
Succinct Encodings of Graph Isomorphism

Bireswar Das∗1, Patrick Scharpfenecker†2, and Jacobo Torán‡2

1Indian Institute of Technology Gandhinagar, India
2University of Ulm, Institute of Theoretical Computer Science,

Ulm, Germany

June 16, 2015

Abstract

It is well known that problems encoded with circuits or formulas gen-
erally gain an exponential complexity blow-up compared to their original
complexity.

We introduce a new way for encoding graph problems, based on CNF
or DNF formulas. We show that contrary to the other existing succinct
models, there are examples of problems whose complexity does not in-
crease when encoded in the new form, or increases to an intermediate
complexity class less powerful than the exponential blow up.

We also study the complexity of the succinct versions of the Graph Iso-
morphism problem. We show that all the versions are hard for PSPACE.
Although the exact complexity of these problems is still unknown, we
show that under most existing succinct models the different versions of
the problem are equivalent. We also give an algorithm for the DNF en-
coded version of GI whose running time depends only on the size of the
succinct representation.

1 Introduction

In many applications, like VLSI design or computer aided verification, graphs
and other combinatorial structures present many regularities allowing to encode
them in a compact way, much more succinctly than for example the usual ad-
jacency matrices or lists. Galperin and Wigderson [9] studied for the first time
the complexity of several graph decision problems when the adjacency relation
is presented as a Boolean circuit. The hope was that the succinctly encoded
instances contain enough structure to make the considered problem easier to
solve. They observed however an exponential blow-up in the complexity of these
problems, showing that the regularities that allow a succinct representation, do
not really help in order to solve the problem. Several extensions to this work
[12, 2, 16, 17] showed that the exponential complexity blow-up is the general

∗bireswar@iitgn.ac.in
†patrick.scharpfenecker@uni-ulm.de, Supported by DFG grant TO 200/3-1.
‡jacobo.toran@uni-ulm.de

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 100 (2015)

behavior, by proving upgrading theorems for several reducibilities: if a problem
is complete with respect to certain low level reducibility for a complexity class,
then the succinct version of the problem with its instances encoded as a Boolean
circuit is complete for the corresponding exponentially higher class, with respect
to polynomial time reducibilities. Other extensions of the original work concen-
trated in more restricted encodings of the input instances, like Boolean formulas
[16] or ordered binary decision diagrams (OBDDs) [5],[17]. Even if these repre-
sentation models are more restricted than the Boolean circuits, in these works
the same exponential blow-up in the complexity of the succinct version of the
problem is shown.

Very recently, the class of NC0 circuits was considered as a succinct model
for encoding problem instances. In [10] the authors prove a blow-up result for
the complexity of the Satisfiability problem encoded this way.

We introduce here the use of Boolean formulas in conjunctive (CNF) or dis-
junctive normal form (DNF) in order to encode graphs. This is a considerable
restriction with respect to the model based on general Boolean formulas from
Veith [17]. The size of these representations is closely related to the bi-clique
decomposition of the graphs [6]. We show that in this limited model an upgrade
theorem is not possible since there are examples of problems whose complexity
does not increase when the input graphs are given in the form of a DNF for-
mula, while it presents an exponential blow-up when the dual representation is
considered. In other cases, the complexity of the succinct version of the problem
is neither that of the original problem nor exponentially higher. For example
the Dominating Set problem becomes PP-complete when the input graphs are
encoded as a DNF formula and it becomes complete for NEXP when a CNF
formula is considered, while the connectivity problem for directed graphs re-
mains NL complete with a DNF encoding and becomes complete for PSPACE
with a CNF encoding. We present several other examples in Section 3. This is a
new phenomenon in the area of succinct representations, since in all the existing
models and examples the complexity of the problem blows up exponentially in
the succinct version.

The graph isomorphism problem, GI, asks whether there is a bijection be-
tween the nodes of two given graphs preserving the adjacency relationship. The
problem has been extensively studied (see e.g [11]) because of its graph theo-
retic importance, but also because it is one of the few problems in NP whose
exact complexity is unknown: the problem is not known to be solvable in poly-
nomial time but also it is not expected to be NP-complete. We study here
the complexity of the succinct version of this problem considering several in-
put representations. The motivation for this is twofold. On the one hand the
complexity of the succinct version of GI might shed some light to the complex-
ity of the standard version of the problem. On the other hand, algorithms for
succinct GI that go beyond the trivial decoding of the graph and then the ap-
plication of an algorithm for the standard problem to it, would be very useful
in areas like computer aided verification. Concerning the first goal, since in all
the considered models the graph encoded in the input is at most exponentially
larger that the input itself, the succinct version of GI is in NEXP. We obtain in
Section 6 for all the succinct encoding methods discussed here a hardness result
for succinct-GI for the class PSPACE. This is done with the help of the existing
upgrade theorems and the hardness results for the standard version of GI.

Although the exact complexity of the succinct versions of GI is still unknown,

2

we prove that in most of the encoding models there is no difference in the
complexity of the succinct problem. We show that cir(GI), cnf(GI) and dnf(GI)
are equally powerful by giving polynomial time reductions between all these
problems. Additionally, we reduce obdd(GI) to dnf(GI). This contrasts with
the computational power of the models, since it is well known that OBDDs and
formulas can be exponentially larger than Boolean circuits computing certain
functions, and that CNF formulas and OBDD’s cannot simulate each other
without superpolynomially increasing their size.

Concerning the second point in the motivation, we give an algorithm for
cnf(GI) (or for dnf(GI)) whose complexity depends solely on the size of the en-
coding formulas. Based on kernelization methods from the area of parametrized
algorithms [6], we present an algorithm that on input two CNF formulas F1 and
F2 with 2n variables each and at most s clauses, encoding graphs of size 2n,

decides whether the encoded graphs are isomorphic in time O(2
√
s2O(s)

). This
presents an improvement over the straightforward method decoding the graphs
and then applying the fastest known isomorphism algorithm to them, in the
cases in which s is smaller than n.

The rest of this paper is organized as follows: after a preliminary section
explaining our notation and basic definitions, we introduce in Section 3 the CNF
and DNF succinct encodings and show some examples on how the complexity
of the succinct versions can vary. Section 4 shows the equivalence for encodings
in case of the GI problem. Based on these results, we present in Section 5 an
algorithm for graphs encoded with DNF formulas. Finally, we show in Section
6, that all the considered succinct versions of GI, obdd(GI), cnf(GI), dnf(GI)
and cir(GI) are hard for PSPACE.

2 Preliminaries

We refer the reader to standard textbooks for basic definitions and notation in
complexity theory including complexity classes, reductions and graphs. Building
on that, we present some further definitions.
≤p

m denotes the polynomial time many-one reduction. With ≤LT
m , we denote

a many-one reduction defined by a function f so that computing the i-th bit
of f(x) (denoted by f(x)i) can be done in logarithmic time in |x|. For this we
consider a machine model with direct access to the input. This kind of machine
has a special query tape, which on input a position, outputs the bit written
in the corresponding input position. This is a very weak type of reduction
since it has very limited access to the input x [2]. ≤qfr denotes the quantifier
free reduction. We include the basic definitions in descriptive complexity and
Finite Model Theory (see for example [17] and [3]) needed to understand this
reduction.

Let τ = (R1, . . . , Rs, c1, . . . , ct) be a vocabulary representing for all i, j, Ri

ai-ary relations and constants cj . Then A with a universe U of elements is a
finite structure of τ if it consists of instantiations RA

i ⊆ Uai and cj ∈ U for
all Ri and cj in τ . Let struct(τ) be the set of all finite τ -structures. We call
C ⊆ struct(τ) a class and associate with it the decision problem: given x, is
x ∈ C?

For example, if τ = (E, s, t) with arity 2 for E, constants s and t as well as
U = [n], then struct(τ) is the set of all n-node graphs with two distinguished

3

nodes s and t. Then STCONN is the class of all graphs G with nodes s and t
for which there is a path in G from s to t.

Now an interpretation I of struct(τ) into struct(σ) for given vocabular-
ies τ = (R1, . . . , Rs, c1, . . . , ct) and σ = (S1, . . . , Su, d1, . . . , dv) is a tuple of
first-order formulas I = (φ, φ1, . . . φu, χ1, . . . , χv) with dimension k ∈ N such
that given A ∈ struct(τ) and B ∈ struct(σ), I(A) ∈ struct(σ) with UB =
{(a1, . . . , ak) ∈ (UA)k|(a1, . . . , ak) |= φ} and for all i, j Si = {(a1, . . . , ak) ∈
(UA)k|(a1, . . . , ak) |= φi} ∩ UB and dj = (a1, . . . , ak) ∈ UB such that dj =
(a1, . . . , ak) |= χj . The first-order formulas in I are allowed to use quantifiers ∃
and ∀, connectives ∧,∨,¬, relations and constants of A as well as 1, max and
succ(,) according to U .

A logical reduction from A ⊆ struct(τ) to B ⊆ struct(σ) is a k-dimensio-
nal interpretation I from A into B such that for all x ∈ struct(τ), I(x) ∈ A iff
x ∈ B. A logical reduction is called a quantifier-free reduction (denoted by ≤qfr)
if its defining formulas in I are quantifier-free. Note that these reductions are
even weaker than logarithmic-time reductions and are closed under composition.

2.1 Succinct Encodings

A Boolean circuit or formula C(x, y) (where x and y are variable vectors) can
be interpreted as a succinct encoding of a graph G = (V,E) (or any other
structure). If |x| = |y| = n, we consider that C(x, y) represents a directed
graph on the set of vertices V = [2n] and edges defined by C(x, y) = 1 iff
(x, y) ∈ E. Note that the encoded graph has exponential size in n. We say
that C encodes the graph GC . If we talk about undirected graphs, we define
{x, y}) ∈ E iff C(x, y) = 1 or C(y, x) = 1 Also formulas in CNF and DNF
can be encoded in a similar way and we consider FC , to be the CNF formula
with 2|x| literals and ≤ 2|y| clauses with C(x, y) = 1 iff literal x is in clause y
(similarly for formulas in DNF). We only consider non-empty clauses.

We will consider the input model in which C is a CNF or DNF formula. Note
that every graph can be encoded with a polynomially sized DNF formula with
each edge encoded as a single implicant. A CNF encoding is similar with each
non-edge encoded as a single clause. This trivial observation shows that the
problems encoded as CNF or DNF formulas cannot be easier than the original
problems, for example, the Dominating Set problem for graphs encoded as CNF
formulas is hard for NP.

Looking at graphs encoded as DNF or CNF formulas, we note that in the
first case, each implicant or term adds a directed biclique to the total graph (a
biclique is a complete bipartite graph). The source side of the biclique is defined
by the set of vertices whose labels satisfy the x part of the implicant, while the
target side of the biclique is defined by the vertices satisfying the part of the
y variables. Therefore a graph encoded by a DNF with m implicants can be
decomposed as the union of m bicliques.

In the case of a CNF formula, each clause subtracts a directed biclique from
the complete graph K2n . Every clause removes all edges between the set of x
and y nodes falsifying the clause.

Another class of succinct encodings considered in the literature [5, 17] is
that defined by ordered binary decision diagrams, OBDDs. A binary decision
diagram is a directed, acyclic, rooted graph. Vertices are labeled with input
variables xi and edges are labeled with 0 or 1. Every vertex (except the two

4

sinks) has two outgoing edges and they have different labels. There are two spe-
cial vertices without successors, denoted 0 and 1, denoting the Boolean values
true and false. A BDD O describes a Boolean function f over a set of variables
x1, . . . , xn as follows: beginning at the root, in each vertex labeled with a vari-
able the outgoing edge labeled with the value of this variable is followed, until
the 0 or the 1 vertex is reached. This represents the value of the function. O is
an OBDD if there is a permutation π on the set of variables such that in all the
paths from the root to one of the special vertices the variables are consistent
with the order defined by π.

Two graphs G,H are isomorphic, (represented by G ∼= H) iff there is a
bijection π : VG → VH such that for all pairs of vertices u, v ∈ VG, (u, v) ∈ EG

iff ((π(u), π(v)) ∈ EH holds. The decision problem, given two graphs, determine
if they are isomorphic, is denoted as GI.

cir(GI), cnf(GI), dnf(GI) and obdd(GI) are the succinct versions of the iso-
morphism problem when the graphs are encoded respectively by circuits, CNF,
DNF formulas or OBDDs.

3 Succinct CNF and DNF Encodings

We present in this section CNF and DNF encodings of several well known prob-
lems, showing that in some cases the inputs given in this way change the com-
plexity of the problems while in others the complexity of the original problem
is preserved. Figure 1 summarizes our results. We give formal definitions for
the decision problems used. It is well known that all these problems are NP-
complete, except for STCONN, which is complete for NL.

Dominating Set: Given an undirected graph G = (V,E) and a k ∈ N. Is
there a set S ⊆ V with |S| ≤ k such that for all u ∈ V there is a v ∈ S with
(u, v) ∈ E?

CNF-SAT: Given a boolean formula F (x1, . . . , xn) in conjunctive normal-
form. Is there an assignment s : {x1, . . . , xn} → {0, 1} such that F (s(x1),
. . . , s(xn)) = 1?

STCONN: Given a directed graph G = (V,E) and s, t ∈ V . Is there a path
from s to t in G?

k-COL: Given an undirected graph G = (V,E) and a k ∈ N. Is there a
mapping c : V → {1, . . . , k} such that for all e = (i, j) ∈ E, c(i) 6= c(j)?

Longest Induced Path (LIP): Given an undirected graph G = (V,E)
and a k ∈ N. Is there an induced path of size at least k?

Thereby an induced path is an ordered subset S of l nodes with exactly the
edge set E = {(si, si+1) | 0 < i < l}. On hypercube graphs this problem is
better known as Snake-In-The-Box.

Theorem 1. dnf(Dominating Set) is PP-complete.

Proof. We show that dnf(Dominating Set) is in the class PP. For this we sketch
an algorithm that on input a DNF formula F and a number k decides if the
graph encoded by the formula contains a dominating set of size ≤ k. The
algorithm works in polynomial time with the help of non-adaptive queries to
PP. Since PP is closed under truth-table reductions [7], this proves the result.
A dominating set consists of all isolated vertices (vertices with degree 0) together
with a subset of the vertices dominating all vertices with degree greater than 0.

5

Problem CNF encoding DNF encoding
Dominating Set NEXP-complete PP-complete
CNF-SAT NEXP-complete NP-complete
STCONN PSPACE-complete NL-complete
k-COL NEXP Σ2

Longest Induced Path NEXP-complete NP-complete

Figure 1: Complexity differences between DNF and CNF encodings

The key observation is that this second subset cannot be larger than 2m, where
m is the number of implicants in F . Recall that an implicant contains an x and
y part where the vertices consistent with the x literals share an edge with all
the vertices consistent with the y literals. Therefore taking at most one vertex
satisfying the x part and one satisfying the y part in each of the m implicants
is enough to dominate all vertices with degree greater than 0. We consider the
list of all possible pairs (i, j) with 0 ≤ i ≤ 2m and j = k− i and ask two queries
for each pair: 1) is the number of vertices with degree 0 at most j? and 2) is
there a subset of vertices of degree at least 1, of size ≤ i and such that all the
edges defined by an implicant has an endpoint in the subset. It is not hard to
see that both are PP queries. We can conclude that there is a dominating set
of size at most k if and only if, for at least one of the 2m pairs both queries are
answered positively.

Observe that in the definition of the problem we only require that the vertices
of degree at least 1 are dominated (not considering the isolated vertices), then
the above argument shows that this version of the problem is in NP.

For the hardness proof, we reduce the following problem, known to be PP-
complete to Dominating Set. Given a Boolean formula F in DNF and a number
k, does F have at least k satisfying assignments?. Let x1, . . . , xn be the set
of variables in F . We construct a graph on 2n+1 vertices (two copies of the
possible assignments for F with a extra initial bit in the variable x0). We add
to every implicant in F the literals x0 and y0, y1, . . . yn. The set of edges encoded
by the new formula are those connecting a satisfying assignment of F (with an
additional initial 0, with the vertex 1n+1. The number of isolated vertices in the
encoded graph is exactly 2n−1 plus the number of non-satisfying assignments of
F . The vertex 1n+1 dominates all other vertices. Therefore the original formula
has at least k satisfying assignments if and only if the graph has a dominating
set of size at most 2n + 2n − k. This defines a polynomial time reduction.

Using the next result for cnf(CNF-SAT) and the standard reduction from
SAT to Dominating Set, it is not hard to see that cnf(Dominating Set) is also
NEXP-complete.

Theorem 2. cnf(CNF-SAT) is NEXP-complete and dnf(CNF-SAT) is NP-
complete

Proof. It is clear that cnf(CNF-SAT) is in NEXP. For showing the hardness
we use a recent result from Jahanjou, Miles and Viola [10]. There it is shown
that the satisfiability problem for formulas in 3-CNF, when encoded with poly-
nomially many NC0 functions is NEXP-complete. In their setting the formula

6

F being tested for satisfiability is encoded in a way in which an NC0 function
fk gets as input a clause index from F and computes the k-th bit of the three
literals contained in that clause. We reduce this problem to cnf(CNF-SAT).
For this we make a transformation between both types of encodings. We use a
single formula encoding the literal-clause relation of F instead of a polynomial
amount of NC0 functions computing the bit encoding of a clause. For this we
first transform each of the circuits computing the fk functions into three NC0

circuits, with one output bit each, computing fi,j for the j-th bit of the i-th lit-
eral (1 ≤ i ≤ 3). Each such function depends only on constant many input bits
and can therefore be computed by a constant size CNF. The following circuit
computes the literal-clause relation for a clause encoded in the x variables and
a literal encoded in the y variables.∨

i∈{1,2,3}

∧
j≤|y|

fi,j(x) = yj

Since fi,j can be represented by a constant size formula, fi,j ↔ yj can also
be expressed by a constant size CNF formula. The conjunction of these |y|
formulas (one for each j) is still a CNF. Finally transforming the disjunction of
the 3 resulting formulas (one for each i) into CNF has size O(|y|3) = O(poly(n)).
This completes the reduction.

To show that dnf(CNF-SAT) is in NP and therefore NP-complete we use
the same idea as in the algorithm in Theorem 1. A clause is satisfied if we
set at least one of its literals to 1. As we again have the biclique structure, a
satisfying assignment is a (directed) Dominating Set for the clause-nodes which
does not contain a negated and non-negated variable. Besides isolated vertices,
a Dominating Set is of size at most polynomial in n. By convention, there are
no isolated vertices (empty clauses). So we just guess |F | many literals and
check whether they satisfy all clauses by checking that the clause-sides of every
biclique are covered and there are no two dual literals.

Theorem 3. cnf(STCONN) is PSPACE-complete and dnf(STCONN) is NL-
complete.

Proof. For the first part, we note that cir(STCONN) is complete for PSPACE
(see [2]) and that the reduction between graphs we will use in the proof of
Theorem 6 for showing cir(GI) ≤p

m cnf(GI) is connectivity preserving.
We now give an NL-algorithm for dnf(STCONN). Given a DNF-formula F

and two nodes s, t, we first guess a term Di by its index i in F and check if s
is in the source-set of this biclique. We now ”travel” this biclique to the target
set. We repeatedly guess new bicliques and check if the new bicliques source-set
is compatible with the old target-set. Then the intersection of these two sets is
non-empty and it is valid to use both bicliques successively. We continue this
walk until we hit a target-set containing t. As we allways need to remember
only two bicliques, O(log n) space is sufficient.

Theorem 4. dnf(k-COL) is in Σ2.

We first need the following Lemma:

Lemma 1. Every biclique defined by a term in an DNF-formula on 2n variables
having intersecting source- and target-sets can be replaced by at most poly(n)
new non-intersecting bicliques represented by the same number of terms.

7

Proof. Given a DNF formula F on variables x1, . . . , xn, y1, . . . , yn, let I, I ′ ⊆
{1, . . . , n} be arbitrary with I ∩ I ′ 6= ∅. Let our biclique be the term D =
{xi|i ∈ I} ∪ {yi|i ∈ I ′},(negated variables work similarly). We illustrate the
construction of the new bicliques with an example, see figure 2. First of all,
note that the intersection itself represents a complete clique. Such a complete
graph on n nodes can be represented with log n bicliques because all these nodes
can be represented with a log n bit string (they are all in the intersection of the
source and target parts of a term) and then, for every position j, we can a
biclique between all nodes with the bit in this position set to 0 and those with
j-th bit set to 1. The number of blicliques is therefore logarithmic in the clique
size.

In a second step, we create a set Si for every variable xi, i ∈ I ′ \ I not
appearing in the source-set but in the target-set and negating it. Similarly,
there is a set Tj for each yj ∈ I \ I ′. We now add all bicliques Si × Tj and
bicliques between all Si to the intersection set I ∩ I ′ and from this set to all
Tj . The new graph contains all the edges from the original one (except the self
loops). Figure 2 shows the construction for such an intersecting biclique. As
the number of variables is polynomial, we only add a polynomial number of
bicliques.

**1*...

11**...

111**...

111**...

110**... 0*1*...

110**... *01**...

110**...

0*1*...

*01**...

Figure 2: Replacing intersecting by non-intersecting bicliques.

We can now prove the Theorem:

Proof. We first apply the transformation explained in Lemma 1 to the formula
describing the graph and get an equivalent DNF-formula where all bicliques
source- and target-sets do not intersect. We further observe that each side of
a biclique can use at most k − 1 of the k colors. Else the other side cannot be
colored. So if the graph is k colorable, there is a coloring in which every side
of a biclique uses at most k − 1 colors. A Σ2 algorithm for k-colorability works
in the following way: The existential part first guesses for every biclique side
which subset of colors it uses. We call this an inconcrete coloring. Although
the concrete coloring is not defined (only the set of colors of a set). We can
check with the universal part of the algorithm whether a k-coloring exists. We
check for all (exponentially many) nodes that 1) the intersection of colors of all

8

biclique-sides it belongs to is not empty and 2) at least one of these colors is
not used by any of the neighbouring biclique-sides.

Such an inconcrete coloring exists of course if the graph is k-colorable. On the
other hand, if there is an inconcrete coloring satisfying the above two properties,
it is safe to assign such a color to every node and get a correct k-coloring.

Note that the above algorithm even works for the general colorability prob-
lem where k is part as the input as long as k ∈ poly(n). But it fails if the
number of colors is more than a polynomial, since the size of a witness then is
not polynomially bounded. It would be interesting to bypass this restriction.

Theorem 5. cnf(LIP) is NEXP-complete and dnf(LIP) is NP-complete.

Proof. For the first part, we just note that the reduction in [18], Theorem 1
case 2 can be performed in logarithmic time for every edge when using an
apropriate encoding for the nodes. Therefore, CNF −SAT ≤LT

m LIP and, with
the Conversion Lemma (see Lemma 2) cir(CNF − SAT) ≤p

m cir(LIP). As
stated before for the cir(STCONN) problem, the reduction we will introduce
in Theorem 6 is connectivity preserving and, in addition, replaces every edge
by two consecutive edges with a new node in the middle. This new node has
only one additional edge to another new node with no other edges. So basically
every induced path in a circuit encoded graph is an induced path of double size
in the CNF encoded graph. In summary, we reduce the cir(LIP) problem, given
a circuit C and a k to a CNF formula F and 2k. This shows that cnf(LIP) is
NEXP-complete.

We give an NP algorithm for the second part of the result. So for a given
formula F and a number k, we observe that an induced path can use at most
2 edges (i, j) and (u, v) of every biclique. These two edges have to occure
successive with j = u or else there would either be an additional edge (i, u) or
(i, v) (depending on the direction the second edge), contradicting the property
that the induced graph is a path. Without loss of generality, let j = u.

Suppose there is a third edge (x, y). Again, this edge has to occur directly
before or after i, j, v. Suppose v = x and the three edges are (i, j), (j, v) and
(v, y). Then there is an edge (i, y), contradicting our assumption.

Since every biclique can only contribute at most 3 successive nodes and we
have only poly(n) bicliques, the longest induced path is polynomially bounded.
If, given F and k, k > 3 · |F |, we reject. Else we guess k nodes and check if this
is an induced path.

4 Succinct Encodings of GI

In this and the following sections we concentrate on the complexity of the dif-
ferent succinct versions of GI. We start by investigating the relation between
DNF, CNF, circuit- and OBDD encodings for this problem. Theorem 6 states
our results. As described in the preliminaries, we have chosen to use encodings
for directed graphs. This is not a restriction for studying the complexity of
GI since both versions of the problem, for directed or undirected graphs, are
equivalent.

Theorem 6. dnf(GI) ≡p
m cnf(GI) ≡p

m cir(GI) and obdd(GI) ≤p
m cnf(GI).

9

Proof. Obviously, cnf(GI) ≤p
m cir(GI), since a Boolean formula is a restricted

version of a circuit. The equivalence between dnf(GI) and cnf(GI) follows from
the observation, that two graphs are isomorphic iff their complementary graphs
are isomorphic. Given a CNF (DNF) formula encoding a graph, the negation
of the formula can be easily written as a DNF (CNF) formula and encodes the
complementary graph. More interesting is the proof of cir(GI) ≤p

m cnf(GI).
Given two circuits C(x, y) and C ′(x, y) with |x| = |y| = n, encoding two

graphs G = GC and H = GC′ on the vertex set V = [2n], we create two formulas
F and F ′ encoding two new graphs G′ = GF and H ′ = GF ′ such that G ∼= H ⇔
G′ ∼= H ′. We give first an intuitive description of our construction of F . We
use the so called Tseitin transformation from circuits to satisfiability equivalent
CNF formulas (see for example [13]). In this transformation a Boolean circuit
C is transformed into a satifiability equivalent formula FC by introducing for
each each gate g in C a new variable zg and a small set of clauses expressing the
value of the gate for a certain input. For example if gate g is an OR gate with
the input gates e and f we add clauses expressing the subformula zg ↔ (ze∨zf).
The transformation also adds the single variable clause zoutput for the output
gate of the circuit. It should be clear that C is satisfiable if an only if FC is
satisfiable.

Going back to our construction, we can get from C(x, y) a formula F1(x, y,
z) which encodes the structure and evaluation of the gates of C on input x
and y. Variable vector z contains a bit for each gate in C. The satisfying
assignments for F1(x, y, z) consists of values for the x and y variables satisfying
C(x, y) plus further assignment values for the z variables with the value of the
corresponding gate in C on input x, y. z contains 2n additional bits (at the
beginning) containing a copy of x and y. This implies that for each satisfying
assignment x, y for C, there is a unique z such that F (x, y, z) = 1. Moreover,
no other satisfying assignment x′, y′ shares this particular z. If C has s gates,
the new formula has linear size in s, is in 3-CNF, and can be interpreted as an
encoding for a hypergraph G1 on the set of vertices [22n+s] that contains only
hyperedges of degree 3. In a second step, these hypergraphs are transformed
into standard graphs

We now give a more detailed construction of F . F includes a constant
number of clauses for each gate i in C (represented as Di in the following
formula, encoding the evaluation of this gate. We also separate the original
vertices encoded in the x and y assignments from the new z vertices by forcing
the x, y vertices to begin with 0 and the z vertices with 1. This can be done with
one additional variable. The succinct formula model assumes that all vertices
are encoded with the same number of bits. To achieve this, we pad the x and
y vectors with (s + 2n + 1) − (n + 1) = s + n zero bits. The last line of the
following formula enforces that in each satisfying assignment, the first 2n bits
of z contain the values of x and y at the beginning, making it unique.

F (x, y, z) = D1 ∧ . . . ∧Ds

∧(x0 = 0) ∧ (y0 = 0) ∧ (z0 = 1)

∧
∧s+2n+1

i=n+1 (xi = yi = 0)

∧
∧n

i=1(xi = zi) ∧
∧2n

i=n+1(yi−n = zi)

Let G1 be the hypergraph encoded by F (x, y, z) (analogously for H1). We
claim:

10

Claim 1. G ∼= H ⇔ G1
∼= H1

Proof: Clearly, if G ∼= H, then G1
∼= H1 since an isomorphism between G and

H can be extended to map the z vertices according to the unique hyperdedge
they belong to.

Conversely, suppose G1
∼= H1 via an isomorphism ρ. Observe that all (non

isolated) z vertices belong to exactly one hyperedge of 3 nodes. If ρ maps z
vertices to other z vertices then ρ defines an isomorphism between G and H.
Suppose that there is a z vertex being mapped to one of the x vertices. Then x
belongs to a unique hyperdedge. We look at two cases:

• Both neighbors of x belong to a unique hyperedge. Then these three
vertices define an isolated hyperedge. ρ can be easily modified to another
isomorphism respecting the z vertices, by mapping z to the z neighbor of
x. This also defines an isomorphism between G and H.

• Only one of the neighbors of x belongs to a unique hyperedge. Then x is
connected to z and y of degree > 2. In the original graphs, x only had
one neighbor (y). Again, ρ defines an isomorphism between G and H by
swapping the roles of x and z.

�
In a second step we create two standard graphs G2 and H2 such that

G1
∼= H1 ⇔ G2

∼= H2. The vertex set of these graphs is the set of assign-
ments for the variable vectors u, x, y, z with |u| = 1. Each such vertex encodes
a hyperedge (x, y, z) in the previous construction and an additional bit. The
formula F ∗(x∗, y∗) = F ′(x∗, y∗)∨F ′′(x∗, y∗), made of the following two subfor-
mulas, implements this transformation.

F ′(uxyz, vx′y′z′) = F (x, y, z) ∧ (u = 0) ∧ (v = 1)

∧
∧|x′|−1

i=0 x′i = y′i = 0
∧(z′ = y ∨ z′ = z)

F ′′(vx′y′z′, uxyz) = F (x, y, z) ∧ (u = 0) ∧ (v = 1)

∧
∧|x′|−1

i=0 x′i = y′i = 0
∧(z′ = x ∨ z′ = z)

Note that u and v are single bit variables. F ∗ encodes a graph that is the union
of two vertex sets. The first one, encoded with a leading u = 0 encodes the
set of all degree 3 hyperedges. The second one is the set of all vertices in GF .
These are forced to begin with 1 and are padded with zeroes.

F ′ adds edges from a hyperedge vertex {x, y, z} to the vertices y and z.
Similarly F ′′ adds edges from x and z to the hyperedge {x, y, z}. This encodes
the directed edge (x, y) in GF .

F ∗ is a CNF formula. The whole construction from C to F ∗ only needs
polynomial time. Applying this transformation to C and C ′ (using some addi-
tional dummy gates to get equal circuit sizes) gives us the formulas F and F ′

satisfying for G′ = GF and H ′ = GF ′

G ∼= H ⇔ G′ ∼= H ′

11

The statement obdd(GI) ≤p
m cnf(GI) follows from the fact that an OBDD

for a Boolean function can be transformed into a polynomial size Boolean circuit
for the function, with the above reductions from cir(GI) to cnf(GI).

5 An Algorithm for dnf(GI)

Using the characterization for DNF encoded graphs as the union of bicliques,
we give an algorithm for the succinct version of GI when the input graphs are
encoded as DNF formulas. The running time of the algorithm depends on the
number of implicants in the input.

To achieve this, we extend a kernelization technique explained in [6]. Ker-
nelization is a common method in fixed parametrized algorithms. It basically
consists in reducing problem instances to a small part of it from which the com-
plexity of the input can still be recovered. This is called a kernel. In some cases
algorithms can be designed having polynomial running time for performing the
kernelization plus an exponential running time on the size of the kernel.

Looking at graph isomorphism, our kernelization first consists in merging to-
gether all vertices that are in exactly the same set of biclique-sides. Such nodes
lie in the same intersection and can be considered equivalent. If the intersec-
tion is due to two intersecting biclique-sides it is a clique and the corresponding
kernel-node gets a self-loop. Afterwards, we further reduce the kernel by apply-
ing a modified kernelization-step. We merge nodes which have the same set of
neighbours, including self-loops. So non-adjacent nodes get merged if they have
the same set of neighbours and therefore have no self-loops. Similar, adjacent-
nodes get merged when they both have self-loops. Doing this in both graphs
has to be done with some care, because some information might be lost in this
way, namely the number of merged nodes. For example, if one graph contains
one vertex connected to vertices a, b and c and the second graph contains two
such vertices, the graphs may seem isomorphic after merging these nodes. To
avoid this problem, we add some coloring or labeling encoding the number of
vertices that are merged. In the previous example, we would give the vertex in
the kernel in the first graph a certain color and in the second graph a different
one. These colors can be replaced with gadgets. Such a kernelization preserves
isomorphism and can be constructed in time polynomial in the size of the given
graphs.

If our graphs are unions of s bicliques, we assign to every vertex v a vector
b(v) in {0, 1, 2, 3}s where b(v)i is 1 if v is in the source side of the i-th biclique,
meaning that v has outgoing edges to all vertices in the target side of the i-th
DNF term. Similar, b(v)i = 2 if v is in the target side of i, b(v)i = 3 if it is
both sides and b(v)i = 0 if it is in none of them. Note that, in contrast to
[6], we have four cases since we allow a node to be in the source and target
side. There are at most 4s possible vectors. It should be clear that after this
first kernelization step the vertices with the same vector are equivalent. There
may still be however equivalent vertices left with different vectors, which can
create problems when dealing with the isomorphism of two graphs. Consider
for example the case in which two different terms of a DNF formula define two
different sets of source vertices but with the same target set. The source sets
would have different vectors although they might be equivalent. But this and
similar problems are easy to detect. For all pairs of different vertices remaining

12

after the first part of the kernelization, we check if their in- and out-going edges
are the same. This is done comparing the union of all relevant source sides and
the union of the relevant target sides. If they are the same, we merge these two
vectors. This comes at a cost of (4s)2 = 4O(s) steps but only decreases the size
of the kernel. At last, the kernelization merges all vertices with the same vector
and colors this class of nodes with its size.

The kernelization together with an algorithm for GI can be used to compute
dnf(GI).

Theorem 7. Given two DNF formulas F1 and F2 with 2n inputs each and with
at most s implicants, encoding graphs G1 and G2 on 2n vertices, isomorphism

for these graphs can be tested in time 2
√
s2O(s)

+ 2O(n).

Proof. We describe the algorithm and prove its running time and correctness.
On input two DNF formulas we apply the explained kernelization to them ob-
taining two graphs of size at most 4s = 2O(s) in time 2O(s). Using the isomor-
phism test of Babai and Luks (see [1]), which runs in time 2

√
n logn on graphs

with n vertices, it can be tested whether the kernels are isomorphic. This clearly
gives a correct result. The running time is 2O(s) for the kernelization as well as

2
√
s2O(s)

for the isomorphism test.

The same algorithm works for CNF formulas by first negating the formula
and then applying this algorithm to the resulting DNF formula. If s ∈ o(n),
this provides a better upper bound than obtaining an explicit representation of
the graphs (in time 2npoly(n)) and applying then the algorithm from Babai and
Luks.

Note that this algorithm can be also transformed into an algorithm for
cir(GI) by first using our transformation from cir(GI) to dnf(GI) and then ap-
plying the kernelization and the isomorphism test. But since the size of the
computed DNF formula is O(c2) where c ≥ n is the circuit size, the algorithm
would have a worse running time than decoding the graphs from their succinct
representations and applying then an isomorphism algorithm to them.

6 Hardness Results for GI

We show in this section that the circuit, DNF, CNF and OBDD succinct versions
of GI are hard for PSPACE under polynomial time many-one reducibilities. For
this we use the following Conversion Lemma relating the complexity of standard
and succinct encodings of the same problem. The Lemma for circuits appeared
in [2] and was improved in [4]. The version for OBDD’s is from [17].

Lemma 2. Let A,B ⊆ {0, 1}∗. If A ≤LT
m B, then cir(A) ≤p

m cir(B). If
A ≤qfr B then obdd(A) ≤p

m obdd(B).

Consider cir(USTCONN), the succinct version of the undirected reachability
problem. It is known that this problem is PSPACE-complete under polynomial
time many-one reducibilities [2]. Moreover, USTCONN is AC0 reducible to the
complement of GI [14, 15]. We show here that in fact, this reduction can be
done in logarithmic time.

Theorem 8. USTCONN ≤LT
m GI.

13

Proof. Let G = (V,E) be an undirected graph with |V | = n and two designated
vertices s, t ∈ V . Consider a graph G′ = G1 ∪ G2 where G1 and G2 are two
copies of G, and for a vertex v ∈ V let us call v1 and v2 the copies of v in G1

and G2 respectively. Furthermore, G′ is defined to have vertex t1 labeled with
color 1, (the rest of the vertices have color 0). It is not hard to see that there
are not any paths from s to t in G if and only if there is an automorphism ϕ in
G′ mapping s1 to s2. The question of whether there is an automorphism in G′

with the mentioned properties, can in turn be reduced to GI by considering the
pair of graphs (Ĝ, Ĥ) where Ĝ are Ĥ are copies of G′ but with s1 marked with
a new color 2 in Ĝ and s2 marked with the same color in Ĥ. It holds that G ∈
USTCONN iff (Ĝ, Ĥ) ∈ GI. Figure 3 illustrates this construction.
It is only left to show that the constructions of the graphs Ĝ and Ĥ as well
as the color labels in the reduction can be done in logarithmic time. A way to
do this, is to consider that graph Ĝ has 4n vertices (the construction of Ĥ is
completely analogous). For each vertex v in V we consider the four vertices abv
with a, b ∈ {0, 1}. The vertices 00v and 11v define two exact copies of G, while
the vertices 01v and 10v are used for the color labels of s1 and t1. For this
we can add edges connecting all the 01v vertices between themselves forming a
clique and to 00s1 and connecting all the 10v vertices to 00t1 (and not between
themselves to distinguish them from the 01 vertices). With this construction,
one bit of the adjacency matrix on Ĝ can be computed in logarithmic time
(on input G and the position in the matrix) since at most one position in the
adjacency matrix of G is needed for this.

Figure 3: Reducing Reachability to GI

This result, together with Lemma 2 imply that cir(GI) is PSPACE-hard with
respect to the polynomial time many-one reducibility. Theorem 6 implies that
even DNF encoded GI is hard for PSPACE.

Corollary 1. dnf(GI) is hard for PSPACE.

Theorem 8 can in fact be strengthened for the case of a quantifier free reduc-
tion [17]. Using the second part of Lemma 2 this proves that also the OBDD
version of the problem is hard for PSPACE.

14

Theorem 9. USTCONN ≤qfr GI.

Proof. We show that USTCONN ≤qfr GI with steps USTCONN ≤qfr cGI and
cGI ≤qfr GI. Let USTCONN be the set of all tuples of the form (E∗, s, t) such
that E∗ ⊆ U = [n] is a set of undirected edges and there is no path from s to
t. cGI is the set of all 3-colored graph-pairs (E,E′, c0, c1, c2, c

′
0, c
′
1, c
′
2) with a

color-preserving isomorphism. Let I = (φ, φE , φE′ , φc0 , φc1 , φc2 , φc′0 , φc′1 , φc′2) be
a k = 2-dimensional interpretation such that

φ(u, v) = (u = 1) ∨ (u = 2)
φE(u, v, u′, v′) = E∗(v, v′)
φE′(u, v, u′, v′) = E∗(v, v′)

φc0(u, v) = ¬(c1 ∨ c2)
φc1(u, v) = (u = 1) ∧ (v = s)
φc2(u, v) = (u = 1) ∧ (v = t)
φc′0(u′, v′) = ¬(c′1 ∨ c′2)
φc′1(u′, v′) = (u = 2) ∧ (v = s)
φc′2(u′, v′) = (u = 1) ∧ (v = t)

The reader may verify that this interpretation implements the reduction
given in the proof of Theorem 8. We use the first dimension to create two
copies of the original graph (denoted with u = 1 or u = 2) such that the second
dimension v, v′ is checked against (v, v′) ∈ E∗. There are no edges between
u = 1 and u = 2. The coloring is done as described in Theorem 8.

Adding a reduction to GI is easy. A 2-dimensional interpretation adds
enough nodes for two gadgets, for example K2n and K3n using the first di-
mension from u = 2 to u = 6 as the second dimension contains n nodes. So for
u ∈ 2, . . . , 5 the second dimension contains K2n and K3n. For u = 1 the second
dimension contains the originaly colored graph. We then assign the color c1 to
the first node with the first dimension of u = 2, (2, 1) and c2 to the first node
with u = 4, (4, 1). Then a node (u, v) is connected to (2, 1) if u = 1 or u = 2
and v |= c1. Similar (u, v) is connected to (4, 1) if u = 1 or u = 2 and v |= c2.
The same can be done for the second graph.

Corollary 2. obdd(GI) is hard for PSPACE.

There are stronger hardness results for GI than the one used here [14]. How-
ever, applying the Conversion Lemma to these we do not obtain better hardness
results for cir(GI). The translation of these results would imply hardness for
the class #PSPACE, but this class is known to coincide with FPSPACE [8].

7 Conclusions and Open Problems

We introduced the new CNF and DNF models for encoding problems succinctly.
We showed that contrary to the other existing models, there are examples for
which the complexity of succinct version of the problem does not blow up ex-
ponentially. The size of the graph encoding in the new models are related to
certain graph decompositions. It would be interesting to study further examples
of graph problems encoded in these models, trying to obtain algorithms acting
directly on the succinct versions as we did for the case of GI.

15

We also studied the complexity of succinct-GI in the different models and
proved that although the complexity of this problem is not well understood
yet, the versions for GI under DNF, CNF and even circuit encodings are all
equivalent. A question that remains open is whether the OBDD version of GI
is also equivalent to the other versions or easier.

References

[1] László Babai and Eugene M. Luks. Canonical labeling of graphs. In Pro-
ceedings of the fifteenth annual ACM symposium on Theory of computing -
STOC ’83, pages 171–183, New York, New York, USA, 1983. ACM Press.

[2] José L. Balcázar, Antoni Lozano, and Jacobo Torán. The Complexity of
Algorithmic Problems on Succinct Instances. Computer Science, Research
and Applications, Springer US, 1992.

[3] H.D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in math-
ematical logic. Springer, 2005.

[4] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Adding disjunction
to datalog (extended abstract). In Proceedings of the thirteenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems
- PODS ’94, pages 267–278, New York, New York, USA, May 1994. ACM
Press.

[5] Joan Feigenbaum, Sampath Kannan, Moshe Y. Vardi, and Mahesh
Viswanathan. Complexity of Problems on Graphs Represented as OBDDs.
STACS 98, 1998.

[6] Herbert Fleischner, Egbert Mujuni, Daniel Paulusma, and Stefan Szeider.
Covering Graphs with Few Complete Bipartite Subgraphs. FSTTCS 2007:
Foundations of Software Technology and Theoretical Computer Science,
4855, 2007.

[7] Lance Fortnow and Nick Reingold. PP Is Closed under Truth-Table Re-
ductions. Information and Computation, 124(1):1–6, 1996.

[8] Matthias Galota and Heribert Vollmer. Functions computable in polyno-
mial space. Information and Computation, 198(1):56–70, April 2005.

[9] Hana Galperin and Avi Wigderson. Succinct representations of graphs.
Information and Control, 56(3):183–198, March 1983.

[10] Hamidreza Jahanjou, Eric Miles, and Emanuele Viola. Local reductions,
2013.

[11] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The graph isomor-
phism problem: its structural complexity. Birkhauser, August 1994.

[12] Christos H. Papadimitriou and Mihalis Yannakakis. A note on succinct rep-
resentations of graphs. Information and Control, 71(3):181–185, December
1986.

16

[13] Uwe Schöning and Jacobo Torán. The Satisfiability Problem: Algorithms
and Analyses. Lehmanns Media, 2013.

[14] Jacobo Toran. On the hardness of graph isomorphism. In Foundations of
Computer Science, 2000. Proceedings. 41st Annual Symposium on, pages
180–186, 2000.

[15] Jacobo Torán. Reductions to Graph Isomorphism. Theory of Computing
Systems, 47(1):288–299, December 2008.

[16] Helmut Veith. Languages represented by Boolean formulas. Information
Processing Letters, 63(5):251–256, September 1997.

[17] Helmut Veith. How to encode a logical structure by an OBDD. In Proceed-
ings. 13th IEEE Conference on Computational Complexity, pages 122–131.
IEEE Comput. Soc, 1998.

[18] Mihalis Yannakakis. The effect of a connectivity requirement on the com-
plexity of maximum subgraph problems. J. ACM, 26(4):618–630, October
1979.

17

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

