Matrix Rigidity of Random Toeplitz Matrices

Oded Goldreich * Avishay Tal ${ }^{\dagger}$

May 7, 2015

Abstract

We prove that random n-by- n Toeplitz (alternatively Hankel) matrices over \mathbb{F}_{2} have rigidity $\Omega\left(\frac{n^{3}}{r^{2} \log n}\right)$ for rank $r \geq \sqrt{n}$, with high probability. This improves, for $r=o(n / \log n \log \log n)$, over the $\Omega\left(\frac{n^{2}}{r} \cdot \log \left(\frac{n}{r}\right)\right)$ bound that is known for many explicit matrices.

Our result implies that the explicit trilinear $[n] \times[n] \times[2 n]$ function defined by $F(x, y, z)=$ $\sum_{i, j} x_{i} y_{j} z_{i+j}$ has complexity $\Omega\left(n^{3 / 5}\right)$ in the multilinear circuit model suggested by Goldreich and Wigderson (ECCC, 2013), which yields an $\exp \left(n^{3 / 5}\right)$ lower bound on the size of the socalled canonical depth-three circuits for F. We also prove that F has complexity $\tilde{\Omega}\left(n^{2 / 3}\right)$ if the multilinear circuits are further restricted to be of depth 2 .

In addition, we show that a matrix whose entries are sampled from a 2^{-n}-biased distribution has complexity $\tilde{\Omega}\left(n^{2 / 3}\right)$, regardless of depth restrictions, almost matching the $O\left(n^{2 / 3}\right)$ upper bound for any matrix by Goldreich and Wigderson. We turn this randomized construction into an explicit 4-linear construction with similar lower bounds, using the quadratic small-biased construction of Mossel et al. (RS\&A, 2006).

Keywords: Matrix rigidity, multi-linear functions, multi-linear circuits.

[^0]
Contents

1 Introduction 1
1.1 Matrix Rigidity 1
1.2 The Project of Goldreich-Wigderson 2
1.3 Resolving the Foregoing Open Problems 3
1.4 Overview of the Proof of Theorem 1.2 4
1.5 Organization 5
2 Preliminaries 5
3 Main Results 6
4 The Structure of Matrices of Small Bilinear Circuits 10
4.1 The Structure of Matrices Associated with Depth Two Bilinear Circuits 11
4.2 The Structure of Matrices Associated with General Bilinear Circuits 11
4.3 Substructures 11
5 Testing AN Complexity and AN2 Complexity 13
5.1 Lower Bounds for the AN-Complexity of Small-Biased Matrices 13
5.2 Lower Bounds for the AN2-Complexity of Random Toeplitz Matrices 16
5.3 Explicit 4-Linear Functions with AN-Complexity $\tilde{\Omega}\left(n^{2 / 3}\right)$ 18
6 Digest and Open Problems 18
6.1 Digest 18
6.2 Open Problems 19
References 21
Appendices 22
A. 1 Generalization to Larger Fields 22
A. 2 The Structure of Matrices Associated with General Bilinear Circuits 23

1 Introduction

This paper concerns the construction of rigid matrices, a central open problem posed by Valiant [Val77], and its application to lower bounds on canonical depth-three Boolean circuits (where "canonical" is as defined by Goldreich and Wigderson [GW13]). In particular, we improve the known lower bound on matrix rigidity, but the improvement is for a range of parameters that is not the one motivated by Valiant's problem, but rather the one that arises from [GW13]. Indeed, this improvement resolves open problems posed by Goldreich and Wigderson [GW13].

1.1 Matrix Rigidity

The "Matrix Rigidity Problem" (i.e., providing explicit matrices of high rigidity) is one of the most alluring problems in arithmetic circuits lower bounds. Introduced in 1977 by Valiant [Val77], the problem was originally motivated by proving lower bounds for the computation of linear transformations. Loosely speaking, a matrix is called rigid if it cannot be written as a sum of a low rank matrix and a sparse matrix. Needless to say, the actual definition specifies both parameters.

Definition 1.1 (Matrix Rigidity, [Val77]). A matrix A over a field \mathbb{F} has rigidity s for rank r if every matrix of rank at most r (over \mathbb{F}) disagrees with A on more than s entries.

Valiant showed that any matrix with rigidity $n^{1+\delta}$ for rank $\omega(n / \log \log n)$, where δ is some constant greater than 0 , cannot be computed by a linear circuit of size $O(n)$ and depth $O(\log n)$. Valiant also proved that almost all n-by- n matrices, over a finite field \mathbb{F} (e.g., the two-element field \mathbb{F}_{2}), have rigidity $\Omega\left((n-r)^{2} / \log n\right)$ for rank r. Since then, coming up with an explicit ${ }^{1}$ rigid matrix has remained a challenge. The best techniques to date provide explicit n-by- n matrices of rigidity $\frac{n^{2}}{r} \log \left(\frac{n}{r}\right)$ for rank r (see [Lok09] for a survey about matrix rigidity).

To the best of our knowledge, this state of affairs also holds for "simple" randomized constructions that use $O(n)$ random bits. The common belief is that rigidity bounds for such randomized constructions can be used for proving lower bounds for explicit computational problems that are related to the original ones. For example, an adequate rigidity lower bound for random Toeplitz (or Hankel) matrices ${ }^{2}$ would yield a lower bound on the complexity of computing explicit bilinear transformations. Indeed, this is analogous to Andreev's proof of formula lower bounds [And87], where a lower bound for a randomized function is transformed into a lower bound for an explicit function (which takes the random bits of the construction as part of its input). Our main result is the following

Theorem 1.2 (on the rigidity of random Toeplitz/Hankel matrices). Let $A \in \mathbb{F}_{2}^{n \times n}$ be a random Toeplitz/Hankel matrix. Then, for every $r \in[\sqrt{n}, n / 32]$, with probability $1-o(1)$, the matrix A has rigidity $\Omega\left(\frac{n^{3}}{r^{2} \log n}\right)$ for rank r.

Our bounds are asymptotically better than $\Omega\left(\frac{n^{2}}{r} \log \left(\frac{n}{r}\right)\right)$ for rank $r=o\left(\frac{n}{\log n \cdot \log \log n}\right)$, alas Valiant's original motivation refers to $r>n / \log \log n$. For rank $r=n^{0.5+\varepsilon}$, where $\varepsilon \in(0,0.5)$, our bound yields a significant improvement (i.e., $\frac{n^{3}}{r^{2}}=n^{2-2 \varepsilon} \gg n^{1.5-\varepsilon}=\frac{n^{2}}{r}$), and this is actually the range that is relevant for the project of Goldreich and Wigderson [GW13].

[^1]
1.2 The Project of Goldreich-Wigderson

The project started by Goldreich and Wigderson [GW13] provides another motivation for the study of matrix rigidity. In fact, the problem of improving the rigidity bounds for random Toeplitz matrices was posed explicitly there. Specifically, proving a rigidity bound of $n^{1.5+\Omega(1)}$ for rank $n^{0.5+\Omega(1)}$ for random Toeplitz matrices was proposed there as a possible next step.

Lower Bounds for Depth Three Canonical Circuits. Håstad [Hås86] showed that any depththree Boolean circuit computing the n-way parity function must be of size at least $\exp (\sqrt{n})$; to date, Håstad's result is the best lower bound for an explicit function in the model of depth-three Boolean circuits ${ }^{3}$. The work of Goldreich and Wigderson [GW13] put forward a model of depth three canonical circuits, with the underlying long-term goal to exhibit better lower bounds for general depth-three Boolean circuits. Canonical circuits are restricted type of such depth-three circuits, which can be illustrated by considering the smallest known depth-three circuits for n-way parity. The latter $\widetilde{O}\left(2^{\sqrt{n}}\right)$-size circuits are obtained by combining a CNF that computes a \sqrt{n}-way parity with \sqrt{n} DNFs that compute \sqrt{n}-way parities of disjoint blocks of the input bits. The construction, and its optimality by [Hås86], suggests the following scheme for obtaining Boolean circuits that compute multilinear functions. First, construct an arithmetic circuit that uses arbitrary multilinear gates of parameterized arity, and then convert it to a Boolean circuit whose size is exponential in the maximum between the arity and the number of gates in the arithmetic circuit. The arithmetic model is outlined next.

Lower Bounds for Multilinear Circuits. Suppose we wish to compute a t-linear function that depends on t blocks of inputs, $x^{(1)}, \ldots, x^{(t)}$, each of length n; that is, the function is linear in each of the $x^{(j)}$'s. We consider circuits that use arbitrary multilinear gates of parameterized arity. That is, the circuits are directed acyclic graphs, where each internal node computes a multilinear function of its inputs. We further restrict our circuit such that each internal gate computes a multilinear formal polynomial in the inputs $x^{(1)} \ldots, x^{(t)}$. We say that such a multilinear circuit is of AN-complexity ${ }^{4}$ m if m equals the maximum between the number of the circuit gates and the maximal arity of the gates. For a multilinear function F, we denote by $\mathrm{C}(F)$ the minimal AN-complexity of a multilinear circuit which compute the function F. (We will abuse notation and refer to the AN-complexity of a tensor/matrix as the AN-complexity of the corresponding multilinear function.)

In the example of parity, we have a bottom layer of \sqrt{n} gates each taking \sqrt{n} inputs and computing their parity. Above these gates, we have a gate which takes the \sqrt{n} results and computes their parity. Overall, we got a (multi)-linear circuit of AN-complexity $\sqrt{n}+1$.

Goldreich and Wigderson showed that any multilinear circuit of AN-complexity m yields a depth-three Boolean circuit of size $\exp (m)$ computing the same function (see [GW13, Prop. 2.9]). In fact, the Boolean circuits have much more structure, and are referred to by Goldreich and Wigderson as canonical circuits. Thus, a preliminary step towards beating the $\exp (\Omega(\sqrt{n}))$ lower bound on the size of depth-three Boolean circuits for explicit $O(1)$-linear functions, ${ }^{5}$ will be to beat the $\Omega(\sqrt{n})$ AN-complexity lower bound for such functions in the model of multilinear circuits.

Again, as in Valiant's question, if we just ask about the existence of hard t-linear functions, then most t-linear functions cannot be computed by a multilinear circuit of AN-complexity smaller than $(n t)^{t /(t+1)}$: See [GW13, Thm. 4.1], which uses a counting argument. The more important and

[^2]challenging problem is to came up with an explicit t-linear function for which such bounds, or even just $\omega(\sqrt{n})$ lower bounds, can be proved.

Reduction to (Structured) Rigidity. Goldreich and Wigderson reduces the problem of proving lower bounds for bilinear circuits to the problem of rigidity [GW13, Sec. 4.2]. They show that if a bilinear circuit is of AN-complexity $m / 2$, then its corresponding matrix is not m^{3} rigid for rank m (i.e., it can be expressed as a sum of an m^{3}-sparse matrix and a matrix of rank at most m). Hence, any matrix that has rigidity m^{3} for rank m corresponds to a bilinear function that cannot be computed by a bilinear circuit of AN-complexity at most $m / 2$. Furthermore, Goldreich and Wigderson show that the sparse matrix arising from their reduction has an additional structure (to be specified later). This leads to a weaker notion of rigidity (see [GW13, Thm. 4.12] which establishes a separation), called structured rigidity, for which it is potentially easier to prove lower bounds.

Open Problems in Goldreich-Wigderson. One open problem posed by Goldreich and Wigderson is proving that random Toeplitz matrices have rigidity m^{3} (or just structured rigidity m^{3}) for rank $m=n^{0.5+\Omega(1)}$. This would yield an AN-complexity lower bound of m for the corresponding bilinear function (via the reduction in [GW13, Thm. 4.4]) ${ }^{6}$ as well as a similar lower bound for the following explicit trilinear function (via [GW13, Prop. 4.6]):

$$
\begin{equation*}
F_{\mathrm{tet}}(x, y, z)=\sum_{\substack{i_{1}, i_{2}, i_{3} \in[n]: \\ \sum_{j=1}^{3}\left|i_{j}-n / 2\right| \leq n / 2}} x_{i_{1}} y_{i_{2}} z_{i_{3}} . \tag{1}
\end{equation*}
$$

1.3 Resolving the Foregoing Open Problems

We resolve the aforementioned open problem [GW13, Prob. 4.8] by proving that random Toeplitz matrices have rigidity m^{3} for rank $m=\Theta\left(\frac{n^{3 / 5}}{\log ^{1 / 5} n}\right)$, with high probability. This follows from our main theorem (Theorem 1.2) by choosing $r=m$. Furthermore, we can get rid of the logarithmic factor in the $\widetilde{\Omega}$ notation, by proving a slightly better lower bound for structured rigidity.

Theorem 1.3 (on the structured rigidity of random Toeplitz/Hankel matrices). Let $A \in \mathbb{F}_{2}^{n \times n}$ be a random Toeplitz/Hankel matrix. Then, for every $r \in[\sqrt{n}, n / 32]$, the matrix A has structured rigidity $\Omega\left(n^{3} / r^{2}\right)$ for rank r.

This implies (using [GW13, Thm. 4.10] and [GW13, Prop. 4.6]) that the AN-complexity of a random Toeplitz matrix is $\Omega\left(n^{3 / 5}\right)$, and ditto for the explicit trilinear function $F_{\text {tet }}$ from Eq. (1). This resolves Problems 4.7 and 4.2 in [GW13], resp. In addition, we show that another explicit trilinear function has AN-complexity $\Omega\left(n^{3 / 5}\right)$.

Corollary 1.4 (AN-complexity lower bound for an explicit trilinear function). Let $F:\{0,1\}^{n} \times$ $\{0,1\}^{n} \times\{0,1\}^{2 n} \rightarrow\{0,1\}$ be the trilinear function defined by $F(x, y, z)=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} z_{i+j}$. Then, $\mathrm{C}(F)=\Omega\left(n^{3 / 5}\right)$.

New Challenges. The most natural question that arises from the foregoing results is to tighten the lower bound; that is, to show that random Toeplitz matrices have AN-complexity $\Omega\left(n^{2 / 3}\right)$ as conjectured by [GW13]. This would be the best possible, since any bilinear function can be computed by a bilinear circuit of AN-complexity $O\left(n^{2 / 3}\right)$; more generally, by [GW13, Thm. 3.1],

[^3]for any $t \geq 2$, any t-linear function can be computed by a t-linear circuit of AN-complexity $O\left((t n)^{t /(t+1)}\right)$. Another natural follow up question is to exhibit an explicit $O(1)$-linear function having AN-complexity $\Omega\left(n^{\alpha}\right)$ for some constant $\alpha>3 / 5$; of course, the larger α, the better. Our progress on these open problems is captured by the following two results.

Theorem 1.5 (depth-two AN-complexity lower bound for random Toeplitz matrices). Let F be a bilinear function that corresponds to a random Toeplitz matrix. Then, with probability $1-o(1)$, the function F cannot be computed by multilinear circuits of depth two having AN-complexity $n^{2 / 3} /(\log n)^{1 / 3}$.

Theorem 1.5 establishes the desired AN-complexity lower bound for random Toeplitz matrices, but only for depth-two multilinear circuits. We note that the AN-complexity upper bound of [GW13, Thm. 3.1] holds via depth-two circuits, and so Theorem 1.5 is almost optimal with respect to depth-two multilinear circuits. Theorem 1.5 implies that the trilinear function $F(x, y, z)=$ $\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} z_{i+j}$ cannot be computed by multilinear circuits of depth two and AN-complexity $n^{2 / 3} /(\log n)^{1 / 3}$.

Theorem 1.6 (improved AN-complexity lower bound for 4-linear functions). There exists an explicit 4-linear function having AN-complexity $\Omega\left(n^{2 / 3} /(\log n)^{1 / 3}\right)$.

Theorem 1.6 is proved by first showing that, with high probability, bilinear functions associated with matrices that are sampled from a 2^{-n}-biased sample space (over $\{0,1\}^{n^{2}}$) have AN-complexity $\widetilde{\Omega}\left(n^{2 / 3}\right)$. Note that by the aforementioned upper bound, this lower bound is tight (up to logarithmic factors). Next, we note that sampling such matrices can be done using $O(n)$ random bits [NN93, AGHP92, MST06], which matches the amount of randomness used for sampling a random Toeplitz matrix. Furthermore, in the explicit small-biased construction of Mossel et al. [MST06], each bit in the sampled string is a bilinear function of the random bits, allowing us to give an explicit 4-linear function with AN-complexity $\widetilde{\Omega}\left(n^{2 / 3}\right)$.

1.4 Overview of the Proof of Theorem 1.2

We give an overview of the proof of Theorem 1.2 (for the case of Hankel matrices). Recall that we wish to show that a random Hankel matrix has rigidity $n^{3} / r^{2} \log n$ for rank r, with high probability. Let A be a random n-by- n Hankel matrix, of the form $A_{i, j}=a_{i+j}$ for independent random bits $a_{2}, \ldots, a_{2 n}$. Suppose that A can be expressed as a sum of an s-sparse matrix S and a matrix of rank at most r. Consider a partition of A and S into $(n / 2 r) \cdot(n / 2 r)$ submatrices, each of size $2 r \times 2 r$, such that a generic submatrix consists of $2 r$ consecutive columns and $2 r$ equally spaced rows (i.e., rows that are at distance $n / 2 r$ apart). Then, there exists a pair of corresponding submatrices A^{\prime} and S^{\prime} such that S^{\prime} is of sparsity $s^{\prime}=\frac{(2 r)^{2}}{n^{2}} \cdot s$ (and, of course, $A^{\prime}-S^{\prime}$ has rank at most r). Next, we note that any of the above submatrices of A are of the form

$$
A^{\prime}=\left(\begin{array}{ccccc}
b_{1} & b_{2} & b_{3} & \ldots & b_{2 r} \\
b_{k+1} & b_{k+2} & b_{k+3} & \ldots & b_{k+2 r} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
b_{(2 r-1) k+1} & b_{(2 r-1) k+2} & b_{(2 r-1) k+3} & \ldots & b_{(2 r-1) k+2 r}
\end{array}\right)
$$

where $k=n / 2 r$ ($\leq 2 r$, by the assumption $r \geq \sqrt{n}$), and $b_{1}, \ldots, b_{(2 r-1) k+2 r}$ is a consecutive subsequence of $a_{2}, \ldots, a_{2 n}$. Notice that A^{\prime} is a $2 r \times 2 r$ submatrix that depends on $(2 r-1) k+2 r=$ $\Theta(n)$ random bits.

In our main lemma, we show that for any fixed matrix S^{\prime} (even if S^{\prime} is not sparse) the submatrix matrix $A^{\prime}-S^{\prime}$ is of rank greater than r with probability at least $1-2^{-\Omega(n)}$, where the probability is taken over the choice of A^{\prime} (equiv., over the choice of $b_{1}, \ldots, b_{(2 r-1) k+2 r}$). Hence, taking a union bound over all possible s^{\prime}-sparse submatrices we get that, with probability at least $1-\binom{2 r \cdot 2 r}{s^{\prime}} \cdot 2^{-\Omega(n)}$, the submatrix A^{\prime} has rigidity s^{\prime} for rank r. Picking $s=o\left(\frac{n^{3}}{r^{2} \log n}\right)$ implies that $s^{\prime}=o(n / \log n)$, which completes the proof (by applying a union bound on all submatrices, and inferring that, with high probability, matrix A is of rigidity s for rank r).

1.5 Organization

Our main results (i.e., Theorems 1.2 and 1.3 and Corollary 1.4) are proved in Section 3, which follows a short preliminary section (Sec. 2). Next, Theorems 1.5 and 1.6 are proved, in two steps. In Section 4 we identify structural properties of matrices that correspond to bilinear functions of low AN (and AN2) complexity. These properties correspond to (even more) restricted notions of structured rigidity, and in Section 5 we show that (with high probability) matrices drawn from the two relevant distributions do not satisfy these properties. We conclude, with a technical digest (Section 6.1) and a list of some open problems (Section 6.2).

2 Preliminaries

We denote by $[n]=\{1, \ldots, n\}$. For $n, k \in \mathbb{N}$, we denote by $\binom{n}{\leq k}=\sum_{i=0}^{k}\binom{n}{i}$, and use the bound $\binom{n}{\leq k} \leq(2 n)^{k}$. For a matrix A, we denote its i-th row by A_{i}, and its j-th column by $A^{(j)}$. We denote by $\mathrm{wt}(A)$ the number of non-zero entries in the matrix A, and say that A is s-sparse if $\mathrm{wt}(A)=s$.

A Hankel matrix over a field \mathbb{F} is a square matrix with constant skew-diagonals; that is, any matrix $A \in \mathbb{F}^{n \times n}$ of the form $A_{i, j}=a_{i+j}$ for some $a_{2}, \ldots, a_{2 n} \in \mathbb{F}$. A Toeplitz matrix over a field \mathbb{F} is a square matrix with constant diagonals, i.e. any matrix $A \in \mathbb{F}^{n \times n}$ of the form $A_{i, j}=a_{i-j}$ for some $a_{-(n-1)}, \ldots, a_{n-1} \in \mathbb{F}$. Note that a Hankel matrix is an "upside-down" Toeplitz matrix.

Throughout the paper, unless specified otherwise, we talk about matrices over the field \mathbb{F}_{2}, and matrix rank refers to its rank over \mathbb{F}_{2}.

Definition 2.1 (Structured Rigidity, [GW13, Def. 4.9]). We say that a matrix A has structured rigidity $\left(m_{1}, m_{2}, m_{3}\right)$ for rank r if for every matrix R of rank at most r and for every $X_{1}, \ldots X_{m_{1}}$, $Y_{1}, \ldots, Y_{m_{1}} \subseteq[n]$ such that $\left|X_{1}\right|=\cdots=\left|X_{m_{1}}\right|=m_{2}$ and $\left|Y_{1}\right|=\cdots=\left|Y_{m_{1}}\right|=m_{3}$ it holds that $A-R \nsubseteq \bigcup_{k=1}^{m_{1}}\left(X_{k} \times Y_{k}\right)$, where $M \subseteq S$ means that all non-zero entries of the matrix M reside in the set $S \subseteq[n] \times[n]$. We say that a matrix A has structured rigidity m^{3} for rank r if A has structured rigidity (m, m, m) for rank r.

Indeed, any matrix that has rigidity s for rank r, also has structured rigidity s for rank r, but the other direction does not hold (see [GW13, Thm. 4.12]).

Definition 2.2. A multilinear circuit on t blocks of inputs $x^{(1)}, \ldots, x^{(t)} \in\{0,1\}^{n}$ is a directed acyclic graph whose nodes are associated with arbitrary multilinear gates such that any two gates with directed paths from the same block of inputs are not multiplied together by another gate.

Definition 2.3 (the AN-complexity of multilinear circuits with general gates, [GW13, Def. 2.2]). The arity of a multilinear circuit is the maximum arity of its (general) gates. The AN-complexity of a multilinear circuit is the maximum between its arity and its number of gates (where we count only the general gates and not the leaves, i.e., variables). The AN-complexity of a multilinear function F,
denoted $\mathrm{C}(F)$, is the minimum $A N$-complexity of a multilinear circuit that computes F. The AN2complexity of a multilinear function F, denoted $\mathrm{C}_{2}(F)$, is the minimum complexity of a depth-two multilinear circuit that computes F.

Theorem 2.4 ([GW13, Thm. 4.10]). If A is an n-by-n matrix that has structured rigidity m^{3} for rank m, then the corresponding bilinear function F satisfies $\mathrm{C}(F) \geq m / 2$.

3 Main Results

We prove our results bottom-up, starting with the main lemma, as mentioned in the proof overview.
Lemma 3.1 (Main Lemma). Let $m, k \in \mathbb{N}, 16 \leq k \leq m$. Let $A \in \mathbb{F}_{2}^{m \times m}$ be the random matrix

$$
\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{m} \\
a_{k+1} & a_{k+2} & a_{k+3} & \ldots & a_{k+m} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{(m-1) k+1} & a_{(m-1) k+2} & a_{(m-1) k+3} & \ldots & a_{(m-1) k+m}
\end{array}\right)
$$

where $a_{1}, \ldots, a_{(m-1) k+m}$ are uniform independent random bits, and let $S \in \mathbb{F}_{2}^{m \times m}$ be some fixed matrix. Then, $\mathbf{P r}_{A}[\operatorname{rank}(S+A) \leq m / 2] \leq 2^{-k m / 16}$.

Note that for $k=1$ the matrix in Lemma 3.1 is a random Hankel matrix, and for $k=m$ it is a totally random matrix. The requirement $k \geq 16$ is not essential in the lemma; it is used to make expressions nicer. For $k \geq 1$ and rank $r \leq m / 2$ the proof gives $\mathbf{P r}_{A}[\operatorname{rank}(S+A) \leq r] \leq\binom{ m}{\leq r} \cdot 2^{-m k / 8}$.

Proof. For a fixed S and a random A as above, let $B=S+A$. If $r=\operatorname{rank}(B) \leq m / 2$, then one can construct a basis $B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{r}}$ of the row space of B by the following iterative process: Let i_{1} be the first nonzero row of B, let $i_{2}>i_{1}$ be the first row in B that is not spanned by row i_{1}, let $i_{3}>i_{2}$ be the first row in B that is not spanned by rows i_{1} and i_{2}, etc. We get that $i_{1}<i_{2}<\cdots<i_{r}$ and

1. For $j<i_{1}$ the j-th row of B is the all zeroes row.
2. For $i_{t-1}<j<i_{t}$ the j-th row of B is spanned by rows i_{1}, \ldots, i_{t-1} of B.
3. For $i_{r}<j$ the j-th row of B is spanned by rows i_{1}, \ldots, i_{r} of B.

More concisely, denoting by $I=\left\{i_{1}, \ldots, i_{r}\right\}$, we get

$$
\begin{equation*}
\forall j \in[m] \backslash I: \quad B_{j} \in \operatorname{span}\left\{B_{i}: i \in I, i<j\right\} \tag{2}
\end{equation*}
$$

We bound the probability that such a sequence $I=\left\{i_{1}, \ldots, i_{r}\right\}$ exists, where $r \leq m / 2$. We will union bound over all possible sequences I, and for any fixed sequence of length at most $m / 2$, we shall show that (2) holds with very low probability. Given such a sequence I, let $J=[m]-I$ be its complement. Setting $\Delta=\lceil m / k\rceil$, we can select an increasing sequence of $|J| / \Delta$ indices in J such that each two indices differ by at least Δ. ${ }^{7}$ Take $j_{1}<j_{2}<\cdots<j_{t}$ to be such a sequence of indices, where $t \geq \frac{|J|}{\Delta} \geq \frac{m / 2}{\mid m / k\rceil} \geq \frac{k}{4}$. For $\ell \in[t]$, let E_{ℓ} be the event that row j_{ℓ} is spanned by the rows indexed by $I \cap\left[j_{\ell}-1\right]$. Then,

$$
\begin{equation*}
\mathbf{P r}[\text { Eq. (2) holds for } I] \leq \mathbf{P r}\left[E_{1}, E_{2}, \ldots, E_{t}\right]=\mathbf{P r}\left[E_{1}\right] \cdot \mathbf{P r}\left[E_{2} \mid E_{1}\right] \cdots \mathbf{P r}\left[E_{t} \mid E_{1}, \ldots, E_{t-1}\right] \tag{3}
\end{equation*}
$$

[^4]Next, we show that for each $\ell \in[t]$, we have $\operatorname{Pr}\left[E_{\ell} \mid E_{1}, \ldots, E_{\ell-1}\right] \leq 2^{-m / 2}$. However, instead of conditioning on $E_{1}, \ldots, E_{\ell-1}$, we shall condition on a set of the random bits, to be specified next, that determine rows $B_{1}, \ldots, B_{j_{\ell-1}}$ on one hand, but are independent from the random row $B_{j_{\ell}}$ on the other hand. Since $j_{\ell} \geq j_{\ell-1}+\lceil m / k\rceil$ by our design, we get $\left(j_{\ell}-1\right) k \geq\left(j_{\ell-1}-1\right) k+m$. Hence, the random bits $a_{1}, \ldots, a_{\left(j_{\ell}-1\right) k}$, which determine $B_{1}, \ldots, B_{j_{\ell-1}}$, leave the random row $B_{j_{\ell}}=\left(a_{\left(j_{\ell}-1\right) k+1}, \ldots, a_{\left(j_{\ell}-1\right) k+m}\right)$ totally undetermined. Conditioning on the worst-case assignment for the former random variables (under which $E_{1}, \ldots, E_{\ell-1}$ holds) yields an upper bound on $\operatorname{Pr}\left[E_{\ell} \mid E_{1}, \ldots, E_{\ell-1}\right]$. Thus, it is enough to show that $\operatorname{Pr}\left[E_{\ell} \mid a_{1}, \ldots, a_{\left(j_{\ell}-1\right) k}\right] \leq 2^{-m / 2}$ for any possible fixed choice of values to $a_{1}, \ldots, a_{\left(j_{\ell}-1\right) k}$.

To avoid multiple subscripts, we set for the rest of the proof $j \triangleq j_{\ell}$. Let us remark that after fixing $a_{1}, \ldots, a_{(j-1) k}$, rows $1, \ldots, j-\lceil m / k\rceil$ are completely fixed, rows $j-\lceil m / k\rceil+1, \ldots, j-1$ are partially fixed, and row j is entirely undetermined. Based on that, we shall show that

$$
\begin{equation*}
\operatorname{Pr}\left[E_{\ell} \mid a_{1}, \ldots, a_{(j-1) k}\right] \leq 2^{-m / 2} \tag{4}
\end{equation*}
$$

Let $I^{\prime}:=I \cap[j-1]$, and fix a linear combination of the rows indexed by I^{\prime}, i.e., $\sum_{i \in I^{\prime}} c_{i} B_{i}$, among all $2^{\left|I^{\prime}\right|}$ such linear combinations. We show that the probability that

$$
\begin{equation*}
B_{j}=\sum_{i \in I^{\prime}} c_{i} B_{i} . \tag{5}
\end{equation*}
$$

is 2^{-m}. (This is similar, up to minor differences, to the folklore result that any fixed linear combination of rows in a random Toeplitz matrix is distributed uniformly over \mathbb{F}_{2}^{m} - see [Gol08, Prop. 8.25]. We give the details for completeness.) The probability that the first bit of B_{j} equals the first bit of the linear combination in (5) is exactly $1 / 2$, since $B_{j, 1}=S_{j, 1}+a_{(j-1) k+1}$, and all entries $\left\{B_{i, 1}\right\}_{i \in I^{\prime}}$ involve only bits from $a_{1}, \ldots, a_{(j-2) k+1}$, which were already fixed (since $(j-2) k+1 \leq(j-1) k)$. Fixing $a_{(j-1) k+1}$ such that equality on the first bit holds, the second bit $B_{j, 2}$ equals the resulting linear combination with probability $1 / 2$ as well. This happens since $B_{j, 2}$ equals $S_{j, 2}+a_{(j-1) k+2}$, where $a_{(j-1) k+2}$ wasn't already fixed, and all entries $\left\{B_{i, 2}\right\}_{i \in I^{\prime}}$ involve only bits from $a_{2}, \ldots, a_{(j-2) k+2}$, which were already fixed (since $\left.(j-2) k+2 \leq(j-1) k+1\right)$. And so on, every bit in the j-th row of B equals the resulting linear combination with probability $1 / 2$, conditioned on the fixing of the previous bits. Overall, $B_{j}=\sum_{i \in I^{\prime}} c_{i} B_{i}$ with probability 2^{-m} for a fixed choice of coefficients $\left\{c_{i}\right\}_{i \in I^{\prime}} .8$ Taking a union bound over all possible coefficients $\left\{c_{i}\right\}_{i \in I^{\prime}}$ gives $\operatorname{Pr}\left[E_{\ell} \mid E_{1}, \ldots, E_{\ell-1}\right] \leq 2^{\left|I^{\prime}\right|} \cdot 2^{-m} \leq 2^{-m / 2}$. Plugging this bound into Eq. (3) we get

$$
\operatorname{Pr}[\text { Eq. (2) holds for } I] \leq \operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \cdots \operatorname{Pr}\left[E_{t} \mid E_{1}, \ldots, E_{t-1}\right] \leq\left(2^{-m / 2}\right)^{t} \leq 2^{-m k / 8}
$$

where in the last inequality we used $t \geq k / 4$. Taking a union bound over all possible sequences I of length at most $m / 2$, whose number is definitely less than 2^{m}, and using $k \geq 16$, we get

$$
\operatorname{Pr}[\operatorname{rank}(S+A) \leq m / 2] \leq 2^{m} \cdot 2^{-m k / 8} \leq 2^{-m k / 16}
$$

We continue with our main theorem.
Theorem 3.2 (random Hankel matrices are rigid). Let $A \in \mathbb{F}_{2}^{n \times n}$ be a random Hankel matrix $A_{i, j}=a_{i+j}$ where $a_{2}, \ldots, a_{2 n}$ are uniform independent random bits. Then, for every $\sqrt{n} \leq r \leq$ $n / 32$, with probability $1-o(1)$, the matrix A has rigidity $\frac{n^{3}}{160 r^{2} \log n}$ for rank r.

[^5]Before proving Theorem 3.2, we state an immediate corollary of it.
Corollary 3.3. Let $A \in \mathbb{F}_{2}^{n \times n}$ be a random Hankel matrix. Then, there exists a universal constant $c>0$ such that for every $\varepsilon>0$

1. With probability $1-o(1)$, the matrix A is $c n^{2-2 \varepsilon} / \log n$ rigid for rank $n^{1 / 2+\varepsilon}$.
2. With probability $1-o(1)$, the matrix A is m^{3} rigid for rank $m=c \cdot \frac{n^{3 / 5}}{\log ^{1 / 5} n}$.
3. With probability $1-o(1)$, the matrix A is $c n^{1+2 \varepsilon} / \log n$ rigid for rank $n^{1-\varepsilon}$.

Proof of Theorem 3.2. Suppose towards contradiction that A can be represented as a sum of a matrix R of rank at most r, and an s-sparse matrix S, where $s \leq n^{3} / 160 r^{2} \log n$. Let $m=2 r$, and assume for convenience that $k=n / m$ is an integer. Consider the following partition of A 's entries into $(n / m)^{2}$ submatrices, each of dimension $m \times m$. For $i \in[n / m]$ and $j \in[n / m]$, let

$$
\begin{equation*}
I_{i}=\{i, i+k, \ldots, i+(m-1) k\}, \quad J_{j}=\{(j-1) m+1,(j-1) m+2, \ldots, j m\} \tag{6}
\end{equation*}
$$

Denote by $A^{i, j}\left(R^{i, j}, S^{i, j}\right.$, resp.) the matrix $A\left(R, S\right.$, resp.) restricted to rows I_{i} and columns J_{j}. See Figure 1 for an example of such a submatrix. The main observation is that for each

$$
\left(\begin{array}{cccccccc}
\boxed{a_{2}} & \boxed{a_{3}} & \boxed{a_{4}} & \boxed{a_{5}} & a_{6} & a_{7} & a_{8} & a_{9} \\
a_{3} & a_{4} & a_{5} & a_{6} & a_{7} & a_{8} & a_{9} & a_{10} \\
\boxed{a_{4}} & \boxed{a_{5}} & \boxed{a_{6}} & \boxed{a_{7}} & a_{8} & a_{9} & a_{10} & a_{11} \\
a_{5} & a_{6} & a_{7} & a_{8} & a_{9} & a_{10} & a_{11} & a_{12} \\
\boxed{a_{6}} & \boxed{a_{7}} & \boxed{a_{8}} & \boxed{a_{9}} & a_{10} & a_{11} & a_{12} & a_{13} \\
a_{7} & a_{8} & a_{9} & a_{10} & a_{11} & a_{12} & a_{13} & a_{14} \\
\begin{array}{|c|c|ccccc}
a_{8} & a_{9} & a_{10} & a_{11} & a_{12} & a_{13} & a_{14} \\
a_{15} \\
a_{9} & a_{10} & a_{11} & a_{12} & a_{13} & a_{14} & a_{15}
\end{array} a_{16}
\end{array}\right)
$$

Figure 1: A submatrix $A^{1,1}$ of the matrix A, for $m=4$ and $k=2$.
$(i, j) \in[n / m]^{2}$, the matrix $A^{i, j}$ is of the form needed by the main lemma. Another observation is that since the submatrices $S^{i, j}$ partitions the sparse matrix S, one of them has sparsity at most $s^{\prime} \triangleq \frac{s \cdot m^{2}}{n^{2}}$. In addition, since rank of a submatrix may only decrease, for every i, j, it holds that $\operatorname{rank}\left(R^{i, j}\right) \leq \operatorname{rank}(R) \leq r$.

We say that $A^{i, j}$ is simple if it can be represented as a sum of an s^{\prime}-sparse matrix and a matrix of rank at most r. By the above discussion, A can be represented as $S+R$ where S is s-sparse and R is of rank at most r, only if there exists a submatrix $A^{i, j}$ that is simple. We shall show that the latter occurs with very low probability:

$$
\begin{array}{rlr}
\operatorname{Pr}\left[\exists i, j: A^{i, j} \text { is simple }\right] & \leq \sum_{i, j} \operatorname{Pr}\left[A^{i, j} \text { is simple }\right] & \text { (Union Bound) } \\
& \leq \sum_{i, j} \sum_{\substack{S \in \mathbb{F}_{2}^{m \times m} ; \\
\mathrm{wt}(S) \leq s^{\prime}}} \operatorname{Pr}\left[\operatorname{rank}\left(A^{i, j}+S\right) \leq m / 2\right] & \text { (Union Bound) } \\
& \leq\left(\frac{n}{m}\right)^{2} \cdot\binom{m^{2}}{\leq s^{\prime}} \cdot 2^{-m k / 16} & \tag{Lemma3.1}\\
& <n^{2} \cdot\left(2 m^{2}\right)^{s^{\prime}} \cdot 2^{-n / 16} . & (k m=n)
\end{array}
$$

Finally, using $s^{\prime} \leq \frac{n}{40 \log n}$, which follows from $s \leq \frac{n^{3}}{160 r^{2} \log n}$, we get that $\operatorname{Pr}\left[\exists i, j: A^{i, j}\right.$ is simple $]=$ $o(1)$, which completes the proof.

Note that the proof works as long as the number of possibilities for an s^{\prime}-sparse matrix $S^{i, j}$ is smaller than $2^{n / 16} / n^{2}$. Our next theorem exploits the fact that there is a smaller number of possibilities for submatrices of structured sparse matrices (as in Definition 2.1). In fact, this is the only property of S that the foregoing proof uses. This yields the following improved bound.

Theorem 3.4 (random Hankel matrices are structured rigid). Let $A \in \mathbb{F}_{2}^{n \times n}$ be a random Hankel matrix. Then, for every $\sqrt{n} \leq r \leq n / 32$, and $s \leq n^{3} / 1000 r^{2}$, with probability $1-o(1)$, the matrix A has structured rigidity s for rank r.

Before proving Theorem 3.4 we state three corollaries of it. The first corollary is immediate by choosing $r=n^{3 / 5}$.

Corollary 3.5. Let $A \in \mathbb{F}_{2}^{n \times n}$ be a random Hankel matrix. Then, there exists a universal constant $c>0$ such that with probability $1-o(1)$, the matrix A has structured rigidity cn ${ }^{9 / 5}$ for rank $n^{3 / 5}$.

The second corollary follows from the first corollary and Theorem 2.4.
Corollary 3.6. Let $A \in \mathbb{F}_{2}^{n \times n}$ be a random Hankel matrix, and let $F(x, y)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} x_{i} y_{j}$. Then, with probability $1-o(1)$, it holds that $\mathrm{C}(F)=\Omega\left(n^{3 / 5}\right)$.

The last corollary shows that there exists an explicit trilinear form with AN-complexity $\Omega\left(n^{3 / 5}\right)$. This is the first improvement over the trivial $\Omega(\sqrt{n})$ lower bound for explicit tensors, and in doing so it solves Problem 4.2 from [GW13] in the affirmative. Goldreich and Wigderson [GW13, Prop. 4.6] show that if some Toeplitz matrix have AN-complexity $\Omega(m)$, then $F_{\text {tet }}$ defined in Eq. (1) has ANcomplexity $\Omega(m)$ has well. We follow their method, but present a simpler argument for a different trilinear function.

Corollary 3.7. Let $F:\{0,1\}^{n} \times\{0,1\}^{n} \times\{0,1\}^{2 n} \rightarrow\{0,1\}$ be the trilinear function defined by $F(x, y, z)=\sum_{i=1}^{n} \sum_{j=1}^{n} z_{i+j} x_{i} y_{j}$. Then, $\mathrm{C}(F)=\Omega\left(n^{3 / 5}\right)$.

Proof. According to Corollary 3.6, there exists an Hankel matrix A, defined by some diagonal values $a_{2}, \ldots, a_{2 n}$, such that the bilinear form $\sum_{i, j} a_{i+j} x_{i} y_{j}$ has AN-complexity $\Omega\left(n^{3 / 5}\right)$.

Let \mathcal{C} be a trilinear circuit computing F with minimal AN-complexity, and denote its complexity by m. Fixing the values of the variables z_{i} to a_{i}, for all $i \in\{2, \ldots, 2 n\}$, we get a bilinear circuit in x and y of AN-complexity at most m. Thus, $m=\Omega\left(n^{3 / 5}\right)$.

We return to prove Theorem 3.4.
Proof of Theorem 3.4. The proof follows the lines of the proof of Theorem 3.2. We let $m=2 r$, $k=n / m$, and $t=s^{1 / 3}$. We assume towards contradiction that $A=S+R$, where R is of rank at most r, and S is a sum of t matrices $S_{1}, \ldots, S_{t} \in \mathbb{F}_{2}^{n \times n}$, such that the ones in each matrix S_{ℓ} are a subset of some $X_{\ell} \times Y_{\ell}$, where $\left|X_{\ell}\right|,\left|Y_{\ell}\right| \leq t$. Denote by T the n-by-n matrix over \mathbb{F}_{2} with $T_{i, j}=1 \mathrm{iff}(i, j)$ is contained in at least one $X_{\ell} \times Y_{\ell}$. It is clear from T 's definition that the ones in S are a subset of the ones in T. As in Theorem 3.2 , we partition A, R, S, and also T, to $(n / m)^{2}$ submatrices, according to the partition of row indices $I_{1}, \ldots, I_{n / m}$ and column indices $J_{1}, \ldots, J_{n / m}$, defined as in the proof of Theorem 3.2 (see Eq. 6). For a random $(i, j) \in[n / m]^{2}$, it holds that

$$
\begin{equation*}
\underset{i, j}{\mathbf{E}}\left[\operatorname{wt}\left(T^{i, j}\right)\right] \leq t^{3} \cdot \frac{m^{2}}{n^{2}}, \quad \underset{i, j}{\mathbf{E}}\left[\sum_{\ell=1}^{t}\left|X_{\ell} \cap I_{i}\right|\right] \leq t \cdot t \cdot \frac{m}{n}, \quad \underset{i, j}{\mathbf{E}}\left[\sum_{\ell=1}^{t}\left|Y_{\ell} \cap J_{j}\right|\right] \leq t \cdot t \cdot \frac{m}{n} . \tag{7}
\end{equation*}
$$

We say that a submatrix $T^{i, j}$ is good if

$$
\begin{equation*}
\operatorname{wt}\left(T^{i, j}\right) \leq 4 t^{3} \cdot \frac{m^{2}}{n^{2}}, \quad \sum_{\ell=1}^{t}\left|X_{\ell} \cap I_{i}\right| \leq 4 t \cdot t \cdot \frac{m}{n}, \quad \sum_{\ell=1}^{t}\left|Y_{\ell} \cap J_{j}\right| \leq 4 t \cdot t \cdot \frac{m}{n} . \tag{8}
\end{equation*}
$$

Using Markov's inequality, each of the above three events happen with probability at least $3 / 4$. Using union bound (on the complement events) with probability at least $1 / 4$ all events occur simultaneously, making $T^{i, j}$ good.

Next, we count the number of possible good submatrices $T^{i, j}$. Each such submatrix is uniquely determined by the sets $X_{1}^{\prime}, \ldots, X_{t}^{\prime}$ and $Y_{1}^{\prime}, \ldots, Y_{t}^{\prime}$, where $X_{\ell}^{\prime}=X_{\ell} \cap I_{i}$ and $Y_{\ell}^{\prime}=Y_{\ell} \cap J_{j}$. Furthermore, a collection $\left(X_{1}^{\prime}, \ldots ., X_{t}^{\prime}\right)$ such that $\sum_{\ell}\left|X_{\ell}^{\prime}\right| \leq \frac{4 t^{2} m}{n}$ corresponds to a set $X^{\prime} \subseteq I_{i} \times[t]$ of size at most $\frac{4 t^{2} m}{n}$ such that $(p, \ell) \in X^{\prime}$ iff $p \in X_{\ell}^{\prime}$ (and similarly for $\left(Y_{1}^{\prime}, \ldots, Y_{t}^{\prime}\right)$). Hence, the number of possible good submatrices is at most

$$
\left|\left\{X^{\prime} \subseteq I_{i} \times[t]:\left|X^{\prime}\right| \leq \frac{4 t^{2} m}{n}\right\}\right|^{2}=\binom{m t}{\leq 4 t^{2} m / n}^{2} \leq\left((2 m t)^{4 t^{2} m / n}\right)^{2} \leq n^{16 t^{2} m / n}
$$

We say that $S^{i, j}$ is good if $T^{i, j}$ is good, and we say that $A^{i, j}$ is simple if it is the sum of a good $S^{i, j}$ and a matrix of rank at most r. Next, we count the number of possible good submatrices $S^{i, j}$. Since the ones of $S^{i, j}$ are a subset of the ones in $T^{i, j}$, the number of possibilities for $S^{i, j}$ is at most

$$
n^{16 t^{2} m / n} \cdot 2^{\mathrm{wt}\left(T^{i, j}\right)} \leq n^{16 t^{2} m / n} \cdot 2^{4 t^{3} m^{2} / n^{2}} .
$$

Using the bound on the number of possible good submatrices $S^{i, j}$, we may bound the probability that some $A^{i, j}$ is simple:

$$
\begin{align*}
\operatorname{Pr}\left[\exists i, j: A^{i, j} \text { is simple }\right] & \leq \sum_{i, j} \sum_{S^{i, j}, ~} \operatorname{Prood}\left[\operatorname{Prank}\left(A^{i, j}+S^{i, j}\right) \leq m / 2\right] \quad \text { (Union Bound) } \\
& \leq\left(\frac{n}{m}\right)^{2} \cdot n^{16 t^{2} m / n} \cdot 2^{4 t^{3} m^{2} / n^{2}} \cdot 2^{-m k / 16} \tag{Lemma3.1}
\end{align*}
$$

Recall that $m=2 r$ and $k=n / m$ to get

$$
\operatorname{Pr}\left[\exists i, j: A^{i, j} \text { is simple }\right] \leq 2^{2 \log n+32 \log n \cdot t^{2} r / n+16 t^{3} r^{2} / n^{2}-n / 16},
$$

which is $o(1)$ for $t^{3} \leq \frac{n^{3}}{1000 r^{2}}$ and $r \geq \sqrt{n}$.
Generalization to Larger Fields. The choice of field \mathbb{F}_{2} was not crucial in the proofs of Lemma 3.1, Theorem 3.2 and Theorem 3.4. One can syntactically replace the field size 2 by any prime power q, keeping the proofs intact. Furthermore, in Theorem 3.2, we slightly benefit from taking a larger field. For details see Appendix A.1.

4 The Structure of Matrices of Small Bilinear Circuits

In this section we shall further refine the structure of matrices associated with small bilinear circuits, beyond the structure captured by Definition 2.1 and Theorem 2.4. We begin with the structure that arises from depth-2 bilinear circuits, and then continue to the structure arising from general bilinear circuits. Our analysis follows the proof of [GW13, Thm. 4.4], and it can be viewed as relating to finer notions of structured rigidity (than the one of Definition 2.1). We then follow the first part of the proof of Theorem 3.4, and find submatrices with corresponding (rigidity-like) parameters.

4.1 The Structure of Matrices Associated with Depth Two Bilinear Circuits

We say a row/column in a matrix is m-sparse if it contains at most m non-zero entries. Likewise, a linear function $\ell(x)$ (resp. $\left.\ell^{\prime}(y)\right)$ is m-sparse if it depends on at most m entries in x (resp. y). Lastly, recall that by Definition 2.3, $\mathrm{C}_{2}(F)$ is the minimal AN-complexity of a depth-two bilinear circuit computing F.

Proposition 4.1 (Structure of functions computed by depth two bilinear circuits). If $\mathrm{C}_{2}(F)=m$, then F can be expressed as

$$
\sum_{i=1}^{m} L_{i}^{\prime}(x) L_{i}(y)+\sum_{\ell=1}^{m} Q_{\ell}(x, y)
$$

where L_{1}, \ldots, L_{m} are m-sparse linear functions, $L_{1}^{\prime}, \ldots, L_{m}^{\prime}$ are general linear functions, and each Q_{ℓ} is a bilinear function of at most m variables from x and at most m variables from y. The matrix associated with F has the form

$$
\begin{equation*}
A=C L_{\mathrm{row}}+\sum_{\ell=1}^{m} S_{\ell} \tag{9}
\end{equation*}
$$

where C is a general $n \times m$ matrix, $L_{\text {row }}$ is an $m \times n$ matrix with m-sparse rows, and each S_{ℓ} is an $n \times n$ matrix whose ones reside in an $m \times m$ rectangle.

Proposition 4.1 is proved explicitly in the warm-up part of the proof of [GW13, Thm. 4.4].

4.2 The Structure of Matrices Associated with General Bilinear Circuits

Proposition 4.2 (Structure of functions computed by general bilinear circuits). If $\mathrm{C}(F)=m$, then F can be expressed as

$$
\sum_{i=1}^{m} L_{i}(x) L_{i}^{\prime}(y)+\sum_{i=1}^{m} M_{i}^{\prime}(x) M_{i}(y)+\sum_{\ell=1}^{m} Q_{\ell}(x, y)
$$

where L_{1}, \ldots, L_{m} and M_{1}, \ldots, M_{m} are m-sparse linear functions, $L_{1}^{\prime}, \ldots, L_{m}^{\prime}$ and $M_{1}^{\prime}, \ldots, M_{m}^{\prime}$ are general linear functions, and each Q_{ℓ} is a bilinear function of at most m variables from x and at most m variables from y. The matrix associated with F has the form

$$
\begin{equation*}
A=L_{\mathrm{col}} B+C L_{\mathrm{row}}+\sum_{\ell=1}^{m} S_{\ell} \tag{10}
\end{equation*}
$$

where L_{col} is an $n \times m$ matrix with m-sparse columns, B is a general $m \times n$ matrix, C is a general $n \times m$ matrix, L_{row} is an $m \times n$ matrix with m-sparse rows, and each S_{ℓ} is an $n \times n$ matrix whose ones reside in an $m \times m$ rectangle.

Proposition 4.2 is only implicit in the proof of [GW13, Thm. 4.4], and we include its proof in Appendix A.2.

4.3 Substructures

In this subsection, similarly to the first part of the proof of Theorem 3.4, we find a submatrix (of a matrix associated with a bilinear circuit) that has average rigidity-like parameters. Starting with Proposition 4.2, for $\mathrm{C}(F)=m$, we write the matrix A associated with F as $A=L_{\text {col }} B+C L_{\mathrm{row}}+$ $\sum_{\ell=1}^{m} S_{\ell}$ such that the non-zero entries of S_{ℓ} are a subset of $X_{\ell} \times Y_{\ell}$, where $\left|X_{\ell}\right|,\left|Y_{\ell}\right| \leq m$. Denote
by $T=\bigcup_{\ell=1}^{m} X_{\ell} \times Y_{\ell}$, and note that $|T| \leq m^{3}$. Let $I_{1}, \ldots, I_{n / 2 m}$ and $J_{1}, \ldots, J_{n / 2 m}$ be some fixed equipartition of the row indices and column indices of A, respectively, where each I_{i} and J_{j} is of size $2 m$. This partition naturally defines $(n / 2 m)^{2}$ submatrices as follows. For any (i, j) we denote by $A^{i, j}$ (resp. $S_{\ell}^{i, j}$) the matrix A (resp. S_{ℓ}) restricted to rows I_{i} and columns J_{j}. For any i (resp. j) we denote by $L_{\text {col }}^{i}$ and C^{i} (resp. B^{j} and $L_{\text {row }}^{j}$) the matrices $L_{\text {col }}$ and C (resp,. B and $L_{\text {row }}$) restricted to I_{i} (resp. J_{j}). Then, one can write

$$
\begin{equation*}
A^{i, j}=L_{\mathrm{col}}^{i} B^{j}+C^{i} L_{\mathrm{row}}^{j}+\sum_{\ell=1}^{m} S_{\ell}^{i, j} \tag{11}
\end{equation*}
$$

where $S_{\ell}^{i, j} \subseteq T \cap\left(I_{i} \times J_{j}\right)$. Next, we show that there exists a choice of (i, j) with favorable properties (to be exploited in the next section) of the submatrices of $L_{\text {col }}^{i}, L_{\mathrm{row}}^{j}$ and on the subsets $\left\{X_{\ell} \cap I_{i}\right\}_{\ell}$, $\left\{Y_{\ell} \cap J_{j}\right\}_{\ell}$, and $T \cap\left(I_{i} \times J_{j}\right)$.
Proposition 4.3 (Structure of submatrix of matrices associated with small bilinear circuits). There exists an (i,j) such that: (1) $\left|T \cap\left(I_{i} \times J_{j}\right)\right| \leq \frac{24 m^{5}}{n^{2}}$, (2) $\sum_{\ell=1}^{m}\left|X_{\ell} \cap I_{i}\right| \leq \frac{12 m^{3}}{n}$, (3) $\sum_{\ell=1}^{m}\left|Y_{\ell} \cap J_{j}\right| \leq$ $\frac{12 m^{3}}{n}$, (4) wt $\left(L_{\text {col }}^{i}\right) \leq \frac{12 m^{3}}{n}$, and (5) wt $\left(L_{\text {row }}^{j}\right) \leq \frac{12 m^{3}}{n}$.

If $\mathrm{C}_{2}(F)=m$, then the same statement holds, except that we can replace L_{col} and B with the $0^{n \times m}$ and $0^{m \times n}$ matrices, respectively.

Proof. For a uniformly random $(i, j) \in[n / 2 m]^{2}$, it holds that

$$
\begin{aligned}
\underset{i, j}{\mathbf{E}}\left[\left|T \cap\left(I_{i} \times J_{j}\right)\right|\right] & \leq m^{3} \cdot \frac{(2 m)^{2}}{n^{2}} \\
\underset{i, j}{\mathbf{E}}\left[\sum_{\ell=1}^{m}\left|X_{\ell} \cap I_{i}\right|\right] & \leq m \cdot m \cdot \frac{2 m}{n} \\
\underset{i, j}{\mathbf{E}}\left[\sum_{\ell=1}^{m}\left|Y_{\ell} \cap J_{j}\right|\right] & \leq m \cdot m \cdot \frac{2 m}{n} \\
\underset{i, j}{\mathbf{E}}\left[\operatorname{wt}\left(L_{\mathrm{col}}^{i}\right)\right] & \leq m \cdot m \cdot \frac{2 m}{n} \\
\underset{i, j}{\mathbf{E}}\left[\operatorname{wt}\left(L_{\text {row }}^{j}\right)\right] & \leq m \cdot m \cdot \frac{2 m}{n}
\end{aligned}
$$

Using Markov's inequality, each of the following "bad" events occur with probability at most $1 / 6$

$$
\begin{aligned}
\left|T \cap\left(I_{i} \times J_{j}\right)\right| & \geq 6 m^{3} \cdot \frac{(2 m)^{2}}{n^{2}} \\
\sum_{\ell=1}^{m}\left|X_{\ell} \cap I_{i}\right| & \geq 6 m \cdot m \cdot \frac{2 m}{n} \\
\sum_{\ell=1}^{m}\left|Y_{\ell} \cap J_{j}\right| & \geq 6 m \cdot m \cdot \frac{2 m}{n} \\
\operatorname{wt}\left(L_{\text {col }}^{i}\right) & \geq 6 m \cdot m \cdot \frac{2 m}{n} \\
\operatorname{wt}\left(L_{\text {row }}^{j}\right) & \geq 6 m \cdot m \cdot \frac{2 m}{n}
\end{aligned}
$$

By union bound, with probability at least $1-5 / 6$ over the choice of (i, j), none of the "bad" events occur, which completes the proof.

We wish to express the structure captured by Eq. (11) in terms of linear equations on the entries of the matrix $A^{i, j}-\sum_{\ell} S_{\ell}^{i, j}$. To do so we need the following definition.

Definition 4.4 (Orthogonal Complement of a Matrix). Let $m \leq n$. If A is an $n \times m$ matrix, and B is a $(n-m) \times n$ matrix of rank $n-m$ such that $B A=0$ then we say that B is a left orthogonal complement of A. If A is an $m \times n$ matrix, and B is a $n \times(n-m)$ matrix of rank $n-m$ such that $A B=0$ then we say that B is a right orthogonal complement of A.

It is well known that any matrix over a field has an orthogonal complement. Now, suppose that $A^{i, j}-\sum_{\ell} S_{\ell}^{i, j}=L_{\text {col }}^{i} B^{j}+C^{i} L_{\text {row }}^{j}$ (as in Eq. (11)). Let D be an $m \times 2 m$ matrix which is a left orthogonal complement of L_{col}^{i}, and let E be an $2 m \times m$ matrix which is a right orthogonal complement of $L_{\text {row }}^{j}$. Then,

$$
\begin{equation*}
D \cdot\left(A^{i, j}-\sum_{\ell} S_{\ell}^{i, j}\right) \cdot E=0^{m \times m} \tag{12}
\end{equation*}
$$

In the case of depth-2 circuits we have $A^{i, j}-\sum_{\ell} S_{\ell}^{i, j}=C^{i} L_{\text {row }}^{j}$. Using E, the right orthogonal complement of $L_{\text {row }}^{j}$ as above, we can write

$$
\begin{equation*}
\left(A^{i, j}-\sum_{\ell} S_{\ell}^{i, j}\right) \cdot E=0^{2 m \times m} \tag{13}
\end{equation*}
$$

In the next section, we shall design tests based on Equations (12) and (13).
Remark: Note that there are many possible choices of an orthogonal complement of a given matrix. Therefore, we shall refer to the left (right, resp.) orthogonal complement of A as some canonical choice of a left (right, resp.) orthogonal complement of A, say the first such matrix according to lexicographical order (over a finite field \mathbb{F}).

5 Testing AN Complexity and AN2 Complexity

We would like to design a test such that matrices associated with (AN or AN2) complexity at most m will surely pass the test, whereas the matrices we are interested in will fail it. (Since the test is merely a mental experiment, i.e., we do not intend to actually run it, the test could be inefficient.) The point is that any matrix on which the test fails must have complexity greater than m. We will show that a random Toeplitz matrix, as well as a matrix whose entries are sampled from an $2^{-n_{-}}$ biased distribution, will fail the test with overwhelming probability, thus proving complexity lower bounds for such matrices. We will present two tests: One for AN-complexity failing most matrices taken from a small-biased space, and one for AN2-complexity failing most Toeplitz matrices.

5.1 Lower Bounds for the AN-Complexity of Small-Biased Matrices

For $i \in[n / 2 m]$ and $j \in[n / 2 m]$, let^{9}

$$
\begin{align*}
I_{i} & =\{i, i+(n / 2 m), \ldots, i+(2 m-1) \cdot(n / 2 m)\}, \\
J_{j} & =\{(j-1) \cdot(2 m)+1,(j-1) \cdot(2 m)+2, \ldots, j \cdot(2 m)\} . \tag{14}
\end{align*}
$$

[^6]and denote by $A^{i, j}$ the $2 m$-by- $2 m$ sub-matrix of A obtained by restricting A to rows I_{i} and columns J_{j}. Consider the following test, where $A^{i, j}$ is viewed as indexed by $[2 m] \times[2 m]$ rather than by $I_{i} \times J_{j}$.

```
Test 1 AN-Complexity Test
Input: Matrix \(A \in \mathbb{F}_{2}^{n \times n}\) and parameter \(m \in[n]\)
    for \(i=1, \ldots, n / 2 m\) and \(j=1, \ldots, n / 2 m\) do
        for all subsets \(\left\{X_{\ell}^{i}\right\}_{\ell=1}^{m}\) of \([2 m]\) such that \(\sum_{\ell}\left|X_{\ell}^{i}\right| \leq \frac{12 m^{3}}{n}\) do
            for all subsets \(\left\{Y_{\ell}^{j}\right\}_{\ell=1}^{m}\) of \([2 m]\) such that \(\sum_{\ell}\left|Y_{\ell}^{j}\right| \leq \frac{12 m^{3}}{n}\) do
            Let \(T:=\bigcup_{\ell=1}^{m} X_{\ell}^{i} \times Y_{\ell}^{j}\).
            if \(|T| \leq \frac{24 m^{5}}{n^{2}}\) then
                for all matrices \(L_{\text {col }}^{i}\) of dimension \(2 m \times m\) and sparsity at most \(\frac{12 m^{3}}{n}\) do
                    Let \(D\) be the left orthogonal complement of \(L_{\text {col }}^{i}\).
                    for all matrices \(L_{\mathrm{row}}^{j}\) of dimension \(m \times 2 m\) and sparsity at most \(\frac{12 m^{3}}{n}\) do
                        Let \(E\) be the right orthogonal complement of \(L_{\text {row }}^{j}\).
                        if there exists \(N \in \mathbb{F}_{2}^{2 m \times 2 m}\) such that \(N \subseteq T\), and \(D\left(A^{i, j}-N\right) E=0^{m \times m}\) then
                        return "Pass".
    return "Fail".
```

The following is an immediate corollary of Proposition 4.3 and Eq. (12).
Corollary 5.1. Every matrix associated with a bilinear circuit of AN-complexity at most m passes Test 1 with parameter m.

In this subsection we consider a distribution of matrices whose entries are chosen from a small biased sample space. Specifically, we shall use a sample space over strings of length $N=n^{2}$ in order to define n-by- n matrices. We shall show that almost all such matrices fail Test 1 with parameter m. But we need a few preliminaries first.

Preliminaries. Recall the definition of an ε-biased distribution from [NN93].
Definition 5.2 (small-biased distribution). A distribution X over $\{0,1\}^{N}$ is said to be ε-biased if for every non-empty set $S \subseteq[N]$, it holds that

$$
\left|\underset{x \sim X}{\mathbf{E}}\left[(-1)^{\sum_{i \in S} x_{i}}\right]\right| \leq \varepsilon .
$$

We shall use the following property of ε-biased distributions (implicit in [NN93]).
Lemma 5.3 ([AGHP92, Lem. 1]). Let X be an ε-biased distribution over $\{0,1\}^{N}$. Let $\ell_{1}, \ldots, \ell_{t}$ be linearly independent linear functions on x_{1}, \ldots, x_{N}. Then, the probability that all linear functions equal 0 simultaneously is at most $\varepsilon+2^{-t}$.

We shall also use the following simple fact from linear algebra.
Fact 5.4. Let $t, n, m \in \mathbb{N}$ such that $t \leq m \leq n$. Let $\ell_{1}, \ldots, \ell_{t}$ be a sequence of linearly independent linear functions (over \mathbb{F}) on x_{1}, \ldots, x_{n}. Then, $\ell_{1}, \ldots, \ell_{t}$ span at least $t-m$ linearly independent functions that involve only the variables x_{m+1}, \ldots, x_{n}.

Proof. Think of the linear functions as vectors in \mathbb{F}^{n}, and let $V=\operatorname{span}\left\{\ell_{1}, \ldots, \ell_{t}\right\}$. Consider the subspace $U=\operatorname{span}\left\{e_{m+1}, \ldots, e_{n}\right\}$, where $e_{i} \in \mathbb{F}^{n}$ is the unit vector with 1 in the i-th coordinate and 0 elsewhere. Then, $\operatorname{dim}(U \cap V) \geq \operatorname{dim}(U)+\operatorname{dim}(V)-n=(n-m)+t-n=t-m$, whereas $U \cap V$ is the span of $\ell_{1}, \ldots, \ell_{t}$ that is supported only on the last $n-m$ coordinates.

Actual Results. We are now ready to analyze the probability that a matrix sampled from a small biased space passes Test 1. The core of the analysis refers to a single application of Step 10, which refers to a specific choice of $i, j,\left\{X_{\ell}^{i}\right\}_{\ell=1}^{m},\left\{Y_{\ell}^{j}\right\}_{\ell=1}^{m}$ as well as $L_{\text {col }}^{i}, L_{\text {row }}^{j}$ (which in turn, fixes D and E as well).

Lemma 5.5 (core of the analysis of Test 1). Fix $i, j,\left\{X_{\ell}^{i}\right\}_{\ell=1}^{m}$ and $\left\{Y_{\ell}^{j}\right\}_{\ell=1}^{m}$ that pass the check of Step 5, and fix L_{col}^{i} and L_{row}^{j} (which in turn, fixes D and E as well). Then, a matrix A whose entries are sampled from an ε-biased distribution satisfies the condition in Step 10 with probability at most

$$
\varepsilon+2^{-m^{2}+24 m^{5} / n^{2}}
$$

Proof. For a fixed choice of $i, j,\left\{X_{\ell}^{i}\right\}_{\ell=1}^{m},\left\{Y_{\ell}^{j}\right\}_{\ell=1}^{m}, L_{\text {col }}^{i}$ and $L_{\text {row }}^{j}$ as above, we consider a specific submatrix of dimension $2 m \times 2 m$ of A, denoted $A^{2, j}$. Note that the corresponding left (resp. right) orthogonal complement of $L_{\text {col }}^{i}$ (resp. $L_{\text {row }}^{j}$) is a m-by- $2 m$ (resp. $2 m$-by- m) matrix of rank m, denoted by D (resp. E). Recall that $A^{i, j}$ is a submatrix whose entries are sampled according to an ε-biased distribution. Our goal is to show that the equation $D\left(A^{i, j}-N\right) E=0$ (checked in Step 10) implies a lot of linearly independent linear equations on the entries of $A^{i, j}$.

Let Z be a $2 m \times 2 m$ matrix of $(2 m)^{2}$ Boolean variables, where we will later take Z to be $A^{i, j}-N$. Interpret the equations $D Z E=0^{m \times m}$ as m^{2} linear equations on the $(2 m)^{2}$ variables in Z. For $i \in[m]$ and $j \in[m]$, we have an equation of the form $D_{i} Z E^{(j)}=0$, where D_{i} is the i-th row of D and $E^{(j)}$ is the j-th column of E. We can write

$$
D_{i} Z E^{(j)}=\sum_{k=1}^{2 m} \sum_{\ell=1}^{2 m} D_{i, k} Z_{k, \ell} E_{\ell, j}=\sum_{k, \ell}\left(D_{i} \otimes E^{(j)}\right)_{k, \ell} Z_{k, \ell} ;
$$

that is, the coefficients of the equation are the tensor product of the vector D_{i} with the vector $E^{(j)}$. Thinking of these m^{2} linear equations on $(2 m)^{2}$ variables as a big matrix of dimension $m^{2} \times(2 m)^{2}$, we note that this matrix of linear equations is the tensor product of D and E^{\top}, since the (i, j) row equals to $D_{i} \otimes E^{(j)}$ (viewed as a ($\left.2 m\right)^{2}$-bit long vector).

It is a known fact that the rank of the tensor product of any two matrices is the product of their rank; hence, we get $\operatorname{rank}\left(D \otimes E^{\top}\right)=\operatorname{rank}(D) \cdot \operatorname{rank}\left(E^{\top}\right)=m^{2}$. In other words, we have a linearly independent set of m^{2} linear equations on the variables Z. However, we want to get linear equations over the variables of A, where $Z=A-N$. Say that $Z_{k, \ell}$ is a noisy variable if $(k, \ell) \in T$. It will be enough to show that there are many independent linear equations which involve only non-noisy variables of the matrix. Since the number of noisy variables is $|T|$, by Fact 5.4 we can find at least $m^{2}-|T|$ independent linear equations that do not involve noisy variables.

Overall, we got $m^{2}-|T|$ independent linear equations on $A^{i, j}$. By Lemma 5.3, a submatrix $A^{i, j}$ whose entries are sampled according to an ε-biased distribution satisfies all $m^{2}-|T|$ equations with probability at most $\varepsilon+2^{-m^{2}+|T|}$. Lastly, the fact that $\left\{X_{\ell}^{i}\right\}_{\ell=1}^{m}$ and $\left\{Y_{\ell}^{j}\right\}_{\ell=1}^{m}$ passed the check of Step 5 means that $|T| \leq 24 m^{5} / n^{2}$, which finishes the proof.

Theorem 5.6 (Almost all ε-biased matrices have high AN-complexity). A matrix A whose entries are sampled from an ε biased distribution fails Test 1 with parameter m (which implies that the corresponding bilinear function has AN-complexity greater than m), with probability at least

$$
1-\left(\frac{n}{2 m}\right)^{2} \cdot\binom{2 m^{2}}{\leq 12 m^{3} / n}^{4} \cdot\left(\varepsilon+2^{-m^{2}+24 m^{5} / n^{2}}\right)
$$

In particular, for $\varepsilon=2^{-n}$ and $m=\frac{n^{2 / 3}}{10(\log n)^{1 / 3}}$, this probability is at least $1-2^{-n / 2}$, for sufficiently large n.

Proof. We use a union bound over all possible $i, j,\left\{X_{\ell}^{i}\right\}_{\ell=1}^{m},\left\{Y_{\ell}^{j}\right\}_{\ell=1}^{m}, L_{\text {col }}^{i}$ and $L_{\text {row }}^{j}$ that can be selected by the test, and employ Lemma 5.5 for each possibility. The number of options for choosing (i, j) is $(n / 2 m)^{2}$; the number of options for choosing $\left\{X_{\ell}^{i}\right\}_{\ell=1}^{m}$ (resp., $\left.\left\{Y_{\ell}^{j}\right\}_{\ell=1}^{m}\right)$ is at most $\binom{2 m^{2}}{\leq 12 m^{3} / n}$; the number of options for choosing $L_{\text {col }}^{i}$ (resp., $\left.L_{\text {row }}^{j}\right)$ is at most $\binom{2 m^{2}}{\leq 12 m^{3} / n}$.

5.2 Lower Bounds for the AN2-Complexity of Random Toeplitz Matrices

The following is a degenerate version of Test 1. Recall the definition of I_{i} and J_{j} from Eq. (14), and the definition of $A^{i, j}$.

```
Test 2 AN-2-Complexity Test
Input: Matrix \(A \in \mathbb{F}_{2}^{n \times n}\) and parameter \(m \in[n]\)
    for \(i=1, \ldots, n / 2 m\) and \(j=1, \ldots, n / 2 m\) do
        for all subsets \(\left\{X_{\ell}^{i}\right\}_{\ell=1}^{m}\) of \([2 m]\) such that \(\sum_{\ell}\left|X_{\ell}^{i}\right| \leq \frac{12 m^{3}}{n}\) do
            for all subsets \(\left\{Y_{\ell}^{j}\right\}_{\ell=1}^{m}\) of \([2 m]\) such that \(\sum_{\ell}\left|Y_{\ell}^{j}\right| \leq \frac{12 m^{3}}{n}\) do
                Let \(T:=\bigcup_{\ell=1}^{m} X_{\ell}^{i} \times Y_{\ell}^{j}\).
            if \(|T| \leq \frac{24 m^{5}}{n^{2}}\) then
                    for all matrices \(L_{\text {row }}^{j}\) of dimension \(m \times 2 m\) and sparsity at most \(\frac{12 m^{3}}{n}\) do
                    Let \(E\) be the right orthogonal complement of \(L_{\text {row }}^{j}\).
                    if there exists \(N \in \mathbb{F}_{2}^{2 m \times 2 m}\) such that \(N \subseteq T\), and \(\left(A^{i, j}-N\right) E=0^{2 m \times m}\) then
                    return "Pass".
    return "Fail".
```

The following is an immediate corollary of Proposition 4.3 and Eq. (13).
Corollary 5.7. Every matrix associated with a bilinear circuit of AN2-complexity at most m passes Test 2 with parameter m.

Lemma 5.8 (core of the analysis of Test 2). Fix $i, j,\left\{X_{\ell}^{i}\right\}_{\ell=1}^{m}$ and $\left\{Y_{\ell}^{j}\right\}_{\ell=1}^{m}$ that pass the check of Step 5, and fix $L_{\text {row }}^{j}$ (which in turn, fixes E as well). Then, a random Hankel matrix A satisfies the condition in Step 8 with probability at most

$$
2^{-n / 2+6 m^{3} / n}
$$

Proof. For a fixed choice of $i, j,\left\{X_{\ell}^{i}\right\}_{\ell=1}^{m},\left\{Y_{\ell}^{j}\right\}_{\ell=1}^{m}$ and $L_{\text {row }}^{j}$, we consider a specific submatrix of dimension $2 m \times 2 m$ of A, denoted $A^{i, j}$. Note that the corresponding right orthogonal complement of $L_{\text {row }}^{j}$ is a $2 m$-by- m matrix of rank m, denoted by E. By the definition of I_{i} and J_{j} in Eq. (14), $A^{i, j}$ is of the form

$$
\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{2 m} \\
a_{k+1} & a_{k+2} & a_{k+3} & \ldots & a_{k+2 m} \\
\cdots & \ldots & \cdots & \ldots & \cdots \\
a_{(2 m-1) k+1} & a_{(2 m-1) k+2} & a_{(2 m-1) k+3} & \ldots & a_{(2 m-1) k+2 m}
\end{array}\right)
$$

where $k=n /(2 m)$ and $a_{1}, \ldots, a_{(2 m-1) k+2 m}$ are uniform independent random bits. Our goal will be to show that the equation $\left(A^{i, j}-N\right) \cdot E=0^{2 m \times m}$ implies a lot of linearly independent linear equations on the random variables $a_{1}, \ldots, a_{(2 m-1) k+2 m}$.

First think of a generic $2 m \times 2 m$ matrix Z as a matrix of $(2 m)^{2}$ variables, and interpret the equations $Z E=0^{2 m \times m}$ as linear equations on Z. For each row $\ell \in[2 m]$, we have m equations corresponding to $Z_{\ell} E=0^{1 \times m}$, which are linearly independent. Denote by T_{ℓ} the intersection of T with the indices corresponding to the ℓ-th row of the submatrix, i.e. $T_{\ell}=T \cap(\{\ell\} \times[2 m])$. Say that $Z_{\ell, \ell^{\prime}}$ is a noisy variable if $\left(\ell, \ell^{\prime}\right) \in T$. By Fact 5.4 , we can get at least $m-\left|T_{\ell}\right|$ independent linear equations on the ℓ-th row of Z that do not involve noisy variables. Summing over all ℓ 's we have at least $\sum_{\ell=1}^{2 m}\left(m-\left|T_{\ell}\right|\right)=2 m^{2}-|T|$ independent linear equations that do not involve the noisy entries of the matrix, and such that each equation involves only variables from one row of Z. Take $Z=A^{i, j}-N$; since we got equations on Z that do not involve noisy entries, these are actually equations on $A^{i, j}$ as well.

The main difficulty is that we want to exhibit linearly independent linear equations on the variables $a_{1}, \ldots a_{(2 m-1) k+2 m}$, but the equations we got may not be linearly independent once we identify multiple entries in the matrix $A^{i, j}$ with the same variable. ${ }^{10}$ To solve this issue, we shall look for a set of equations which remains linearly independent after this identification. Let $n_{\ell}=m-\left|T_{\ell}\right|$ be number of linearly independent equations we got on the ℓ-th row. Let $s=\left\lceil(2 m)^{2} / n\right\rceil$, and consider all rows starting from some index $r \in[s]$, and taking jumps of s. Then, by the pigeon-hole principle there exists a $r \in[s]$ such that

$$
\sum_{\ell: \ell \equiv r \bmod s} n_{\ell} \geq\left(2 m^{2}-|T|\right) / s
$$

A key point is that by our choice of s, the ℓ-th row and the $(\ell+s)$-th row of $A^{i, j}$ depend on disjoint sets of random variables, since $s \cdot k \geq \frac{(2 m)^{2}}{n} \cdot \frac{n}{2 m}=2 m$. Thus, the sets of variables out of $a_{1}, \ldots, a_{(2 m-1) k+2 m}$ that participate in rows with index in $\{\ell: \ell \equiv r \bmod s\}$ are pairwise disjoint, and the equations we got on these rows are linearly independent as equations over the variables $a_{1}, \ldots, a_{(2 m-1) k+2 m}$. Since we got at least $\left(2 m^{2}-|T|\right) / s$ independent linear equations on completely random bits, all equations hold simultaneously with probability at most $2^{\left(-2 m^{2}+|T|\right) / s}$. The fact that $\left\{X_{\ell}^{i}\right\}_{\ell=1}^{m}$ and $\left\{Y_{\ell}^{j}\right\}_{\ell=1}^{m}$ passed the check in Step 5 means that $|T| \leq 24 m^{5} / n^{2}$, and using $s=2 m^{2} / n$, we get a probability bound of $2^{\left(-2 m^{2}+24 m^{5} / n^{2}\right) \cdot \frac{n}{4 m^{2}}}$, which completes the proof.

Theorem 5.9 (Almost all random Hankel matrices have high AN2-complexity). A random Hankel matrix A fails Test 2 with parameter m (which implies it has direct complexity at least m) with probability at least

$$
1-\left(\frac{n}{2 m}\right)^{2} \cdot\binom{2 m^{2}}{\leq 12 m^{3} / n}^{3} \cdot 2^{-n / 2+6 m^{3} / n}
$$

In particular, for $m=\frac{n^{2 / 3}}{10(\log n)^{1 / 3}}$, this probability is at least $1-2^{-n / 4}$, for large enough n.
Proof. We use a union bound over all the $\left(\frac{n}{2 m}\right)^{2} \cdot\binom{2 m^{2}}{\leq 12 m^{3} / n}^{3}$ possible ways to pick $i, j,\left\{X_{\ell}^{i}\right\}_{\ell=1}^{m},\left\{Y_{\ell}^{j}\right\}_{\ell=1}^{m}$ and $L_{\text {row }}^{j}$, and employ Lemma 5.8 to bound each possibility.

Explicit 3-Linear Functions with $\mathrm{C}_{2}=\tilde{\Omega}\left(n^{2 / 3}\right)$. The following is a corollary of Theorem 5.9.
Corollary 5.10. Let $F:\{0,1\}^{n} \times\{0,1\}^{n} \times\{0,1\}^{2 n} \rightarrow\{0,1\}$ be the trilinear function defined by $F(x, y, z)=\sum_{i=1}^{n} \sum_{j=1}^{n} z_{i+j} x_{i} y_{j}$. Then, $\mathrm{C}_{2}(F)=\Omega\left(n^{2 / 3} / \log ^{1 / 3} n\right)$.

We omit the proof, since it is identical to that of Corollary 3.7.

[^7]
5.3 Explicit 4-Linear Functions with AN-Complexity $\tilde{\Omega}\left(n^{2 / 3}\right)$

We show that based on the ε-biased generator of Mossel, Shpilka and Trevisan [MST06] (described next), the AN-complexity lower bound for the randomized bilinear function in Theorem 5.6 yields a similar lower bound on an explicit 4-linear function.

To describe Mossel et al.'s construction, we begin with some preliminaries. Let N be a natural number, denote by $\mathbb{F}=G F\left(2^{N}\right)$, and suppose we have an explicit representation of \mathbb{F} as the quotient $\mathbb{F}_{2}[x] /(p(x))$ where $p(x)$ is an irreducible polynomial over \mathbb{F}_{2} of degree N. We remark that for $N=2 \cdot 3^{k}$, the polynomial $p(x)$ may be chosen to be $x^{2 \cdot 3^{k}}+x^{3^{k}}+1$ (cf. [LN97, Ex. 3.96]). ${ }^{11}$ Then, $1, x, x^{2}, \ldots, x^{N-1}$ is a basis for $G F\left(2^{N}\right)$ over \mathbb{F}_{2}. The map $\phi: \mathbb{F} \rightarrow \mathbb{F}$ defined by $\phi: z \mapsto z \cdot x$ is a linear transformation over \mathbb{F}_{2}, thus may be represented by a matrix $A \in \mathbb{F}_{2}^{N \times N}$. The Frobenius transformation $\varphi: \mathbb{F} \rightarrow \mathbb{F}$ defined by $\varphi: z \mapsto z^{2}$ is also a linear transformation over \mathbb{F}_{2}, thus may be represented by a matrix $B \in \mathbb{F}_{2}^{N \times N}$. Given the polynomial $p(x)$, the matrix A (resp. B) can be computed in $\operatorname{poly}(N)$ time by writing the images of the basis elements $\phi(1), \phi(x), \ldots, \phi\left(x^{N-1}\right)$ (resp. $\varphi(1), \varphi(x), \ldots, \varphi\left(x^{N-1}\right)$) as polynomials modulo $p(x)$.

The generator of Mossel et al. is given $2 N$ input bits c_{1}, \ldots, c_{N} and d_{1}, \ldots, d_{N}, and outputs $N \cdot n$ bits where $1 \leq n \leq N$, such that each output bit is a bilinear function in $c=\left(c_{1}, \ldots, c_{N}\right)$ and $d=\left(d_{1}, \ldots, d_{N}\right)$. The output of the generator on vectors $c, d \in \mathbb{F}_{2}^{N}$ is the $N \cdot n$ bits $g_{i, j}=c^{\top}\left(A^{i} B^{j}\right) d$ for $i \in\{0, \ldots, N-1\}$ and $j \in\{0, \ldots, n-1\}$. Mossel et al. [MST06] proved that this is an ε-bias generator.

Theorem 5.11 ([MST06, Thm. 6]). The bias of any non-trivial linear combination of the $g_{i, j}$ is at most $2^{-\frac{N-n}{2}}$.

Corollary 5.12. Let $N=2 \cdot 3^{k}$ and let A and B be the explicit matrices as above for the field $G F\left(2^{N}\right)$. Let $n=N / 3$ and let $F:\{0,1\}^{n} \times\{0,1\}^{n} \times\{0,1\}^{N} \times\{0,1\}^{N}$ be the multilinear function defined by $F(a, b, c, d)=\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} a_{i} b_{j} \cdot\left(c^{T} A^{i} B^{j} d\right)$. Then, $\mathrm{C}(F)=\Omega\left(n^{2 / 3} / \log ^{1 / 3} n\right)$.

Proof. For a fixed value of c and d, denote by $F_{c, d}$ the bilinear function defined by $F_{c, d}(a, b)=$ $F(a, b, c, d)$. By Theorem 5.11 for a random c, d the random matrix $F_{c, d}$ is an n-by- n matrix whose entries are drawn from an ε-bias distribution, for $\varepsilon=2^{-(N-n) / 2}=2^{-(3 n-n) / 2}=2^{-n}$. By Theorem 5.6, this means that there exists a choice for c and d under which $F_{c, d}$ satisfies $\mathrm{C}\left(F_{c, d}\right) \geq \Omega\left(n^{2 / 3} / \log ^{1 / 3} n\right)$, for a large enough n (in fact, at least $1-2^{-n / 2}$ fraction of the choices have this property). By the fact that the AN-complexity of F is at least as large as the ANcomplexity of $F_{c, d}$ (see the proof of Corollary 3.7), we get $\mathrm{C}(F) \geq \Omega\left(n^{3 / 2} / \log ^{1 / 3} n\right)$.

6 Digest and Open Problems

6.1 Digest

It is well known that random matrices have high rank; specifically, a random m-by- m has rank at least $m / 2$ with probability at least $1-\exp \left(-\Omega\left(m^{2}\right)\right)$. Our basic strategy is to obtain similar bounds for pseudorandom matrices, where the bound is "similar" in the sense that it is exponentially (in the randomness complexity) close to 1 . We restrict ourselves to randomness complexity $O(n)$, since we aim at replacing the random bits by auxiliary inputs, making the construction explicit (to ensure multilinearity, we also use the fact that the sampled matrix is multilinear in the randomness). This means that we can afford a union bound over $\exp (n)$-many events.

[^8]The first instantiation of our strategy appears in the proof of Theorem 3.2, where we handle random Toeplitz matrices. Firstly, we consider a partition of the random n-by- n matrix into m-bym matrices such that each submatrix depends on $\Theta(n)$ random bits. Next, using Lemma 3.1 and a union bound over all m-by- m matrices that are s^{\prime}-sparse, we prove that (with high probability) all submatrices have rigidity $s^{\prime}=\Omega(n / \log n)$ for rank $m / 2$. It follows that a random Toeplitz matrix has rigidity $(n / m)^{2} \cdot s^{\prime}=\widetilde{\Omega}\left(n^{3} / m^{2}\right)$ for rank $m / 2$, which yields new results for any $m \in\left[n^{0.51}, n^{0.99}\right]$. A slightly better result is obtained for structured rigidity, since in this case we may consider slightly less sparse matrices.

A more radical saving appears in Section 5, where the structured rigidity is exploited much further. Here we are considering a number of bad events that exceeds $\exp (O(n))$, whereas our randomness complexity is still $O(n)$. This is done by "covering" these bad events by a "net" of $\exp (n)$ bad super-events and taking a union bound on the latter (partially explicitly and partially implicitly). Firstly, since we start with restricted notions of structured rigidity (which suffice for our application), we can upper bound the number of linear dependencies (in the $2 m$-by- $2 m$ submatrix) by $\exp (n)$ (rather than by $\exp \left(m^{2}\right)$). Secondly, relying on structured rigidity, we cover all relevant $s^{\prime \prime}$-sparse $2 m$-by- $2 m$ matrices by $\exp (n)$ such matrices, where $s^{\prime \prime}=m^{2} / \operatorname{poly} \log (n)$ and T covers S if the non-zero entries of S are a subset of the non-zero entries of T. Finally, rather than considering the probability that some m^{2} linear equations involving the elements of $R+S$ hold, where R is a pseudorandom matrix and S is a fixed matrix, we consider all matrices covered by some matrix T simultaneously. We do so by considering the probability that some $m^{2}-s^{\prime \prime}$ related linear equations involving only the elements of R hold, where the latter equations are obtained by eliminating the variables corresponding to non-zero entries of T from the former equations. We stress that the final step accounts for more than $2^{s^{\prime \prime}}$ sparse matrices, whereas the amount of randomness is $O(n) \ll s^{\prime \prime}$.

6.2 Open Problems

Our work brings up a lot of natural open problems; some of which are stated next. We state all problems in the affirmative, although we actually do not know whether or not they can be resolved in that direction.

Random Toeplitz matrices. While Theorem 1.5 provides an almost tight lower bound on the AN2-complexity of the corresponding bilinear functions, their AN-complexity remains undetermined: Theorem 1.3 asserts a $\Omega\left(n^{0.6}\right)$ lower bound, whereas [GW13, Thm. 3.1] states an $O\left(n^{2 / 3}\right)$ upper bound.

Open Problem 6.1 (tight AN-complexity lower bound for random Toeplitz matrices). Prove that, with high probability, bilinear functions that correspond to random Toeplitz matrices have AN-complexity $\Omega\left(n^{2 / 3}\right)$.

The above would be resolved by proving the following rigidity bound ${ }^{12}$
Open Problem 6.2 (rigidity of random Toeplitz matrices). Prove that, with high probability, random Toeplitz matrices have rigidity $\Omega\left(n^{2}\right)$ for rank $\Omega\left(n^{2 / 3}\right)$.

A similar challenge holds with respect to matrices sampled from an 2^{-n}-biased distribution. In fact, it may be easier to settle the following -

[^9]Open Problem 6.3 (rigidity of small-biased distribution of matrices). Prove that, with high probability, a matrix sampled from an 2^{-n}-biased sample space has rigidity $\Omega\left(n^{2}\right)$ for rank $\Omega\left(n^{2 / 3}\right)$.

Recall that the proof of Theorem 1.6 establishes an almost tight lower bound on the ANcomplexity of the corresponding bilinear functions, but this is done via a much more restricted notion of rigidity. We also mention that it is easy to prove that these matrices have rigidity $\widetilde{\Omega}\left(n^{3} / r^{2}\right)$ for rank $r \in[\sqrt{n}, n / 32]$ (by degenerating the proof of Theorem 3.2). ${ }^{13}$

Explicit matrices and bilinear functions. Our lower bounds refer to distributions over n-by- n matrices that are generated using $O(n)$ random bits, and we obtain explicit multilinear functions by using these random bits as auxiliary variables (hence these functions are trilinear or four-linear, depending on the way the distribution is generated). The begging challenges are to get rid of the randomness.

Open Problem 6.4 (AN-complexity lower bound for explicit bilinear function). For any $\alpha \in$ ($0.5,2 / 3]$, present an explicit bilinear function that has $A N$-complexity $\Omega\left(n^{\alpha}\right)$.

Needless to say, the larger α, the better. Even an AN2-complexity lower bound would be welcome. Problem 6.4 would be resolved by proving the following rigidity bound

Open Problem 6.5 (rigidity of some explicit matrices). For any $\alpha \in(0.5,2 / 3]$, present an explicit matrix that has rigidity $\Omega\left(n^{3 \alpha}\right)$ for rank $\Omega\left(n^{\alpha}\right)$.

As noted in Section 1.1, this rigidity challenge refers to a range of parameters that differs from the standard one.

Higher AN-complexity lower bounds. Theorem 1.6 provides an AN-complexity lower bound of $\Omega\left(n^{2 / 3} /(\log n)^{1 / 3}\right)$ for some explicit 4-linear function. This is not necessarily tight, since by [GW13, Thm. 3.1] any t-linear function has AN2-complexity $O\left((t n)^{t /(t+1)}\right)$. More importantly, we wish to surpass the aforementioned lower bound.

Open Problem 6.6 (AN-complexity lower bounds for explicit multilinear functions). For any $\alpha \in(2 / 3,1)$, present an explicit $O(1)$-linear function that has $A N$-complexity $\Omega\left(n^{\alpha}\right)$.

By the strategy outlined in Section 5.3, it suffices to meet this challenge with a random tensor of constant dimension sampled using $O(n)$ random bits, provided that its entries may be expressed as $O(1)$-linear functions in the random bits. Here too, even an AN2-complexity lower bound would be welcome.

[^10]
References

[AGHP92] N. Alon, O. Goldreich, J. Håstad, and R. Peralta. Simple construction of almost k-wise independent random variables. Random Structures and Algorithms, 3(3):289-304, 1992.
[And87] A. E. Andreev. On a method for obtaining more than quadratic effective lower bounds for the complexity of π-schemes. Moscow Univ. Math. Bull., 42:63-66, 1987. In Russian.
[Gol08] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University Press, 2008.
[GW13] O. Goldreich and A. Wigderson. On the size of depth-three boolean circuits for computing multilinear functions. Electronic Colloquium on Computational Complexity (ECCC), 20:43, 2013.
[Hås86] J. Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th Annual STOC, pages 6-20, 1986.
[KKS15] S. Kopparty, M. Kumar, and M. Saks. Efficient indexing of necklaces and irreducible polynomials over finite fields. Electronic Colloquium on Computational Complexity (ECCC), 22:47, 2015.
[LN97] R. Lidl and H. Niederreiter. Finite Fields, volume 20 of Encyclopedia of mathematics and its applications. Cambridge University Press, 2nd edition, 1997.
[Lok09] S. V. Lokam. Complexity lower bounds using linear algebra. Foundations and Trends in Theoretical Computer Science, 4(1-2):1-155, 2009.
[MST06] E. Mossel, A. Shpilka, and L. Trevisan. On epsilon-biased generators in NC ${ }^{0}$. Random Structures and Algorithms, 29(1):56-81, 2006.
[NN93] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications. SIAM J. on Computing, 22(4):838-856, 1993.
[Val77] L. G. Valiant. Graph-theoretic arguments in low-level complexity. In Lecture notes in Computer Science, volume 53, pages 162-176. Springer, 1977.

Appendices

A. 1 Generalization to Larger Fields

As stated in Section 3, the choice of field \mathbb{F}_{2} was not crucial in the proofs of Lemma 3.1, Theorem 3.2 and Theorem 3.4. One can syntactically replace the field size 2 by any prime power q, keeping the proofs intact. Furthermore, in Theorem 3.2, we slightly benefit from taking a larger field. We state the generalized theorems and point to the improvements over Theorem 3.2.

Lemma A. 1 (Main Lemma for \mathbb{F}_{q}). Let $m, k \in \mathbb{N}, 16 \leq k \leq m$. Let $A \in \mathbb{F}_{q}^{m \times m}$ be the random matrix

$$
\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{m} \\
a_{k+1} & a_{k+2} & a_{k+3} & \ldots & a_{k+m} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{(m-1) k+1} & a_{(m-1) k+2} & a_{(m-1) k+3} & \ldots & a_{(m-1) k+m}
\end{array}\right)
$$

where $a_{1}, \ldots, a_{(m-1) k+m}$ are uniform scalars from \mathbb{F}_{q}, and let $S \in \mathbb{F}_{q}^{m \times m}$ be some fixed matrix. Then, $\operatorname{Pr}_{A}[\operatorname{rank}(S+A) \leq m / 2] \leq q^{-k m / 16}$.

The proof of Lemma A. 1 is identical to the original proof of Lemma 3.1, replacing 2 with q.
Theorem A. 2 (random Hankel matrices over \mathbb{F}_{q} are rigid). Let $A \in \mathbb{F}_{q}^{n \times n}$ be a random Hankel matrix $A_{i, j}=a_{i+j}$ where $a_{2}, \ldots, a_{2 n}$ are uniform independent scalars from \mathbb{F}_{q}. Then, for every $\sqrt{n} \leq r \leq n / 32$, with probability $1-o(1)$, the matrix A has rigidity $\frac{n^{3}}{80 r^{2} \log _{q}\left(q n^{2}\right)}$ for rank r. In particular, if $q \geq n^{\Omega(1)}$, then we get rigidity $\Omega\left(\frac{n^{3}}{r^{2}}\right)$ for rank r.

Proof. We highlight the difference from the proof of Theorem 3.2. When considering the probability that A is simple we can write

$$
\begin{align*}
\operatorname{Pr}\left[\exists i, j: A^{i, j} \text { is simple }\right] & \leq \sum_{i, j} \operatorname{Pr}\left[A^{i, j} \text { is simple }\right] \tag{UnionBound}\\
& \leq \sum_{i, j} \sum_{\substack{S \in \mathbb{F}_{g}^{m \times m} ; \\
\mathrm{wt}(S) \leq s^{\prime}}} \operatorname{Pr}\left[\operatorname{rank}\left(A^{i, j}+S\right) \leq m / 2\right] \quad \text { (Union Bound) } \\
& \leq\left(\frac{n}{m}\right)^{2} \cdot\binom{m^{2}}{s^{\prime}} \cdot q^{s^{\prime}} \cdot q^{-m k / 16} \tag{LemmaA.1}\\
& <n^{2} \cdot\left(m^{2} q\right)^{s^{\prime}} \cdot q^{-n / 16}
\end{align*} \text { (Union Bound) }
$$

Using $s^{\prime} \leq \frac{n}{20 \log _{q}\left(q m^{2}\right)}$, which follows from $s \leq \frac{n^{3}}{80 r^{2} \log _{q}\left(q n^{2}\right)}$, we get $\operatorname{Pr}\left[\exists i, j: A^{i, j}\right.$ is simple $]=o(1)$, which completes the proof.

Theorem A. 3 (random Hankel matrices over \mathbb{F}_{q} are structured rigid). Let $A \in \mathbb{F}_{q}^{n \times n}$ be a random Hankel matrix. Then, for every $\sqrt{n} \leq r \leq n / 32$ and $s \leq n^{3} / 1000 r^{2}$, with probability $1-o(1)$, the matrix A has structured rigidity s for rank r.

The proof of Theorem A. 3 is identical to the original proof of Theorem 3.4, replacing 2 with q.

A. 2 The Structure of Matrices Associated with General Bilinear Circuits

The following proof is essentially given in [GW13, Thm. 4.4], although the result is not spelled out. We give it here for completeness.

Proposition A. 4 (Proposition 4.2, restated). If $\mathrm{C}(F)=m$, then F can be expressed as

$$
\begin{equation*}
\sum_{i=1}^{m} L_{i}(x) L_{i}^{\prime}(y)+\sum_{i=1}^{m} M_{i}^{\prime}(x) M_{i}(y)+\sum_{\ell=1}^{m} Q_{\ell}(x, y) \tag{15}
\end{equation*}
$$

where L_{1}, \ldots, L_{m} and M_{1}, \ldots, M_{m} are m-sparse linear functions, $L_{1}^{\prime}, \ldots, L_{m}^{\prime}$ and $M_{1}^{\prime}, \ldots, M_{m}$ are general linear functions, and each Q_{ℓ} is a bilinear function of at most m variables from x and at most m variables from y. The matrix associated with F has the form

$$
\begin{equation*}
A=L_{\mathrm{col}} B+C L_{\mathrm{row}}+\sum_{\ell=1}^{m} S_{\ell} \tag{16}
\end{equation*}
$$

where L_{col} is an $n \times m$ matrix with m-sparse columns, B is a general $m \times n$ matrix, C is a general $n \times m$ matrix, L_{row} is an $m \times n$ matrix with m-sparse rows, and each S_{ℓ} is an $n \times n$ matrix whose ones reside in an $m \times m$ rectangle.

Proof. We are given a multilinear circuit computing F of AN-complexity m, and we wish to show that we can write F as in Eq. (15). The deduction of Eq. (16) from Eq. (15) is obvious.

We perform simplification rules on the circuit. Let $\mathcal{F}_{1}, \ldots, \mathcal{F}_{m}$ denote the gates of the circuits, where \mathcal{F}_{m} is the output gate. For any $i<m$, if \mathcal{F}_{j} appears as a free term in \mathcal{F}_{i} (i.e., the i-th gate adds \mathcal{F}_{j} to its output), then we can "delay" this addition by feeding \mathcal{F}_{j} to the gates that are fed by \mathcal{F}_{i}, and performing the addition there. If \mathcal{F}_{j} was only added to \mathcal{F}_{i} we omit \mathcal{F}_{j} from \mathcal{F}_{i} (i.e., omit the edge feeding \mathcal{F}_{j} into the i-th gate). ${ }^{14}$ We repeat this simplification rule until one cannot perform it anymore. Since the circuit is a directed acyclic graph, the process will stop. Call a gate an x-gate (resp. y-gate) if there are directed paths only from the x variables (resp. y variables) to this gate, and call it an $x y$-gate if there are paths both from x and from y. Recall that by multilinearity (Definition 2.2) an x-gate (resp. y-gate) cannot be multiplied by another x-gate (resp. y-gate), and an $x y$-gate cannot be multiplied at all. We observe that after the transformation the circuit is of height at most 3 (where the height of a gate is the longest path from an input variable to it). This is shown as follows.

- Next to the inputs (i.e., at height 1) we have either x-gates (resp. y-gates) computing linear functions in x (resp. y) on m variables, or $x y$-gates computing a bilinear function on m variables from both x and y.
- For $i<m$, if \mathcal{F}_{i} is at height 2 , then it must be an $x y$-gate, since by the simplification rules it must multiply two of its inputs, and these inputs must come from different blocks of variables.
- By the same reasoning, if \mathcal{F}_{i} is of height 3 , then it must be the output gate (i.e., $i=m$), since otherwise it must be fed by an $x y$-gate of height 2 , which cannot be added nor multiplied.

[^11]We shall express the functions computed by gates at heights 1,2 , and finally by the output gate.
Height-1 Gates: Denote by L_{1}, \ldots, L_{k} (resp., $M_{1}, \ldots, M_{k^{\prime}}$) the linear functions computed by x-gates (resp. y-gates) at height 1 . Denote by $Q_{i}(x, y)$ the bilinear function computed by an $x y$-gate \mathcal{F}_{i} at height 1 . Each of L_{i}, M_{i} and Q_{i} computes a function that depends on at most m variables from x and at most m variables from y.

Height-2 Gates: Each $x y$-gate \mathcal{F}_{i} (which is not the output gate) at height 2 is fed with x-gates, y-gates and variables (we may assume that it is not fed by $x y$-gates by the simplification rule). It computes a sum of products of terms in x and terms in y; we break these products according to whether or not each term is a gate or an input variable. For any linear function $L_{j}(x)$, we gather all linear functions in y and all variables in y that are multiplied by L_{j} in the computation of gate \mathcal{F}_{i}; this gives a general (not necessarily sparse) linear function in y, denoted $L_{i, j}(y)$. For any linear function $M_{j}(y)$, we gather all variables from x that are multiplied by M_{j} to get a linear function in x, denoted by $M_{i, j}(x)$. Letting $Q_{i}(x, y)$ be the bilinear function with all variable by variable products, we get

$$
\begin{equation*}
\mathcal{F}_{i}(x, y)=\sum_{j=1}^{k} L_{j}(x) L_{i, j}(y)+\sum_{j=1}^{k^{\prime}} M_{i, j}(x) M_{j}(y)+Q_{i}(x, y), \tag{17}
\end{equation*}
$$

where Q_{i} depends on at most m variables from x and at most m variables from y.
Output Gate: If the output gate is at height 2 , then we are done. Otherwise, we may assume that the output gate is only fed by $x y$-gates, since if it is fed by some other gates (or variables) then their contribution (multiplied by other gates or variables) can be computed by an auxiliary $x y$-gate (of height 2) that feeds the output gate. Hence, the output gate computes the sum of at most m gates, each of which computes a bilinear function as in Eq. (17), where this also covers $x y$-gates of height 1 (since they also compute a function of this very form). Overall, we get that

$$
\begin{aligned}
F(x, y) & =\sum_{i=1}^{m}\left(\sum_{j=1}^{k} L_{j}(x) L_{i, j}(y)+\sum_{j=1}^{k^{\prime}} M_{i, j}(x) M_{j}(y)+Q_{i}(x, y)\right) \\
& =\sum_{j=1}^{k} L_{j}(x) \cdot\left(\sum_{i=1}^{m} L_{i, j}(y)\right)+\sum_{j=1}^{k^{\prime}}\left(\sum_{i=1}^{m} M_{i, j}(x)\right) \cdot M_{j}(y)+\sum_{i=1}^{m} Q_{i}(x, y)
\end{aligned}
$$

Letting $L_{j}^{\prime}(y)=\sum_{i=1}^{m} L_{i, j}(y)$ and $M_{j}^{\prime}(x)=\sum_{i=1}^{m} M_{i, j}(x)$, we get

$$
F(x, y)=\sum_{j=1}^{k} L_{j}(x) L_{j}^{\prime}(y)+\sum_{j=1}^{k^{\prime}} M_{j}^{\prime}(x) M_{j}(y)+\sum_{i=1}^{m} Q_{i}(x, y)
$$

where the L_{j} 's are m-sparse linear functions in x, the L_{j}^{\prime} 's are general linear functions in y, the $M_{j}^{\prime \prime}$'s are general linear functions in x, the M_{j} 's are m-sparse linear functions in y, and each Q_{i} is a bilinear function that depends on at most m variables in x and y.

[^0]: *Weizmann Institute of Science, Rehovot, IsraEl. oded.goldreich@weizmann.ac.il. Partially supported by the Minerva Foundation with funds from the Federal German Ministry for Education and Research.
 ${ }^{\dagger}$ Weizmann Institute of Science, Rehovot, IsRAEL. avishay.tal@weizmann.ac.il. Supported by an Adams Fellowship of the Israel Academy of Sciences and Humanities, by an ISF grant and by the I-CORE Program of the Planning and Budgeting Committee.

[^1]: ${ }^{1}$ For an infinite $I \subseteq \mathbb{N}$, the sequence of matrices, $\left\{A_{n}\right\}_{n \in I}$ such that A_{n} is an $n \times n$ matrix, is called explicit if there exists a $\operatorname{poly}(n)$-time algorithm that on input $n \in I$ outputs the matrix A_{n} (and outputs \perp if $n \notin I$).
 ${ }^{2}$ Recall that a Toeplitz matrix $T=\left(T_{i, j}\right)$ has constant diagonals (i.e., $T_{i, j}=T_{i+1, j+1}$ for every $\left.i, j\right)$. Hankel matrices are obtained by turning Toeplitz matrices upside down; that is, a Hankel matrix $H=\left(H_{i, j}\right)$ has constant skew-diagonals (i.e., $H_{i, j}=H_{i+1, j-1}$ for every i, j). Hence, any claim regarding one family translates to an equivalent claim regarding the other family.

[^2]: ${ }^{3}$ That is, circuits of unbounded fan-in OR and AND gates with leaves that are variables or their negations.
 ${ }^{4}$ where AN stands for Arity and Number of gates.
 ${ }^{5}$ Indeed, this suggestion presumes that there exist $O(1)$-linear functions that require depth-three Boolean circuits of size $\exp (\omega(\sqrt{n}))$, which is also an open problem suggested in [GW13].

[^3]: ${ }^{6}$ For structured rigidity, we use [GW13, Thm. 4.10].

[^4]: ${ }^{7}$ One can construct such a set greedily: choose the minimal index j in J, remove all indices in $J \cap[j, j+\Delta-1]$. Repeat until J is empty.

[^5]: ${ }^{8}$ Alternatively, conditioned on $a_{1}, \ldots, a_{(j-1) k}$ and the choice of the linear combination, there exist exactly one choice for $a_{(j-1) k+1}, \ldots, a_{(j-1) k+m}$ that satisfies Eq. (5).

[^6]: ${ }^{9}$ The specific choice for I_{i} and J_{j} is not crucial for our argument in this subsection, however it will be important in the next subsection. Hence, since we need to pick some partition, we might as well choose this one.

[^7]: ${ }^{10}$ In fact, we cannot expect this set of equations to be linearly independent simply because there are too many equations (i.e., more equations than variables).

[^8]: ${ }^{11}$ For general N, it is not known how to find such a polynomial $p(x)$ without advice or randomness [KKS15].

[^9]: ${ }^{12}$ Indeed, a bound on structured rigidity (or even on the restricted notions of structured rigidity considered in Section 4) would suffice.

[^10]: ${ }^{13}$ Specifically, Lemma 3.1 can be replaced by a simpler proof that refers to an m-by- m submatrix whose entries are taken from an 2^{-n}-biased distribution over $\{0,1\}^{m^{2}}$. In this case, it is easy to bound the probability that the submatrix has rank at most $r=m / 2 \leq m-(n / m)$ by $\binom{m}{r} \cdot\left(2^{r}\right)^{n / m} \cdot\left(2^{-(n / m) \cdot m}+2^{-n}\right)$, where the bound holds by considering n / m rows that depend on at most r other rows (which cover the row basis). Using $r=m / 2$, we get a probability bound of $2^{m} \cdot 2^{n / 2} \cdot 2^{-n+1}$. For the rest of the proof, one may select an arbitrary partition of the n-by- n matrix to m-by- m submatrices, since any such partition will yield submatrices as above.

[^11]: ${ }^{14}$ The condition account for the case that \mathcal{F}_{i} does not compute a homogeneous polynomial. In that case it is possible that the value of \mathcal{F}_{j} appears in the output of \mathcal{F}_{i} both as a free term and as a factor in a product with some other gate or variables (e.g., $\left.\mathcal{F}_{2}(x, y)=x_{7} \cdot \mathcal{F}_{1}(y)+x_{2} y_{3}+\mathcal{F}_{1}(y)\right)$.

