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Abstract

An error correcting code is said to be locally testable if there is a test that checks whether
a given string is a codeword, or rather far from the code, by reading only a small number of
symbols of the string. Locally testable codes (LTCs) are both interesting in their own right,
and have important applications in complexity theory.

A long line of research tries to determine the best tradeoff between rate and distance that
LTCs can achieve. In this work, we construct LTCs that have high rate (arbitrarily close to 1),

have constant relative distance, and can be tested using (log n)
O(log logn)

queries. This improves
over the previous best construction of LTCs with high rate, by the same authors, which uses
exp(
√

log n · log log n) queries [KMRS15].
In fact, as in [KMRS15], our result is actually stronger: for binary codes, we obtain LTCs

that match the Zyablov bound for any rate 0 < r < 1. For codes over large alphabet (of constant
size), we obtain LTCs that approach the Singleton bound, for any rate 0 < r < 1.

1 Introduction

Locally-testable codes (LTCs) are error-correcting codes that admit local error-detecting algo-
rithms. Specifically, LTCs are codes which come equipped with a randomized sub-linear time
“local-testing algorithm”, which when given oracle access to a received word z, makes a few queries
to z and distinguishes between the following two cases with high probability:

• z is a codeword,

• z is ε-far from every codeword of the code.

LTCs were introduced by [FS95, RS96] and their systematic study was begun in [GS06]. They
are not only interesting in their own right, but also have important connections to other areas of
complexity theory, most notably to PCPs [AS98, ALM+98].
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The three key parameters of LTCs are: the rate, the relative distance, and the query complexity.
The rate of a code is the ratio of the message length to the codeword length, and it measures the
amount of redundancy of the code. The relative distance of a code is the minimum fraction of
coordinates on which every pair of codewords from the code disagree, and is related to the fraction
of errors that the code can detect and correct. Finally, the query complexity of an LTC is the
number of queries made by the local-testing algorithm to the received word. Naturally, one would
like to maximize the rate and relative distance of the LTC while minimizing its query complexity.
In particular, the most interesting and fundamental question about LTCs asks: are there LTCs
with constant rate, constant relative distance and constant query complexity.

Most of the research on LTCs so far has focused on the constant query regime. After many years
of intensive research [HS00, GS06, BSVW03, BGH+06], it is now known [BS08, Din07, Vid15b] that
there are LTCs of length n with rate Ω(1/polylog(n)), constant relative distance and constant query
complexity (where the query complexity can even be as small as 3!). It is not known if one can
obtain codes with constant rate and constant relative distance in this regime of constant query
complexity, and it is known that if the LTCs have additional restrictions then constant rate and
constant relative distance are not possible [DK11, BV12].

This paper is about the regime of LTCs with constant rate. In this regime one fixes the rate r
and the relative distance to be constants and asks for the minimum query complexity achievable
by LTCs. For constant rate r < 1/2, Reed-Muller codes over large fields were long known [RS96] to
give LTCs of length n with rate r, constant relative distance and query complexity ≈ nO(1/(log(1/r)).
More recent work [Vid15a, GKS13] showed that in fact one can get LTCs with constant relative
distance and query complexity O(nβ) for any constant β > 0, even with rate arbitrarily close to
1. Even more recently, we showed in [KMRS15] that there exist LTCs with constant rate (and
again the rate can be taken arbitrarily close to 1), constant relative distance, and query complexity
exp(
√

log n · log log n).

1.1 Our results

In this work, we construct LTCs that have constant rate (which can be taken arbitrarily close to
1) and constant relative distance, with query complexity being only (log n)O(log logn). Formally, we
prove the following result.

Theorem 1.1 (High-rate binary LTCs with quasi-polylogarithmic query complexity). For every
r ∈ (0, 1), there exist δ > 0 and an explicit infinite family of binary linear codes {Cn}n satisfying:

1. Cn has block length n, rate at least r, and relative distance at least δ,

2. Cn is locally testable with query complexity and running time at most (log n)O(log logn).

In fact, not only do our LTCs have constant rate and constant relative distance, but the trade-
off between the rate and the distance matches the Zyablov bound [Zya71]. Formally, the relative
distance δ above satisfies

δ = max
r<R<1

{
(1−R− ε) ·H−1

(
1− r

R

)}
,

where H is the binary entropy function.
Over large (but still constant size) alphabets, we show that such codes can approach the Single-

ton bound, i.e they can basically obtain a rate-distance tradeoff that is the best possible for general
codes.
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Theorem 1.2 (LTCs with quasi-polylogarithmic query complexity approaching the Singleton
bound). For every r ∈ (0, 1) and every ε > 0, there exists an explicit infinite family of linear
codes {Cn}n satisfying:

1. Cn has block length n, rate at least r, and relative distance at least 1− r − ε,

2. Cn is locally testable with query complexity and running time at most (log n)O(log logn),

3. The alphabet of Cn is of size at most exp(poly(1/ε)).

We note that the exponential dependence of the alphabet size on ε follows from our use of
the Alon-Luby distance-amplification method (see below). This dependence indeed seems to be a
bottleneck in all applications of this method, e.g. [GI05].

1.2 Our techniques

Our construction of LTCs uses ingredients from our previous construction of high-rate LTCs [KMRS15],
in conjunction with ideas from the iterative construction of constant-query LTCs by Meir [Mei09].

In [KMRS15], we showed that a technique of Alon and Luby [AL96] can be used to amplify the
relative distance of LTCs while preserving their local testability. In particular, starting with an
LTC with relative distance δ, we can amplify its relative distance to any 0 < δ′ < 1 while increasing
the query complexity by a factor of poly(1/δ) and decreasing the rate by a factor of only ≈ 1− δ′.
This technique is useful, since it is easier to construct LTCs with small relative distance, and this
technique allows us to transform such LTCs into ones with better relative distance. Indeed, our
construction of LTCs in [KMRS15] followed this scheme: first, we constructed LTCs with constant
rate and extremely small relative distance, namely exp(−

√
log n · log logn). Then, we applied

the Alon-Luby technique to amplify the relative distance to a constant, while paying a factor of
exp(
√

log n · log log n) in the query complexity.
The main technical contribution of this paper is an improved construction of LTCs in the sub-

constant relative distance regime. More specifically, we show how to construct LTCs of high rate
with relative distance 1/polylog(n) and query complexity (log n)O(log logn) (so both relative distance
and query complexity are improved). Using the Alon-Luby distance-amplification, this gives in
turn LTCs of high rate with constant relative distance and query complexity (log n)O(log logn).

We construct our improved LTCs in the sub-constant relative distance regime using an iter-
ative strategy, along the lines of the construction of Meir [Mei09] (which itself is in the spirit of
several classical, iterative, brave, yet moderate, algorithms [Gol11]: the zig-zag product [RVW00],
undirected connectivity in log-space [Rei08] and the PCP theorem via gap amplification [Din07]).
The main new ingredient in our iterative strategy is again the Alon-Luby distance-amplification
technique (but in a different setting of parameters).

1.2.1 The iterative construction

We now describe our iterative construction of high rate LTCs with relative distance 1/polylog(n)
and query complexity (log n)O(log logn). Following [Mei09], our construction starts with a code of
very small block length, which can be tested simply by reading the entire received word. Then, the
block length is increased iteratively, while the rate, relative distance, and query complexity are not
harmed by too much.

More specifically, suppose we want to construct a code with block length n. We start with a
code of block length poly log n, rate 1 − 1

poly logn , and relative distance 1
poly logn . Then, in each

iteration, the block length and rate are (roughly) squared, the relative distance is maintained, and
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the query complexity is increased by a factor of poly log n. Thus, after ≈ log log n iterations, we
obtain an LTC with block length n, constant rate, relative distance 1

poly logn , and query complexity

(log n)O(log logn), as required.

A single iteration. We now describe the structure of a single iteration. Suppose that, at the
beginning of the iteration, the code C has block length n, rate r, relative distance δ, and query
complexity q. We apply to C the following two operations:

• Tensor product: We replace C with its tensor product C2. The tensor product C2 is the
code that contains all n× n matrices M such that that all rows of M and all columns of M
are codewords of C. The code C2 has block length n2, rate r2, relative distance δ2, and query
complexity q · poly(1/δ).

• Distance amplification: We apply (a variant of) the Alon-Luby distance-amplification to
the code C2, and amplify the relative distance from δ2 to δ. The resulting code has block
length O(n2), rate (1− δ) · r2, relative distance δ, and query complexity q · poly(1/δ).

The iteration ends after the distance amplification.

The local testability of the tensor product. There is one more complication that needs
to be handled: as explained above, we need the tensor product to preserve the local testability,
i.e., to increase the query complexity by a factor of at most poly(1/δ). However, this does not
necessarily hold if C is an arbitrary code. In fact, there is a long line of research that attempts to
understand the conditions under which tensor product preserves the local testability [BS06, Val05,
CR05, DSW06, GM12, BV09b, BV09a, Vid15a].

In order to resolve this issue, we use the following idea of [Mei09]. We say that a code C0

has property � if there exists a code D such that C0 is the tensor product D2. It follows from
[BS06, Vid15a] that the tensor product operation roughly preserves the local testability of codes that
have property �. Specifically, if C0 has property � and is locally testable with query complexity q
and has relative distance δ, then C2

0 is locally testable with query complexity q · poly(1/δ).
Hence, in order to make our construction go through, we maintain the invariant that our code C

has property � throughout the iterations. This requires us to show that a single iteration preserves
the property � of the code. To this end, first observe that the tensor product operation clearly
preserves the property �. The more challenging part is to make sure that the distance amplification
preserves the property �. In order to do so, we define a new operation, which we called �-distance
amplification, which amplifies the distance while preserving the property � and the local testability.

The �-distance amplification. We conclude by describing how the �-distance amplification
works: Suppose that we are given a code C0 that has the property �, and we wish to amplify its
relative distance to δ. By definition, there exists some code D such that C0 = D2. We apply the
Alon-Luby distance-amplification to D to obtain a new code D′ with relative distance

√
δ. We now

define the code C ′0 = (D′)2 to be the result of applying the �-distance amplification to C0. Observe
that C ′0 indeed has relative distance δ, and that it has the property �, as required.

It remains to prove that the �-distance amplification preserves the local testability, i.e., that
this operation increases the query complexity by a factor of at most poly(1/δ). Following [Mei09],
we show it by decomposing this operation into simpler block-wise operations, and showing that
each of these operations preserves local testability.
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1.3 Related work

1.3.1 Comparison with [KMRS15]

As explained above, in our earlier work [KMRS15], we gave a construction of LTCs with constant
rate, constant relative distance, and query complexity exp(

√
log n · log log n). This construction

had two parts: (1) the construction of an LTC with sub-constant relative distance, and (2) appli-
cation of the Alon-Luby distance-amplification to this LTC to get constant relative distance (while
roughly preserving the other parameters). Our technical contribution is improving the LTC that
is constructed in the first step.

In order to make the comparison between the constructions easier, the first step of [KMRS15]
could be presented as follows: As in the current construction, we start with a code with small block
length, which is trivially locally testable, and then iteratively increase its block length. However,
unlike our current construction, the iterations of [KMRS15] consist only of the tensor product
operation, without using the distance amplification.

Since we do not amplify the distance in each iteration, it decays quickly, and we end up with
relative distance exp(−

√
log n · log log n). Moreover, since the tensor product increases the query

complexity by a factor that depends on the relative distance, the query complexity increases faster,
and we can afford less iterations. Hence, we end up with worse parameters compared to the current
construction.

1.3.2 Comparison with [Mei09]

As mentioned above, our construction bears resemblance to the LTCs of [Mei09]. The main part
of [Mei09] constructs LTCs with rate 1

poly log(n) , constant relative distance, and query complexity1

poly log(n). That construction, too, starts with a code of small block length, which is trivially
locally testable, and increases it iteratively. In each iteration, the block length is squared, the
rate decreases by a constant factor, the relative distance is maintained, and the query complexity
increases by a constant factor. Hence, after O(log log n) iterations, we get the required parameters.

A single iteration of [Mei09] consists, too, of applying tensor product and distance amplification
to the code. However, a single iteration there also applies an additional operation called “random
projection”, which partially undoes the rate loss causes by tensoring - it causes the rate to decrease
by a constant factor rather than be squared in each iteration.

The difference between the two constructions could therefore be summed up as follows:

• The construction of [Mei09] starts with a constant rate, and then decreases the rate by a
constant factor in each iteration. Thus, after O(log log n) iterations, it ends up with rate

1
poly log(n) .

• Our construction starts with rate 1 − 1
poly logn , and then squares the rate in each iteration.

Thus, after O(log log n) iterations, it ends up with constant rate. A crucial point here is that
when the rate is very high (e.g., 1 − 1

poly logn), squaring the rate is better than multiplying
the rate by a constant factor.

The difference between the constructions may seem as only a matter of choosing the parameters,
which raises the question why [Mei09] could not obtain our construction. There are two reasons
for that:

1The query complexity is decreased to a constant in a later part of [Mei09].
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• The construction of [Mei09] uses a different distance-amplification method due to [ABN+92].
This method always loses at least a constant factor in the rate, regardless of the choice of
parameters. Hence, [Mei09] could not avoid a loss of constant factor in each iteration, and
had to end up with rate 1

poly log(n) . On the other hand, our use of the Alon-Luby amplification

method allows us to lose only a factor of 1− 1
poly logn in each iteration.

• In analyzing the local testability of the tensor product, [Mei09] relied on a theorem of [BS06].

This theorem only holds for codes that have very high relative distance (≈ 4

√
7
8). Thus,

[Mei09] had to work with codes with very high relative distance, which forced those codes to
have low rate. In particular, [Mei09] could not start with rate 1− 1

poly logn .
We, on the other hand, replace the theorem of [BS06] with a more recent theorem of [Vid15a],
which also works for codes of low distance. Hence, we can work with codes of rate 1− 1

poly logn .

An interesting research direction would be to use the “random projection” operation of [Mei09]
to further improve our construction. However, it seems that the straightforward analysis of this
operation does not work in the setting of high rate and sub-constant relative distance.

1.4 Organization

We review preliminaries regarding error-correcting codes and locally-testable codes in Section 2.
In Sections 3 and 4 we formally define the tensor product and �-distance amplification operations
respectively, and analyze the effects these operations have on the parameters of LTCs. Finally, in
Section 5, we construct our LTCs using these operations.

2 Preliminaries

All logarithms in this paper are in base 2 unless specified otherwise. For any n ∈ N we denote

[n]
def
= {1 . . . , n}. We denote by F2 the finite field of two elements. For any finite alphabet Σ and

any pair of strings x, y ∈ Σn, the relative Hamming distance (or, simply, relative distance) between

x and y is the fraction of coordinates on which x and y differ, and is denoted by dist(x, y)
def
=

|{i ∈ [n] : xi 6= yi}| /n. We have the following useful approximation.

Fact 2.1. For every x, y ∈ R such that 0 ≤ x · y ≤ 1, it holds that

(1− x)y ≤ 1− 1

4
· x · y.

Proof. It holds that

(1− x)y ≤ e−x·y ≤ 1− 1

4
· x · y.

The second inequality relies on the fact that 1 − 1
4 · x ≥ e−x for every x ∈ (0, 1), which can be

proved by noting that 1− 1
4 · x = e−x at x = 0, and that the derivative of e−x is smaller than that

of 1 − 1
4 · x for every x ∈ (0, 1). The first inequality relies on the fact that 1 − x ≤ e−x for every

x ∈ R, which can be proved using similar considerations. �

The tensor product of matrices. For a pair of matrices G1 ∈ Fm1×n1 and G2 ∈ Fm2×n2 their
tensor product G1 ⊗ G2 (a.k.a. the Kronecker product) is the (m1 ·m2) × (n1 · n2) matrix over F
with entries

(G1 ⊗G2)(i1,i2),(j1,j2) = (G1)i1,j1 · (G2)i2,j2
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for every i1 ∈ [m1], i2 ∈ [m2], j1 ∈ [n1] and j2 ∈ [n2]. The following is a well-known fact about the
tensor product of matrices:

Fact 2.2. Let A,B,C,D be matrices. Then,

(A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D).

2.1 Error-correcting codes

Let Σ be an alphabet and let n be a positive integer (the block length). A code is simply a subset
C ⊆ Σn. If F is a finite field and Σ is a vector space over F, we say a code C ⊆ Σn is F-linear if
it is an F-linear subspace of the F-vector space Σn. If Σ = F, then we simply say that C is linear.
The rate of a code is the ratio log |C|

log(|Σ|n) , which for F-linear codes equals dimF(C)
n·dimF(Σ) .

The elements of a code C are called codewords. We say that C has relative distance at least δ
if for every pair of distinct codewords c1, c2 ∈ C it holds that dist(c1, c2) ≥ δ. We use the notation
dist(z, C) to denote the relative distance of a string z ∈ Σn from C, and say that z is ε-close to
(respectively, ε-far from) C if dist(z, C) < ε (respectively, if dist(z, C) ≥ ε).

Let C ⊆ Fn be a linear code of dimension k. A generating matrix of C is an n × k matrix G
such that the map x 7→ G · x is an isomorphism from Fk to C. We say that an infinite family of
linear codes {Cn}n is explicit if there is an algorithm that on input n outputs a generating matrix
of Cn in time poly(n).

Zyablov codes. We use the following fact, which states the existence of the Zyablov codes.

Fact 2.3 (Zyablov bound [Zya71]). For every 0 < r < 1 and ε > 0, there exists an explicit infinite
family {Zn}n of binary linear codes of with rate r and relative distance

δ = max
r<R<1

{
(1−R− ε) ·H−1

(
1− r

R

)}
,

where H−1 is the inverse of the binary entropy function.

In the latter statement of the Zyablov bound, we chose δ as a function of r. However, we may
also choose r as a function of δ, which leads to the following statement: for every 0 < δ < 1 and
ε > 0, there exists an explicit infinite family {Zn}n of binary linear codes of with relative distance
δ and rate

r = max
0<R<1−H(δ+ε)

{
R ·
(

1− δ

H−1(1−R)− ε

)}
,

where H is the binary entropy function. In particular, for small values of δ, we can choose ε =
√
δ

and R = 1−H(2 ·
√
δ), yielding the following result.

Fact 2.4 (Special case of the Zyablov bound). For every sufficiently small δ > 0, there exists an
explicit infinite family {Zn}n of binary linear codes of with relative distance δ and rate at least

r =
(

1−H(2 ·
√
δ)
)
·
(

1−
√
δ
)
≥ 1− 3

√
δ,

where the inequality holds for sufficiently small values of δ.
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2.2 Locally-testable codes

Intuitively, a code is said to be locally testable [FS95, RS96, GS06] if, given a string z ∈ Σn, it is
possible to determine whether z is a codeword of C, or rather far from C, by reading only a small
part of z. There are two variants of LTCs in the literature, “weak” LTCs and “strong” LTCs. From
now on, we will work exclusively with strong LTCs, since it is a simpler notion and allows us to
state a stronger result.

Definition 2.5. We say that a code C ⊆ Σn is (strongly) locally testable with query complexity q
if there exists a randomized algorithm A that satisfies the following requirements:

• Input: A gets oracle access to a string z ∈ Σn.

• Completeness: If z is a codeword of C, then A accepts with probability 1.

• Soundness: If z is not a codeword of C, then A rejects with probability at least dist(z, C)/4.

• Query complexity: A makes at most q queries to the oracle z.

We say that the algorithm A is a local tester of C. Given an infinite family of LTCs {Cn}n, a
uniform local tester for the family is a randomized oracle algorithm that given n, computes the
local tester of Cn. We will often also be interested in the running time of the uniform local tester.

A remark on amplifying the rejection probability. It is common to define strong LTCs
with an additional parameter ρ, and have the following soundness requirement:

• If z is not a codeword of C, then A rejects with probability at least ρ·dist(z, C).

Our definition corresponds to the special case where ρ = 1
4 . However, given an LTC with ρ < 1

4 , it
is possible to amplify ρ up to 1

4 at the cost of increasing the query complexity. Hence, we chose to
fix ρ to 1

4 in our definition, which somewhat simplifies the presentation.
The amplification of ρ is performed as follows: The amplified tester invokes the original tester A

for 1
ρ times, and accepts only if all invocations of A accept. Clearly, this increases the query

complexity by a factor of 1
ρ and preserves the completeness property. To analyze the rejection

probability, let z be a string that is not a codeword of C, and observe that amplified tester rejects z
with probability at least

1− (1− ρ · dist(z, C))
1
ρ

≥ 1−
(

1− 1

4
· 1

ρ
· ρ · dist(z, C)

)
(Fact 2.1)

=
1

4
· dist(z, C),

as required.

3 Tensor product

In this section, we provide the formal definition of the tensor product operation and state the
effect of this operation on the parameters of the LTC. The effect of this operation on the classical
parameters of a code such as the block length, rate and relative distance is well-known (see, e.g.
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[Sud01, DSW06]). To argue about the effect of this operation on the query complexity of an LTC
we shall use a result due to Viderman [Vid15a].

For a linear code C1 ⊆ Fn1 and C2 ⊆ Fn2 , their tensor product code C1 ⊗ C2 ⊆ Fn1×n2 consists
of all the matrices M such that all the rows of M are codewords of C2 and all the columns are

codewords of C1. For a linear code C, let C1 def
= C and Cm

def
= Cm−1 ⊗ C. The following are some

useful facts regarding the tensor product operation and its effect on the classical parameters of a
code (see e.g. [Sud01, DSW06]).

Fact 3.1 (Properties of tensor product). Let C1 ⊆ Fn1 and C2 ⊆ Fn2 be linear codes of rates r1, r2

and relative distances δ1, δ2 respectively. Then C1 ⊗ C2 ⊆ Fn1×n2 is a linear code of rate r1 · r2

and relative distance δ1 · δ2. Furthermore, if G1, G2 are generating matrices of C1, C2 respectively,
then the tensor product G1⊗G2 is a generating matrix of C1⊗C2 (see Section 2 for the definition
of G1 ⊗G2).

Let C ∈ Fn be a linear code, and consider the code C4. The codewords of C4 are of length n4,
and it is useful to identify their coordinates set with the 4-dimnesional hypercube [n]4. We say
that a set P ⊆ [n]4 is an axis-parallel plane of the hypercube [n]4 if there exist α, β ∈ [n] and
k1 6= k2 ∈ [4] such that

P =
{

(i1, i2, i3, i4) ∈ [n]4 : ik1 = α, ik2 = β
}
.

The following fact gives an alternative characterization of C4, and follows from our definition of
tensor product codes.

Fact 3.2 (see, e.g., [Mei09, Section 4.1]). Let C ∈ Fn be a linear code, and let z ∈ Fn4
. Then,

z ∈ C4 if and only if z|P ∈ C2 for every axis-parallel plane P .

It turns out that the characterization in Fact 3.2 is robust, in the sense that if, for the average
axis-parallel plane P , it holds that z|P is close to C2, then z is close to C4. Conversely, if z is far
from C4, then z|P is far from C2 on average. This was proved by [BS06, Vid15a] for the purpose of
constructing locally testable codes using tensor products. In particular, we use the following result.

Theorem 3.3 ([Vid15a, Theorem 4.4]). Let C ⊆ Fn be a code with relative distance δ. Let z ∈ Fn4

be a string, and let P ⊆ [n]4 be a random axis-parallel plane. Then,

E
[
dist(z|P , C2)

]
≥ 1

300
· δ12 · dist(z, C4).

Following [Mei09], we use the latter theorem for showing that the tensor product operation
maintains the local testability of codes:

Corollary 3.4 (Local testability of tensor product). Let C be a code of relative distance δ that is
locally testable with query complexity q and running time T . Suppose furthermore that C has the
property �, i.e., that there exists a code D such that C = D2. Then C2 is locally testable with
query complexity 1200 · q/δ6 and running time (O(T ) + poly log(n)) /δ6.

Proof. Suppose that C is a code over F of block length n, and let n′
def
=
√
n. Observe that D ⊆ Fn′

is a code of relative distance δ′
def
=
√
δ, and that C2 = D4. Let A be the local tester of C. We

describe a local tester A′ for C2.
When given a received word z ∈ Fn2

= F(n′)4 , the tester A′ chooses a random axis-parallel
plane P ⊆ [n′]4, runs the local tester A to verify that z|P ∈ C = D2, and accepts if and only if A
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accepts. Clearly, A′ uses q queries, runs in time O(T ) + poly log(n), and accepts codewords of C2

with probability 1. We show that A′ rejects a string z ∈ Fn2
with probability at least

1

1200
· δ6 · dist(z, C2).

This will imply the required result, since the latter rejection probability can be amplified to 1
4 ·

dist(z, C4) by increasing the query complexity and running time by a factor of 1200/δ6 (see the
discussion in Section 2.2).

Let z ∈ Fn2
= F(n′)4 be a string. Then, for every axis-parallel plane P ⊆ [n]4, the local tester

A rejects z|P with probability at least 1
4 · dist(z|P , C2). By Theorem 3.3, it follows that A′ rejects

z with probability at least

EP
[

1

4
· dist

(
z|P , D2

)]
=

1

4
· EP

[
dist

(
z|P , D2

)]
≥ 1

4
· 1

300
· (δ′)12 · dist(z,D4)

=
1

1200
· δ6 · dist(z, C2),

as required. �

4 �-distance amplification

In this section, we describe the �-distance amplification operation and analyze its effect on the
parameters of an LTC. As explained in the introduction, the �-distance amplification operation is
designed to improve the relative distance of an LTC C while preserving the property �. This is
done roughly as follows: Let C be an LTC that has the property �, i.e., there exists some code D
such that C = D2. We would like to improve the relative distance of C. To this end, we apply the
Alon-Luby distance-amplification technique to D, thus obtaining a code D′, and set C ′ = (D′)2 to
be the new code. Clearly, C ′ has the property �, and it is not hard to show that this operation
improves the relative distance. The main challenge in this section will be to show that C ′ is still
locally testable.

There is one more issue that needs to be handled: the Alon-Luby distance-amplification tech-
nique increases the alphabet size of the code. Thus, if D was a binary linear code, the code D′

would have alphabet Σ = {0, 1}p for some p ∈ N. In particular, D′ would not be a linear code, but
only an F2-linear code. This is problematic, both because we need to maintain the linearity of our
codes (as otherwise the tensor product operation would not be defined), and because we do not
want the alphabet size of our codes to increase throughout the iterations. In order to resolve this
issue, after applying the Alon-Luby amplification, we concatenate the resulting code with a binary
inner code to reduce the alphabet size back to 2.

We turn to implementing the above ideas formally. We start by describing the two main
ingredients of the �-distance amplification operation: the Alon-Luby distance-amplification and
concatenation.

Alon-Luby distance-amplification. Recall that that in our previous work [KMRS15] we ob-
served that a technique of Alon and Luby [AL96] can be used to amplify the relative distance of
LTCs. We now state the lemma that we need from [KMRS15] (actually, a special case of this lemma
for binary linear codes).
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Lemma 4.1 (Alon-Luby distance-amplification, [KMRS15, Lemma 4.2]). Suppose that there exists
a binary linear code C ⊆ {0, 1}n with relative distance δ and rate r that is locally testable with
query complexity q. Then, for every 0 < δ′, ε < 1, there exists a code C ′ with relative distance at
least δ′ that is locally testable with query complexity q · poly(1/(ε · δ)) such that:

• |C ′| = |C|.

• C ′ has rate at least r · (1− δ′ − ε).

• The alphabet of C ′ is Σ
def
= {0, 1}p for some p = poly(1/(ε · δ)).

• C ′ is F2-linear.

Furthermore,

• There is a polynomial time algorithm that computes a bijection from every code C to the
corresponding code C ′, given r, δ, δ′, and ε.

• There is an oracle algorithm that computes the local tester of the code C ′ when given black
box access to the local tester of the code C, and given also r, δ, δ′, ε, and the block length
of C. Moreover, if the local tester of C runs in time TC , then the resulting local tester of C ′

runs in time TC · poly (log(n)/(ε · δ)), where n is the block length of C.

Remark 4.2. The running time that is stated in Lemma 4.1 for the tester of C ′ is better than the
one that is stated in [KMRS15, Lemma 4.2]. However, the better running time can be verified by
inspecting the proof in [KMRS15].

Concatenation. Concatenation is an operation on codes that can be used for reducing the al-
phabet size of a code. Let Λ and Σ be alphabets such that Σ = Λp for some p ∈ N. Let C ⊆ Σn be
a code over Σ and let H ⊆ Λm be a code over Λ. Suppose there exists a bijection φ : Λp → H. The
concatenation of C with H is the code C ′ ⊆ Λm·n that is obtained as follows: for each codeword
c ∈ C, we construct a corresponding codeword c′ ∈ C ′ by replacing each symbol ci with φ(ci). We
shall use the following well-known fact.

Fact 4.3 (Concatenation). Let C ⊆ Σn be a code over Σ = Λp with rate rC and relative distance δC ,
let H ⊆ Λm be a code over Λ with rate rH and relative distance δH , and let C ′ ⊆ Λm·n be the
concatenation of C with H. Then C ′ has rate rC · rH and relative distance δC · δH . Furthermore,
if Λ is a field, C is Λ-linear, and H is linear, then C ′ is linear.

The following lemma states the �-distance amplification. We only state the amplification for
binary linear codes and for sufficiently small distances, which is sufficient for our purposes.

Lemma 4.4 (Properties of �-distance amplification). There exists a universal constant δ0 > 0
such that the following holds. Let C ⊆ {0, 1}n be a binary linear code with relative distance δ and
rate r that is locally testable with query complexity q. Suppose further that there exists a code D
such that C = D2. Then, for every sufficiently small δ′ such that δ0 > δ′ > δ, there exists a binary
linear code C ′ with relative distance δ′ that is locally testable with query complexity q · poly(1/δ)
such that:

• |C ′| = |C|.

• C ′ has rate at least
(

1− 6 · 12
√
δ′)
)
· r.
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• There exists a code D′ such that C ′ = (D′)2.

Furthermore,

• There is a polynomial time algorithm that computes a bijection from every code C to the
corresponding code C ′, given r, δ, δ′, and the generating matrix of C.

• There is an oracle algorithm that computes the local tester of the corresponding code C ′ when
given black box access to the local tester of C, and given also r, δ, δ′, and the block length
of C. The resulting local tester of C ′ runs in time poly(log n/δ) · TC where TC is the running
time of the local tester of C.

We now construct the code C ′ and show that it has the required rate and relative distance. In
the rest of the section we will show that C ′ is locally testable with the required query complexity
and running time.

As explained above, the basic idea of the construction is to first apply the Alon-Luby distance-
amplification to D, and then concatenate the resulting code with a binary inner code to reduce the
alphabet size back to 2. We choose δ0 to be sufficiently small such that Fact 2.4 holds (the special
case of the Zyablov bound). The code C ′ is constructed as follows:

• Recall that the code D has rate
√
r and relative distance

√
δ. We apply the Alon-Luby

distance-amplification (Lemma 4.1) to the code D, choosing both the parameters δ′ and ε to
be 4
√
δ′. This results in an F2-linear code D̃ with relative distance 4

√
δ′ and rate (1−2· 4

√
δ′)·
√
r

over the alphabet Σ = {0, 1}p (for some p = poly(1/δ)).

• We choose our inner code to be the binary linear code Z obtained from the special case of

the Zyablov bound (Fact 2.4)2 with relative distance δZ
def
= 4
√
δ′ and relative distance at least

rZ
def
= 1− 12

√
δ′. We now concatenate D̃ with the code Z, thus obtaining a binary linear code

D′ relative distance 4
√
δ′ · δZ =

√
δ′ and rate at least

(1− 2 · 4
√
δ′) ·
√
r · rZ = (1− 2 · 4

√
δ′) ·
√
r · (1− 12

√
δ′) ≥ (1− 3 · 12

√
δ′) ·
√
r.

• Finally, we set C ′
def
= (D′)2. It is not hard to see that C ′ is a linear code over F with relative

distance δ′ and rate[
(1− 3 · 12

√
δ′) ·
√
r
]2

=
(

1− 3 · 12
√
δ′
)2
· r ≥ (1− 6 · 12

√
δ′) · r.

Thus, C ′ has the required parameters. It remains to analyze the query complexity and running
time of the local tester of C ′. The basic idea of the proof is as follows: we observe that C ′ can
be obtained from C by applying “local operations”, and show that such local operations preserve
the local testability. The rest of this section is organized as follows: in Section 4.1, we set up a
framework for working with local operations, which is a special case of framework of [Mei09]. Then,
in Section 4.2, we show that C ′ is locally testable by showing that it can be obtained from C using
local operations, thus completing the proof of Lemma 4.4.

2The code meeting the the special case of the Zyablov bound was chosen just for concreteness of parameters. Any
explicit family of binary linear codes with distance δ and rate 1 − poly(δ) (for arbitrary δ) would have sufficed for
this construction.

12



4.1 Local operations

4.1.1 Block-wise operations

The first type of local operations that we use is block-wise operations, defined as follows.

Definition 4.5 (Block-wise operations). Let φ : Σp → Σm be one-to-one, and let w ∈ Σn such
that p divides n. We say that w′ ∈ Σn′ is obtained by applying φ to w block-wise if it holds that

w′ = φ(w1 . . . wp)φ(wp+1 . . . , w2p) · · ·φ(wn′−p+1 . . . , wn′).

Observe that applying φ to w block-wise is a one-to-one function. For a set W ⊆ Σn, we say that a
set W ′ ⊆ Σn′ is obtained by applying φ to W block-wise if W ′ is the result of applying φ block-wise
to all the elements w ∈W .

We say that φ is invertible in time T if there is an algorithm that takes as an input a string
u ∈ Σm, runs in time T , and computes its pre-image φ−1(u) (or rejects if it does not exist). We
refer to the latter algorithm as the inverter of φ.

The following proposition shows that block-wise operations preserve local testability (this is a
variant of Corollary 5.18 in [Mei09]).

Proposition 4.6 (Local testability of block-wise operations). Let L ⊆ Σn be a code that is locally
testable with query complexity q, and let φ : Σp → Σm be one-to-one. Then, the code L′ ⊆ Σn′ that
is obtained by applying φ to L block-wise is locally testable with query complexity O(m2 · q).

Furthermore, if φ is invertible in time T , then there is an oracle algorithm that computes the
local tester of the corresponding code L′ when given black box access to the local tester of L and to
the inverter of φ. The resulting local tester of L′ runs in time O(m ·T ·TL) where TL is the running
time of the local tester of L.

Proof. Let A be the local tester of L. We describe a local tester A′ for L′. When given oracle
access to a purported codeword z′ ∈ Σn′ , the local tester A′ acts as follows. First, A′ partitions
z′ to blocks of length m, chooses a uniformly distributed block, checks that this block is an image
of φ, and rejects otherwise.

Next, A′ emulates A. Whenever A makes a query to a coordinate i ∈ [n], the tester A′ acts
as follows: A′ reads the block of z′ to which i belongs, i.e., the block whose index is di/pe. If this
block is not an image of φ, the tester A′ rejects. If the block is an image of φ, the tester A′ inverts
it, retrieves the value of the i-th coordinate from the pre-image, and feeds it to A as an answer to
the query. Finally, when A finishes running, A′ accepts if A accepts and rejects otherwise.

It is easy to see that the query complexity of A′ is (q + 1) ·m, that it has the required running
time, and satisfies the completeness property. We show that A′ rejects z′ with probability at least

1
8·m ·dist(z′, L′) – this can be amplified to dist(z′, L′)/4 at the cost of increasing the query complexity
and running time by a factor of O(m), which will give us the required result (see the discussion in
Section 2.2).

Let y′ be the string that is obtained by replacing each block of z′ with the closest image of φ.
Suppose first that dist(y′, z′) ≥ dist(z′, L′)/2. In this case, at least dist(z′, L′)/2 fraction of the
blocks of z′ are not images of φ, and hence A′ rejects in the first step with probability at least
dist(z′, L′)/8.

Consider now the case where that dist(y′, z′) < dist(z′, L′)/2. In this case, the triangle inequality
implies that dist(y′, L′) ≥ dist(z′, L′)/2. Let y be the string obtained by inverting φ on all the blocks
of y′. It is not hard to see that when A′ emulates a query i of the tester A, it either answers it

13



with yi or rejects. Hence, the rejection probability of A′ on z′ is at least the rejection probability
of A on y, which is at least dist(y, L)/4. Now, observe that

dist(y′, L′) · n′ ≤ m · dist(y, L) · n,

and therefore

dist(y, L) ≥ n′

n
· dist(y′, L′)

m
≥ dist(z′, L′)

2 ·m
.

It thus follows that A′ rejects z′ with probability at least 1
8·m · dist(z′, L′), as required. �

4.1.2 Permutations

The second type of local operations that we use is permuting the coordinates of a code:

Definition 4.7 (Permutations). Let σ : [n]→ [n] be a permutation, and let w ∈ Σn. We say that
w′ ∈ Σn is obtained by applying σ to w if it holds that w′i = wσ(i) for every i ∈ [n]. For a set
W ⊆ Σn, we say that a set W ′ ⊆ Σn is obtained by applying σ to W if W ′ is the result of applying
σ to all the elements w ∈W .

We say that σ is invertible in time T if there is an algorithm that takes as an input a coordinate
j ∈ [n], runs in time T , and computes its pre-image σ−1(j). We refer to the latter algorithm as the
inverter of σ.

It is easy to see that applying a permutation preserves local testability. The following proposition
states this fact along with the effect of the permutation on the running time of the tester.

Proposition 4.8 (Local testability of permutations). Let L ⊆ Σn be a code that is locally testable
with query complexity q, and let σ : [n]→ [n] be a permutation. Then, the code L′ that is obtained
by applying σ to L is locally testable with query complexity q.

Furthermore, if σ is invertible in time T , then there is an oracle algorithm that computes the
local tester of the corresponding code L′ when given black box access to the local tester of L and to
the inverter of σ. The resulting local tester of L′ runs in time O(T · TL) where TL is the running
time of the local tester of L.

4.1.3 Local operations and tensor products

The following propositions describe the interaction between the above local operations and tensor
products of codes. This will be useful for analyzing the local testability properties of the �-distance
amplification procedure, which applies local operations to a tensor product code.

Proposition 4.9 (Follows from [Mei09, Propositions 5.5,5.6]). Let F be a finite field, and let
φ : Fp → Fm be a linear one-to-one function. Let L ⊆ Fn be a linear code, and let L′ ⊆ Fn′

be the code that is obtained by applying φ to L block-wise. Then, there exist a linear one-to-one
function φ′ : Fp2 → Fm2

and permutations σ1, σ2 such that (L′)2 is obtained by applying to L2 the
permutation σ1, then φ′ block-wise, and then the permutation σ2.

Furthermore, σ1 and σ2 are invertible in time polylogn′. The functions φ and φ′ are invertible
in time poly(m) since they are linear.

Proof. Let G be a generating matrix of L, and let A be an m × p matrix such that φ(x) = A · x
for every x ∈ Fp. Let In/p be the (n/p)× (n/p) identity matrix. It is not hard to see that applying
φ block-wise to a vector w ∈ Fn is equivalent to multiplying w by In/p ⊗ A. Hence, a generating
matrix of L′ is

(In/p ⊗A) ·G.
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By Fact 3.1, the matrix G⊗G is a generating matrix of L2, and a generating matrix of (L′)2 is(
(In/p ⊗A) ·G

)
⊗
(
(In/p ⊗A) ·G

)
.

By Fact 2.2, the latter matrix is equal to the matrix(
In/p ⊗A⊗ In/p ⊗A

)
· (G⊗G).

In other words, codewords of (L′)2 are obtained by multiplying codewords of L2 by the matrix

In/p ⊗A⊗ In/p ⊗A.

Now, it is not hard to see3that by permuting the rows and columns of the latter matrix we can get
the matrix

In/p ⊗ In/p ⊗A⊗A = In2/p2 ⊗A⊗A,

which is the matrix that applies the operation A ⊗ A block-wise. In other words, there exist
permutation matrices P1, P2 such that

In/p ⊗A⊗ In/p ⊗A = P2 ·
(
In2/p2 ⊗A⊗A

)
· P1,

and therefore a generating matrix of (L′)2 is

P2 ·
(
In2/p2 ⊗A⊗A

)
· P1 · (G⊗G).

Let σ1 and σ2 be the permutations that correspond to the matrices P1 and P2. The latter expression
means that (L′)2 is obtained by applying to L2 the permutation σ1, then A⊗A block-wise, then the
permutation σ2, as required. It is not hard to see that the permutations σ1 and σ2 are invertible
in time poly log(n). �

Proposition 4.10. Let F be a finite field, and let σ : [n]→ [n] be a permutation. Let L ⊆ Fn be a
linear code, and let L′ ⊆ Fn be the code that is obtained by applying σ to L. Then, there exists a
permutation σ′ such that (L′)2 is obtained by applying σ′ to L2.

Furthermore, if σ is invertible in time T then σ′ is invertible in time O(T ).

The proof of Proposition 4.10 is similar to that of Proposition 4.9 but simpler, and is therefore
omitted.

4.2 The local testability of C ′

In this section, we show that the code C ′ is locally testable, thus completing the proof of Lemma 4.4.
This is done in three steps: first, we observe that D′ is obtained from D by applying a sequence of
block-wise operations and permutations. We then use Propositions 4.9 and 4.10 to show that the
same holds for C ′ and C. Finally, we use the local testability of C and Propositions 4.6 and 4.8 to
conclude that C ′ is locally testable.

3To see it, let use denote M
def
= In/p⊗A⊗ In/p⊗A and N

def
= In/p⊗ In/p⊗A⊗A. Since those matrices are tensor

products, we can label the rows and the columns with quadruples of indices (i1, i2, i3, i4) and (j1, j2, j3, j4). Now, by
the definition of the tensor product of matrices, it holds that

M(i1,i2,i3,i4),(j1,j2,j3,j4) =
(
In/p

)
i1,j1

·Ai2,j2 ·
(
In/p

)
i3,j3

·Ai4,j4 =
(
In/p

)
i1,j1

·
(
In/p

)
i3,j3

·Ai2,j2 ·Ai4,j4 = N(i1,i3,i2,i4),(j1,j3,j2,j4).

Hence, N can be obtained from M by permuting the rows and the columns, as required.,
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Obtaining D′ from D. Recall that D′ is obtained from D by applying the distance amplification
of Lemma 4.1 to D to obtain a code D̃, and then concatenating the resulting code D̃ with an inner
code Z ⊆ {0, 1}m.

The construction of D̃ from D in Lemma 4.1 provides an F2-linear bijection from the code
D to the code D̃. We give a brief description of this bijection, in order to argue that it is local
(see [KMRS15] for more details). Let n denote the block length of D. Given a codeword d ∈ D,
the bijection maps it to a codeword d̃ ∈ D̃ as follows:

1. Choose a Reed-Solomon code of block length s
def
= poly(1/(ε · δ)), rate 1− ε, dimension b, and

alphabet {0, 1}r for r
def
= log s.

2. The codeword d is partitioned4 to n′
def
= n

b·r blocks of length b · r.

3. Each block is viewed as a string of length b over the alphabet {0, 1}r, and is encoded with
the Reed-Solomon code.

4. Together, the encoded blocks form a string w of length n′ · s over the alphabet {0, 1}r. The
coordinates of w are now permuted according to some fixed permutation, which is determined
by the edges of a strongly-explicit expander. Let us denote the obtained string w′.

5. Finally, the string w′ is partitioned to n′ blocks of length s. Let us denote those blocks by
S1, . . . , Sn′ . We view each block Sj as a single symbol over the alphabet Σ = {0, 1}r·s, and

define d̃ to be the resulting string over Σ.

It is easy to see that the code D′ is obtained from D by applying the same bijection, and then
encoding the blocks S1, . . . , Sn′ with the inner code Z rather than viewing them as symbols. Now,
observe that this corresponds to obtaining D′ from D by applying a block-wise operation (the
encoding with Reed-Solomon), a permutation, and then another block-wise operation (the encoding
with Z).

Obtaining C ′ from C. Let D1 be the code obtained from D after applying the first block-wise
operation, and let D2 be the code obtained from D1 by applying the permutation. Observe that
D′ is obtained by applying a block-wise operation to D2.

Let C1 = (D1)2 and C2 = (D2)2. By Propositions 4.9 and 4.10, the following claims hold:

1. C1 is obtained by applying to C = D2 a permutation, a block-wise operation, and then another
permutation. Specifically, the block-wise operation has block length (s · r)2 ≤ poly(1/ · δ).

2. C2 is obtained by applying a permutation to C1.

3. C ′ = (D′)2 is obtained by applying to C2 a permutation, a block-wise operation, and then
another permutation. Specifically, the block-wise operation has block length m2 (where m is
the block length of Z).

4For simplicity, we assume here that b · r divides n. In the general case, we increase n to the next multiple of b · r
by padding d with zeroes (see [KMRS15, Section 3.1.2] for details).
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The local testability of C ′. We conclude that C ′ is obtained from C by applying permutations
and two block-wise operations. The blocks of the block-wise operations are of length poly(m/(ε ·δ))
(where m is the block length of Z). By Propositions 4.6 and 4.8, it follows that C ′ is locally testable
with query complexity q · poly(m/δ) = q · poly(1/δ).

We turn to analyze the running time of the local tester. Observe that the block-wise operations
are invertible in time poly(m/δ): the reason is that those operations are linear, and generating
matrices of the Reed-Solomon code and the Zyablov code Z can be constructed in time poly(s) ≤
poly(1/δ) and poly(m) respectively.

Next, observe that the permutations are invertible in time poly(m · log n/δ): For the permuta-
tions that obtain C1 from C and C ′ from C2, this follows from Proposition 4.9. For the permutation
that obtains C2 from C1, this follows from Proposition 4.10, and from the fact that the above bi-
jection determines the permutation according to a strongly-explicit expander.

Propositions 4.6 and 4.8 imply in turn that the local tester of C ′ runs in time

poly(m · log n/δ) · TC = poly(log n/δ) · TC

as required.

5 LTCs with quasi-polylogarithmic query complexity

In this section we prove Theorem 1.2, which gives an infinite family of high-rate LTCs with quasi-
polylogarithmic query complexity. The codes in this family also have the property of approaching
the Singleton bound over constant size alphabet. This immediately proves Theorem 1.2 from the
introduction.

Theorem 1.2. For every r ∈ (0, 1) and every ε > 0, there exists an explicit infinite family of linear
codes {Cn}n satisfying:

1. Cn has block length n, rate at least r, and relative distance at least 1− r − ε,

2. Cn is locally testable with query complexity and running time at most (log n)O(log logn),

3. The alphabet of Cn is of size at most exp(poly(1/ε)).

Furthermore, the family {Cn}n has a uniform local tester that runs in time (log n)O(log logn).

By concatenating the codes given by the above theorem with binary Gilbert-Varshamov codes
[Gil52, Var57] of constant block length, we get the following stronger version of Theorem 1.1,
which gives binary LTCs with quasi-polylogarithmic query complexity that attain the Zyablov
bound [Zya71] (this immediately implies Theorem 1.1.

Theorem 5.1. For every r ∈ (0, 1) and ε > 0, there exists an explicit infinite family of binary
linear codes {Cn}n satisfying:

1. Cn has block length at least n, rate at least r, and relative distance at least

max
r<R<1

{
(1−R− ε) ·H−1

(
1− r

R

)}
,

where H−1 is the inverse of the binary entropy function in the domain
(
0, 1

2

)
.

2. Cn is locally testable with query complexity (log n)O(log logn).
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Furthermore, the family {Cn}n has a uniform local tester that runs in time (log n)O(log logn).

We prove Theorem 1.2 in two stages: In the first stage, we construct LTCs with the desired query
complexity that have sub-constant relative distance. In the second stage, we apply the Alon-Luby
distance-amplification technique to the latter codes to obtain LTCs with the desired parameters.
The first stage is the main part of the proof, and is formalized in the following result.

Lemma 5.2 (Main lemma). There exists an explicit infinite family of binary linear codes {Wn}n
satisfying:

1. Wn has block length at least n, rate at least 1−O( 1
logn), and relative distance at least 1

logO(1) n
.

2. Wn is locally testable with query complexity (log n)O(log logn).

Furthermore, the family {Wn}n has a uniform local tester that runs in time (log n)O(log logn).

We prove the main lemma in Section 5.1. We now prove Theorem 1.2 based on this lemma.

Proof of Theorem 1.2 We would like to construct the desired LTCs by amplifying the relative
distance of the LTCs of the main lemma. The straightforward solution would be to apply the Alon-
Luby distance-amplification (Lemma 4.1) to those codes and amplify them directly to the desired
distance. However, this solution is problematic, since Lemma 4.1 yields codes whose alphabet size
depends on the original relative distance. In our case would yield super-constant alphabet size,
while we would like our codes to have constant alphabet size.

In order to resolve this issue, we construct our LTCs in a multiple steps:

1. We start by amplifying the LTCs of the main lemma only to a small relative distance poly(ε).
This yields codes with super-constant alphabet size, and only decreases the rate by a factor
of 1− poly(ε).

2. Next, we concatenate the latter codes with some binary codes with relative distance poly(ε).
This yields binary codes with relative distance poly(ε), and again only decreases the rate by
a factor of 1− poly(ε).

3. Finally, we amplify the latter LTCs to the desired relative distance. This yields codes whose
alphabet size depends only on ε, as required.

We now provide the formal details. Fix 0 < r < 1 and ε > 0, and let δ = 1− r − ε be the desired
relative distance. Let {Wn}n be the infinite family of Lemma 5.2. We start by applying Lemma 4.1
with parameters δ′ = 1

5 · ε and ε = 1
5 · ε. This yields an infinite family of F2-linear LTCs {Un}n

with relative distance 1
5 · ε, rate at least

1− 2

5
· ε−O(

1

log n
) ≥ 1− 3

5
· ε,

query complexity (log n)O(log logn), and alphabet size exp
(

(log n)O(log logn)
)

.

Next, let {Zn}n be an infinite family of binary Zyablov codes (Fact 2.4) with relative dis-

tance
(

1
5 · ε

)3
and rate 1 − 1

5 · ε. We concatenate the family {Un}n with the family {Zn}n, thus
obtaining an infinite family of binary LTCs {Vn}n with relative distance O(ε3), rate at least 1− 4

5 ·ε
and query complexity (log n)O(log logn). The upper bound on the query complexity can be proved
by noting that concatenation is a block-wise operation (as in Definition 4.5), and thus we can apply
Proposition 4.6.
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Finally, we apply Lemma 4.1 to the family {Vn}n with δ′ = δ, ε = 1
5 · ε, thus obtaining an

infinite family of binary codes {Cn}n with relative distance δ, rate

(1− δ − 1

5
· ε) · (1− 4

5
· ε) = (r + ε− 1

5
· ε) · (1− 4

5
· ε) ≥ r,

query complexity (log n)O(log logn), and alphabet size exp(poly(1/ε)), as required. It can be verified
that the family {Cn}n is linear, explicit, and has a uniform local tester with the desired running
time. �

5.1 Proof of Lemma 5.2

As explained in the introduction, we construct the code Wn as follows: We start with a code of
block length poly log(n), rate 1 − 1

poly log(n) , and relative distance 1
poly log(n) . This code is trivially

locally testable using poly log(n) queries – one can simply read the entire codeword. Then, we
iteratively increase the block length of the code using the tensor product operation, while using
the �-distance amplification to maintain the relative distance. The query complexity increases by
a factor of poly log(n) in each iteration, and the rate is roughy squared (actually, it is squared and
then multiplied by 1− 1

poly log(n)). Hence, after about log log n iterations, we end up with a code of

block length n, rate 1− 1
poly log(n) , relative distance 1

poly log(n) , and query complexity (log n)O(log logn)

as required. Details follow.

The construction. In what follows, we assume that the block length n is sufficiently large
to make all the inequalities hold – otherwise, n is smaller than some large constant, so we can
choose Wn to be any code, and it will be locally testable with a constant number of queries.

Let n ∈ N. The code W
def
= Wn is constructed as follows. We construct a sequence of binary

linear codes B0, B1, . . . and set W = Bt for sufficiently large t to be determined later on. All the

codes in the sequence will have relative distance at least δ
def
= 1

(logn)36
. We choose B0 to be the

Zyablov code5 of Fact 2.4 with relative distance δ and rate at least 1 − 3
√
δ, and choose its block

length to be minimal such that a code with those parameters exists – this block length can be
poly log(n). For every i ≥ 1, we choose Bi to be the result of applying the �-distance amplification
(Lemma 4.4) to (Bi−1)2 to amplify the relative distance from δ2 to δ.

Let us denote by n0 the block length of B0. Clearly, the block length of Bi is (n0)2i . We
therefore set W to be Bt for

t
def
= log2 logn0

n ≤ log logn,

so the block length of W is n. It is also clear that all the codes Bi have relative distance at least δ,
so in particular W has relative distance has at least δ = 1

poly log(n) , as required. It can also be

seen that the family {Wn}n is explicit and linear. It remains to analyze the rate and the query
complexity of W , and the running time of the tester.

The rate. In order to lower bound the rate of W , we prove the following claim, which gives a
lower bound on the rate of each Bi.

Claim 5.3. The rate of Bi is at least (1− 6
log3 n

)3i.

5As before, the choice of Zyablov code is not crucial, and is chosen for concreteness of parameters.
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Proof. We prove the claim by induction. For i = 0, the required claim holds by the definition
of B0. Suppose i ≥ 1. Recall that the code Bi was obtained by applying Lemma 4.4 to (Bi−1)2

to amplify the relative distance to δ. By the induction assumption, the rate of Bi−1 is at least

ri−1
def
= (1− 6

log3 n
)3i−1

. Thus, the rate of (Bi−1)2 is at least (ri−1)2, and by Lemma 4.4, the rate of

Bi is at least

(1− 6 · 12
√
δ) · r2

i−1 = (1− 6

log3 n
) · (1− 6

log3 n
)3i−1·2

= (1− 6

log3 n
)3i−1·2+1

≥ (1− 6

log3 n
)3i ,

as required. �

The last claim implies in particular that the rate of W is at least

(1− 6

log3 n
)3t ≥ 1− 6

log3 n
· 3t

≥ 1− 6

log3 n
· 3log logn

≥ 1− 6

log3 n
· log2 n

≥ 1− 6

log n
,

as required.

The query complexity. We turn to analyze the query complexity of W . The running time of
the tester can be analyzed similarly. We prove the following claim, which gives an upper bound on
the query complexity of each Bi.

Claim 5.4. There exists constants c0, c1 ∈ N such that the query complexity of Bi is at most
(log n)c1·i+c0.

Proof. We prove the claim by induction. Recall that n0 is that block length of B0. We choose c0

to be such that n0 ≤ logc0 n, so the base case of the induction holds. We turn to prove the claim
for i ≥ 1.

Recall that the code Bi is obtained by applying Lemma 4.4 to (Bi−1)2. By the induction

assumption, the query complexity of Bi−1 is at most qi−1 = (log n)c1·(i−1)+c0 . By Corollary 3.4, the
query complexity of (Bi−1)2 is at most

q′i−1
def
= 1200 · qi−1/δ

6 ≤ qi−1/δ
7.

By Lemma 4.4, there exists some constant c′ such that the query complexity of Bi is at most

q′i−1/δ
c′ ≤ qi−1/δ

c′+7

≤ qi−1 · (log n)24·(c′+7)

≤ (log n)c1·(i−1)+c0+24·(c′+7) .

Now, by setting c1
def
= 24 · (c′ + 7), we get that the query complexity of Bi is at most (log n)c1·i+c0 ,

as required. �
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The last claim implies in particular that the query complexity of W is at most

(log n)c1·t+c0 ≤ (log n)c1·log logn+c0 = (log n)O(log logn) ,

as required.
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