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Abstract

We study the interactive compression problem: Given a two-party communication

protocol with small information cost, can it be compressed so that the total number of

bits communicated is also small? We consider the case where the parties have inputs

that are independent of each other, and give a simulation protocol that communicates

I2 · polylog(I) bits, where I is the information cost of the original protocol. Our

protocol is the first simulation protocol whose communication complexity is bounded

by a polynomial in the information cost of the original protocol.

1 Introduction

In seminal works, Shannon, Fano and Huffman consider the data compression problem: Alice

wants to send a message x to Bob. How many bits does she need to send, so that Bob will

be able to retrieve x with high probability? The answer given in [Sha48, Fan49, Huf52]

is that she needs to send only ⌈H(x)⌉ bits, in expectation, where H denotes Shannon’s

entropy function. Roughly speaking, this means that every message can be compressed to

its information content.

Over the last decades, interactive communication protocols were studied extensively. The

interactive compression problem [BBCR10] is the analog of the data compression problem

in the interactive setting. It asks whether the transcript of any interactive protocol can be

compressed to its information content.

The interactive compression problem is formalized in the setting of communication

complexity. In the two-party distributional communication complexity model, each player

gets an input, where the inputs are sampled from a joint distribution µ that is known to both

players. The players’ engage in an interactive communication protocol in order to perform

some communication task that depends on both inputs. They may use both common and

private random strings. The players communicate in rounds, where in each round one of the

players sends a message to the other player. The communication complexity of the protocol

is the total number of bits communicated by the two players.
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The notion of information cost, introduced by [CSWY01, BYJKS04, BBCR10], measures

the amount of information that the players need to reveal about their inputs in order to

solve a communication task. This notion was motivated by the fundamental information

theoretic question of compressing communication, as well as by fascinating relations to

communication complexity, and in particular to the direct sum problem in communication

complexity. Roughly speaking, the (internal) information cost of a protocol π over the

distribution µ, denoted ICµ(π), is the number of information bits that the players learn

about each other’s input, when running the protocol π with inputs sampled from µ.

Using the notions of communication complexity and information cost, the interactive

compression problem is stated as follows: Given a communication protocol π, and a

distribution µ over the inputs for π, does there exist a protocol π′ that simulates π over µ and

has communication complexity close to ICµ(π) (say, polynomial in ICµ(π))? By “simulates”

we mean that π′ performs the same task as π, except with some small error probability,

where the probability is over µ and over the randomness used by the players.

1.1 Previous Works

The interactive compression problem received a lot of attention over the last years, and

clever compression protocols were suggested for several cases [HJMR10, BBCR10, BR11,

Bra12, BBK+13, BMY15, RR15]. Most relevant to our work is a beautiful result by Barak,

Braverman, Chen and Rao, showing that over a product distribution µ, any protocol with

information cost I and communication complexity C, can be compressed to a protocol with

communication complexity I · polylog(C) [BBCR10]. (We mention that their result is even

stronger and gives an I ′ · polylog(C) compression for any protocol over any distribution,

where I ′ is the external information cost). In [BMY15], a simulation protocol communicating

O(I2 · log log(C)) bits is shown for the case where the original protocol does not use private

randomness. The general case, compressing any protocol over any distribution, is considered

in [Bra12], where a 2O(I) compression is given, and in [BBCR10], where a Õ(
√
C · I)

compression is given. A compression to Õ(I + r) is given by [BR11], where r is the number

of rounds of the original protocol.

Another line of works studies the limitations of compression protocols. In [GKR14,

GKR15b, RS15, GKR15a], exponential separations between communication complexity

and information cost are shown. More precisely, for any sufficiently large I, the above

results give examples of communication tasks with communication complexity at least 2I ,

for which there exist protocols with information cost O(I). Therefore, over general

distributions µ, communication protocols cannot always be compressed to their information

cost. We mention that in all the above results, the protocol with low information cost has

communication complexity C, that is at least double exponential in I. Thus, the I ·polylog(C)

compression by [BBCR10], leaves open the possibility that a similar separation can also be

obtained with the underlying distribution being a product distribution.
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1.2 Our Result

We consider the interactive compression problem over product distributions µ = µA × µB

(i.e., Alice’s input and Bob’s input are chosen independently), and give a simulation

protocol that communicates I2 · polylog(I) bits, where I is the information cost of the

original protocol over µ. Our protocol is the first simulation protocol whose communication

complexity is polynomial in the information cost of the original protocol, and does not

depend on the communication complexity of the original protocol. We mention that our

result implies that an exponential separation between information cost and communication

complexity, like the ones given by [GKR14, GKR15b, RS15, GKR15a], cannot be obtained

for product distributions. Our result is incomparable to the I · polylog(C) compression

protocol of [BBCR10].

Our main result is given in Theorem 1 below. The theorem uses the following notation:

Let ξ be a randomized communication protocol between two parties, Alice and Bob. Let x

be an input for Alice, and y be an input for Bob. We denote by ξ(x, y) the random variable

representing ξ’s transcript (that is, the concatenation of all the messages exchanged between

the players during the execution of ξ), when it is run with the input (x, y). We also view

ξ(x, y) as a distribution over the set of all binary strings. For a pair of distributions D,D′,

we denote by ∥D −D′∥ the statistical distance between D and D′.

Theorem 1. Let ε > 0. Let π be a randomized protocol that may use private and public coins.

Let µ = µA × µB be a product distribution over the inputs for π. Then, there exist a public

coin protocol τ (that takes the same inputs as π), and a pair of “transcript reconstruction”

functions gA, gB such that: The function gA takes as inputs x ∈ supp(µA) and a possible

transcript of τ , and returns a possible transcript of π. The function gB takes as inputs

y ∈ supp(µB) and a possible transcript of τ , and returns a possible transcript of π. In

addition, the followings hold:

1. The worst case communication complexity of τ is IC2
µ(π) · polylog (ICµ(π)) /ε

5.

2. ∀(x, y) ∈ supp(µ) : Pr
[
gA(x, τ(x, y)) ̸= gB(y, τ(x, y))

]
≤ ε, where the probability is

over the random coins of the protocol τ .

3. E(x,y)←µ

[∥∥gA(x, τ(x, y))− π(x, y)
∥∥] ≤ ε.

2 Proof Sketch

Let π be a communication protocol between two players, Alice and Bob. Alice has a private

input x and Bob has a private input y, where (x, y) is chosen according to some publicly

known joint distribution µ. For the rest of this sketch, µ = µA×µB is a product distribution.

We assume, without loss of generality, that π does not use public randomness (but may use

private randomness), as the public randomness can always be replaced by private randomness
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without increasing the information cost. We also assume that the players take turns sending

bits to one another. Alice sends bits in odd rounds and Bob in the even rounds.

The external information cost of a protocol over a distribution µ is the number of

information bits that an external observer, who watches the execution of the protocol, learns

about the players’ inputs, when the inputs are sampled from µ. We next present a sketch of

the public coin protocol τ that simulates π, such that the communication complexity of τ is

I2 · polylog(I), where I is the external information of π over µ. This proves Theorem 1, as

over a product distribution µ, the internal and external information costs of a protocol π are

the same (see Fact 3). Intuitively, this is true since x conveys no information about y, thus

Alice and an external observer who doesn’t know x, y have the same information about y

at any point in the execution of the protocol. The same is true for Bob. Our protocol

builds over the I ·polylog(C) compression by [BBCR10], and parts of this sketch follow their

description.

2.1 Divergence Tree

Consider the (directed) binary tree associated with π, where each vertex v of the binary tree

corresponds to a possible transcript of π. The two edges going out of v are labeled by 0

and 1, corresponding to the next bit to be transmitted. We think of Alice as owning the

non-leaf vertices in the odd layers, and of Bob as owning the non-leaf vertices in the even

layers. The protocol π proceeds as follows: Starting from the root, when π reaches a non-leaf

vertex v, the player who owns v sends a bit to the other player. The players follow the edge

indicated by the sent bit and reach a new vertex.

Let b ∈ {0, 1}. For every non-leaf vertex w, we denote by Ow(b) the probability of

transmitting the bit b at w, conditioned on reaching that vertex (without taking into

consideration the actual values of the inputs x, y). We denote by Owx(b), Owy(b) the

probabilities of transmitting the bit b at w, conditioned on a particular fixing of x or y

(respectively), and conditioned on the event of reaching w during the run of the protocol.

We denote by Owxy(b) the probability of transmitting the bit b at w, conditioned on a

particular fixing of both x, y, and conditioned on the event of reaching w. We view

Owxy = (Owxy(0), Owxy(1)) as the “true” probability distribution at w. Observe that Alice

can compute the distributions Owxy and Owy for vertices w that she owns: Since Alice is

the one deciding on the bit to be sent at w, it holds that Owxy = Owx. Since µ is a product

distribution, it also holds that Owy = Ow. Similarly, Bob can compute Owxy and Owx for

vertices w that he owns.

We define the divergence at w with respect to x, denoted by Dwx, as D(Owx∥Ow), where

D ((p, 1− p) ∥ (q, 1− q)) = p log(p/q) + (1 − p) log((1 − p)/(1 − q)) is the divergence (also

known as relative entropy or theKullback-Leibler distance) between the distributions (p, 1−p)
and (q, 1−q). Observe that for a vertex w owned by Bob, Dwx = D(Owx∥Ow) = D(Ow∥Ow) =

0. Similarly, the divergence at w with respect to y, denoted by Dwy, is define as D(Owy∥Ow).
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2.2 Frontiers

Let v be a vertex and let C be a subset of descendants of v. The set C is a frontier (or a cut)

with respect to v, if every path from v to a leaf that is a descendant of v, contains exactly

one element of C.
Let β = 1/polylog(I). Given a vertex v, we define Cvx to be the set of descendants w

of v such that if we sum up Dw′x for all intermediate vertices w′ on the path from v to w

we get a total < β, but adding Dwx makes the total at least β, or w is a leaf. Intuitively,

vertices in Cvx correspond to the shortest transcripts for which Alice reveals β additional bits

of information about x (in addition to the information revealed at v). The set Cvy is defined

similarly. Observe that Cvx and Cvy are frontiers with respect to v. In addition, Alice knows

the frontier Cvx and Bob knows the frontier Cvy.
Let w be a vertex. We define Dvxy(w) to be the probability that π reaches w, when the

inputs are x, y, conditioned on it reaching v. Note that Dvxy(w) is obtained by multiplying

the probabilities Ow′xy(bw′) for vertices w′ along the path from v to w, where bw′ = 0 if the

path from v to w passes through the edge going out of w′ that is labeled by 0, and bw′ = 1

otherwise. In other words, following the probabilities Ow′xy = Ow′x for vertices owned by

Alice, and Ow′xy = Ow′y for vertices owned by Bob.

We define Dvx(w) to be the “best estimate” of Dvxy(w) by Alice. That is, Dvx(w) is

induced by following the probabilities Ow′x for vertices owned by Alice, and Ow′x = Ow′

for vertices owned by Bob. The value Dvy(w) is defined similarly. We define Dv(w) to be

the “best estimate” of Dvxy(w) by an observer who doesn’t know x, y. As before, Dv(w)

is induced by following the probabilities Ow′ along the path. Note that Dv(w) is known to

both players, as well as to an external observer. Also note that by restricting each of the

functions Dvxy, Dvx, Dvy, Dv (defined over the set of all descendants of v) to any frontier

with respect to v, a probability distribution is obtained. We denote by D̃vxy, D̃vx, D̃vy, D̃v

the distributions obtained by restricting the functions Dvxy, Dvx, Dvy, Dv (respectively) to

the leaves that are descendants of v. When we omit the vertex v from the notation (e.g.,

Dxy, D̃ etc.), we mean that v is the root of the tree.

2.3 The Simulation Protocol τ

The simulation protocol proceeds as follows: Initially v is set to the root of the tree, t below

is some large constant, r = poly(I), and η = 1/poly(I).

1. Selecting a Leader: Players sample a bit p from the public randomness. If p = 1

(Bob leads), they run Steps 2 − 4 as written. Otherwise, if p = 0 (Alice leads), they

run Steps 2− 4 with the roles of Alice and Bob, and the roles of x and y, switched.

2. Correlated Sampling: Players jointly sample a leaf u according to D̃vy. (Recall that

Bob knows the distribution D̃vy, while Alice’s best estimate of D̃vy is D̃v). This is

done by running the correlated sampling protocol of [BR11] with P = D̃vy, Q = D̃v,
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and error probability η, and requires the exchange of ≈ D(D̃vy∥D̃v)+log(1/η) bits (see

Lemma 14).

3. Finding a Separation: Consider the unique vertex w′ in the intersection of Cvx and

the path from v to u. We define cvx(u) to be the index (number) of w′ on the path

from v to u. We define cvy(u) similarly. The goal of this step is for the players to agree

on an index k such that min{cvx(u), cvy(u)} ≤ k ≤ max{cvx(u), cvy(u)}. This is done

with error 1/r by sending O(log(r)) bits, as follows:

(a) Let c1 ≤ . . . ≤ cr ∈ N be such that ci is the first index satisfying Prx′ [cvx′(u) ≤
ci] ≥ i/r, where the probability is over x′ that is sampled according to the current

distribution over Alice’s inputs (i.e., the original distribution µA conditioned on

the current transcript of τ). Observe that this distribution is still a product

distribution and that the indices ci are known to both players.

(b) Alice sends the first index a ∈ [r] such that cvx(u) ≤ ca. Bob sends the first index

b ∈ [r] such that cvy(u) ≤ cb.

(c) Return k = min{ca, cb}. Let w be the kth vertex on the path from v to u.

4. Rejection Sampling: Alice sends a bit a′ that equals 0 (reject) if w has an ancestor

in Cvx (intuitively, the transcript w reveals ≥ β additional bits of information about x).

Otherwise, a′ equals 1 (accept) with probability min {1, Dvx(w)/tDv(w)}.
If a′ = 1, then the players set v = w. If v is a leaf they end the protocol, otherwise

they go back to Step 1.

2.4 Protocol Analysis

To get a rough idea of why this protocol works, fix x, y and the transcript of τ so far, and

assume that vertex v was reached. We first consider the case where Step 1 selects p = 1

(Bob leads).

Consider a particular execution of Step 3, and let k be the returned index. Let E

be the event that in this execution of Step 3, ca = cb and ca ̸= cvx(u). We claim that

min{cvx(u), cvy(u)} ≤ k ≤ max{cvx(u), cvy(u)}, unless E occurs (see Lemma 17):

1. If ca > cb then k = min{ca, cb} = cb. By the definition of ca as the first index for which

cvx(u) ≤ ca, it holds that k = cb < cvx(u). Therefore, cvy(u) ≤ cb = k < cvx(u), and we

are done. The case where cb > ca is similar.

2. If ca = cb and ca = cvx(u), then cvx(u) = ca = k = cb ≥ cvy(u), and we are also done.

Fix v, u. The current distribution over the players’ inputs is obtained by conditioning

the original distribution µ on the current transcript of the protocol τ . Observe that this

is still a product distribution, as it is obtained by conditioning a product distribution on a

transcript of a protocol. We will prove that since this distribution is a product distribution,
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the event E occurs with probability at most 1/r (over the selection of inputs). For intuition,

consider the case where the index a is (almost) uniformly distributed in [r] (this always

happens when the indices ci are all distinct). Since Alice’s input and Bob’s input are still

independent, we have that cb = ca with probability 1/r, and thus E occurs with probability

at most 1/r. Another extreme case is when there exists c ∈ [r], such that it is always the

case that ca = c (this always happens when all the indices ci coincide). Then, except with

probability 1/r over the selection of x, we have that cvx(u) = c = ca, and thus E does not

occur. The actual proof follows from these two intuitions, see Lemmas 18 and 29.

Fix x, y and the transcript of τ so far, and assume that vertex v was reached. Consider

the set C = Cvxy of vertices w = wu obtained by Step 3 of the protocol τ for the different

leaves u that are descendants of v. We claim that C is “close” to being a frontier with

respect to v: Consider the protocol τ ′ that operates the same as τ , except that Step 3

is changed so whenever E occurs, the protocol τ ′ has Alice and Bob exchanging cvx(u)

and cvy(u), and returns k = min{cvx(u), cvy(u)}. It can be shown that the set C ′ = C ′vxy
of vertices w = wu obtained by Step 3 of the protocol τ ′ for the different leaves u that

are descendants of v, is an actual frontier with respect to v (see Lemma 16). We also note

that C ′ is “always between” Cvx and Cvy: As claimed before, if E does not occur, the returned

value k satisfies min{cvx(u), cvy(u)} ≤ k ≤ max{cvx(u), cvy(u)}. If E occurs then Step 3 of τ ′

returns k = min{cvx(u), cvy(u)}. That is, a vertex in C ′ has either an ancestor in Cvx and a

descendant in Cvy, or has an ancestor in Cvy and a descendant in Cvx.
Assume for simplicity that C = C ′, and, in particular, that C is a frontier that is

“always between” Cvx and Cvy (C and C ′ are “close” anyway, as E is an event that occurs

with probability ≤ 1/r). Also assume that all the vertices in C are two levels below v,

with the first vertex (i.e., v) owned by Alice, and the vertices in the intermediate level

owned by Bob. Let w ∈ C. Recall that Dvxy(w) is the true probability of arriving at w

conditioned on reaching v, and that Dv(w) is the best estimate of Dvxy(w) by an observer

who does not know x, y. Fixing w, we write Dvxy(w) = D1D2 and Dv(w) = D′1D
′
2,

where Di denotes the true probability that step i is taken according to x, y, and D′i
denotes this probability as estimated by an observer who does not know x, y. Observe

that Dvx(w) = D1D
′
2, Dvy(w) = D′1D2. Also note that the probability that w is selected by

Step 3 is Dvy(w) = D′1D2, as the correlated sampling of Step 2 outputs a leaf u distributed

according to D̃vy.

We first consider the case where the frontier Cvy is “always above” Cvx. That is, every

vertex in Cvx is a descendant of some vertex in Cvy. Intuitively, this means that upon

reaching v, Bob always gives β bits of information about y before Alice gives β bits of

information about x. Since we assume that Cvy is “always above” Cvx, and since C is “always
between” Cvy and Cvx, it holds that w has a descendant in Cvx. This intuitively means that

the transcript w reveals < β additional bits of information about x, thus Dvx(w) and Dv(w)

(which is the estimation of Dvx(w) by an observer who doesn’t know x) tend to be close.

Now assume that the threshold t is set high enough so that tDv(w) ≥ Dvx(w) with high
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probability. In this case the probability that w is accepted by Step 4 equals

Pr[a′ = 1] =
Dvx(w)

tDv(w)
=

D1D
′
2

tD′1D
′
2

=
D1

tD′1
.

This implies that the total probability that w is selected by Step 4 to be the new v, is D′1D2

times D1/tD
′
1, which is exactly its correct probability D1D2 divided by t. Hence, we get an

overhead of t steps, but output the right distribution over w.

Now, it may be the case that Cvy is not always above Cvx. Actually, it may even be the

case that Cvy is not always above Cvx and not always below it, but rather, some vertices in Cvy
have descendants in Cvx, and others have ancestors in Cvx. This means that after reaching v,

Alice may give ≥ β additional bits of information about her input before Bob does so for

his input, or it may be the other way around. Step 1 randomly chooses one of the players in

every iteration and assumes that this player is going to be the first to give β additional bits

of information about his input at the vertex w that will be selected by Step 3.

Assume that Bob was selected by Step 1 (p = 1). If w has an ancestor in Cvy
(equivalently, w has a descendant in Cvx), then Bob gives β additional bits of information

before Alice does, and the assumption of Step 1 is true. In this case, Alice just “corrects”

the probability of reaching w according to her own view, by accepting it with probability

Dvx(w)/tDv(w). Observe that Bob does not need to correct w’s probability, as it was

already sampled according to Dvy. Otherwise, if w has an ancestor in Cvx, then Alice

gives β additional bits of information before Bob does. Thus, the assumption of Step 1 is

false, and w gets rejected by Alice. This case, where Alice gives information first, will be

handled when Step 1 selects p = 0 (Alice leads). Since the protocol τ cannot predict a priori

(before u is selected by Step 2) which player is going to be the first to give β information,

Step 1 randomly selects the leader.

2.5 The Communication Complexity of the Protocol

Let w be the vertex selected by Step 3. Since w is between Cvx and Cvy, if we sum up the

term Dw′x +Dw′y for all intermediate vertices w′ on the path from v to w we get a total ≥ β

(unless w is a leaf). Intuitively, this means that ≥ β bits of information about x, y are

revealed to the external observer when we go from the v to w. Since the external information

of π over µ is only I, and since we set β = 1/polylog(I), this means that the vertex v gets

updated by Step 4 at most m ≈ I/β = I · polylog(I) times, on average. Assume again that

Bob was selected by Step 1 (p = 1) and that Cvy is always above Cvx. As we claimed above,

the probability that w is selected by Step 4 to be the new v, is roughly Dvxy(w)/t. Therefore,

summing over all possible vertices w, in each iteration of the protocol τ , the vertex v gets

updated by Step 4 with probability roughly 1/t. This implies that the protocol τ runs for

at most m′ ≈ tm = I · polylog(I) iterations, on average.

Each iteration consists of the following steps: Step 2 has error η. Since we run this step

at most m′ times, in order for the total error introduced by this step to be small, we set
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η = 1/poly(I) ≪ 1/m′. Step 2 communicates ≈ D(D̃vy∥D̃v) + log(1/η) bits if p = 1, and

≈ D(D̃vx∥D̃v) + log(1/η) bits if p = 0. Proposition 9 shows that for every x and y,

D(D̃x∥D̃) ≤ E
y←Y

[
D(D̃xy∥D̃)

]
; D(D̃y∥D̃) ≤ E

x←X

[
D(D̃xy∥D̃)

]
.

Loosely stated, the first equation above says that the distribution D̃x is “closer” to D̃

than D̃xy. This is true as both D̃x and D̃xy are induced by following the probabilities Ow′x for

vertices owned by Alice. However, for vertices owned by Bob, D̃x follows the probability Ow′ ,

while D̃xy follows Ow′y. The distribution D̃ always follows Ow′ .

Proposition 8 gives an alternative definition of external information, by showing that I,

the external information of π over µ, satisfies

I = E
(x,y)←µ

[
D(D̃xy∥D̃)

]
.

Therefore, Step 2 communicates O(I) bits, in expectation.

Step 3 has error 1/r. Since we run this step at most m′ times, in order for the total error

introduced by this step to be small, we set r = poly(I)≫ m′. The communication required

by this step is then O(log(r)) = O(log(I)) bits, as the players only exchange indices a, b ∈ [r].

Step 4 requires 1 bit of communication. Hence, the total communication per round is O(I),

in expectation, and the protocol communicates O(m′I) = I2 · polylog(I) bits.

3 Preliminaries

3.1 Notation

Let π be a randomized communication protocol. Let (x, y) be a possible input for π. We

denote by π(x, y) the random variable representing π’s transcript (messages exchanged during

π’s execution), when it is run with the input (x, y). We sometimes confuse random variables

and their distribution. For example, we often view π(x, y) as a distribution.

Let s ∈ {0, 1}∗ be a binary string. We denote by |s| ∈ N ∪ {0} the length of s. For

example, |π(x, y)| is the length of the transcript represented by the random variable π(x, y).

For i ∈ [|s|], we denote by si ∈ {0, 1} the ith bit of s, and by s≤i ∈ {0, 1}i the prefix of length i

of s. For i ≤ 0, set s≤i = ϕ, where ϕ denotes the empty string (the string of length 0).

For a pair of distributions D,D′ over the same domain Ω, we denote by ∥D −
D′∥ the statistical/total variation distance between D and D′, given by ∥D − D′∥ =

maxS⊆Ω {|D(S)−D′(S)|}. We sometimes consider the statistical distance ∥D−D′∥, whereD
is a distribution over a set S of binary strings, and D′ is a distribution over a set S ′ of binary
strings (e.g., ∥π(x, y)− π′(x, y)∥, where π, π′ are protocols and (x, y) is an input for both π

and π′). For this statistical distance to be defined, we view both D and D′ as distributions

over the set of all binary strings. For a function D : Ω→ R (not necessarily a distribution)

and a set S ⊆ Ω, we define D(S) =
∑

x∈S D(x).
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For a pair of random variables X, Y , we denote by I(X;Y ) the mutual information

between X and Y . For a pair of distributions D,D′ over the same domain, we denote by

D(D∥D′) the relative entropy between D and D′, given by

D(D∥D′) = E
x←D

[
log

(
D(x)

D′(x)

)]
.

3.2 Information Cost

Definition 1 (Internal Information Cost). The internal information cost of a (private coin)

protocol π over random inputs (X, Y ) that are drawn according to a joint distribution µ, is

defined as

ICµ(π) = I(π(X,Y );X | Y ) + I(π(X, Y );Y | X).

Definition 2 (External Information Cost). The external information cost of a (private coin)

protocol π over random inputs (X, Y ) that are drawn according to a joint distribution µ, is

defined as

Extµ(π) = I(π(X, Y );X, Y ).

Fact 2. Let π be a protocol and let µ be a distribution over the inputs for π. Then,

ICµ(π) ≤ Extµ(π).

Fact 3 (Fact 4.16 in [BBCR10]). Let π be a protocol and let µ = µA × µB be a product

distribution over the inputs for π. Then, ICµ(π) = Extµ(π).

3.3 Divergence Tree

Transcript tree. Let π be a communication protocol between two players, Alice and Bob.

Alice has a private input x and Bob has a private input y, where (x, y) is chosen according

to some publicly known joint distribution µ. In this work, we consider the case where

µ = µA × µB is a product distribution. We assume, without loss of generality, that π does

not use public randomness (but may use private randomness), as the public randomness

can always be replaced by private randomness without increasing the (internal or external)

information cost. We also assume that the players take turns sending bits to one another.

Alice send bits in odd rounds and Bob in the even rounds. We further assume, without loss

of generality, that the players communicate the same number of bits in every execution of

the protocol.

We denote by T the (directed) binary tree associated with the communication protocol π.

That is, every vertex v of T corresponds to a possible transcript of π. The two edges going

out of v are labeled by 0 and 1, corresponding to the next bit to be transmitted. We assume

that T is a complete binary tree. We denote by V the set of vertices of T , by v0 the root of T ,
and by L the set of leaves of T . Since a vertex v ∈ V corresponds to a possible transcript

of π, we often think of v as a string. That is, we view v as the binary string induced by the

labels of the edges on the path from the root to v.
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We think of Alice as owning the non-leaf vertices in the odd layers of T , and of Bob as

owning the non-leaf vertices in the even layers of T . We denote by VA ⊆ V \ L the set of

vertices owned by Alice and by VB ⊆ V \L the set of vertices owned by Bob. The protocol π

proceeds as follows: Starting from the root, when the protocol π reaches a non-leaf vertex v,

the player who owns v sends a bit to the other player. The players follow the edge indicated

by the sent bit and reach a new vertex.

For a vertex v ∈ V , we denote by V(v) ⊆ V the set of vertices in the subtree rooted in v

(including v itself), and by L(v) the set of leaves in the subtree rooted in v (including v

itself). Let v, w ∈ V . We say that w is a descendant of v, if w is in the subtree rooted in v

(in particular, v is a descendant of itself). We say that w is a strict descendant of v, if w is

in the subtree rooted in v and w ̸= v. We say that v is an ancestor of w, if w is a descendant

of v. We say that v is a strict ancestor of w, if w is a strict descendant of v.

Distributions associated with a vertex. Let (X,Y ) be a pair of random variables

distributed according to µ, representing the players’ inputs. Since µ is a product

distribution,X and Y are independent. We view π(X, Y ) as the random variable representing

the leaf of T reached by the protocol π.

Let v ∈ V . We assume that for every (x, y) ∈ supp(µ) it is possible for the protocol π to

reach the vertex v. That is, Pr[π(X, Y )≤|v| = v | X = x, Y = y] > 0. This can be assumed

without loss of generality: Consider the private coin protocol π∗, in which Alice follows π

with probability 1− δ, and, with probability δ, she sends a random bit for each vertex that

she owns, for some sufficiently small δ > 0. Bob acts similarly. Observe that π∗ has the

required property and ∥π(X,Y )− π∗(X,Y )∥ ≤ 2δ.

Let v ∈ V \ L and (x, y) ∈ supp(µ). We define the following distributions over the two

edges going out of v: Ovxy is the distribution over the edges going out of v according to

the protocol π. We think of Ovxy as the “real” distribution at v. The distribution Ovx

is Alice’s best estimate Ovxy, and the distribution Ovy is Bob’s best estimate Ovxy. The

distribution Ov is the best estimate of Ovxy by an external observer who doesn’t know

neither x nor y. Formally, for b ∈ {0, 1},

Ovxy(b) = Pr
[
π(X, Y )|v|+1 = b | π(X,Y )≤|v| = v,X = x, Y = y

]
,

Ovx(b) = Pr
[
π(X, Y )|v|+1 = b | π(X,Y )≤|v| = v,X = x

]
,

Ovy(b) = Pr
[
π(X, Y )|v|+1 = b | π(X,Y )≤|v| = v, Y = y

]
,

Ov(b) = Pr
[
π(X, Y )|v|+1 = b | π(X,Y )≤|v| = v

]
.

We note that

∀v ∈ VB : Ovxy(b) = Ovy(b); ∀v ∈ VA : Ovxy(b) = Ovx(b). (1)

Furthermore, since X and Y are independent even conditioned on any transcript v of the
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protocol π, we get

∀v ∈ VB : Ovx(b) = Ov(b); ∀v ∈ VA : Ovy(b) = Ov(b). (2)

Probabilities of reaching a vertex. Let v ∈ V and (x, y) ∈ supp(µ). We define the

functions Dvxy, Dvx, Dvy, Dv : V(v)→ [0, 1] by:

Dvxy(v) = Dvx(v) = Dvy(v) = Dv(v) = 1,

and for w ∈ V(v) \ {v},

Dvxy(w) =
∏

i∈{|v|,...,|w|−1}

Ow≤ixy(wi+1),

Dvx(w) =
∏

i∈{|v|,...,|w|−1}

Ow≤ix(wi+1),

Dvy(w) =
∏

i∈{|v|,...,|w|−1}

Ow≤iy(wi+1),

Dv(w) =
∏

i∈{|v|,...,|w|−1}

Ow≤i
(wi+1).

Let D̃vxy, D̃vx, D̃vy, D̃v : L(v)→ [0, 1] be the restrictions of the functions Dvxy, Dvx, Dvy, Dv

to L(v) (respectively). Observe that D̃vxy, D̃vx, D̃vy, D̃v are distributions over L(v).
Whenever we omit the subscript v, we mean that v is v0, the root of T . E.g., Dxy = Dv0xy,

D̃xy = D̃v0xy.

Proposition 4. Let v ∈ V, w ∈ V(v), and (x, y) ∈ supp(µ). Then,

Dvy(w) ·Dvx(w)

Dv(w)
= Dvxy(w).

Proof.

Dvy(w) ·Dvx(w)

Dv(w)

=
∏

i∈{|v|,...,|w|−1}

Ow≤iy(wi+1) ·Ow≤ix(wi+1)

Ow≤i
(wi+1)

=
∏

i∈{|v|,...,|w|−1}
s.t. w≤i∈VA

Ow≤ix(wi+1) ·
∏

i∈{|v|,...,|w|−1}
s.t. w≤i∈VB

Ow≤iy(wi+1) (by Equation (2))

=
∏

i∈{|v|,...,|w|−1}
s.t. w≤i∈VA

Ow≤ixy(wi+1) ·
∏

i∈{|v|,...,|w|−1}
s.t. w≤i∈VB

Ow≤ixy(wi+1) (by Equation (1))

= Dvxy(w).
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Let v ∈ V , w ∈ V(v), and (x, y) ∈ supp(µ). If w = v, we define Dvwxy = Dvwx = Dvwy = 0.

If w ̸= v, we define

Dvwxy =
∑

i∈{|v|,...,|w|−1}

D(Ow≤ixy∥Ow≤i
),

Dvwx =
∑

i∈{|v|,...,|w|−1}

D(Ow≤ix∥Ow≤i
),

Dvwy =
∑

i∈{|v|,...,|w|−1}

D(Ow≤iy∥Ow≤i
),

By Equations (1) and (2) it holds that Dvwxy = Dvwx + Dvwy.

Proposition 5 (Corollary 6 in [Gan12]). Let v ∈ V and (x, y) ∈ supp(µ). Then,

D(D̃vxy∥D̃v) =
∑

w∈V(v)\L(v)

Dvxy(w) · D(Owxy∥Ow) =
∑

u∈L(v)

D̃vxy(u) · Dvuxy.

D(D̃vx∥D̃v) =
∑

w∈V(v)\L(v)

Dvx(w) · D(Owx∥Ow) =
∑

u∈L(v)

D̃vx(u) · Dvux.

D(D̃vy∥D̃v) =
∑

w∈V(v)\L(v)

Dvy(w) · D(Owy∥Ow) =
∑

u∈L(v)

D̃vy(u) · Dvuy.

Proof. We will prove the first equality, the others are similar. Assume without loss of

generality that the subtree of T rooted at v is a complete binary tree, where v is in level 1

and the leaves are in level c, for some c ∈ N. Let k ∈ [c]. Denote by Vk(v) ⊆ V(v) the

vertices in level k of the subtree rooted at v. Let Dk
vxy and Dk

v be the distributions obtained

by restricting the functions Dvxy and Dv to Vk(v) (respectively).

Let 1 ≤ k ≤ c− 1. By definition,

D
(
Dk+1

vxy ∥Dk+1
v

)
= E

w′←Dk+1
vxy

[
log

(
Dk+1

vxy (w
′)

Dk+1
v (w′)

)]
To go over the vertices w′ in level k + 1, we consider each of the vertices w in level k, and

look at its children in level k + 1. Let w0 be the vertex led to from w by the edge labeled

by 0, and let w1 be the vertex led to by the edge labeled by 1. It holds that Dk+1
vxy (w0) =

Dk
vxy(w) ·Owxy(0) and Dk+1

vxy (w1) = Dk
vxy(w) ·Owxy(1). Similarly, Dk+1

v (w0) = Dk
v(w) ·Ow(0)
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and Dk+1
v (w1) = Dk

v(w) ·Ow(1). Therefore,

D
(
Dk+1

vxy ∥Dk+1
v

)
= E

w←Dk
vxy

[
Owxy(0) · log

(
Dk

vxy(w) ·Owxy(0)

Dk
v(w) ·Ow(0)

)
+Owxy(1) · log

(
Dk

vxy(w) ·Owxy(1)

Dk
v(w) ·Ow(1)

)]

= E
w←Dk

vxy

[
log

(
Dk

vxy(w)

Dk
v(w)

)]
+ E

w←Dk
vxy

[
Owxy(0) · log

(
Owxy(0)

Ow(0)

)
+Owxy(1) · log

(
Owxy(1)

Ow(1)

)]
= D(Dk

vxy∥Dk
v) + E

w←Dk
vxy

[D(Owxy∥Ow)] .

By applying the above equation recursively to every level, we get

D(D̃vxy∥D̃v) = D(Dc
vxy∥Dc

v) = D
(
D1

vxy∥D1
v

)
+

c−1∑
k=1

E
w←Dk

vxy

[D(Owxy∥Ow)]

= 0 +
c−1∑
k=1

∑
w∈Vk(v)

Dk
vxy(w) · D(Owxy∥Ow) =

∑
w∈V(v)\L(v)

Dvxy(w) · D(Owxy∥Ow).

Proposition 6. For every (x, y) ∈ supp(µ) and w ∈ V,

Dxy(w) = Pr
[
π(X,Y )≤|w| = w | X = x, Y = y

]
,

Dx(w) = Pr
[
π(X, Y )≤|w| = w | X = x

]
,

Dy(w) = Pr
[
π(X,Y )≤|w| = w | Y = y

]
,

D(w) = Pr
[
π(X, Y )≤|w| = w

]
.

Proof. We will prove the first equality, the rest are similar. Fix (x, y) ∈ supp(µ). Let w ∈ V .
By the probability chain rule,

Dxy(w) =
∏

i∈{0,...,|w|−1}

Ow≤ixy(wi+1)

=
∏

i∈{0,...,|w|−1}

Pr [π(X,Y )i+1 = wi+1 | π(X, Y )1 = w1, . . . , π(X,Y )i = wi, X = x, Y = y]

= Pr
[
π(X, Y )≤|w| = w | X = x, Y = y

]
.

Proposition 7. For every x ∈ supp(µA), y ∈ supp(µB), and w ∈ V,

Dx(w) = Pr
y←Y

[Dxy(w)] ,

Dy(w) = Pr
x←X

[Dxy(w)] .
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Proof. We will prove the first equality, the second is similar. Fix x ∈ supp(µA). Let w ∈ V .

Dx(w) = Pr
[
π(X,Y )≤|w| = w | X = x

]
(by Proposition 6)

=
∑

y∈supp(µB)

Pr[Y = y|X = x] · Pr
[
π(X, Y )≤|w| = w | X = x, Y = y

]
=

∑
y∈supp(µB)

Pr[Y = y] · Pr
[
π(X,Y )≤|w| = w | X = x, Y = y

]
(X, Y are independent)

= Pr
y←Y

[
π(X, Y )≤|w| = w | X = x, Y = y

]
= Pr

y←Y
[Dxy(w)]

The following claim gives a useful alternative definition of external information.

Proposition 8. It holds that

Extµ(π) = E
(x,y)←µ

[
D(D̃xy∥D̃)

]
.

Proof. By Proposition 6,

D̃xy = (π(X,Y ) | X = x, Y = y); D̃ = π(X,Y ).

Recall that for any two random variables A,B,

I(A;B) = E
a←A

[D((B|A = a) ∥ B)] .

Therefore,

Extµ(π) = I(X, Y ;π(X, Y ))

= E
(x,y)←µ

[D ((π(X,Y )|X = x, Y = y) ∥ π(X, Y ))] = E
(x,y)←µ

[
D(D̃xy∥D̃)

]
.

Proposition 9. For every x ∈ supp(µA) and y ∈ supp(µB),

D(D̃x∥D̃) ≤ E
y←Y

[
D(D̃xy∥D̃)

]
,

D(D̃y∥D̃) ≤ E
x←X

[
D(D̃xy∥D̃)

]
.

Proof. We will prove the first inequality, the second is similar. Fix x ∈ supp(µA). It holds
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that

D(D̃x∥D̃)

=
∑

w∈V\L

Dx(w) · D(Owx∥Ow) (by Proposition 5)

=
∑

w∈VA\L

Dx(w) · D(Owx∥Ow) +
∑

w∈VB\L

Dx(w) · D(Ow∥Ow) (by Equation (2))

≤
∑

w∈VA\L

E
y←Y

[Dxy(w)] · D(Owx∥Ow) +
∑

w∈VB\L

E
y←Y

[Dxy(w) · D(Owy∥Ow)]

(by Proposition 7 and as D(Ow∥Ow) = 0, D(Owy∥Ow) ≥ 0)

= E
y←Y

 ∑
w∈VA\L

Dxy(w) · D(Owx∥Ow) +
∑

w∈VB\L

Dxy(w) · D(Owy∥Ow)


= Pr

y←Y

 ∑
w∈V\L

Dxy(w) · D(Owxy∥Ow)

 (by Equation (1))

= Pr
y←Y

[
D(D̃xy∥D̃)

]
(by Proposition 5)

3.4 Frontiers

Definition 3 (Frontier). Let v ∈ V and C ⊆ V(v). The set C is a frontier with respect to v,

if very path from v to a leaf u ∈ L(v) contains exactly one element of C.

Let (x, y) ∈ supp(µ). Let v ∈ V and let C ⊆ V(v) be a frontier with respect to v.

Observe that when restricting each of the functions Dvxy, Dvx, Dvy, Dv to the frontier C, we
get a distribution. In particular, since L(v) is a frontier with respect to v, D̃vxy, D̃vx, D̃vy, D̃v

are distributions.

Proposition 10. Let x ∈ supp(µA) and y ∈ supp(µB). Let C be a frontier with respect to

the root v0. Then,

D(D̃x∥D̃) ≥ E
v←Dx|C

[
D(D̃vx∥D̃v)

]
=
∑
v∈C

Dx(v) · D(D̃vx∥D̃v),

D(D̃y∥D̃) ≥ E
v←Dy |C

[
D(D̃vy∥D̃v)

]
=
∑
v∈C

Dy(v) · D(D̃vy∥D̃v),

where Dx|C and Dy|C denote the distributions obtained by restricting the functions Dx and Dy

(respectively) to the frontier C.

Proof. We will prove the first inequality, the second is similar. Fix x ∈ supp(µA). It holds
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that

E
v←Dx|C

[
D(D̃vx∥D̃v)

]
= E

v←Dx|C

 ∑
u∈L(v)

Dvx(u) · Dvux

 (by Proposition 5)

=
∑
v∈C

∑
u∈L(v)

Dx(v) ·Dvx(u) · Dvux =
∑
v∈C

∑
u∈L(v)

Dx(u) · Dvux

≤
∑
v∈C

∑
u∈L(v)

Dx(u) · Dv0ux =
∑
u∈L

Dx(u) · Dv0ux

= D(D̃x∥D̃). (by Proposition 5)

The sets Vvx,Vvy and the frontiers Cvx, Cvy. Assume that the leaves of T are (all) in

level d, and that d is odd. Let LB be set of vertices in the level d − 1, the last level before

the leaves. Note that level d−1 is owned by Bob. Let LA be set of vertices in the level d−2,

the second to last level before the leaves. Note that level d − 2 is owned by Alice. Let

L+ = L ∪ LA ∪ LB.

We use a parameter β > 0 that will be set later. Let v ∈ V \ L+, x ∈ supp(µA) and

y ∈ supp(µB). We define the set Vvx as the set of all w ∈ V(v) \ L satisfying Dvw≤|w|−1x < β.

That is, we include w in Vvx if Dvwx < β, or if Dvwx ≥ β and w is the first vertex on the

path from v to w for which Dvwx ≥ β. Similarly, we define the set Vvy as the set of all

w ∈ V(v) \ (L ∪ LB) satisfying Dvw≤|w|−1y < β. Note that Alice knows the set Vvx and Bob

knows the set Vvy.
We define the set Cvx ⊆ Vvx as the set of all w ∈ Vvx such that w’s children are not in Vvx

(observe that if one child is not in Vvx, then the other child is not in Vvx either). In other

words, the set Cvx is the “border” of the set Vvx. Similarly, we define the set Cvy ⊆ Vvy as

the set of all w ∈ Vvy such that w’s children are not in Vvy. Observe that both Cvx and Cvy
are frontiers with respect to v. Note that Alice known the frontier Cvx and Bob knows the

frontier Cvy. In addition, Cvx ⊆ VB and Cvy ⊆ VA, thus

Cvx ∩ Cvy = ϕ. (3)

The indices cvx(u), cvy(u). Let v ∈ V \L+ and u ∈ L(v). We denote by P (v, u) the set of

vertices on the path from v to u. Let x ∈ supp(µA) and y ∈ supp(µB). Consider the unique

vertex w in the intersection of Cvx and P (v, u). We set cvx(u) to be the index (number) of w

on the path from v to u. That is, if the vertices on the path from v to u are w1, . . . , wk

(where w1 = v and wk = u), and wc ∈ Cvx (c ∈ [k]), then cvx(u) = c. Similarly, we consider

the unique vertex w′ in the intersection of Cvy and P (v, u). We set cvy(u) to be the index

(number) of w′ on the path from v to u.
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The frontiers Cmin
vxy and Cmax

vxy . Let v ∈ V \ L+ and (x, y) ∈ supp(µ). We define a

set Cmin
vxy ⊆ Cvx ∪ Cvy as follows: Include w ∈ Cvx in Cmin

vxy if w has a descendant in Cvy. In

addition, include w ∈ Cvy in Cmin
vxy if w has a descendant in Cvx. We define a set Cmax

vxy ⊆ Cvx∪Cvy
as follows: Include w ∈ Cvx in Cmax

vxy if w has an ancestor in Cvy. In addition, include w ∈ Cvy
in Cmax

vxy if w has an ancestor in Cvx. Observe that Cmin
vxy and Cmax

vxy are frontiers.

Let v ∈ V and (x, y) ∈ supp(µ). Let w ∈ V(v). We write Cmin
vxy < w ≤ Cmax

vxy , if w is a

strict descendant of a vertex w′ ∈ Cmin
vxy , and w is an ancestor of a vertex w′′ ∈ Cmax

vxy (note

that we allow w = w′′, but do not allow w = w′). Observe that if Cmin
vxy < w ≤ Cmax

vxy , then

w ∈ Vvx ∪ Vvy. For a set C ⊆ V(v), we write Cmin
vxy < C ≤ Cmax

vxy , if for every w ∈ C, it holds
that Cmin

vxy < w ≤ Cmax
vxy .

Proposition 11. Let v ∈ V \ L+ and (x, y) ∈ supp(µ). Let w ∈ V(v) such that

Cmin
vxy < w ≤ Cmax

vxy . Then, either w ∈ Vvx \ Vvy or w ∈ Vvy \ Vvx.

Proof. Since Cmin
vxy < w ≤ Cmax

vxy , it holds that w ∈ Vvx ∪ Vvy and that there exists w′ ∈ Cmin
vxy

such that w is a strict descendant of w′. Since w′ ∈ Cmin
vxy , either w

′ ∈ Cvx or w′ ∈ Cvy. First
consider the case where w′ ∈ Cvx. By the definition of Cvx, since w is a strict descendant

of w′, we get w /∈ Vvx. Conclude that w ∈ Vvy \ Vvx. The case where w′ ∈ Cvy is analyzed

similarly and gives w ∈ Vvx \ Vvy.

Proposition 12. Let v ∈ V \ L+ and (x, y) ∈ supp(µ). Let C ′, C ′′ ⊆ V(v) be two frontiers

with respect to v such that Cmin
vxy < C ′, C ′′ ≤ Cmax

vxy . Let

C = (C ′ ∩ Vvx) ∪ (C ′′ ∩ Vvy).

Then, C is a frontier with respect to v. In addition,

(C ′ ∩ Vvx) ∩ (C ′′ ∩ Vvy) = ϕ.

Proof. Let w ∈ C ′ ∩ Vvx. Since Cmin
vxy < C ′ ≤ Cmax

vxy , then also Cmin
vxy < w ≤ Cmax

vxy . By

Proposition 11, since w ∈ Vvx then w /∈ Vvy, and in particular, w /∈ C ′′ ∩ Vvy. Conclude that

(C ′ ∩ Vvx) ∩ (C ′′ ∩ Vvy) = ϕ.

We next prove that C is a frontier with respect to v. Clearly, C ⊆ V(v). Let u ∈ L(v). We

need to show that |C ∩ P (v, u)| = 1. We first show that C ∩ P (v, u) ̸= ϕ. Recall that C ′, C ′′
are frontiers with respect to v, and let C ′ ∩ P (v, u) = {w′} and C ′′ ∩ P (v, u) = {w′′}. Since

w′, w′′ ∈ P (v, u), one is a descendant of the other. Assume without loss of generality that w′′

is a descendant of w′. If w′′ ∈ Vvy, then w′′ ∈ C ∩ P (v, u), and we are done. Consider the

case where w′′ /∈ Vvy. Since w′′ ∈ C ′′, it holds that Cmin
vxy < w′′ ≤ Cmax

vxy , thus w
′′ ∈ Vvx ∪ Vvy.

Since we assume that w′′ /∈ Vvy, it holds that w′′ ∈ Vvx. Since w′′ is a descendant of w′, by

the definition of the set Vvx, it holds that w′ ∈ Vvx. Hence, w′ ∈ C ∩ P (v, u), and we are

done.

We now show that |C ∩ P (v, u)| ≤ 1. Let S ′ = (C ′ ∩ Vvx) ∩ P (v, u) and S ′′ =

(C ′′ ∩ Vvy) ∩ P (v, u). Since, C ∩ P (v, u) = S ′ ∪ S ′′, we need to show that |S ′ ∪ S ′′| ≤ 1.

Since each of the sets C ′ ∩ Vvx and C ′′ ∩ Vvy is subset of a frontier, |S ′|, |S ′′| ≤ 1. We will
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show that either S ′ = ϕ or S ′′ = ϕ. Assume for contradiction that S ′ = {w′} and S ′′ = {w′′}
for some w′, w′′ ∈ V(v). Since w′ ∈ C ′ and w′′ ∈ C ′′, then Cmin

vxy < w′, w′′ ≤ Cmax
vxy . Since

w′, w′′ ∈ P (v, u), one is a descendant of the other. Assume without loss of generality that w′′

is a descendant of w′. By Proposition 11, since w′ ∈ Vvx it holds that w′ /∈ Vvy. By the

definition of Vvy, since w′′ is a descendant of w′, we get that w′′ /∈ Vvy, a contradiction.

3.5 Smooth Simulation

Like in [BBCR10], it will be convenient for us to assume that the protocol to be simulated

has “smooth” messages, in the sense that every bit in the protocol is relatively close to being

unbiased, even conditioned on every fixing of the inputs and the prior transcript. We next

argue that any protocol can be transformed into a smooth protocol without increasing the

external information cost by much.

Definition 4 (Smooth Protocol). Let β > 0. The protocol π is β-smooth if for every

vertex v ∈ V \ L, every possible input (x, y) for π, and any b ∈ {0, 1}, it holds that

Ovxy(b) ∈ [1/2− β, 1/2 + β].

Lemma 13 (Smooth Simulation). Let κ, β > 0. Let π′ be a private coin protocol and µ be

a distribution over the inputs for π′. Then, there exists a β-smooth private coin protocol π,

and a transcript reconstruction function f that takes as an input a possible transcript of π,

and returns a possible transcript of π′, such that for every (x, y) ∈ supp(µ),

∥f(π(x, y))− π′(x, y)∥ ≤ κ.

In addition,

Extµ(π) ≤ Extµ(π
′) + κ.

Proof. Let C be the worst-case communication complexity of π′, that is, the maximal number

of bits communicated by π′ in any execution. Let k =
⌈
log
(

C·|supp(µ)|
κ

)
/2β2

⌉
. Consider the

protocol π that operates as follows: Every time a player wants to send a bit b in π′, he sends

a sequence of bits b1, . . . , bk which are each independently chosen to be the correct value

with probability 1/2 + β. The players then proceed assuming that the majority of the bits

b1, . . . , bk was the real transmission.

Fix (x, y) ∈ supp(µ). Let i ∈ [C]. By Hoeffding bound, the probability that the ith

transmission was received incorrectly is at most exp(−2β2k) < κ
C·|supp(µ)| . Therefore, with

probability at least 1 − κ
|supp(µ)| , all the transmissions were received correctly. Let f be the

function that gets as an input a transcript of π and returns the string whose first bit is the

majority of the first k bits of the given transcript, the string’s second bit is the majority

of the next k bits of the transcript, and so on. It holds that, Pr [f(π(x, y)) ̸= π′(x, y)] ≤
κ

|supp(µ)| , where the probability is over the randomness used by the players. In particular,

∥f(π(x, y))− π′(x, y)∥ ≤ κ.
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As for the external information of π, observe that π may only reveal information about

the inputs that was not revealed by π′, if for some i ∈ [C], the majority of the bits sent

by π to simulate the ith transition of π′ is different than the actual ith transition (as only

in this case the players reach a different vertex of T ). However, even in this case, since the

entropy of the distribution µ is at most log(|supp(µ)|), no more than log(|supp(µ)|) bits of
information are revealed by π. Conclude that

Extµ(π) ≤ Extµ(π
′) + E

(x,y)←µ
[Pr [f(π(x, y)) ̸= π′(x, y)] · log(|supp(µ)|)] ≤ Extµ(π

′) + κ.

3.6 Correlated Sampling

Our simulation protocol uses the correlated sampling protocol CorrelatedSampling,

promised by the following lemma proved in [BR11]:

Lemma 14 (Theorems 2.1 and 4.1 in [BR11]). Let η > 0. Suppose that Alice is given

a distribution P and Bob is given a distribution Q, both over the same universe U (the

distributions are described by the probabilities assigned to each point). There is a public coin

protocol, CorrelatedSampling(P,Q, η), such that at the end of the protocol:

• Alice outputs an element a distributed according to P .

• Bob outputs b such that Pr[b ̸= a] < η.

• The expected communication complexity of the protocol is at most

10D(P∥Q) + 2 log(1/η) + 10,

where the expectation is over the randomness used by the players.

We mention that we only apply Lemma 14 for the special case where Alice knows both P

and Q.

4 The Simulation Protocol

Let π be a β-smooth private coin communication protocol, for β to be specified next. Let µ

be a distribution over the inputs for π. In this section we present the protocol τST that

simulates π over µ. We first present a related protocol τ (Section 4.1). The actual simulation

protocol, τST , is then easily obtained from τ (Section 4.2).

Parameters. Fix a proximity parameter ε ∈ (0, 1). Let I = Extµ(π). The protocols τ

and τST use the following parameters that depend on ε and I: Below c ∈ N is some sufficiently

large constant.
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β =
ε

logc(I)
=

ε

polylog(I)
; t = O(1);

m =
105I

ε2β
= Ipoly(log(I)/ε); T =

1020tI2 log3(I)

ε5β
= I2poly(log(I)/ε);

η = (ε/10T )10 = poly(ε/I); r = 104tm2/ε2 = poly(I/ε);

α = (0.001ε/m)2 = poly(ε/I).

4.1 The Protocol τ

The protocol τ is formally presented in Algorithms 1-4. Below is an informal description of

the input and output of each of the (sub)protocols used by τ . For the rest of the paper we

consider the tree T corresponding to π, and use the sets, functions, and distributions defined

with respect to π in Section 3.

The protocol τ (Algorithm 1). At the beginning of the protocol it is assumed that

Alice knows the input x and Bob knows the input y. The players’ goal is to agree on a

leaf of T distributed according to a distribution that is close (in statistical distance) to D̃xy.

The protocol starts at the root of T and proceeds in a sequence of m iterations. In every

iteration a new vertex v is reached. For i ∈ [m], the vertex v reached at the end of iteration i

is a descendant of the vertex v reached at the end of iteration i − 1. The vertex v reached

by iteration m is a leaf with high probability.

Definitions. Consider the protocol τ (Algorithm 1). For i ∈ {0, . . . ,m}, let V̂i be the set

of possible transcripts of the first i iterations of the loop in Line 1 of τ . Let V̂ =
∪

i∈{0,...,m} V̂i.
In particular, any v̂ ∈ V̂ is a (partial) transcript of τ .

Let (x, y) ∈ supp(µ). As will be justified later (see the last paragraph of Section 4.2),

we may assume that after any transcript v̂ ∈ V̂i of the first i iterations of τ , both Alice

and Bob (each using his private input) know the vertex v ∈ V reached by τ at the end

of this iteration. Let v̂ be a possible (partial) transcript of τ , and assume that v̂′ is the

longest prefix of v̂ contained in V̂ . We denote by msgπx(v̂) ∈ V the vertex v reached by the

protocol τ when the transcript of τ is v̂′ and Alice’s input is x. We denote by msgπy(v̂) ∈ V
the vertex v reached by the protocol τ when the (partial) transcript of τ is v̂′ and Bob’s input

is y. Since we assume that for every (x, y) ∈ supp(µ) it is the case that msgπx(v̂) = msgπy(v̂)

Algorithm 1: The Protocol τ(x, y)

1 for i ∈ [m] do

2 Players run Chunk(v̂, x, y), where v̂ is the transcript of τ so far, to get a vertex v.

3 return v.
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Algorithm 2: The Protocol Chunk(v̂, x, y)

1 while no output was given do

2 p← random bit sampled from the public randomness.

3 if p = 1 then

4 Players run SampleB(v̂, x, y) to get an output w.

5 else

6 Players run SampleA(v̂, x, y) to get an output w.

7 if w ̸= failure then

8 return w.

Algorithm 3: The Protocol SampleB(v̂, x, y)

1 v ← msgπxy(v̂).

2 if v ∈ L+ then

3 Players return a leaf sampled according to D̃vxy, by exchanging one bit for every

level in L+.

4 Players run CorrelatedSampling(P = D̃vy, Q = D̃v, η) to get a leaf u.

5 Players run SeparateB(v̂, u, x, y) to get a vertex w.

6 Alice samples and sends a bit a: If w /∈ Vvx, then a = 0. Otherwise, a = 1 with

probability min {1, Dvx(w)/tDv(w)}.
7 return w if a = 1 and failure otherwise.

Algorithm 4: The Protocol SeparateB(v̂, u, x, y)

1 v ← msgπxy(v̂).

2 Let c1 ≤ . . . ≤ cr ∈ N be s.t. ci is the first index satisfying Prx′←µA
v̂
[cvx′(u) ≤ ci] ≥ i/r.

3 Alice sends the first index a ∈ [r] such that cvx(u) ≤ ca.

4 Alice sends a bit a′ which is 1 iff cvx(u) = ca.

5 Bob sends the first index b ∈ [r] such that cvy(u) ≤ cb.

6 if a ̸= b then

7 return vertex number min{ca, cb}+ 1 on the path from v to u.

8 else if a′ = 1 then

9 return vertex number ca on the path from v to u.

10 else

11 Alice sends cvx(u), Bob sends cvy(u).

12 return vertex number max{cvx(u), cvy(u)} on the path from v to u.
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(both Alice and Bob know the vertex v ∈ V reached), we often write msgπxy(v̂) instead of

msgπx(v̂),msgπy(v̂). We note that msgπxy(v̂) is well defined: The vertex v reached by the

protocol only depends on the inputs x, y and the transcript v̂ (specifically, given x, y, v̂, the

vertex v is independent of the players’ private randomness).

As before, (X, Y ) is a pair of random variables distributed according to µ, representing

the players’ inputs. Recall that π(X,Y ) is the random variable representing the leaf of T
reached by the protocol π. As explained in Section 3.3, we may assume without loss of

generality that for every (x, y) ∈ supp(µ) and v̂ ∈ V̂ , the transcript of the protocol τ may

be v̂. That is, we assume that Pr[τ(X,Y )≤|v̂| = v̂ | X = x, Y = y] > 0.

Let µv̂ be the distribution µ conditioned on the event that the transcript of τ is v̂.

That is, µv̂ = ((X, Y ) | τ(X, Y )≤|v̂| = v̂). Let µA
v̂ and µB

v̂ be the distributions µA

and µB (respectively), conditioned on the event that the transcript of τ is v̂. That is,

µA
v̂ = (X | τ(X,Y )≤|v̂| = v̂) and µB

v̂ = (Y | τ(X, Y )≤|v̂| = v̂). Since v̂ is a possible transcript

of a protocol, and since µ = µA×µB is a product distribution, µv̂ is also a product distribution

and µv̂ = µA
v̂ × µB

v̂ . Observe that given v̂, both players can compute µv̂, µ
A
v̂ , µ

B
v̂ .

The Protocol Chunk (Algorithm 2). At the beginning of the protocol it is assumed that

Alice knows the input x, Bob knows the input y, and that both players know the transcript v̂

of τ so far. Let v = msgπxy(v̂). The players’ goal is to agree on a vertex w ∈ V(v) satisfying
Dvwxy ≥ β (if such w exists), while the following properties hold: The set Cv̂xy of all the

vertices w returned by the protocol is a frontier. In addition, every vertex w ∈ Cv̂xy is selected
by the players with probability close to Dvxy(w).

The Protocol SampleB (Algorithm 3). At the beginning of the protocol it is assumed

that Alice knows the input x, Bob knows the input y, and that both players know the

transcript of τ up until the beginning of most recent execution of Chunk. This transcript

is denoted v̂ ∈ V̂ . Let v = msgπxy(v̂). The players’ goal is to agree on a vertex w ∈ V(v)
such that w ∈ Vvx \ Vvy (in particular, Dvwy ≥ β and Dvwx ≤ 2β, unless w is a leaf), while

the following properties hold: The set of all the vertices w returned by the protocol is a

subset of a frontier. This subset is “maximal” in the sense that one cannot add a new vertex

w ∈ Vvx\Vvy to the set, while keeping it a subset of some frontier. In addition, every vertex w

in this subset is selected by the players with probability close to Dvxy(w). The protocol may

fail.

The Protocol SampleA. The protocol SampleA is obtained from the protocol SampleB

by switching the roles Alice and Bob, switching the roles of x and y, and running SeparateA

instead of SeparateB.

The Protocol SeparateB (Algorithm 4). At the beginning of the protocol it is assumed

that Alice knows the input x, Bob knows the input y, and that both players know the
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transcript of τ up until the beginning of most recent execution of Chunk. This transcript

is denoted v̂ ∈ V̂ . It is also assumed that the players agree on a leaf u ∈ L(v),
where v = msgπxy(v̂). The players’ goal is to agree on a vertex w ∈ P (v, u) such that

w ∈ (Vvx \ Vvy) ∪ (Vvy \ Vvx).

The Protocol SeparateA. The protocol SeparateA is obtained from the protocol

SeparateB by switching the roles Alice and Bob, switching the roles of x and y, and using µB
v̂

instead of µA
v̂ .

4.2 The Protocol τST

The protocol τST gets the same parameters as τ . It operates the same as τ , expect for the

following changes:

1. Add the following line at the beginning of the protocol: “At any point in the execution

of this protocol, after the players exchange T bits, τST terminates and returns failure”.

2. Lines 11 and 12 of the protocols SeparateB and SeparateA are replaced by the single

line “τST returns failure”. That is, if the “else” part in Line 10 of either SeparateB

(Algorithm 3) or SeparateA is reached, then τST terminates immediately and returns

failure.

We mention that the protocol CorrelatedSampling is run by SampleB and SampleA

with error parameter η, in order to sample a leaf u ∈ L(v). By Lemma 14, such an execution

may result in the players getting two different leaves uA and uB with probability η. We

ignore this possibility and assume that Alice and Bob always sample the same leaf u. Since

CorrelatedSampling is run at most T times by τST , the probability that Alice and Bob

sample a different leaf u in one of the executions of CorrelatedSampling, is at most Tη. We

select η to be significantly smaller than 1/T , thus Tη is negligible.

5 Protocol Analysis

In this section we prove Theorem 1. We restate Theorem 1 with slight change of notation,

in order to simplify the notation in the proof (the original protocol is called here π′, and the

simulation protocol is τST ).

Theorem (Theorem 1 restated). Let ε > 0. Let π′ be a randomized protocol that may use

private and public coins. Let µ = µA × µB be a product distribution over the inputs for π′.

Then, there exist a public coin protocol τST (that takes the same inputs as π′), and a pair

of “transcript reconstruction” functions gA, gB such that: The function gA takes as inputs

x ∈ supp(µA) and a possible transcript of τST , and returns a possible transcript of π′. The

function gB takes as inputs y ∈ supp(µB) and a possible transcript of τST , and returns a

possible transcript of π′. In addition, the followings hold:
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1. The worst case communication complexity of τ is IC2
µ(π

′) · polylog (ICµ(π
′)) /ε5.

2. ∀(x, y) ∈ supp(µ) : Pr
[
gA(x, τST (x, y)) ̸= gB(y, τST (x, y))

]
≤ ε, where the probability

is over the random coins of the protocol τST .

3. E(x,y)←µ

[∥∥gA(x, τST (x, y))− π′(x, y)
∥∥] ≤ ε.

Let π′ be the given randomized communication protocol, and let µ be a distribution over

the inputs for π′. As explained before, we may assume that π′ is a private coin protocol,

as the public randomness can always be replaced by private randomness without increasing

the information cost. Let I ′ = Extµ(π
′), and assume that I ′ is sufficiently large. Let π

be the β′-smooth protocol promised by Lemma 13 for π′, when applied with κ = ε/10

and β′ = ε
logc(I′+ε/10)

(the same constant c as in the definition of the parameter β). Let

I = Extµ(π). By Lemma 13, I ≤ I ′ + ε/10. Thus, β′ ≤ β = ε
logc(I)

, and, in particular, π

is also β-smooth. The simulation protocol, τST , is used to simulate the protocol π. This

section is devoted to proving the following main lemma:

Lemma 15. It holds that

E
(x,y)←µ

[∥∥msgπx(τ
ST (x, y))− π(x, y)

∥∥] ≤ ε/2.

The proof of Lemma 15 is deferred to the end of the section. We next show how Theorem 1

follows from Lemma 15.

Proof of Theorem 1. The first item in Theorem 1 is satisfied as the worst case communication

complexity of πST is T ≤ I2polylog(I)/ε5 ≤ (I ′)2polylog(I ′)/ε5, and as, by Fact 3,

I ′ = Extµ(π
′) = ICµ(π

′).

Let fA be the function that gets an input x ∈ supp(µA) and a possible transcript v̂ for τST ,

and returns the transcript msgπx(v̂) ∈ V for π. Let fB be the function that gets an input

y ∈ supp(µB) and a possible transcript v̂ for τST , and returns the transcript msgπy(v̂) ∈ V
for π. By Lemma 13, there exists a function f such that ∥f(π(x, y))− π′(x, y)∥ ≤ ε/10. Let

gA = f ◦ fA and gB = f ◦ fB, where ‘◦’ denotes function composition.

The second item in Theorem 1 is satisfied, because, as explained in the last paragraph of

Section 4.2, Alice and Bob reach a different vertex of T with probability at most Tη ≪ ε.

The third item in Theorem 1 is satisfied as by Lemma 15,

E
(x,y)←µ

[∥∥gA(x, τST (x, y))− π′(x, y)
∥∥]

≤ E
(x,y)←µ

[∥∥f(fA(x, τST (x, y)))− f(π(x, y))
∥∥+ ∥f(π(x, y))− π′(x, y)∥

]
≤ E

(x,y)←µ

[∥∥msgπx(τ
ST (x, y))− π(x, y)

∥∥]+ E
(x,y)←µ

[∥f(π(x, y))− π′(x, y)∥]

≤ ε/2 + ε/10 ≤ ε.
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5.1 The Protocols SeparateB and SeparateA

The frontiers CBv̂xy and CAv̂xy. Let v̂ ∈ V̂ and (x, y) ∈ supp(µ). Let v = msgπxy(v̂) and

assume that v ∈ V \ L+. Let CBv̂xy be the set of all possible vertices w ∈ V that may be

returned when running SeparateB(v̂, u, x, y), for some u ∈ L(v). Let CAv̂xy be the set of all

possible vertices w ∈ V that may be returned when running SeparateA(v̂, u, x, y), for some

u ∈ L(v).

Lemma 16. Let v̂ ∈ V̂ and (x, y) ∈ supp(µ). Let v = msgπxy(v̂) and assume that v ∈ V\L+.

Then, CBv̂xy and CAv̂xy are frontiers with respect to v.

Proof. We show that CBv̂xy is a frontier with respect to v. A similar argument can be

applied to CAv̂xy. Let u ∈ L(v). Observe that SeparateB(v̂, u, x, y) always returns a vertex

in P (v, u). Thus, in particular, CBv̂xy ⊆ V(v) and |CBv̂xy ∩ P (v, u)| ≥ 1. It remains to show

that |CBv̂xy ∩ P (v, u)| ≤ 1.

Let c(u) be the index (number) of the vertex that SeparateB(v̂, u, x, y) returns on the

path from v to u. Let u′ ∈ L(v). Let c(u′) be the index (number) of the vertex that

SeparateB(v̂, u′, x, y) returns on the path from v to u′. Let k ∈ N be such that the path

from v to u and the path from v to u′ agree on the first k vertices and disagree on the (k+1)th

vertex (if u = u′ then k = |P (v, u)|). We next show that if c(u) ≤ k, then c(u) = c(u′).

Since the roles of u and u′ are symmetric, we also get that if c(u′) ≤ k, then c(u) = c(u′).

This in turn implies that |CBv̂xy ∩ P (v, u)| ≤ 1, as follows: Let w be the vertex returned by

the execution of SeparateB(v̂, u, x, y), and let w′ be the vertex returned by the execution

of SeparateB(v̂, u′, x, y). If c(u′) > k then {w′} ∩ P (v, u) = ϕ. Otherwise c(u′) ≤ k, thus

c(u) = c(u′), implying w = w′.

Let ca(u), cb(u) be the ca, cb indices used when running SeparateB(v̂, u, x, y). Similarly,

let ca(u
′), cb(u

′) be the ca, cb indices used when running SeparateB(v̂, u′, x, y). Observe that

if cvx(u) ≤ k or cvx(u
′) ≤ k (see the definition of cvx in Section 3.4), then cvx(u

′) = cvx(u), as

Cvx is a frontier. Similarly, if cvy(u) ≤ k or cvy(u
′) ≤ k, then cvy(u

′) = cvy(u). In particular,

if ca(u) ≤ k or ca(u
′) ≤ k, then ca(u

′) = ca(u). Similarly, if cb(u) ≤ k or cb(u
′) ≤ k , then

cb(u
′) = cb(u).

Recall that we assume that c(u) ≤ k, and want to show that c(u) = c(u′). We consider

the following cases:

Case 1: ca(u) > cb(u) (thus c(u) = cb(u) + 1). Since we assume that cb(u) < c(u) ≤ k,

then cb(u
′) = cb(u) ≤ k.

We next show that ca(u
′) > cb(u

′). Assume for contradiction that ca(u
′) ≤ cb(u

′). Then,

since ca(u
′) ≤ cb(u

′) ≤ k, it holds that ca(u
′) = ca(u). But then, ca(u) = ca(u

′) ≤ cb(u
′) =

cb(u), a contradiction to the assumption of this case that ca(u) > cb(u).

Since ca(u
′) > cb(u

′), it holds that c(u′) = cb(u
′) + 1 = cb(u) + 1 = c(u).

Case 2: cb(u) > ca(u) (thus c(u) = ca(u) + 1). Proof is similar to Case 1.
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Case 3: cvx(u) = ca(u) = cb(u) (thus c(u) = ca(u)). Since cb(u) = ca(u) = c(u) ≤ k, then

ca(u
′) = ca(u) = cb(u) = cb(u

′). Since cvx(u) = ca(u) ≤ k, it holds that cvx(u) = cvx(u
′).

Conclude that cvx(u
′) = cvx(u) = ca(u) = ca(u

′). Because cvx(u
′) = ca(u

′) = cb(u
′), we get

c(u′) = ca(u
′) = ca(u) = c(u).

Case 4: ca(u) = cb(u) and cvx(u) < ca(u) (thus c(u) = max{cvx(u), cvy(u)}). Since

cvx(u), cvy(u) ≤ c(u) ≤ k, then cvy(u
′) = cvy(u) and cvx(u

′) = cvx(u) < ca(u).

We next show that cvx(u
′) < ca(u

′). If ca(u
′) ≤ k, then ca(u) = ca(u

′) and cvx(u
′) <

ca(u) = ca(u
′). Otherwise, ca(u

′) > k, and since cvx(u
′) = cvx(u) ≤ k, we get that

cvx(u
′) < ca(u

′).

We next show that ca(u
′) = cb(u

′). If ca(u
′) ≤ k then ca(u

′) = ca(u) = cb(u) ≤ k, thus

also cb(u) = cb(u
′), and we get ca(u

′) = cb(u
′). Similarly, if cb(u

′) ≤ k, we get ca(u
′) = cb(u

′).

Consider the case where ca(u
′), cb(u

′) > k. Since cvx(u), cvy(u) ≤ k < ca(u
′), cb(u

′), and as

the a, b indices used by SeparateB(v̂, u′, x, y) are the first indices for which cvx(u
′) ≤ ca(u

′)

and cvy(u
′) ≤ cb(u

′) (respectively), it holds that ca(u
′) = cb(u

′).

Because ca(u
′) = cb(u

′) and cvx(u
′) < ca(u

′), we get that c(u′) = max{cvx(u′), cvy(u′)} =
max{cvx(u), cvy(u)} = c(u).

Lemma 17. Let v̂ ∈ V̂ and (x, y) ∈ supp(µ). Let v = msgπxy(v̂) and assume that v ∈ V\L+.

Then,

Cmin
vxy < CBv̂xy, CAv̂xy ≤ Cmax

vxy .

Proof. We show that Cmin
vxy < CBv̂xy ≤ Cmax

vxy . A similar argument can be applied to CAv̂xy. Let

u ∈ L(v). Let w be the vertex returned by SeparateB(v̂, u, x, y). We need to show that

Cmin
vxy < w ≤ Cmax

vxy .

Let wy be the cvy(u) vertex on the path from v to u, and let wx be the cvx(u) vertex

on the path from v to u. By definition, wy ∈ Cvy and wx ∈ Cvx. Observe that if wx is a

descendant of wy, then wy ∈ Cmin
vxy (as wy has a descendant wx in Cvx), and wx ∈ Cmax

vxy (as wx

has an ancestor wy in Cvy).
Recall that SeparateB(v̂, u, x, y) always returns a vertex in P (v, u). Let c(u) be the

index (number) of w on the path from v to u. Let ca(u), cb(u) be the ca, cb indices used when

running SeparateB(v̂, u, x, y). We consider the following cases:

Case 1: ca(u) > cb(u) (thus c(u) = cb(u) + 1). Observe that cvx(u) ≥ cb(u) + 1, as if

cvx(u) ≤ cb(u), then by the definitions of ca, cb, we have ca(u) ≤ cb(u), a contradiction. Since

ca(u) > cb(u), we get that wx is a descendant wy. Thus, wy ∈ Cmin
vxy and wx ∈ Cmax

vxy . It holds

that Cmin
vxy < w ≤ Cmax

vxy , as wy is a strict ancestor of w (because c(u) > cb(u) ≥ cvy(u)) and wx

is a descendant of w (because c(u) = cb(u) + 1 ≤ cvx(u)).

Case 2: cb(u) > ca(u) (thus c(u) = ca(u) + 1). Proof is similar to Case 1.
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Case 3: cvx(u) = ca(u) = cb(u) (thus c(u) = ca(u)). By Equation (3), Cvx ∩ Cvy = ϕ.

Therefore, cvx(u) ̸= cvy(u). Since cvx(u) = ca(u), and cvy(u) ̸= cvx(u) = ca(u) = cb(u), and

by the definitions of ca, cb, it must be the case that cvx(u) > cvy(u). Conclude that wx is a

strict descendant of wy. Thus, wy ∈ Cmin
vxy and wx ∈ Cmax

vxy . Since c(u) = ca(u) = cvx(u), we

get w = wx. It holds that Cmin
vxy < w ≤ Cmax

vxy , as wy is a strict ancestor of wx = w, and as

w = wx (thus, in particular, wx is a descendant of w).

Case 4: ca(u) = cb(u) and cvx(u) < ca(u) (thus c(u) = max{cvx(u), cvy(u)}). Assume

without loss of generality that cvx(u) > cvy(u) (otherwise, since cvy(u) ̸= cvx(u), we have

cvy(u) > cvx(u), and the argument is symmetric). In this case, wx is a strict descendant

of wy. Thus, wy ∈ Cmin
vxy and wx ∈ Cmax

vxy . Since c(u) = max{cvx(u), cvy(u)} = cvx(u), we get

w = wx. It holds that Cmin
vxy < w ≤ Cmax

vxy , as wy is a strict ancestor of wx = w, and as w = wx

(thus, in particular, wx is a descendant of w).

Let v̂ ∈ V̂ , (x, y) ∈ supp(µ), v = msgπxy(v̂), and u ∈ L(v). Let FB(v̂, u, x, y) ∈ {0, 1}
be the value 1 if and only if when running the protocol SeparateB (Algorithm 3) with the

parameters v̂, u, x, y, the “else” part in Line 10 is reached (the “bad event”). Note that since

the protocol SeparateB is deterministic, FB(v̂, u, x, y) only depends on v̂, u, x, y. The value

FA(v̂, u, x, y) ∈ {0, 1} is defined similarly.

Lemma 18. Let v̂ ∈ V̂, x ∈ supp(µA), y ∈ supp(µB), and u ∈ L(v). Then,

Pr
x←µA

v̂

[
FB(v̂, u, x, y) = 1

]
< 1/r,

Pr
y←µB

v̂

[
FA(v̂, u, x, y) = 1

]
< 1/r.

Proof. We will prove the first inequality, the second is similar. Fix v̂ ∈ V̂ , y ∈ supp(µB), and

u ∈ L(v). Let v = msgπy(v̂). For x ∈ supp(µA), let ci, ax, a
′
x, b be values ci, a, a

′, b computed

by the execution of SeparateB(v̂, u, x, y). Let c0 = 0. Let i ∈ [r]. Recall that ci is the first

index satisfying Prx′←µA
v̂
[cvx′(u) ≤ ci] ≥ i/r. Therefore, Prx′←µA

v̂
[cvx′(u) < ci] < i/r. Since

Prx′←µA
v̂
[cvx′(u) ≤ ci−1] ≥ (i− 1)/r, it holds that

Pr
x′←µA

v̂

[ci−1 < cvx′(u) < ci] < 1/r.

For x ∈ supp(µA), it is the case that FB(v̂, u, x, y) = 1 if and only if ax = b and a′x = 0.

We get

Pr
x←µA

v̂

[
FB(v̂, u, x, y) = 1

]
= Pr

x←µA
v̂

[(ax = b) ∧ (a′x = 0)]

= Pr
x←µA

v̂

[(ax = b) ∧ (cvx(u) < cax)] ≤ Pr
x←µA

v̂

[cb−1 < cvx(u) < cb] < 1/r.
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5.2 The Protocols SampleB and SampleA

Let v̂ ∈ V̂ and (x, y) ∈ supp(µ). Let v = msgπxy(v̂). We define the set Cv̂xy: If v ∈ L+,

define Cv̂xy = L(v). If v ∈ V \ L+, define

Cv̂xy =
(
CBv̂xy ∩ Vvx

)
∪
(
CAv̂xy ∩ Vvy

)
. (4)

For the rest of this subsection we assume that v ∈ V \ L+. By Lemmas 16,17 and

Proposition 12, Cv̂xy is a frontier with respect to v and(
CBv̂xy ∩ Vvx

)
∩
(
CAv̂xy ∩ Vvy

)
= ϕ. (5)

By Lemma 17, Cmin
vxy < Cv̂xy ≤ Cmax

vxy .

Let Dv̂xy be the distribution obtained by restricting the function Dvxy to the frontier Cv̂xy.
Denote

γv̂xy = Dv̂xy

(
CBv̂xy ∩ Vvx

)
.

By Equation (5),

1− γv̂xy = Dv̂xy

(
CAv̂xy ∩ Vvy

)
.

Assume γv̂xy > 0. LetDB
v̂xy be the distribution obtained by conditioning the distributionDv̂xy

on the set CBv̂xy ∩ Vvx. That is, for w ∈ CBv̂xy ∩ Vvx we have

DB
v̂xy(w) =

Dv̂xy(w)

γv̂xy
=

Dvxy(w)

γv̂xy
.

Assume γv̂xy < 1. LetDA
v̂xy be the distribution obtained by conditioning the distributionDv̂xy

on the set CAv̂xy ∩ Vvy. That is, for w ∈ CAv̂xy ∩ Vvy we have

DA
v̂xy(w) =

Dv̂xy(w)

1− γv̂xy
=

Dvxy(w)

1− γv̂xy
.

We use the following version of a claim proved by [BBCR10]. The proof of this variant

is very similar to their proof. For completeness, we give the proof in Appendix A.

Lemma 19 (Claim 8.9 in [BBCR10]). Let v̂ ∈ V̂ and (x, y) ∈ supp(µ). Let v = msgπxy(v̂)

and assume that v ∈ V \ L+. Then, for

α = exp

(
−(log(t)− 20β)2

105β

)
,

the followings hold: If γv̂xy > 0, then

Pr
w←DB

v̂xy

[
Dvx(w)

Dv(w)
≥ t

]
≤ α

γv̂xy
.
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If γv̂xy < 1, then

Pr
w←DA

v̂xy

[
Dvy(w)

Dv(w)
≥ t

]
≤ α

1− γv̂xy
.

We set the parameters β and t such that β = ε
polylog(I)

, t = O(1), and such that the α

value promised by Lemma 19 satisfies α ≤ (0.001ε/m)2.

Let v̂ ∈ V̂ and (x, y) ∈ supp(µ). Let GB
v̂xy be the event that the execution of

SampleB(v̂, x, y) does not return failure (the “good event”). Let GA
v̂xy be the event that

the execution of SampleA(v̂, x, y) does not return failure (the “good event”).

Lemma 20. Let v̂ ∈ V̂ and (x, y) ∈ supp(µ). Let v = msgπxy(v̂) and assume that v ∈ V\L+.

Then, the execution of SampleB(v̂, x, y) returns either a vertex in CBv̂xy ∩Vvx or failure. The

execution of SampleA(v̂, x, y) returns either a vertex in CAv̂xy ∩ Vvy or failure.

Assume γv̂xy ≥ 10α. Then, for every w ∈ CBv̂xy ∩ Vvx,

Pr
[
SampleB(v̂, x, y) = w | GB

v̂xy

]
≤ (1 + 2α/γv̂xy) ·DB

v̂xy(w),

Assume 1− γv̂xy ≥ 10α. Then, for every w ∈ CAv̂xy ∩ Vvy,

Pr
[
SampleA(v̂, x, y) = w | GA

v̂xy

]
≤ (1 + 2α/(1− γv̂xy)) ·DA

v̂xy(w).

The probabilities are over the randomness used by the players.

Proof. We prove the claims for SampleB. A similar argument can be applied to prove the

claims for SampleA. The execution of SeparateB(v̂, u, x, y) by Line 5 of SampleB returns a

vertex w ∈ CBv̂xy. If w /∈ Vvx, the vertex w is rejected by Alice. Thus, the returned value is

either a vertex in CBv̂xy ∩ Vvx or failure.

We use the following version of a claim proved by [BBCR10].

Claim 21 (Proposition B.3 in [BBCR10]). Let C be a set and let D be a distribution over C.
Let c : C → [0, 1]. Let ξ be the protocol:

• Sample an element w according to D.

• Return w with probability c(w), else return failure.

Define the distribution Dc over C by

Dc(w) = Pr [ξ returns w | ξ does not return failure] .

Let c′ : C → [0, 1] be such that c′(w) ≥ c(w) for every w ∈ C. Let pc′ ≥ 1 be such that

Dc′ = pc′ ·D · c′ is a distribution. Then, if Prw←Dc′ [c
′(w) > c(w)] < 1 then for every w ∈ C,

Dc(w) ≤
1

1− Prw←Dc′ [c
′(w) > c(w)]

·Dc′(w).
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Proof. There exists pc ≥ 1 such that Dc = pc ·D · c. Let b : C → [0, 1] be given by b = c′− c,

and let pb ≥ 1 be such that Db = pb ·D · b is a distribution. Then, there exists q ∈ [0, 1] such

that Dc′ = q ·Db + (1− q) ·Dc. In particular, Dc′ ≥ (1− q) ·Dc, and thus for every w ∈ C,
we have Dc(w) ≤ Dc′(w)/(1 − q). We next show that q ≤ Prw←Dc′ [c

′(w) > c(w)], and the

assertion will follow.

The term q · Db in the expansions of Dc′ shows that at least q of the weight of the

distribution Dc′ is on elements in supp(Db). That is, q ≤ Prw←Dc′ [w ∈ supp(Db)].

Since supp(Db) ⊆ {w ∈ C : c′(w) > c(w)}, it holds that q ≤ Prw←Dc′ [w ∈ supp(Db)] ≤
Prw←Dc′ [c

′(w) > c(w)].

Let D be the distribution obtained by restricting the function Dvy to the set CBv̂xy ∩ Vvx
and normalizing. Let w ∈ CBv̂xy ∩ Vvx. Let

c(w) = min

{
1,

Dvx(w)

tDv(w)

}
; c′(w) =

Dvx(w)

tDv(w)
.

LetDc, Dc′ be the two distributions defined by Claim 21 when it is applied toD, c, c′. Observe

that

Dc(w) = Pr
[
SampleB(v̂, x, y) = w | GB

v̂xy

]
.

In addition, by Proposition 4, for w ∈ CBv̂xy ∩ Vvx,

Dc′(w) =
t

γv̂xy
·Dvy(w) ·

Dvx(w)

tDv(w)
=

Dvxy(w)

γv̂xy
= DB

v̂xy(w).

By Claim 21, for every w ∈ CBv̂xy ∩ Vvx,

Dc(w) ≤
1

1− Prw←Dc′
[c′(w) > c(w)]

·Dc′(w).

By Lemma 19,

Pr
w←DB

v̂xy

[c′(w) > c(w)] ≤ α

γv̂xy
.

Since 1/(1− z) ≤ 1+2z for z ∈ [0, 1/10], and since α/γv̂xy ≤ 1/10, the assertion follows.

Lemma 22. Let v̂ ∈ V̂ and (x, y) ∈ supp(µ). Let v = msgπxy(v̂) and assume that v ∈ V\L+.

Then,

(γv̂xy − α) /t ≤ Pr
[
GB

v̂xy

]
≤ γv̂xy/t,

(1− γv̂xy − α) /t ≤ Pr
[
GA

v̂xy

]
≤ (1− γv̂xy)/t,

where the probabilities are over the randomness used by the players. The lower bound on

Pr
[
GB

v̂xy

]
holds provided that γv̂xy > 0, and the lower bound on Pr

[
GA

v̂xy

]
holds provided that

γv̂xy < 1.

Proof. We prove the bounds on Pr[GB
v̂xy]. A similar argument can be applied to show the
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bounds on Pr[GA
v̂xy]. Let v = msgπxy(v̂). Let w ∈ CBv̂xy ∩ Vvx. Denote

D′v̂xy(w) = Pr
[
SampleB(v̂, x, y) = w

]
,

where the probability is over the randomness used by the players.

We first prove the upper bound on Pr[GB
v̂xy]. Every vertex w ∈ CBv̂xy ∩ Vvx is selected

with probability Dvy(w) by Line 5 of SampleB, as every leaf u ∈ L(v) is selected by Line 4

with probability D̃vy(u) (by Lemma 14), and as CBv̂xy is a frontier (by Lemma 16). By

Proposition 4,

D′v̂xy(w) = Dvy(w) ·min

{
1,

Dvx(w)

tDv(w)

}
≤ Dvy(w) ·

Dvx(w)

tDv(w)
= Dv̂xy(w)/t. (6)

By Lemma 20, the execution of SampleB(v̂, x, y) returns either a vertex in CBv̂xy ∩ Vvx or

failure. Therefore,

Pr
[
GB

v̂xy

]
= D′v̂xy(CBv̂xy ∩ Vvx) ≤ Dv̂xy(CBv̂xy ∩ Vvx)/t = γv̂xy/t.

We next prove the lower bound on Pr[GB
v̂xy]. Denote by Sv̂xy ⊆ CBv̂xy ∩ Vvx the set of

vertices w ∈ CBv̂xy ∩ Vvx for which D′v̂xy(w) = Dv̂xy(w)/t. Observe that due to Equation (6),

w ∈ CBv̂xy∩Vvx is in Sv̂xy if and only if Dvx(w)
Dv(w)

≤ t. By Lemma 19, DB
v̂xy

(
(CBv̂xy ∩ Vvx) \ Sv̂xy

)
≤

α
γv̂xy

, thus, DB
v̂xy (Sv̂xy) ≥ 1− α

γv̂xy
. This implies Dv̂xy(Sv̂xy) ≥ γv̂xy − α. Conclude that,

Pr
[
GB

v̂xy

]
= D′v̂xy(CBv̂xy ∩ Vvx) ≥ D′v̂xy(Sv̂xy) = Dv̂xy(Sv̂xy)/t ≥ (γv̂xy − α) /t.

5.3 The Protocol Chunk

Let Nv̂xy be a random variable that counts the number of times either SampleA or SampleB

are executed by Chunk(v̂, x, y). Note that Nv̂xy depends on the randomness used by the

players.

Lemma 23. Let v̂ ∈ V̂ and (x, y) ∈ supp(µ). Then,

Pr [Nv̂xy = 1] ≥ 1− 2α

2t
; E [Nv̂xy] < 3t,

where the probability and expectation are over the randomness used by the players.

Proof. Let msgπxy(v̂) = v. If v ∈ L+, then Pr [Nv̂xy = 1] = 1. Assume that v ∈ V \L+. Let P

be the random variable representing the bit p selected in Line 2 during the first iteration of

the loop in Line 1 of Chunk. Then, by Lemma 22: If γv̂xy = 1, then

Pr[Nv̂xy = 1] ≥ Pr[P = 1] · Pr
[
GB

v̂xy

]
≥ 1

2
· (γv̂xy − α) /t =

1− α

2t
.
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If γv̂xy = 0, then

Pr[Nv̂xy = 1] ≥ Pr[P = 0] · Pr
[
GA

v̂xy

]
≥ 1

2
· (1− γv̂xy − α) /t =

1− α

2t
.

If γv̂xy ∈ (0, 1), then

Pr[Nv̂xy = 1] = Pr[P = 0] · Pr
[
GA

v̂xy

]
+ Pr[P = 1] · Pr

[
GB

v̂xy

]
≥ 1

2
· (1− γv̂xy − α) /t+

1

2
· (γv̂xy − α) /t =

1− 2α

2t
.

Therefore, in any case, Pr [Nv̂xy = 1] ≥ 1−2α
2t

.

Observe that for every k ∈ N, it holds that Pr [Nv̂xy = k | Nv̂xy > k − 1] = Pr [Nv̂xy = 1].

Therefore, E [Nv̂xy] = 1/Pr [Nv̂xy = 1] ≤ 3t.

Let v̂ ∈ V̂ and (x, y) ∈ supp(µ). Let v = msgπxy(v̂). An execution of Chunk(v̂, x, y)

returns a vertex in Cv̂xy: If v ∈ L+, then Line 3 of the algorithms SampleA and SampleB

returns a vertex in L(v) = Cv̂xy. Otherwise, if v ∈ V \ L+, then by Lemma 20, both

SampleA(v̂, x, y) and SampleB(v̂, x, y) return a vertex in Cv̂xy. Let Sv̂xy be the distribution

over Cv̂xy induced by the return value of Chunk(v̂, x, y) (the “simulation’s distribution”).

Recall that Dv̂xy is the function Dvxy restricted to the frontier Cv̂xy.

Lemma 24. Let v̂ ∈ V̂ and (x, y) ∈ supp(µ). It holds that

∥Sv̂xy −Dv̂xy∥ ≤ 10
√
α.

Proof. Let msgπxy(v̂) = v. If v ∈ L+, then Sv̂xy = Dv̂xy. Assume that v ∈ V \ L+. We show

that there exists a set V ′ = V ′v̂xy ⊆ V(v) such that Sv̂xy(V ′) ≤ 2
√
α, and for w ∈ Cv̂xy \ V ′ it

holds that Sv̂xy(w) ≤ (1 + 8
√
α) ·Dv̂xy(w). The claim then follows as follows: Let S ⊆ Cv̂xy

be the set of all vertices w ∈ Cv̂xy such that Sv̂xy(w) > Dv̂xy(w). It holds that

Sv̂xy(S)−Dv̂xy(S) ≤ (Sv̂xy(S \ V ′)−Dv̂xy(S \ V ′)) + Sv̂xy(V ′)
≤
(
(1 + 8

√
α) ·Dv̂xy(S \ V ′)−Dv̂xy(S \ V ′)

)
+ 2
√
α

= 8
√
α ·Dv̂xy(S \ V ′) + 2

√
α ≤ 10

√
α.

Since Sv̂xy and Dv̂xy are distributions,

Dv̂xy(Cv̂xy \ S)− Sv̂xy(Cv̂xy \ S) = Sv̂xy(S)−Dv̂xy(S) ≤ 10
√
α.

Let γ = γv̂xy and N = Nv̂xy. Let P be a random variable representing the bit p selected

in Line 2, during the first iteration of the loop in Line 1 of Chunk. By Lemmas 22 and 23,

Pr[P = 1|N = 1] ≤ Pr[P = 1 ∧N = 1]

Pr[N = 1]
≤

1
2
· γ

t
1−2
√
α

2t

=
γ

1− 2
√
α
, (7)
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Pr[P = 0|N = 1] ≤ Pr[P = 0 ∧N = 1]

Pr[N = 1]
≤

1
2
· 1−γ

t
1−2
√
α

2t

=
1− γ

1− 2
√
α
. (8)

We define the set V ′ as follows: If γ ≤
√
α then V ′ = CBv̂xy ∩ Vvx. If γ ≥ 1 −

√
α then

V ′ = CAv̂xy ∩ Vvy. Else, if
√
α < γ < 1−

√
α, we set V ′ = ϕ. Consider the case that γ ≤

√
α.

Let W be a random variable distributed according to Sv̂xy. By Lemma 20 and Equation (5),

conditioned on N = 1, W is in CBv̂xy ∩ Vvx only if P = 1 (SampleB is called), thus

Pr[W ∈ V ′|N = 1] ≤ Pr[P = 1|N = 1] ≤ γ

1− 2
√
α
≤

√
α

1− 2
√
α
≤ 2
√
α.

Similarly, if γ ≥ 1−
√
α, then

Pr[W ∈ V ′|N = 1] ≤ Pr[P = 0|N = 1] ≤ 1− γ

1− 2
√
α
≤

√
α

1− 2
√
α
≤ 2
√
α.

Observe that W is independent of N , since for any n, n′ ∈ N, it holds that W |N = n has

the same distribution as W |N = n′. Therefore, in any case,

Sv̂xy(V ′) = Pr[W ∈ V ′] = Pr[W ∈ V ′|N = 1] ≤ 2
√
α.

Assume that (CBv̂xy ∩ Vvx) \ V ′ ̸= ϕ. Let w ∈ (CBv̂xy ∩ Vvx) \ V ′. It holds that γ >
√
α,

as otherwise (CBv̂xy ∩ Vvx) \ V ′ = ϕ. By Equations (5) and (7), Lemma 20, and since

γ >
√
α > 10α,

Pr[W = w] = Pr[W = w|N = 1]

= Pr[P = 1|N = 1] · Pr[W = w|P = 1, N = 1] + Pr[P = 0|N = 1] · Pr[W = w|P = 0, N = 1]

= Pr[P = 1|N = 1] · Pr[W = w|P = 1, N = 1] + Pr[P = 0|N = 1] · 0

≤ γ

1− 2
√
α
· (1 + 2α/γ) · Dvxy(w)

γ
≤ 1 + 2α/

√
α

1− 2
√
α
·Dvxy(w) ≤ (1 + 8

√
α) ·Dvxy(w).

For w ∈ (CAv̂xy ∩ Vvy) \ V ′, a similar argument shows that Pr[W = w] ≤ (1 + 8
√
α) ·Dvxy(w).

By the definition of Cv̂xy (see Equation (4)), for every w ∈ Cv̂xy \ V ′ it holds that

Sv̂xy(w) ≤ (1 + 8
√
α) ·Dv̂xy(w), as required.

Let ChunkS be the protocol obtained from Chunk by replacing Lines 11 and 12 of

the protocols SeparateA and SeparateB by “ChunkS returns failure”. Roughly speaking,

ChunkS is the variant of Chunk run by the protocol τST .

Lemma 25. Let v̂ ∈ V̂ and (x, y) ∈ supp(µ). Let v = msgπxy(v̂). Then,

E
[
|ChunkS(v̂, x, y)|

]
≤ 30t

(
D
(
D̃vx∥D̃v

)
+ D

(
D̃vy∥D̃v

)
+ log(1/η) + log(r)

)
,

where the expectation is over the randomness used by the players.

Proof. By Lemma 23, an execution of ChunkS(v̂, x, y) runs SampleA(v̂, x, y) and

SampleB(v̂, x, y) at most 3t times in expectation. An execution of SampleB(v̂, x, y) has
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expected communication complexity of at most 10D
(
D̃vy∥D̃v

)
+ 2 log(1/η) + 3 log(r) + 10:

It runs CorrelatedSampling(Dvy, Dv, η), which, by Lemma 14, has expected communication

complexity of at most 10D
(
D̃vy∥D̃v

)
+ 2 log(1/η) + 10. It then runs the variant of

SeparateB(v̂, x, y) obtained by replacing Lines 11 and 12 of the protocol SeparateB by

“return failure”. This variant has expected communication of at most 3 log(r), as the players

only communicate two indices a, b ∈ [r] and a bit a′ ∈ {0, 1}. Similarly, an execution

of SampleA(v̂, x, y) has expected communication complexity of at most 10D
(
D̃vx∥D̃v

)
+

2 log(1/η) + 3 log(r) + 10.

5.4 The Protocol τST

Lemma 26. It holds that

E
(x,y)←µ

[∥∥msgπxy(τ(x, y))− π(x, y)
∥∥] ≤ 0.1ε.

Proof. Define the bad set

I ′ =
{
(x, y) ∈ supp(µ) : D(D̃xy∥D̃) > 100I/ε

}
.

By Proposition 8 and by Markov’s inequality,

µ(I ′) < 0.01ε. (9)

Fix (x, y) ∈ supp(µ) \ I ′. Let i ∈ [m]. Let v̂′ ∈ V̂i−1 be a possible transcript of the first i− 1

executions of Chunk by τ . Let v ∈ V be such that there exists a transcript v̂ ∈ V̂i satisfying:
(i) v = msgπxy(v̂); (ii) v̂

′ is a prefix of v̂. Assume that the transcript of the first i−1 executions
of Chunk by τ is v̂′. Let Ŵ be the (multi-)set of all possible transcripts for the ith execution

of Chunk by τ , after which v is reached. That is, for ŵ ∈ Ŵ , it holds that msgπxy(v̂
′◦ŵ) = v,

where ‘◦’ denotes string concatenation. Let k ∈ N be a large enough constant to be specified

next. We denote the elements of the (multi-)set Ŵ by trans1(v̂
′, v), . . . , transk(v̂

′, v). It will

be convenient for us to assume that for every j ∈ [k], once v̂′ is reached, the probability

that the transcript of the ith execution of Chunk is transj(v̂
′, v), is 1/k. For this assumption

to hold without loss of generality, we allow every transcript to appear many times in the

(multi)-set Ŵ (that is, we allow transj(v̂
′, v) = transj′(v̂

′, v) for j ̸= j′ ∈ [k]), and choose the

parameter k to be large enough.

Let r1, . . . , rm ∈ [k]. We define the sequence of frontiers, Br1 ,Br1r2 , . . . ,Br1...rm ⊆ V , with
respect to v0, inductively. The frontier are such that every vertex in Br1...ri has an ancestor in

Br1...ri−1
(that is, Br1...ri is “below” Br1...ri−1

). Very roughly, Br1...ri is the frontier reached by τ

after i executions of Chunk, when the randomness used is r1 . . . ri. Formally, let B = {v0}.
For v ∈ B and any r1 ∈ [k], define transr1(v) = ϕ ∈ V̂0, where ϕ is the empty transcript.

Define Br1 = Ctransr1 (v)xy = Cϕxy. Let i ≥ 2. Assume that the frontiers Br1 , . . . ,Br1,...,ri−1
were

defined. Let v ∈ Br1,...,ri−1
and let v′ be the ancestor of v in Br1,...,ri−2

. We first define the
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transcript transr1...ri(v) ∈ V̂i−1 induced by v and r1 . . . ri, by

transr1...ri(v) = transr1...ri−1
(v′) ◦ transri(transr1...ri−1

(v′), v).

Observe that msgπxy(transr1...ri(v)) = v. We then define

Br1...ri =
∪

v∈Br1...ri−1

Ctransr1...ri (v)xy.

Since msgπxy(transr1...ri(v)) = v, we get that Ctransr1...ri (v)xy is a frontier with respect to v.

Therefore, every vertex in Br1...ri has an ancestor in Br1...ri−1
. In addition, by induction, since

Ctransr1...ri (v)xy is a frontier with respect to v, and assuming that Br1...ri−1
is a frontier, we get

that Br1...ri is a frontier too.

Recall that Sv̂xy is the distribution over Cv̂xy induced by the return value of Chunk(v̂, x, y)

(see Section 5.3), and that Dv̂xy is the distribution obtained by restricting the function Dvxy

to the frontier Cv̂xy. Let i ∈ [m], and r1, . . . , ri ∈ [k]. Let Dr1...ri be the distribution obtained

by restricting the function Dxy to the frontier Br1...ri . In other words, for i = 1, Dr1 = Dϕxy.

For i ∈ {2, . . . ,m} and v ∈ Br1...ri , let v′ be the ancestor of v in Br1,...,ri−1
, and set

Dr1...ri(v) = Dr1...ri−1
(v′) ·Dtransr1...ri (v

′)xy(v).

Let Sr1...ri be the distribution over Br1...ri define by: For i = 1, define Sr1 = Sϕxy. For

i ∈ {2, . . . ,m} and v ∈ Br1...ri , let v′ be the ancestor of v in Br1,...,ri−1
, and set

Sr1...ri(v) = Sr1...ri−1
(v′) · Stransr1...ri (v

′)xy(v).

Claim 27. For every i ∈ [m] and r1, . . . , ri ∈ [k],

∥Sr1...ri −Dr1...ri∥ ≤ 10i
√
α.

Proof. The proof is by induction.

Induction base: For i = 1, by Lemma 24, ∥Sr1 −Dr1∥ = ∥Sϕxy −Dϕxy∥ ≤ 10
√
α.

Induction step: For i ≥ 2 and v ∈ Br1...ri , let v′ be the ancestor of v in Br1,...,ri−1
, and consider

the hybrid Hr1,...,ri defined by

Hr1...ri(v) = Dr1...ri−1
(v′) · Stransr1...ri (v

′)xy(v).

Observe that Hr1...ri is a distribution over Br1...ri as well. By the induction hypothesis and

Lemma 24,

∥Sr1...ri −Dr1...ri∥
≤ ∥Sr1...ri −Hr1...ri∥+ ∥Hr1...ri −Dr1...ri∥

=
∥∥Sr1...ri−1

−Dr1...ri−1

∥∥+ ∑
v′∈Br1,...,ri−1

Dr1...ri−1
(v′) ·

∥∥Stransr1...ri (v
′)xy −Dtransr1...ri (v

′)xy

∥∥
≤ 10(i− 1)

√
α + 10

√
α = 10i

√
α.
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Claim 28. For every r1, . . . , rm ∈ [k], it holds that∥∥∥Dr1...rm − D̃xy

∥∥∥ ≤ 0.01ε.

Proof. Define the bad set

L′ =
{
u ∈ L : Dv0uxy > 104I/ε2

}
.

By Proposition 5 and Markov’s inequality, since (x, y) ∈ supp(µ) \ I ′, then D̃xy(L′) < 0.01ε.

For u ∈ L \ L′, it holds that Dr1...rm(u) = D̃xy(u), as m > 104I
ε2β

+ 1 and due to the following:

Let i ∈ {0, . . . ,m−1}. Assume that the transcript of τ after i executions of Chunk is v̂ ∈ V̂i,
and that after an additional iteration the transcript of τ is ŵ ∈ V̂i+1. Let v = msgπxy(v̂) and

w = msgπxy(ŵ). By the beginnings of Sections 5.3 and 5.2, we have that w ∈ Cv̂xy and that

Cmin
vxy < Cv̂xy. Therefore, Cmin

vxy < w. Recall from Section 3.4 that Cmin
vxy ⊆ Cvx ∪ Cvy. By the

definitions of Cvx and Cvy, if w ∈ L \ L+, it holds that Dvwxy = Dvwx + Dvwy ≥ β.

The assertion follows as follows: We view D̃xy and Dr1...rm as distributions over V . Let

S ⊆ V be the set of all vertices v such that D̃xy(v) > Dr1...rm(v). Observe that S ⊆ L,
as for v ∈ V \ L we have D̃xy(v) = 0. It holds that D̃xy(S) − Dr1...rm(S) ≤ D̃xy(S) ≤
D̃xy(L′) ≤ 0.01ε. Since D̃xy and Dr1...rm are distributions, Dr1...rm(V \ S) − D̃xy(V \ S) =

D̃xy(S)−Dr1...rm(S) ≤ 0.01ε.

Using the last two claims,∥∥msgπxy(τ(x, y))− π(x, y)
∥∥ =

∥∥∥∥( E
r1,...,rm∈R[k]

[Sr1...rm ]

)
− D̃xy

∥∥∥∥ (10)

≤ E
r1,...,rm∈R[k]

[∥∥∥Sr1...rm − D̃xy

∥∥∥]
≤ E

r1,...,rm∈R[k]
[∥Sr1...rm −Dr1...rm∥] + E

r1,...,rm∈R[k]

[∥∥∥Dr1...rm − D̃xy

∥∥∥]
≤ 0.01ε+ 10m

√
α ≤ 0.02ε.

By Equations (9) and (10),

E
(x,y)←µ

[∥∥msgπxy(τ(x, y))− π(x, y)
∥∥] ≤ ∑

(x,y)∈supp(µ)

µ(x, y) ·
∥∥msgπxy(τ(x, y))− π(x, y)

∥∥
≤ µ(I ′) +

∑
(x,y)∈supp(µ)\I′

µ(x, y) ·
∥∥msgπxy(τ(x, y))− π(x, y)

∥∥ ≤ 0.1ε.

We define an additional variant, τS, of the protocol τ . The protocol τS gets the same

parameters as τ . It operates the same as τ , except for the second change described in

Section 4.2. That is, Lines 11 and 12 of the protocols SeparateA and SeparateB are replaced

by “τS returns failure”.
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Lemma 29. It holds that

E
(x,y)←µ

[∥∥τS(x, y)− τ(x, y)
∥∥] < 0.1ε.

Proof. Let i ∈ [m] and j ∈ N. When we refer to the “(i, j) execution of SeparateB” we

mean the execution of SeparateB by the jth execution of SampleB by the ith execution of

Chunk by τ , assuming that this execution is reached. Let V̂i and Uij be random variables

that are functions of the inputs X,Y and the randomness used by the players. The random

variable V̂i represents the v̂ parameter passed to the (i, j) execution of SeparateB. That is, V̂i

is the transcript of τ after the (i−1)th execution of the protocol Chunk. Let Vi = msgπY (V̂i).

The random variable Uij is defined as follows: If the (i, j) execution of SeparateB is

reached, then Uij is the u parameter passed to the (i, j) execution of SeparateB. That is, Uij

is the leaf sampled by the protocol CorrelatedSampling, executed by the jth execution of

SampleB by the ith execution of Chunk. If the (i, j) execution of SeparateB is not reached,

then we set Uij to the output of the execution of CorrelatedSampling(P = D̃ViY , Q =

D̃Vi
, η). Since SampleB runs CorrelatedSampling with parameters that only depend on Y

and V̂i, we get that Uij is independent of X given Y and V̂i.

Let v̂ ∈ V̂i. Recall that µv̂ was defined in Section 4 by µv̂ = ((X, Y ) | τ(X, Y )≤|v̂| = v̂),

and that µv̂ is a product distribution µv̂ = µA
v̂ × µB

v̂ . Observe that v̂ determines i, thus

µv̂ = ((X, Y )|V̂i = v̂).

Recall that FB(v̂, u, x, y) ∈ {0, 1} is the value 1 if and only if when running the

protocol SeparateB (Algorithm 3) with the parameters v̂, u, x, y, the “else” part in Line 10

is reached (FB is defined just before Lemma 18). It holds that

Pr
V̂i,Uij ,X,Y

[
FB(V̂i, Uij, X, Y ) = 1

]
= E

v̂←V̂i

E
(x,y)←((X,Y )|V̂i=v̂)

Pr
u←(Uij |X=x,Y=y,V̂i=v̂)

[
FB(v̂, u, x, y) = 1

]
= E

v̂←V̂i

E
(x,y)←((X,Y )|V̂i=v̂)

Pr
u←(Uij |Y=y,V̂i=v̂)

[
FB(v̂, u, x, y) = 1

]
(Uij and X are independent given Y, V̂i)

= E
v̂←V̂i

E
(x,y)←µv̂

Pr
u←(Uij |Y=y,V̂i=v̂)

[
FB(v̂, u, x, y) = 1

]
(µv̂ = ((X,Y )|V̂i = v̂))

= E
v̂←V̂i

E
y←µB

v̂

E
u←(Uij |Y=y,V̂i=v̂)

E
x←µA

v̂

[
FB(v̂, u, x, y) = 1

]
(µv̂ = µA

v̂ × µB
v̂ )

< 1/r. (by Lemma 18)

Consider the protocol τS
′
that operates the same as τ , expect that Lines 11 and 12 of

the protocol SeparateB (Algorithm 3) are replaced by “τS
′
returns failure” (the protocol

SeparateA is not changed). By Lemma 23 and Markov’s inequality, τ runs SeparateB at
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most J = ⌈90tm/ε⌉ times, except with probability of at most ε/30. Therefore,

E
(x,y)←µ

[∥∥∥τ(x, y)− τS
′
(x, y)

∥∥∥]
≤ ε/30 +

∑
i∈[m],j∈[J ]

Pr
V̂i,Uij ,X,Y

[
FB(V̂i, Uij, X, Y ) = 1

]
≤ ε/30 +mJ · (1/r) ≤ ε/20.

A similar argument can be used to show that E(x,y)←µ

[∥∥τS′
(x, y)− τS(x, y)

∥∥] < ε/20. The

assertion follows as

E
(x,y)←µ

[∥∥τ(x, y)− τS(x, y)
∥∥]

≤ E
(x,y)←µ

[∥∥∥τ(x, y)− τS
′
(x, y)

∥∥∥]+ E
(x,y)←µ

[∥∥∥τS′
(x, y)− τS(x, y)

∥∥∥] ≤ ε/10.

Lemma 30. It holds that

E
(x,y)←µ

[∥∥τST (x, y)− τS(x, y)
∥∥] ≤ 0.3ε.

Proof. Let

X ′ =
{
x ∈ supp(µA) : D(D̃x∥D̃) > I log(I)/ε

}
,

Y ′ =
{
y ∈ supp(µB) : D(D̃y∥D̃) > I log(I)/ε

}
.

By Propositions 8 and 9,

I = E
x←µA

E
y←µB

[
D(D̃xy∥D̃)

]
≥ E

x←µA

[
D(D̃x∥D̃)

]
,

I = E
y←µB

E
x←µA

[
D(D̃xy∥D̃)

]
≥ E

y←µB

[
D(D̃y∥D̃)

]
.

Therefore, by Markov’s inequality,

µA(X ′), µB(Y ′) ≤ I

I log(I)/ε
=

ε

log(I)
. (11)

Let (x, y) ∈ supp(µ). We consider the following sets of vertices

V ′x =
{
v ∈ V : D(D̃vx∥D̃v) > D(D̃x∥D̃) · (log(I)/ε)

}
.

V ′y =
{
v ∈ V : D(D̃vy∥D̃v) > D(D̃y∥D̃) · (log(I)/ε)

}
.

Let L′x ⊆ L be the set of leaves u such that P (v0, u) ∩ V ′x ̸= ϕ. Let L′y ⊆ L be the set of

leaves u such that P (v0, u) ∩ V ′y ̸= ϕ.
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Claim 31. It holds that

E
(x,y)←µ

[
Pr
[
msgπxy(τ

S(x, y)) ∈ L′x ∪ L′y
]]
≤ 0.25ε.

Proof. Fix (x, y) ∈ supp(µ). Consider the set S ′x ⊆ V ′x defined as follows: Start from an

empty set. For every u ∈ L, add to S ′x the first vertex on the path from v0 to u that is in the

set V ′x. Define S ′y similarly. By definition, for every u ∈ L, the path from v0 to u intersects

each of the sets S ′x and S ′y at most once. Therefore, each of the sets S ′x and S ′y is a subset of

some frontier. By Proposition 10,

D(D̃x∥D̃) ≥
∑
v∈S′x

Dx(v) · D(D̃vx∥D̃v).

D(D̃y∥D̃) ≥
∑
v∈S′y

Dy(v) · D(D̃vy∥D̃v).

Since S ′x ⊆ V ′x, and by the definition of V ′x,

Dx(S ′x), Dy(S ′y) < ε/ log(I).

This implies

D̃x(L′x) = Dx(S ′x) < ε/ log(I); D̃y(L′y) = Dy(S ′y) < ε/ log(I).

By Proposition 7,

E
(x,y)←µ

[
D̃xy(L′x ∪ L′y)

]
≤ E

x←X
E

y←Y

[
D̃xy(L′x)

]
+ E

y←Y
E

x←X

[
D̃xy(L′y)

]
= E

x←X

[
D̃x(L′x)

]
+ E

y←Y

[
D̃y(L′y)

]
≤ 2ε/ log(I).

By Lemmas 26 and 29,

E
(x,y)←µ

[
Pr
[
msgπxy(τ

S(x, y)) ∈ L′x ∪ L′y
]]

≤ E
(x,y)←µ

[
Pr
[
π(x, y) ∈ L′x ∪ L′y

]
+
∥∥msgπxy(τ

S(x, y))− π(x, y)
∥∥]

≤ E
(x,y)←µ

[
D̃xy(L′x ∪ L′y) +

∥∥msgπxy(τ
S(x, y))−msgπxy(τ(x, y))

∥∥+ ∥∥msgπxy(τ(x, y))− π(x, y)
∥∥]

≤ 2ε/ log(I) + 0.1ε+ 0.1ε ≤ 0.25ε.

Fix x ∈ supp(µA) \ X ′ and y ∈ supp(µB) \ Y ′. If u ∈ L \ (L′x ∪ L′y) then for every

v ∈ P (v0, u), it holds that D(D̃vx∥D̃v),D(D̃vy∥D̃v) ≤ I log2(I)/ε2. Observe that if an

execution of τS(x, y) returned u, then it run Chunk(v̂, x, y) with at most m transcripts
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v̂ ∈ V̂ , such that v = msgπxy(v̂) ∈ P (v0, u). Therefore, using Lemma 25,

E
[
|τS(x, y)|

∣∣ msgπxy(τ
S(x, y)) ∈ L \ (L′x ∪ L′y)

]
≤ 30mt

(
2I log2(I)/ε2 + log(1/η) + log(r)

)
≤ 1020tI2 log2(I)

ε4β
,

where the expectation is over the randomness used by the players. By Markov’s inequality,

Pr
[
|τS(x, y)| ≥ T

∣∣ msgπxy(τ
S(x, y)) ∈ L \ (L′x ∪ L′y)

]
(12)

≤
(
1020tI2 log2(I)

ε4β

)
/T =

ε

log(I)
,

where the expectation is over the randomness used by the players.

We get

E
(x,y)←µ

[∥∥τST (x, y)− τS(x, y)
∥∥]

≤ E
(x,y)←µ

[
Pr
[
|τS(x, y)| ≥ T

]]
≤ µA(X ′) + µB(Y ′) +

∑
x∈supp(µA)\X ′

y∈supp(µB)\Y ′

µ(x, y) · Pr
[
|τS(x, y)| ≥ T

]

≤ 2ε

log(I)
+

∑
x∈supp(µA)\X ′

y∈supp(µB)\Y ′

µ(x, y) ·
(

ε

log(I)
+ Pr

[
msgπxy(τ

S(x, y)) ∈ L′x ∪ L′y
])

(by Equations (11) and (12))

≤ 3ε

log(I)
+ E

(x,y)←µ

[
Pr
[
msgπxy(τ

S(x, y)) ∈ L′x ∪ L′y
]]

≤ 3ε

log(I)
+ 0.25ε (by Claim 31)

≤ 0.3ε.

5.4.1 Proof of Lemma 15

Proof of Lemma 15. By Lemmas 30, 29 and 26,

E
(x,y)←µ

[
∥msgπxy(τ

ST (x, y))− π(x, y)∥
]

≤ E
(x,y)←µ

[∥∥τST (x, y)− τS(x, y)
∥∥]+ E

(x,y)←µ

[∥∥τS(x, y)− τ(x, y)
∥∥]

+ E
(x,y)←µ

[
∥msgπxy(τ(x, y))− π(x, y)∥

]
≤ ε/2.
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A Proof of Lemma 19

This section is devoted to proving Lemma 19. We prove the first equation in the lemma.

That is, we prove that

Pr
w←DB

v̂xy

[
Dvx(w)

Dv(w)
≥ t

]
≤ α

γv̂xy
.

The second equation can be shown in a similar way. The proof follows the lines of the proof

of Claim 8.9 in [BBCR10] and uses the following generalization of Azuma’s inequality proven

in [BBCR10].

Lemma 32 (Theorem A.1 in [BBCR10]). Let T1, . . . , Tk be real valued random variables

such that for every i ∈ [k], we have E[Ti|Ti−1, . . . , T1] ≤ 0. Set Ai = (sup(Ti) − inf(Ti) |
Ti−1, . . . , T1)

2. Then, if
∑k

i=1Ai ≤ c, for every α > 0,

Pr

[
k∑

i=1

Ti ≥ α

]
≤ exp(−2α2/c).

Let C ′ be the following set: For every w ∈ Cvx, if w ∈ V \ Cmin
vxy , add w to C ′. If w ∈ Cmin

vxy ,

add w’s children to C ′. Since Cvx is a frontier with respect to v, so is C ′. In addition,

Cmin
vxy < C ′ ≤ Cmax

vxy . Consider the set C = (CBv̂xy ∩ Vvx) ∪ (C ′ ∩ Vvy). By Lemmas 16 and 17,

and by Proposition 12, C is a frontier with respect to v. Also note that every vertex in C is

either in Vvx or its parent is in Vvx. Let D̄ be the distribution obtained by restricting the
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function Dvxy to the frontier C. We will prove

Pr
w←D̄

[
Dvx(w)

Dv(w)
≥ t

]
≤ α.

The assertion then follows due to the following: Let S =
{
w ∈ C | Dvx(w)

Dv(w)
≥ t
}
. Then

Pr
w←DB

v̂xy

[
Dvx(w)

Dv(w)
≥ t

]
= DB

v̂xy

(
S ∩ (CBv̂xy ∩ Vvx)

)
=

D̄
(
S ∩ (CBv̂xy ∩ Vvx)

)
γv̂xy

≤ D̄(S)
γv̂xy

≤ α

γv̂xy
.

Let W be a random variable distributed according to D̄. Recall that we assume that the

leaves of T are (all) in level d. Let Z|v|+1, . . . , Zd be real valued random variables, such that

for i ∈ {|v|+ 1, . . . , d}, if |W | ≥ i

Zi = log

(
OW≤i−1x(Wi)

OW≤i−1
(Wi)

)
.

If |W | < i, set Zi = 0. Let Z|v| = 0. Let w ∈ V \ L and i ∈ {1, . . . , d}. If |w| ≥ i, denote

Dx,i−1(w) = D
(
Ow≤i−1x∥Ow≤i−1

)
.

If |w| < i, denote Dx,i−1(w) = 0.

Let i ∈ {|v|+ 1, . . . , d}. Let w ∈ C be such that |w| ≥ i. We claim that

E[Zi | W≤i−1 = w≤i−1] = Dx,i−1(w), (13)

due to the followings: By definition,

E[Zi | W≤i−1 = w≤i−1] =
∑

b∈{0,1}

Pr[Wi = b | W≤i−1 = w≤i−1] · log
(
Ow≤i−1x(b)

Ow≤i−1
(b)

)
.

By the definition of D̄ and since C is a frontier, Pr[W≤i−1 = w≤i−1] = Dvxy(w≤i−1). Thus, for

b ∈ {0, 1}, it holds that Pr[Wi = b | W≤i−1 = w≤i−1] = Ow≤i−1xy(b). If w≤i−1 ∈ VA, then, by

Equation (1), Pr[Wi = b | W≤i−1 = w≤i−1] = Ow≤i−1xy(b) = Ow≤i−1x(b), and Equation (13)

holds. If w≤i−1 ∈ VB, then, by Equation (2), Ow≤ix = Ow≤i
and both sides of Equation (13)

equal 0.

We also have that

d∑
i=|v|+1

Zi =

|W |∑
i=|v|+1

log

(
OW≤i−1x(Wi)

OW≤i−1
(Wi)

)
= log

(∏|W |
i=|v|+1 OW≤i−1x(Wi)∏|W |
i=|v|+1OW≤i−1

(Wi)

)
= log

(
Dvx(W )

Dv(W )

)
.

(14)

Next, for i ∈ {|v|+ 1, . . . , d}, we define

Ti = Zi − E[Zi|Zi−1, . . . , Z|v|].
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Fix i ∈ {|v| + 1, . . . , d}. Note that E[Ti|Ti−1, . . . , T1] = 0. Fix w ∈ C. By Equation (13), if

|w| ≥ i− 1,

(Ti|W≤i−1 = w≤i−1) = (Zi|W≤i−1 = w≤i−1)− E[Zi|Zi−1, . . . , Z1,W≤i−1 = w≤i−1]

= (Zi|W≤i−1 = w≤i−1)− E[Zi|W≤i−1 = w≤i−1]

= (Zi|W≤i−1 = w≤i−1)− Dx,i−1(w).

Since Dx,i(w) ≥ 0,

sup(Ti|W≤i−1 = w≤i−1) ≤ max
b∈{0,1}

{
log

(
Ow≤i−1x(b)

Ow≤i−1
(b)

)}
,

inf(Ti|W≤i−1 = w≤i−1) ≥ min
b∈{0,1}

{
log

(
Ow≤i−1x(b)

Ow≤i−1
(b)

)
− Dx,i−1(w)

}
.

Let b ∈ {0, 1}. Recall from the beginning of Section 5 that π is β-smooth. By Definition 4,

Ow≤i−1xy(b) ∈ [1/2− β, 1/2 + β].

Therefore,

Ow≤i−1x(b) = E
y←µB

[Ow≤i−1xy(b)] ∈ [1/2− β, 1/2 + β],

Ow≤i−1
(b) = E

x←µA
[Ow≤i−1x(b)] ∈ [1/2− β, 1/2 + β].

We claim that

Dx,i−1(w) ≤ 5β. (15)

This follows from the fact that Ow≤i−1
(0), Ow≤i−1x(0) ∈ [1/2− β, 1/2 + β], as the largest the

divergence between two distributions that lie in this range can be is at most log
(

1/2+β
1/2−β

)
≤

log(1 + 5β) ≤ 5β, where the last equality is since log(1 + z) ≤ z for z ≥ 0.

Using Pinsker’s inequality and since log(1 + z) ≤ z for z ≥ 0,

sup(Ti|W≤i−1 = w≤i−1) ≤ max
b∈{0,1}

{
log

(
Ow≤i−1

(b) +
∥∥Ow≤i−1x −Ow≤i−1

∥∥
Ow≤i−1

(b)

)}

≤ max
b∈{0,1}

{
log

(
1 +

4
√

Dx,i−1(w)

Ow≤i−1
(b)

)}
≤ log

(
1 + 10

√
Dx,i−1(w)

)
≤ 10

√
Dx,i−1(w).

In addition, by Pinsker’s inequality, Equation (15), and since log(1 − z) ≥ −2z for every
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z ∈ (0, 0.5),

inf(Ti|W≤i−1 = w≤i−1) ≥ max
b∈{0,1}

{
log

(
Ow≤i−1x(b)

Ow≤i−1x(b) +
∥∥Ow≤i−1x −Ow≤i−1

∥∥
)
− Dx,i−1(w)

}

≥ max
b∈{0,1}

{
log

(
Ow≤i−1x(b)

Ow≤i−1x(b) + 4
√
Dx,i−1(w)

)
− Dx,i−1(w)

}

≥ log

(
1− 10

√
Dx,i−1(w)

)
− Dx,i−1(w) ≥ −30

√
Dx,i−1(w).

Recall that the set Vvx was defined in Section 3.4 as the set of all w′ ∈ V(v)\L satisfying

Dvw′
≤|w′|−1

x < β. Since for every w ∈ C it holds that either w or its parent is in Vvx, since π

is β-smooth, and by Equation (15),
∑d

i=|v|+1Dx,i−1(w) = Dvwx ≤ 20β. Therefore, for w ∈ C,

d∑
i=|v|+1

(sup(Ti)− inf(Ti) | W≤i−1 = w≤i−1)
2 ≤

d∑
i=|v|+1

1600 · Dx,i−1(w) ≤ 105β. (16)

For w ∈ C, by Equations (13) and (14), d∑
i=|v|+1

Ti

∣∣∣∣∣∣W = w

 =

 d∑
i=|v|+1

Zi

∣∣∣∣∣∣W = w

− d∑
i=|v|+1

E [Zi|W≤i−1 = w≤i−1] (17)

= log

(
Dvx(w)

Dv(w)

)
−

d∑
i=|v|+1

Dx,i−1(w) ≥ log

(
Dvx(w)

Dv(w)

)
− 20β.

The assertion follows as

Pr
w←D̄

[
Dvx(w)

Dv(w)
≥ t

]
= Pr

w←D̄

[
log

(
Dvx(w)

Dv(w)

)
≥ log(t)

]

≤ Pr

 d∑
i=|v|+1

Ti ≥ log(t)− 20β

 (by Equation (17))

≤ exp

(
−(log(t)− 20β)2

105β

)
. (by Lemma 32 and Equation (16))
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