(k) of ρ(k) ← R(ρ̂(k+1)) is also typical with high probability
(Proposition 10.2). The parameters of Definition 14 are chosen carefully so that it “bootstraps”
in the sense of Proposition 10.2; in particular, this is the reason why we allow more and more
deviation from qw in Condition 1 as k gets smaller (closer to the root).

Our two main results in this subsection are the following:

Proposition 10.1 (Establishing initial typicality). Suppose that 3 ≤ d ≤ c logw
log logw for a sufficiently

small absolute constant c > 0. Then

Pr
ρ←Rinit

[ρ̂ is typical] ≥ 1− eΩ̃(w1/6).

Proposition 10.2 (Preserving typicality). Suppose that 3 ≤ d ≤ c logw
log logw for a sufficiently small

absolute constant c > 0. Let 2 ≤ k ≤ d− 1 and let τ ∈ {•, ◦, ∗}Ak+1 be typical. Then

Pr
ρ←R(τ)

[ρ̂ is typical] ≥ 1− e−Ω(w1/6).

10.1.1 Establishing initial typicality: Proof of Proposition 10.1

For notational brevity, throughout this subsubsection we write τ to denote ρ̂ ∈ {0, 1, ∗}Ad−1 where
ρ← Rinit. We proceed to establish the two conditions of Definition 14.

Lemma 10.3 (Condition (1) of typicality). Fix a ∈ Ad−2. Then

Pr
[
|τ−1
a (∗)| = qw ± w1/3

]
≥ 1− e−Ω̃(w1/6).

Proof. Recalling (11), we have that

Pr[τ a,i = ∗] = q independently for all i ∈ [w].

We shall apply Fact 5.1 with

S = Z1 + · · ·+ Zw where Zi ← {01−q, 1q} (so µ = E[S] is qw),

and γ such that γµ = w1/3. Observe that since µ = qw = Θ((w logw)1/2), we have γ =
Θ(w−1/6(logw)−1/2). Hence by Fact 5.1 we have that

Pr
[∣∣|τ−1

a (∗)| − qw
∣∣ > w1/3

]
≤ exp

(
−Ω
(
γ2µ

))
= exp

(
− Ω̃

(
w1/6

))
.

39



The following observations may help the reader follow the next proof: Recalling Table 2, since
our τ belongs to {0, 1, ∗}Ad−1 , we see that τ corresponds to the second row of the table: the gates at
depth d−2 are OR gates, a ◦-value for a coordinate of τ corresponds to 0, and a •-value corresponds
to 1. However, since τ̂ , the lift of τ , is one level higher than τ in the Sipserd formula (see Figure 2),
τ̂ corresponds to the first row of the table; so when Definition 7 specifies a coordinate τ̂α,i of τ̂ , a
◦-value for τ̂α,i corresponds to 1 and a •-value corresponds to 0.

Lemma 10.4 (Condition (2) of typicality). Fix α ∈ Ad−3. Then

Pr
[
|(τ̂α)−1(∗)| < wd−3 − w4/5

]
≤ e−Ω(

√
w).

Proof. Recall from Definition 7 that τ̂α,i = 0 iff τα,i = {0}wd−2 (in order for an OR to be 0, all its
inputs must be 0). In turn, each coordinate of τα,i (we emphasize that τα,i is a string of length w)
is an AND of the w coordinates of some ρa from (11), and hence is 0 with probability 1 − λ − q.
By independence we have that

Pr[τ̂α,i = 0] = δ := (1− λ− q)w ≤ (1− q)w ≤ e−qw (25)

holds independently for all i ∈ [wd−3].
We next give an expression for Pr

[
τ̂α,i = 1

]
. From Definition 7 we have that τ̂α,i = 1 iff any of

the w coordinates of τα,i is 1 (in order for an OR to be 1, we only need one input to be 1). As noted
above, each coordinate of τα,i is an AND of the w coordinates of some ρa from (11); this AND is
1 iff its input string is {1}w, so by (11) each coordinate of τα,i is not 1 with probability 1 − λ.
Hence all w coordinates of τα,i are not 1 with probability (1− λ)w, and τ̂α,i = 1 with probability
1− (1− λ)w.

We thus have that, independently for all i ∈ [wd−3],

Pr
[
τ̂α,i ∈ {0, 1}

]
= δ + (1− (1− λ)w) ≤ δ + (1− (1− λw)) ≤ 2λw =

2(logw)3/2

w1/4
,

where the last inequality holds (with room to spare) by (25). Applying Fact 5.1, we have that

Pr
[
|τ̂−1
α ({0, 1})| > w4/5

]
≤ e−Ω(

√
w)

with room to spare.

Proof of Proposition 10.1. The proposition follows immediately from Lemmas 10.3 and 10.4 and a
union bound over all a ∈ Ad−2 and α ∈ Ad−3, using the fact that |Ad−3| ≤ |Ad−2| ≤ n ≤ wO(d) and
the bound d ≤ c logw

log logw .

10.1.2 Preserving typicality: Proof of Proposition 10.2

The following numerical lemma relates qa as defined in (13) of Definition 9 to q as defined in (7):

Lemma 10.5. Let 2 ≤ k ≤ d − 1 and S ⊆ [wk−1] be k-acceptable (i.e. |S| = qw ± wβ(k,d)), and
define

q′ =
(1− tk)|S| − λ

tk−1
.

Then q′ = q · (1 ± 2tkw
β(k,d)). (And in particular, by our bounds on tk in Lemma 7.1 and the

definition of β(k, d), we have that q′ = q ± o(q) for all k.)

40



Proof. For the lower bound, we have the following:

q′ ≤ (1− tk)qw−w
β(k,d) − λ

tk−1

=
(1− tk)qw − λ(1− tk)w

β(k,d)

tk−1(1− tk)wβ(k,d)

≤ (1− tk)qw − λ
tk−1(1− tk)wβ(k,d)

+
λtkw

β(k,d)

tk−1(1− tk)wβ(k,d)

=
tk−1q

tk−1(1− tk)wβ(k,d)
+

λtkw
β(k,d)

tk−1(1− tk)wβ(k,d)
(by (8))

≤ q

1− tkwβ(k,d)
+

1 + 3q0.1

1− tkwβ(k,d)
· λwβ(k,d) (by Lemma 7.1)

≤ q · (1 + 2tkw
β(k,d)),

where for the last inequality we have used the fact that qtk = Θ̃(w−1) whereas λ = Θ̃(w−5/4). For
the upper bound, we have

q′ ≥ (1− tk)qw+wβ(k,d) − λ
tk−1

≥ (1− tk)qw(1− tkwβ(k,d))− λ
tk−1

≥ q · (1− tkwβ(k,d))− λ

tk−1
(by (8))

≥ q · (1− 2tkw
β(k,d)).

where the last inequality uses the definition of λ in (7) and our bound on tk−1 in Lemma 7.1.

Similar to the proof of Proposition 10.1, Proposition 10.2 follows from Lemmas 10.6 and 10.8
(stated and proved below) and a union bound, again using the fact that each |Ai| ≤ n and the
bound d ≤ c logw

log logw . Since Proposition 10.2 deals with general values of k which may correspond to
either row of Table 2, to avoid redundancy we use ◦, • notation in the statements and proofs of the
following lemmas.

Lemma 10.6 (Condition (1) of typicality). For 2 ≤ k ≤ d− 2 let τ ∈ {•, ◦, ∗}Ak+1 be typical and
fix a ∈ Ak−1. Then

Pr
ρ←R(τ)

[
|(ρ̂a)−1(∗)| = qw ± wβ(k,d)

]
≥ 1− exp(−Ω̃(w2β(k,d)− 1

2 )) ≥ 1− e−Ω(w1/6).

(Recall that from Definition 14 that β(k, d) = 1
3 + d−k−1

12d ).

Proof. Since τ ∈ {•, ◦, ∗}Ak+1 is typical, we have that

τ̂a ∈ {∗, ◦}w and |(τ̂a)−1(∗)| ≥ w − w4/5 (26)

41



by the second and third property of τ being typical. Furthermore, for every i ∈ [w] such that
τ̂a,i = ∗, we have that

τa,i ∈ {∗, ◦}w and qw − wβ(k+1,d) ≤ |(τa,i)−1(∗)| ≤ qw + wβ(k+1,d), (27)

by the first property of τ being typical. Writing Sa,i for (τa,i)
−1(∗) (a subset of [w]) and Sa for

(τ̂a)
−1(∗) (a subset of [w]), it follows from the second branch of (12) and Definition 7 that every

i ∈ Sa satisfies

Pr
ρ←R(τ)

[
ρ̂a,i = ∗

]
= qa,i =

(1− t)|Sa,i| − λ
t

.

Since Sa,i is (k + 1)-acceptable, by the k + 1 case of Lemma 10.5 we have that

qa,i = q · (1± 2tk+1w
β(k+1,d)).

Since |Sa| ≤ w, we have

E
ρ←R(τ)

[
|(ρ̂a)−1(∗)|

]
=
∑
i∈Sa

qa,i ≤ w · q(1 + 2tk+1w
β(k+1,d)) ≤ qw + Õ(wβ(k+1,d)),

where the Õ comes from the fact that wtk+1q = Θ(logw) (recalling Lemma 7.1 we have that
tk+1 = q ± o(q)). On the other hand, by (26) and similar reasoning we also have the lower bound

E
ρ←R(τ)

[
|(ρ̂a)−1(∗)|

]
≥ (w − w4/5) · q(1− 2tk+1w

β(k+1,d)) ≥ qw − Õ(wβ(k+1,d)),

where we have taken advantage of the fact that w4/5q = Õ(w0.3) = o(wβ(k+1,d)). Since wβ(k,d) =
ω(polylog(w) · wβ(k+1,d)) (here is where we are using the fact that d ≤ c logw

log logw ), it follows from
Fact 5.1 that

Pr
ρ←R(τ)

[
|(ρ̂a)−1(∗)| 6= qw ± wβ(k,d)

]
≤ exp(−Ω(w2β(k,d)/qw)

)
≤ exp(−Ω̃(w2β(k,d)− 1

2 )).

Lemma 10.7. Fix 2 ≤ k ≤ d− 2 and let τ ∈ {•, ◦, ∗}Ak+1 be typical. For each a ∈ Ak−1 we write
Sa = Sa(τ) to denote (τ̂a)

−1(∗) (note that this is a subset of [w]). Then for ρ ← R(τ), we have
that ρ̂a (which is a string in {•, ◦, ∗}w) satisfies:

ρ̂a = {◦}w with probability
∏
i∈Sa(1− λ− qa,i)

(ρ̂a)
−1(•) 6= ∅ with probability 1− (1− λ)|Sa|

ρ̂a ∈ {◦, ∗}w \ {◦}w otherwise,

independently for all a ∈ Ak−1. (Recall that τ̂a ∈ {∗, ◦}w \ {◦}w for all a ∈ Ak−1 since τ is typical.)
This implies that

̂̂ρa =


• with probability

∏
i∈Sa(1− λ− qa,i)

◦ with probability 1− (1− λ)|Sa|

∗ otherwise

independently for all a ∈ Ak−1. (Recall that ̂̂τa = ∗ for all a ∈ Ak−1 since τ is typical.)

42



Proof. The value of ρ̂a,i is independent across all a ∈ Ak−1 and i ∈ [w] such that τ̂a,i = ∗. Fix such
a a ∈ Ak−1 and i ∈ [w], and recall that

τa,i ∈ {∗, ◦}w \ {◦}w.

By (12) and Definition 7 (the definition of the lift operator), we have that

ρ̂a,i =


• with probability λ
∗ with probability qa,i
◦ otherwise, with probability 1− λ− qa,i.

The lemma then follows by independence.

Remark 15. If τ ∈ {•, ◦, ∗}Ak+1 is typical then (recall that Sa = (τ̂a)
−1(∗) is a subset of [w] and

Sa,i = (τa,i)
−1(∗) is a subset of [w]) we have

|Sa| ≥ w − w4/5 and qw − wβ(k+1,d) ≤ |Sa,i| ≤ qw + wβ(k+1,d) for all i ∈ Sa.

Therefore we have the estimates

Pr
[̂̂ρa = •

]
=
∏
i∈Sa

(1− λ− qa,i) ≤ (1− qa,i)w−w
4/5 ≤

(
1− q

2

)w−w4/5

≤ e−qw/4 = e−Ω(
√
w logw),

where we have used Lemma 10.5 for the second inequality, and

Pr
[̂̂ρa = ◦

]
= 1− (1− λ)|Sa| ≤ 1− (1− λ)w ≤ 1− (1− λw) = λw.

Lemma 10.8 (Condition (2) of typicality). For 2 ≤ k ≤ d− 2 let τ ∈ {•, ◦, ∗}Ak+1 be typical and
fix α ∈ Ak−2. Then

Pr
ρ←R(τ)

[∣∣(̂̂ρα)−1
(∗)
∣∣ ≥ wk−2 − w4/5

]
= 1− e−Ω(

√
w).

Proof. By Lemma 10.7 and the two estimates of Remark 15, each coordinate of (̂̂ρ)α is indepen-

dently in {•, ◦} with probability at most e−Ω(
√
w) + λw = O

( (logw)3/2

w1/4

)
. Hence the expected size of∣∣(̂̂ρα)−1

({•, ◦})
∣∣ is Õ(w3/4), and we may apply Fact 5.1 to get that

Pr
ρ←R(τ)

[∣∣(̂̂ρα)−1
({•, ◦})

∣∣ > w4/5
]
≤ e−Ω(

√
w)

with room to spare.

10.2 Sipser survives random projections

In this subsection we prove the main results of Section 10; these are two results which show, in
different ways, that the Sipserd function “retains structure” after being hit with the random projec-
tion Ψ. The first of these results, Proposition 10.11, gives a useful characterization of Ψ(Sipserd)
by showing that it is distributed identically to a (suitably randomly restricted) depth-one formula.
The second of these results, Proposition 10.13, shows that this randomly restricted depth-one for-
mula is very close to perfectly balanced in expectation. Our later arguments will use both these
types of structure.

43



10.2.1 Sipserd reduces under Ψ to a random restriction of Sipser
(1)
d

Recalling the definitions of the depth-k Sipser
(k)
d formulas from Definition 5, we begin with the

following observation regarding the effect of projections on the Sipser
(k)
d formulas:

Fact 10.9. For 2 ≤ k ≤ d we have that

proj Sipser
(k)
d ≡ Sipser

(k−1)
d .

In words, Fact 10.9 says that the projection operator “wipes out” the bottom-layer gates of

Sipser
(k)
d , reducing its depth by exactly one. Fact 10.9 is a straightforward consequence of the

definitions of projections and the Sipser
(k)
d formulas (Definitions 4 and 5 respectively), but is perhaps

most easily seen to be true via the equivalently view of projections described in Remark 9: for

every bottom-layer gate a ∈ Ak of Sipser
(k)
d , the projection operator simply replaces every one

of its wk−1 formal input variables xa,1, . . . , xa,wk−1
with the same fresh formal variable ya. Since

AND(ya, . . . , ya) ≡ OR(ya, . . . , ya) ≡ ya, the gate simplifies to the single variable ya. (Indeed, we

defined our projection operators precisely so that they sync up with Sipser
(k)
d this way.)

The same reasoning, along with the definition of lifts (see Definition 7 and the discussion after),
yields the following extension of Fact 10.9:

Fact 10.10. For 2 ≤ k ≤ d and ρ ∈ {0, 1, ∗}Ak we have

projρ Sipser
(k)
d ≡ Sipser

(k−1)
d � ρ̂.

Remark 16. With Fact 10.10 in hand we now revisit our definition of typical restrictions (recall
Definition 14 and the discussion thereafter). Recall that the high-level rationale behind this defini-
tion is that for ρ such that ρ̂ is typical, the projection projρ has a “very limited and well-controlled
effect” on the target Sipserd. We now make this statement more precise (the reader may find it
helpful to refer to the illustration in Figure 2).

Fix ρ ∈ supp(Rinit) such that ρ̂ is typical. By Fact 10.10, we have that

projρ Sipserd ≡ Sipser
(d−1)
d � ρ̂.

Since ρ̂ is typical,

– The first condition of Definition 14 implies that |(ρ̂a)−1(∗)| = Θ(qw) = Θ̃(
√
w) for all a ∈

Ad−2. Each such a ∈ Ad−2 is the address of an OR gate, and so if (ρ̂a)
−1(1) 6= ∅ the gate

is satisfied and evaluates to 1, and otherwise if ρ̂a ∈ {∗, 0}w the value of the gate remains
undetermined (i.e. it “evaluates to ∗”) and its fan-in becomes |(ρ̂a)−1(∗)| = Θ̃(

√
w).

– The second condition of Definition 14 tells us that between the two possibilities above, the
latter is far more common: for every α ∈ Ad−3 specifying a block of wd−3 many OR gates, at
most w4/5 of these gates evaluate to 1 and the remaining (vast majority) are undetermined.
Equivalently, all the AND gates at level d− 3 remain undetermined, and they all have fan-in
at least wd−3 − w4/5 = wd−3 (1− o(1)).

The same description holds for projρ(k) and Sipser
(k)
d . For ρ̂(k)’s that are typical the projection

operator projρ(k) :

44



– “wipes out” the bottom-level (level-k) gates of Sipser
(k)
d ,

– “trims” the fan-ins of the level-(k − 1) gates from w to Θ̃(
√
w),

– keeps the fan-ins of all level-(k − 2) gates at least wk−2 − w4/5 = wk−2 (1− o(1)).

Note in particular that the entire structure of the formula from levels 0 through k − 3 is identical

to that of Sipser
(k)
d , and so projρ(k) Sipser

(k)
d “contains a perfect copy of” Sipser

(k−3)
d .

Repeated applications of Fact 10.10 gives us the following proposition. (The proposition is
intuitively very useful since, it tells us that in order to understand the effect of the random projection
Ψ on the (relatively complicated) Sipserd function, it suffices to analyze the effect of the random

restriction ρ̂(2) on the (much simpler) Sipser
(1)
d function; we will apply it in the final proof of each

of our main lower bounds.)

Proposition 10.11. Consider Sipserd : {0, 1}n → {0, 1}. Then

Ψ(Sipserd) ≡ Sipser
(1)
d � ρ̂(2).

Proof. By Fact 10.10 we have that

projρ(d) Sipserd ≡ Sipser
(d−1)
d � ρ̂(d) (28)

for all ρ(d) ∈ supp(Rinit) ≡ {0, 1, ∗}n. Furthermore for ρ(k+1) ∈ {0, 1, ∗}Ak+1 and ρ(k) ∈ supp(R(ρ̂(k+1))) ⊆
{0, 1, ∗}Ak we have

projρ(k)

(
Sipser

(k)
d � ρ̂(k+1)

)
≡ proj

((
Sipser

(k)
d � ρ̂(k+1)

)
� ρ(k)

)
≡ proj

(
Sipser

(k)
d � ρ(k)

)
≡ Sipser

(k−1)
d � ρ̂(k), (29)

where the first equivalence is by the definition of ρ-projection (Definition 4), the second is by the

fact that R(ρ̂(k+1)) is supported on refinements of ρ̂(k+1) (and in particular, ρ(k) refines ρ̂(k+1)),
and the last is Fact 10.10. The proposition follows from (28), repeated application of (29), and the
definition of Ψ (Definition 10).

10.2.2 Sipserd remains unbiased after random projection by Ψ

Recall that Sipser
(1)
d denotes the function computed by the top gate of Sipserd, and in particular,

Sipser
(1)
d is a w0-way OR if d is even, and a w0-way AND if d is odd (c.f. Definition 5). In this

subsubsection we will assume that d is even; the argument for odd values of d follows via a symmetric
argument.

To obtain our ultimate results we will need a lower bound on the bias of Ψ(Sipserd) under Y (or

equivalently, by the preceding proposition, on the bias of Sipser
(1)
d � ρ̂(2) where ρ(2) is distributed

as described in Definition 10). The following lemma will help us establish such a lower bound:

45



Lemma 10.12. Let τ ∈ {0, 1, ∗}A2 be typical. Then for ρ← R(τ) and Y ← {01−t1 , 1t1}w0 we have

E
ρ

[
bias(Sipser

(1)
d � ρ̂,Y)

]
≥ 1

2
− Õ(w−1/12).

Proof. By our assumption that d is even we may write ORw0 in place of Sipser
(1)
d . Since τ is typical,

we have by Conditions (2) and (3) of Definition 14 that

τ̂ ∈ {0, ∗}w0 and |(τ̂)−1(∗)| ≥ w0 − w4/5.

Furthermore, by (12) of Definition 9 and Definition 7 (the definition of the lift operator), we have
that

ρ̂i =


1 with probability λ
∗ with probability qi
0 otherwise, with probability 1− λ− qi

(30)

independently for all i ∈ (τ̂)−1(∗) ⊆ [w0], where

qi =
(1− t2)|Si| − λ

t1

and Si = Si(τ) = τ−1
i (∗) = {j ∈ [w1] : τi,j = ∗} satisfies |Si| = qw ± wβ(2,d). By a calculation very

similar to the one that was employed in the proof of Lemma 10.6, we have that

Pr
[
|(ρ̂)−1(∗)| = qw0 ± wβ(1,d)

]
≥ 1− e−Ω(w1/6). (31)

Furthermore, (30) also implies that

Pr[ρ̂ ∈ {0, ∗}w0 ] = (1− λ)|τ̂
−1(∗)| ≥ (1− λ)w0 ≥ 1− λw0 = 1− Õ(w−1/4). (32)

Fix any ρ ∈ supp(R(τ)) that satisfies the events of both (31) and (32). Writing S(ρ̂) ⊆ [w0] to
denote the set (ρ̂)−1(∗), we have the bounds

Pr
Y

[(ORw0 � ρ̂)(Y) = 0] = (1− t1)|S(ρ̂)|

≥ (1− t1)qw0+wβ(1,d)

≥
(

1

2
−Θ

(
logw

w

))
(1− t1)w

β(1,d)

≥
(

1

2
−Θ

(
logw

w

))
(1− t1wβ(1,d)),

≥ 1

2
− Õ(w−1/12),

where the second inequality crucially uses the definition (4) of w0 and its corollary (9). Similarly,

Pr
Y

[(ORw0 � ρ̂)(Y) = 0] = (1− t1)|S(ρ̂)|

≤ (1− t1)qw0−wβ(1,d)

≤ 1

2
· (1− t1)−w

β(1,d)

≤ 1

2
+ Õ(w−1/12),

which establishes the lemma.

46



Now we are ready to lower bound the expected bias of Ψ(Sipserd) (or equivalently, of Sipser
(1)
d �

ρ̂(2)) under Y:

Proposition 10.13. For Ψ as defined in Definition 10,

Ψ(f) ≡ projρ(2) projρ(3) · · · projρ(d−1) projρ(d) f

where ρ(d) ← Rinit and ρ(k) ← R(ρ̂(k+1)) for all 2 ≤ k ≤ d − 1, and for Y ← {01−t1 , 1t1}w0, we
have that

E
Ψ

[
bias(Sipser

(1)
d � ρ̂(2),Y)

]
≥ 1

2
− Õ(w−1/12).

Proof. By Proposition 10.1 and d− 3 successive applications of Proposition 10.2, we have that

Pr
[
ρ̂(d), . . . , ρ̂(3) are all typical

]
≥ 1− d · e−Ω̃(w1/6).

For every typical ρ̂(3) ∈ {0, 1, ∗}A2 , Lemma 10.12 gives that

E
ρ(2)←R(ρ̂(3))

[
bias(Sipser

(1)
d � ρ̂(2),Y)

]
≥ 1

2
− Õ(w−1/12),

which together with the preceding inequality gives the proposition.

Remark 17. We note that combining Proposition 10.11 and Proposition 10.13, for Y ← {01−t1 , 1t1}w0

we have that

E
Ψ

[
bias(Ψ(Sipserd),Y)

]
≥ 1

2
− Õ(w−1/12),

which we may rewrite as

Pr[(Ψ(Sipserd))(Y) = 0] = E
Ψ

[
Pr
Y

(Ψ(Sipserd))(Y) = 0]
]

=
1

2
± Õ(w−1/12).

Applying Proposition 8.1, we get that for X← {01/2, 11/2}n we have

Pr[Sipserd(X) = 1] =
1

2
± Õ(w−1/12).

verifying (6) in Section 6: the Sipserd function is indeed (essentially) balanced.

11 Proofs of main theorems

Recall that Sipser
(1)
d denotes the function computed by the top gate of Sipserd, and in particular,

Sipser
(1)
d is a w0-way OR if d is even, and a w0-way AND if d is odd (c.f. Definition 5). Throughout

this section we will assume that d is even; the argument for odd values of d follows via a symmetric

argument. For conciseness we will sometimes write ORw0 in place of Sipser
(1)
d in the arguments

below; we stress that these are the same function.

47



11.1 “Bottoming out” the argument

As we will see in the proofs of Theorems 6 and 7, the machinery we have developed enables us
to relate the correlation between Sipserd and the circuits C against which we are proving lower

bounds, to the correlation between Sipser
(1)
d � ρ̂(2) (obtained by hitting Sipserd with the random

projection Ψ) and bounded-width CNFs (that are similarly obtained by hitting C with Ψ). To

finish the argument, we need to bound the correlation between Sipser
(1)
d � τ (for suitable restrictions

τ) and such CNFs. The following proposition, which is a slight extension of Lemma 4.1 of [OW07],

enables us to do this, by relating the correlation between Sipser
(1)
d � τ and such CNFs to the bias

of Sipser
(1)
d � τ .

Proposition 11.1. Let F : {0, 1}w0 → {0, 1} be a width-r CNF and τ ∈ {0, ∗}w0 \ {0}w0. Then
for Y ← {01−t1 , 1t1}w0,

Pr[(ORw0 � τ)(Y) 6= F (Y)]
]
≥ bias(ORw0 � τ,Y)− rt1.

Proof. Writing S = S(τ) ⊆ [w0] to denote the set τ−1(∗), we have that ORw0 � τ computes the
|S|-way OR of variables with indices in S (note that S 6= ∅ since τ ∈ {0, ∗}w0 \{0}w0); for notational
brevity we will write ORS instead of ORw0 � τ .

We begin with the claim that there exists a CNF F ′ : {0, 1}w0 → {0, 1} of size and width at
most that of F , depending only on the variables in S, such that

Pr[ORS(Y) 6= F (Y)] ≥ Pr[ORS(Y) 6= F ′(Y)]. (33)

This holds because

Pr[ORS(Y) 6= F (Y)] = E
ρ←{01−t1 ,1t1}

[w0]\S

[
Pr[(ORS � ρ)(Y) 6= (F � ρ)(Y)]

]
= E

ρ←{01−t1 ,1t1}
[w0]\S

[
Pr[ORS(Y) 6= (F � ρ)(Y)]

]
,

and so certainly there exists ρ ∈ {0, 1}[w0]\S such that F ′ := F � ρ satisfies (33). Next, writing
{yi}i∈S to denote the formal variables that both ORS and F ′ depend on, we consider two possible
cases:

1. For every clause T in F ′ there exists i ∈ S such that yi occurs in T . In this case we note that
F ′(0S) = 1 (whereas ORS(0S) = 0), and so

Pr[ORS(Y) 6= F ′(Y)] ≥ Pr[Yi = 0 for all i ∈ S] = Pr[ORS(Y) = 0].

2. Otherwise, there must exist a monotone clause T in F ′ (one containing only positive occur-
rences of variables) since F ′ depends only on the variables in S. In this case, since each
unnegated literal is true with probability t1 (recall that Y ← {01−t1 , 1t1}w0) and T has width
at most r, by a union bound we have that

Pr[F ′(Y) = 1] ≤ Pr[T (Y) = 1] ≤ rt1,

and so

Pr[ORS(Y) 6= F ′(Y)] ≥ Pr[ORS(Y) = 1]−Pr[F ′(Y) = 1] ≥ Pr[ORS(Y) = 1]− rt1.

48



Together, theses two cases give us the lower bound

Pr[ORS(Y) 6= F ′(Y)] ≥ min
{

Pr[ORS(Y) = 1],Pr[ORS(Y) = 0]− rt1
}

≥ min
{

Pr[ORS(Y) = 1],Pr[ORS(Y) = 0]
}
− rt1,

which along with (33) completes the proof.

11.2 Approximators with small bottom fan-in

The pieces are in place to prove the first of our two main theorems, showing that Sipserd cannot be
approximated by depth-d size-S circuits with bounded bottom fan-in:

Theorem 6. For 2 ≤ d ≤ c
√

logn
log logn , the n-variable Sipserd function has the following property: Let

C : {0, 1}n → {0, 1} be any depth-d circuit of size S = 2n
1

6(d−1)
and bottom fan-in logn

10(d−1) . Then

for a uniform random input X← {01/2, 11/2}n, we have

Pr[Sipserd(X) 6= C(X)] ≥ 1

2
− 1

nΩ(1/d)
.

Proof. Let Y ← {01−t1 , 1t1}w0 . We successively apply Proposition 8.1 and Proposition 10.11 to
obtain

Pr[Sipserd(X) 6= C(X)] = E
Ψ

[
Pr
Y

[(Ψ(Sipserd))(Y) 6= (Ψ(C))(Y)]

]
= E

Ψ

[
Pr
Y

[(ORw0 � ρ̂(2))(Y) 6= (Ψ(C))(Y)]

]
(for the second equality, recall that Sipser

(1)
d is simply ORw0 , by our assumption from the start

of the section that d is even). For every possible outcome Ψ of Ψ (corresponding to successive
outcomes of ρ(d) for ρ(d), . . . , ρ(2) for ρ(2)) and every r ∈ N, we have the bound

Pr
Y

[(ORw0 � ρ̂(2))(Y) 6= (Ψ(C))(Y)]

≥ Pr
Y

[(ORw0 � ρ̂(2))(Y) 6= (Ψ(C))(Y) | Ψ(C) is a depth-r DT]− 1[Ψ(C) is not a depth-r DT]

≥ bias(ORw0 � ρ̂(2),Y)− rt1 − 1[Ψ(C) is not a depth-r DT],

where the final inequality is by Proposition 11.1 along with the fact that every depth-r DT can be

expressed as either a width-r CNF or a width-r DNF. Setting r = n
1

4(d−1) and taking expectation
with respect to Ψ, we conclude that

E
Ψ

[
Pr
Y

[(ORw0 � ρ̂(2))(Y) 6= (Ψ(C))(Y)]

]
≥ E

Ψ

[
bias(ORw0 � ρ̂(2),Y)

]
− rt1 −Pr

Ψ
[Ψ(C) is not a depth-r DT]

≥ 1

2
− Õ(w−1/12)− rt1 − exp

(
−Ω(n

1
6(d−1) )

)
≥ 1

2
− 1

nΩ(1/d)
,

where the second-to-last inequality uses both Proposition 10.13 and Theorem 13, and the last claim
follows by simple substitution, recalling the values of r, t1 and w in terms of n and d.

49



11.3 Approximators with the opposite alternation pattern

Our second main theorem states that Sipserd cannot be approximated by depth-d size-S circuits
with the opposite alternation pattern to Sipserd:

Theorem 7. For 2 ≤ d ≤ c
√

logn
log logn , the n-variable Sipserd function has the following property: Let

C : {0, 1}n → {0, 1} be any depth-d circuit of size S = 2n
1

6(d−1)
and the opposite alternation pattern

to Sipserd, (i.e. its top-level gate is OR if Sipserd’s is AND and vice versa). Then for a uniform
random input X← {01/2, 11/2}n, we have

Pr[Sipserd(X) 6= C(X)] ≥ 1

2
− 1

nΩ(1/d)
.

Proof. By our assumption that d is even, we have that the top gate of Sipserd is a w0-way OR,
whereas the top gate of C is an AND. Let Y ← {01−t1 , 1t1}w0 . As in the proof of Theorem 6, we
successively apply Proposition 8.1 and Proposition 10.11 to obtain

Pr[Sipserd(X) 6= C(X)] = E
Ψ

[
Pr
Y

[(Ψ(Sipserd))(Y) 6= (Ψ(C))(Y)]

]
= E

Ψ

[
Pr
Y

[(ORw0 � ρ̂(2))(Y) 6= (Ψ(C))(Y)]

]
.

For every possible outcome Ψ = ρ(d), . . . , ρ(2) of Ψ and every r ∈ N we have the bound

Pr
Y

[(ORw0 � ρ̂(2))(Y) 6= (Ψ(C))(Y)]

≥ Pr
Y

[(ORw0 � ρ̂(2))(Y) 6= (Ψ(C))(Y) | Ψ(C) is (1/S)-close to a width-r CNF]

− 1[Ψ(C) is not (1/S)-close to a width-r CNF]

≥ bias(ORw0 � ρ̂(2),Y)− rt1 − (1/S)− 1[Ψ(C) is not (1/S)-close to a width-r CNF],

where the final inequality is by Proposition 11.1. As in the proof of Theorem 6, setting r = n
1

4(d−1)

and taking expectation with respect to Ψ, we conclude that

E
Ψ

[
Pr
Y

[(ORw0 � ρ̂(2))(Y) 6= (Ψ(C))(Y)]

]
≥ E

Ψ

[
bias(ORw0 � ρ̂(2),Y)]

}]
− (1/S)− rt1 −Pr

Ψ
[Ψ(C) is not (1/S)-close to a width-r CNF]

≥ 1

2
− Õ(w−1/12)− (1/S)− rt1 − exp

(
−Ω(n

1
6(d−1) )

)
≥ 1

2
− 1

nΩ(1/d)
,

where the second-to-last inequality uses both Proposition 10.13 and Theorem 14, and the last claim
follows by simple substitution, recalling the values of r, t1, w and S in terms of n and d.

50



References

[Aar] Scott Aaronson. The Complexity Zoo. Available at http://cse.unl.edu/~cbourke/

latex/ComplexityZoo.pdf.

[Aar10a] Scott Aaronson. A counterexample to the generalized Linial-Nisan conjecture. Elec-
tronic Colloquium on Computational Complexity, 17:109, 2010.

[Aar10b] Scott Aaronson. BQP and the polynomial hierarchy. In Proceedings of the 42nd ACM
Symposium on Theory of Computing, pages 141–150, 2010.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: a modern approach. Cam-
bridge University Press, 2009.

[Ajt83] Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic,

24(1):1–48, 1983.

[Ajt94] Miklós Ajtai. The independence of the modulo p counting principles. In Proceedings of
the 26th Annual ACM Symposium on Theory of Computing, pages 402–411, 1994.

[AWY15] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proceedings of the 26th Annual ACM-SIAM Symposium
on Discrete Algorithms, 2015.

[Bab87] László Babai. Random oracles separate PSPACE from the polynomial-time hierarchy.
Information Processing Letters, 26(1):51–53, 1987.

[Baz09] Louay Bazzi. Polylogarithmic independence can fool DNF formulas. SIAM Journal on
Computing, 38(6):2220–2272, 2009.

[Bea94] Paul Beame. A switching lemma primer. Technical Report UW-CSE-95-07-01, Univer-
sity of Washington, 1994.

[BG81] Charles Bennett and John Gill. Relative to a random oracle A, PA 6= NPA 6= coNPA

with probability 1. SIAM Journal on Computing, 10(1):96–113, 1981.

[BGS75] Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P=?NP question.
SIAM Journal on computing, 4(4):431–442, 1975.

[BIS12] Paul Beame, Russell Impagliazzo, and Srikanth Srinivasan. Approximating AC0 by
small height decision trees and a deterministic algorithm for #AC0-SAT. In Proceedings
of the 27th Conference on Computational Complexity, pages 117–125, 2012.

[BKS99] Itai Benjamini, Gil Kalai, and Oded Schramm. Noise sensitivity of Boolean functions
and applications to percolation. Inst. Hautes Études Sci. Publ. Math., 90:5–43, 1999.

[Boo94] Ronald Book. On collapsing the polynomial-time hierarchy. Information Processing
Letters, 52(5):235–237, 1994.

[Bop97] Ravi Boppana. The average sensitivity of bounded-depth circuits. Information Pro-
cessing Letters, 63(5):257–261, 1997.

51



[Bra10] Mark Braverman. Polylogarithmic independence fools AC0 circuits. Journal of the
ACM, 57(5):28, 2010.

[BS79] Theodore Baker and Alan Selman. A second step toward the polynomial hierarchy.
Theoretical Computer Science, 8(2):177–187, 1979.

[BT96] Nader Bshouty and Christino Tamon. On the Fourier spectrum of monotone functions.
Journal of the ACM, 43(4):747–770, 1996.

[Cai86] Jin-Yi Cai. With probability one, a random oracle separates PSPACE from the
polynomial-time hierarchy. In Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, pages 21–29, 1986.

[CCH98] Liming Cai, Jianer Chen, and Johan H̊astad. Circuit bottom fan-in and computational
power. SIAM Journal on Computing, 27(2):341–355, 1998.

[DK00] Ding-Zhu Du and Ker-I Ko. Theory of Computational Complexity. John Wiley & Sons,
Inc., 2000.

[For99] Lance Fortnow. Relativized worlds with an infinite hierarchy. Information Processing
Letters, 69(6):309–313, 1999.

[FSS81] Merrick Furst, James Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. In Proceedings of the 22nd IEEE Annual Symposium on Foundations of
Computer Science, pages 260–270, 1981.

[GW13] Oded Goldreich and Avi Wigderson. On the size of depth-three Boolean circuits for
computing multilinear functions. Electronic Colloquium on Computational Complexity,
2013.

[H̊as86a] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Proceedings of
the 18th Annual ACM Symposium on Theory of Computing, pages 6–20, 1986.

[H̊as86b] Johan H̊astad. Computational Limitations for Small Depth Circuits. MIT Press, Cam-
bridge, MA, 1986.

[H̊as89] Johan H̊astad. Almost optimal lower bounds for small depth circuits, pages 143–170.
Advances in Computing Research, Vol. 5. JAI Press, 1989.

[H̊as14] Johan H̊astad. On the correlation of parity and small-depth circuits. SIAM Journal on
Computing, 43(5):1699–1708, 2014.

[Hat14] Hamed Hatami. Scribe notes for the course COMP760: Harmonic Analysis of Boolean
Functions, 2014. Available at http://cs.mcgill.ca/~hatami/comp760-2014/

lectures.pdf.

[Hem94] Lane Hemaspaandra. Complexity theory column 5: the not-ready-for-prime-time con-
jectures. ACM SIGACT News, 25(2):5–10, 1994.

[HMP+93] András Hajnal, Wolfgang Maass, Pavel Pudlák, Márió Szegedy, and György Turán.
Threshold circuits of bounded depth. Journal of Computer and System Sciences,
46:129–154, 1993.

52



[HO02] Lane Hemaspaandra and Mitsunori Ogihara. The Complexity Theory Companion.
Springer, 2002.

[HRZ95] Lane Hemaspaandra, Ajit Ramachandran, and Marius Zimand. Worlds to die for. ACM
SIGACT News, 26(4):5–15, 1995.

[IMP12] Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algo-
rithm for AC0. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 961–972, 2012.

[IS01] Russell Impagliazzo and Nathan Segerlind. Counting axioms do not polynomially sim-
ulate counting gates. In Proceedings of the 42nd IEEE Symposium on Foundations of
Computer Science, pages 200–209, 2001.

[Joh86] David Johnson. The NP-completeness column: An ongoing guide. Journal of Algo-
rithms, 7(2):289–305, 1986.

[Juk12] Stasys Jukna. Boolean Function Complexity. Springer, 2012.

[Kal00] Gil Kalai. Combinatorics with a geometric flavor: some examples, 2000. GAFA Special
Volume 10, Birkhauser Verlag, Basel, 2000.

[Kal10] Gil Kalai. Noise Stability and Threshold Circuits. Blog post at Com-
binatorics and more, 2010. https://gilkalai.wordpress.com/2010/02/10/

noise-stability-and-threshold-circuits.

[Kal12] Gil Kalai. Answer to the question: Are all functions whose Fourier weight is concen-
trated on the small sized sets computed by AC0 circuits? Theoretical Computer Science
StackExchange, 2012. http://cstheory.stackexchange.com/questions/12769/

are-all-the-functions-whose-fourier-weight-is-concentrated-on-the-small

-sized-se.

[KPPY84] Maria Klawe, Wolfgang Paul, Nicholas Pippenger, and Mihalis Yannakakis. On mono-
tone formulae with restricted depth. In Proceedings of the 16th Annual ACM Symposium
on Theory of Computing, pages 480–487, 1984.

[KPW95] Jan Kraj́ıček, Pavel Pudlák, and Alan Woods. An exponential lower bound to the
size of bounded depth frege proofs of the pigeonhole principle. Random Structures &
Algorithms, 7(1):15–39, 1995.

[KS05] Gil Kalai and Shmuel Safra. Threshold phenomena and influence. In Computational
Complexity and Statistical Physics, pages 25–60. Oxford University Press, 2005.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier
transform, and learnability. Journal of the ACM, 40(3):607–620, 1993.

[Man95] Yishay Mansour. An O(nlog logn) learning algorithm for DNF under the uniform distri-
bution. Journal of Computer and System Sciences, 50:543–550, 1995.

[Nis91] Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–
70, 1991.

53



[O’D07] Ryan O’Donnell. Lecture 29: Open Problems. Scribe notes for the course CMU 18-
859S: Analysis of Boolean Functions, 2007. Available at http://www.cs.cmu.edu/

~odonnell/boolean-analysis.

[OW07] Ryan O’Donnell and Karl Wimmer. Approximation by DNF: examples and counterex-
amples. In 34th International Colloquium on Automata, Languages and Programming,
pages 195–206, 2007.

[PBI93] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower bounds for
the pigeonhole principle. Computational complexity, 3(2):97–140, 1993.

[Raz87] Alexander Razborov. Lower bounds on the size of bounded depth circuits over a com-
plete basis with logical addition. Mathematical Notes of the Academy of Sciences of the
USSR, 41(4):333–338, 1987.

[Raz95] Alexander Razborov. Bounded arithmetic and lower bounds in Boolean complexity. In
Feasible Mathematics II, pages 344–386. Springer, 1995.

[Raz09] Alexander Razborov. A simple proof of Bazzi’s theorem. ACM Transactions on Com-
putation Theory, 1(1):3, 2009.

[SBI04] Nathan Segerlind, Sam Buss, and Russell Impagliazzo. A switching lemma for small
restrictions and lower bounds for k-DNF resolution. SIAM Journal on Computing,
33(5):1171–1200, 2004.

[Sip83] Michael Sipser. Borel sets and circuit complexity. In Proceedings of the 15th Annual
ACM Symposium on Theory of Computing, pages 61–69, 1983.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean cir-
cuit complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, pages 77–82, 1987.

[ST95] David Shmoys and Éva Tardos. Computational Complexity. In Handbook of Com-
binatorics (Ronald Graham, Martin Grötschel, and Lászlo Lovász, eds.), volume 2.
North-Holland, 1995.

[Sub61] Bella Subbotovskaya. Realizations of linear functions by formulas using ∨, &, . Doklady
Akademii Nauk SSSR, 136(3):553–555, 1961.

[Tar89] Gábor Tardos. Query complexity, or why is it difficult to separate NPA ∩ coNPA from
PA by random oracles A? Combinatorica, 9(4):385–392, 1989.

[Tha09] Neil Thapen. Notes on switching lemmas, 2009. Available at http://users.math.

cas.cz/~thapen/switching.pdf.

[Val83] Leslie Valiant. Exponential lower bounds for restricted monotone circuits. In Proceedings
of the 15th Annual ACM Symposium on Theory of Computing, pages 110–117, 1983.

[Vio13] Emanuele Viola. Challenges in computational lower bounds. Electronic Colloquium on
Computational Complexity, 2013.

54



[VW97] Heribert Vollmer and Klaus Wagner. Measure One Results in Computational Complexity
Theory, pages 285–312. Advances in Algorithms, Languages, and Complexity. Springer,
1997.

[Wil14a] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proceedings of
the 46th Annual ACM Symposium on Theory of Computing, pages 664–673, 2014.

[Wil14b] Ryan Williams. The polynomial method in circuit complexity applied to algorithm
design (invited survey). In Proceedings of the 34th Foundations of Software Technology
and Theoretical Computer Science Conference, 2014.

[Yao85] Andrew Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of
the 26th Annual Symposium on Foundations of Computer Science, pages 1–10, 1985.

A Proof of Lemma 7.1

Lemma 7.1. There is a universal constant c > 0 such that for 2 ≤ d ≤ cm
logm , we have that

tk = q ± q1.1 for all k ∈ [d− 1].

Proof. We shall establish the following bound, for k = d− 1, . . . , 1, by downward induction on k:

|tkq − p| ≤ (2m)d−1−kλ. (34)

Lemma 7.1 follows directly from (34), using (7), (3) and the fact that p = Θ( logw
w ).

The base case k = d − 1 of (34) holds with equality since (8) gives us that |td−1q − p| = λ.
For the inductive step suppose that (34) holds for some value k = ` + 1. By (8) we have that
t`q = (1 − t`+1)qw − λ, so our goal is to put upper and lower bounds on (1 − t`+1)qw − λ that are
close to p. For the upper bound, we have

(1− t`+1)qw − λ =

(
(1− t`+1)

1
t`+1

)qwt`+1

− λ

≤ exp (−qwt`+1)− λ (by Fact 5.3)

≤ exp
(
−w

(
p− (2m)d−`−2λ

))
− λ (by the inductive hypothesis)

≤ exp

(
−
(
m2m

log e
− 1

)
·
(

2−m − (2m)d−`−2λ
))
− λ (by (3))

= 2−m · exp

(
2−m +

(
m2m

log e
− 1

)
· (2m)d−`−2λ

)
− λ

≤ p ·
(

1 + 2−m+1 +
m2m+1

log e
· (2m)d−`−2λ

)
− λ (by Fact 5.3)

≤ p+ 2−2m+1 +
2m

log e
(2m)d−`−2λ− λ

≤ p+ (2m)d−`−1λ,

where in the last inequality we have used the fact that λ = Θ̃(2−5m/4).
For the lower bound we proceed similarly:

55



(1− t`+1)qw − λ =

(
(1− t`+1)

1
t`+1

)qwt`+1

− λ

≥ exp (−qwt`+1) · (1− t`+1)qwt`+1 − λ (by Fact 5.3)

≥ exp
(
−w

(
p+ (2m)d−`−2λ

))
· (1− qw(t`+1)2)− λ (by the i.h. & Fact 5.2)

≥ exp

(
−m2m

log e
·
(

2−m + (2m)d−`−2λ
))
· (1− qw(t`+1)2)− λ

= 2−m · exp

(
−m2m

log e
· (2m)d−`−2λ

)
· (1− qw(t`+1)2)− λ

≥ 2−m ·
(

1− m2m

log e
· (2m)d−`−2λ− qw(t`+1)2

)
− λ (using Fact 5.2)

≥ 2−m ·
(

1− m2m

log e
· (2m)d−`−2λ− w

q
·
(
p+ (2m)d−`−2λ

)2
)
− λ (by the i.h.)

≥ 2−m ·
(

1− m2m

log e
· (2m)d−`−2λ− 4wp2

q

)
− λ (by the bound on d)

= p− m

log e
· (2m)d−`−2λ− 4wp3

q
− λ

≥ p− (2m)d−`−1λ.

56

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


