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Abstract
We study limitations of polynomials computed by depth two circuits built over read-once polyno-
mials (ROPs) and over depth three syntactically multi-linear formulas. We prove an exponential
lower bound for the size of the ΣΠ[N1/30] arithmetic circuits built over syntactically multi-linear
ΣΠΣ[N1/4] arithmetic circuits computing a product of variable disjoint linear forms on N vari-
ables, where the superscripts on gates denote bound on the fan-in. We extend the result to the
case of ΣΠ[N1/30] arithmetic circuits built over ROPs of unbounded depth, where the number of
variables with + gates as a parent in an proper sub formula is bounded byN1/4. We show that the
same lower bound holds for the permanent polynomial. Finally we obtain an exponential lower
bound for the sum of ROPs computing a polynomial in VP defined by Raz and Yehudayoff [18].

Our results demonstrate a class of formulas of unbounded depth with exponential size lower
bound against the permanent and can be seen as an exponential improvement over the multilinear
formula size lower bounds given by Raz [17] for a sub-class of multi-linear and non-multi-linear
formulas. Our proof techniques are built on the one developed by Kumar et. al. [13] and are
based on non-trivial analysis of ROPs under random partitions. Further, our results exhibit
strengths and limitations of the lower bound techniques introduced by Raz [17].
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1 Introduction

More than three decades ago, Valiant [23] developed the theory of Algebraic Complexity
classes based on arithmetic circuits as the model of algebraic computation. Valiant considered
the permanent polynomial permn defined over an n×n matrix X = (xi,j)1≤i,j≤n of variables:

permn(X) =
∑
π∈Sn

n∏
i=1

xi,π(i)

where Sn is the set of all permutations on [n]. Valiant [23] showed that the polynomial family
(permn)n≥0 is complete for the complexity class VNP. Further, Valiant [23] conjectured
that permn does not have polynomial size arithmetic circuits. Since then, obtaining super
polynomial size lower bounds for arithmetic circuits computing permn has been a pivotal
problem in Algebraic Complexity Theory. However, for general classes of arithmetic circuits,
the best known size bound is an Ω(n log d) lower bound due to Baur and Strassen for an
n-variate degree d polynomial [2]. In fact, this is the only super linear lower bound we know
for general arithmetic circuits. While the challenge of proving lower bounds for general
classes of circuits still seems to be at a distance, naturally the focus has been on proving
lower bounds for restricted classes of circuits computing permn.

Nisan and Wigderson [16] used partial derivatives to obtain exponential lower bounds
against Depth 3 ΣΠΣ circuits and set multilinear formulas. Later, Grigoriev and Karpinski [6]
proved an exponential size lower bound for depth three circuits of constant size over finite
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2 Sum of products of ROPs

fields. In 2001, Shpilka and Wigderson [21] proved a quadratic lower bound for ΣΠΣ circuits
over infinite fields computing detn(or permn) which has been improved recently to an almost
cubic lower bound in [11]. Explaining the lack of progress in proving lower bounds even
for ΣΠΣ circuits, Agrawal and Vinay [1] showed that proving exponential lower bounds
against depth four arithmetic circuits is enough to resolve Valiant’s conjecture. This was
improved subsequently in [22, 12]. From then on, depth 4 circuits have been in the limelight.
Recently, Gupta et. al. [7] obtained 2Ω(

√
n) top fan-in lower bound for ΣΠ[O(

√
n)]ΣΠ[

√
n]

circuits computing detn or permn. The techniques introduced in [7, 8] have been generalized
and applied to prove lower bounds against several classes of constant depth arithmetic circuits,
regular arithmetic formulas and homogeneous arithmetic formulas. (See e.g., [9, 14, 10].)
Motivation and our results: A seminal work of Raz [17] showed that multilinear formulas
(i.e., every gate in the formula computes a multilinear polynomial) computing detn or permn

must have size nΩ(logn). In [17] Raz used rank of the partial derivative matrix as a complexity
measure. Using the same complexity measure as [17], Raz and Yehudayoff [19] proved
exponential lower bounds against constant depth multilinear formulas [19]. Subsequently,
several generalizations of Raz’s measure were introduced. Kumar et. al [13] extended
the techniques developed in [17] to prove lower bounds against non-multilinear circuits
and formulas of constant size using the rank of the polynomial coefficient matrix as a
measure. (See Definition 1). In [5], Forbes and Shpilka introduced evaluation dimension as a
complexity measure to prove exponential lower bounds against Read-Once oblivious algebraic
branching programs. In [10], Kayal and Saha used evaluation dimension to prove exponential
lower bound against Depth three multi-ic-k circuits. Despite the fact that over large fields,
evaluation dimension with respect to a partition of the set of variables in the polynomial
and rank of the partial derivative matrix with respect to that partition are essentially the
same (see Chapter 4 in [4]), the evaluation perspective sometimes comes handy in proving
lower bounds against non-multilinear circuits.

In this work, we attempt to push Raz’s measure to unexplored circuit models. A formula
is said to be a read-once formula (ROF) if every variable labels atmost one leaf in the formula.
A polynomial computed by an ROFs is called a read-once polynomial (ROP). Observe that
ROFs are the simplest class of multilinear formulas. ROFs have gained much attention
after Shpilka and Volkovich [20] obtained an efficient identity testing algorithm for sum
of a constant number of ROPs . As an essential ingredient in their result, Shpilka and
Volkovich [20] proved a linear lower bound for a special class of ROPs to sum-represent the
polynomial x1 · · ·xn. We prove an exponential lower bound against the same model as in [20]
against a polynomial in VP defined by Raz-Yehudayoff [18].

I Theorem 1. There is an explicit polynomial g ∈ VP such that for any ROPs f1, . . . , fs, if∑s
i=1 fi = g, then s = exp (Ω(n/ logn)).

It should be noted that the result in Raz [17] immediately implies a lower bound of nΩ(logn)

for the sum of ROPs and hence our result is an exponential improvement.
A natural next step is to extend Theorem 1 to ΣΠ circuits built over ROPs (ΣΠROP for

short). More formally, we study the model
∑
i

∏
j Qij where each Qij is an ROP. Because

of the non-trivial product gate at the second level the polynomials computed can potentially
be non-multilinear. Apart from being a natural generalization of ΣΠΣ circuits, the class
ΣΠROP can be seen as building non-multilinear polynomials using the simplest possible
multilinear polynomials viz. ROPs.

However, it can easily be shown that rank of the partial derivative matrix under a random
partition is only a constant factor away in the exponent from the maximum possible value
even for a product of variable disjoint linear forms with high probability. (See Lemma 22.)
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This necessitates further restrictions on ROPs that could lead to exponential lower bound
against ΣΠROP using the rank of the partial derivative matrix as the measure of complexity.
We show:

I Theorem 2. Let C be the class of N -variate polynomials computed by multilinear formulas∑[r]∏∑[N1/4]. Then there is an explicit family of polynomials plin such that if plin =∑s
i=1
∏[N1/30] C then s · r = exp(Ω(N ε)), for some ε > 0.

Our arguments do not directly generalize to the case of unbounded depth ROPs with small
bottom Σ fan-in. We obtain a generalization of Theorem 2, allowing ROPs of unbounded
depth with a more stringent restriction than the bottom Σ-fan-in. Let F be an ROF and for
a gate v in F , let sum-fan-in(v) be the number of variables in the sub-formula rooted at v
whose parents are labelled as +. Then s(F ) is the maximum value of sum-fan-in(v), where
the maximum is taken over all + gates in F of product height at least 1. Note that, in the
case of ΣΠΣ ROPs, s(F ) is the same as the bottom fan-in. For an ROP f , define s(f) as the
smallest s(F ) among all ROFs F computing f .

I Theorem 3. Let C be the class of N-variate ROPs f with s(f) ≤ N1/4. For N = n2, if
plin =

∑s
i=1
∏[N1/30] C then s = exp(Ω(N ε)), for some ε > 0.

As far as we know, in the commutative setting, this is the first exponential lower bound
for a sub-class of non-multilinear and non-homogeneous formulas of unbounded depth. It
can be noted that our result above does not depend on the depth of the ROPs.

Even though a product of linear forms is a simple linear projection of permn, Theorem 3
does not imply a lower bound for permn due to restrictions on sF , since linear projections
might change the bottom fan-in of the resulting ROPs. With a more involved analysis of
permanent under random partitions, we have:

I Theorem 4. Let C be the class of N-variate ROPs f with s(f) ≤ N1/4. For N = n2, if
permn =

∑s
i=1
∏[N1/30] C then s = exp(Ω(N ε)) for some ε > 0.

Related Results : In [15], Mahajan and Tawari obtain a tight linear lower bound for
number of ROPs required to sum-represent elementary symmetric polynomials. Though the
model in [15] is the same as the one in this paper, our lower bounds are incomparable with
that of [15]. Kayal [8] showed that at least 2n/d many polynomials of degree d are required
to represent the polynomial x1 . . . xn as sum of powers. Our model is significantly different
from the one in [8] since our model includes high degree monomials, though the powers are
restricted to be sub-linear, whereas Kayal’s argument works against arbitrary powers.
Our Techniques: Our techniques are broadly based on the rank of polynomial coefficient
matrix introduced by Kumar et. al [13] as an extension of the partial derivative matrix
introduced in [17]. It can be noted that the lower bounds obtained in [17] are super polynomial
and not exponential. Though Raz-Yehudayoff [19] proved exponential lower bounds, their
argument works only against bounded depth multilinear circuits. Further, the arguments
in [17, 19] do not work for the case of non-multilinear circuits, and fail even in the case
of products of two multilinear formulas. This is because rank of the partial derivative
matrix, a complexity measure used by [17, 19] (see Section 2 for a definition) is defined only
for multi-linear polynomials. Even though this issue can be overcome by a generalization
introduced by Kumar et. al [13], the limitation lies in the fact that the upper bound of 2n−nε

for an n2 or 2n variate polynomial, obtained in [17] or [19] on the measure for the underlying
arithmetic formula model is insufficient to handle products of two ROPs.
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Our approach to prove Theorems 3 and 4 lie in obtaining an exponentially stronger upper
bounds (see Lemma 21 ) on the rank of the partial derivative matrix of an ROP F on N
variables where s(F ) ≤ N1/4. Our proof is a technically involved analysis of the structure of
ROPs under random partitions of the variables. Even though the restriction on s(F ) might
look un-natural, in Lemma 22, we show that a simple product of variable disjoint linear forms
in N -variables, with s(F ) ≥ N2/3 achieves exponential rank with probability 1− 2−Ω(N1/3).
Thus our results highlight the strength and limitations of the techniques developed in [19, 13]
to the case of non-multi-linear formulas.

The rest of the paper is organized as follows. Section 2 provides essential definitions used
in the paper. Section 3 proves Theorem 1. Sections 4 proves the remaining results. Proofs
omitted due to space constraints can be found in the appendix.

2 Preliminaries

In this section we review the computational model we study and the complexity measure
used to prove the lower bounds.

Let F be an arbitrary field and X = {x1, . . . , xN} be a set of variables. An arithmetic
circuit C over F is a directed acyclic graph with vertices of in-degree 0,1 or 2 and exactly one
vertex of out-degree 0 called the output gate. The vertices of in-degree 0 are called input
gates and are labeled by elements from X ∪ F. The vertices of in-degree more than 1 are
labeled by either + or ×. Thus every gate of the circuit naturally computes a polynomial.
The polynomial f computed by C is the polynomial computed by the output gate of the
circuit. The size of an arithmetic circuit is the number of gates in C. Depth of C is the length
of the longest path from an input gate to the output gate in C. The product height of a gate
v in C is the maximum number of Π gates along any path from v the root gate in C. For g
any gate in a circuit C, var(g) denote the set of variables that appear as leaf labels in the
sub-circuit rooted at g. Abusing the notation, if g is a polynomial, then var(g) denotes the
set of variables that g is dependent on. An arithmetic circuit is called an arithmetic formula
if the underlying undirected graph is a tree.

We now review the polynomial coefficient matrix introduced in [13] and take a look its
properties.

I Definition 1. (Polynomial Coefficient Matrix). Let Y = {y1, . . . , ym} and Z = {z1, . . . , zm}.
Let f ∈ F[Y,Z] be a polynomial. The polynomial coefficient matrix of f(denoted by Mf ) is a
2m × 2m matrix defined as follows : For monic multilinear monomials p and q in variables
Y and Z respectively, the entry Mf [p, q] = A if and only if f can be uniquely expressed as
f = pq ·A+B where A,B ∈ F[Y,Z] such that

var(A) ⊆ var(p) ∪ var(q).
For every monomial m ∈ B, either pq - m or var(m) ( var(p) ∪ var(q).

I Observation 1. For a multilinear polynomial f ∈ F[Y, Z], the polynomial coefficient
matrix [13] and the partial derivative matrix [17] are the same.

The matrix Mf has entries in F[Y,Z]. Therefore rank(Mf ) is defined only under a
substitution function. For S : Y ∪ Z → F, let Mf |S be the matrix obtained by substituting
every variable w ∈ Y ∪ Z to S(w) at each entry of Mf .

maxrank(Mf ) , max
S:Y ∪Z→F

{rank(Mf |S)}

It is known that maxrank(Mf ) satisfies sub-additivity and sub-multiplicativity:
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I Lemma 5. [13](Sub-additivity.) Let f, g ∈ F[Y, Z]. Then, maxrank(Mf+g) ≤ maxrank(Mf )+
maxrank(Mg).

I Lemma 6. [13](Sub-multiplicativity.) Let Y1, Y2 ⊆ Y and Z1, Z2 ⊆ Z such that Y1 ∩ Y2 =
∅ and Z1 ∩ Z2 = ∅. Then for any polynomials f ∈ F[Y1, Z1], g ∈ F[Y2, Z2], we have
maxrank(Mfg) = maxrank(Mf ) ·maxrank(Mg).

The proofs of Lemma 5 and 6 follow directly from [13].
I Observation 2. For any multilinear polynomial f ∈ F[Y,Z], the entries of Mf are constants
from F. Therefore maxrank(Mf ) = rank(Mf ).
I Definition 2. (Partition function). A partition of X is a function ϕ : X → Y ∪ Z ∪ {0, 1}
such that ϕ is an injection when restricted to Y ∪ Z, i.e., ∀x 6= x′ ∈ X, if ϕ(x) ∈ Y ∪ Z and
ϕ(x′) ∈ Y ∪ Z then ϕ(x) 6= ϕ(x′).

Let F be a formula with leaves labelled by elements in X ∪F and ϕ : X → Y ∪Z ∪ {0, 1}
be a partition function as in Definition 2. Denote by Fϕ to be the formula obtained by
replacing every variable x that appears as a leaf in F by ϕ(x). Denote by fϕ the polynomial
computed by Fϕ. Then fϕ , f(ϕ(X)) ∈ F[Y,Z].
I Definition 3. (Constant-Minimal Formula) An arithmetic formula F is said to be constant-
minimal if no gate u in F has both its children as constants from F. Observe that for any
arithmetic formula F , if there exists a gate u in F such that u = a op b, a, b ∈ F then we can
replace u in F by the constant a op b, where op ∈ {+,×}. Thus we assume without loss of
generality that any arithmetic formula F is constant-minimal.

We need some observations on formulas that compute natural numbers. Recall that an
arithmetic formula F is said to be monotone if F does not contain any negative constants.

Let G be a monotone arithmetic formula where the leaves are labelled numbers in
N. Then for any gate v in G, the value of v (denoted by value(v)) is defined as : If
u is a leaf then value(u) = a where a ∈ N is the label of u. If u = u1 op u2 then
value(u) = value(u1) op value(u2), where op ∈ {+,×}. Finally, value(G) is the value of the
output gate of G.

The following is a simple upper bound on the value computed by a monotone formula.
See appendix for a proof.

I Lemma 7. Let G be a binary monotone arithmetic formula with t leaves. If every leaf in
G takes a value at most N > 1, then value(G) ≤ N t.

I Definition 4. (rank-(1, 2)-separator). Let G be a monotone arithmetic formula with
leaves labelled by either 1 or 2. A node u in G at product height at least 1 is called a
rank-(1, 2)-separator if u is a leaf and value(u) = 2 or u is a sum gate(u = u1 + u2) with
value(u) ≥ 2 and value(u1), value(u2) < 2.

Note that no gate labelled × can be a rank-(1, 2)-separator. The following lemma shows
that any formula computing a large value should have a large number of rank-(1, 2)-separators.
Proof can be found in the appendix

I Lemma 8. Let F be a binary monotone arithmetic formula with leaves labelled by either 1 or
2. Suppose value(F ) > 2r then there are at least d r

logN e gates that are rank-(1, 2)-separators,
where N is the sum of labels of leaves in F .

Finally, we will use the following variants of Chernoff-Hoeffding bounds.

I Theorem 9. [3](Chernoff-Hoeffding bound) Let X1, X2, . . . , Xn be independent random
variables. Let X = X1 +X2 + · · ·+Xn and µ = E[X]. Then for any δ > 0,
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(1) Pr[X ≥ (1 + δ)µ] ≤ e
−δ2µ

3 when 0 < δ < 1; and
(2) Pr[X ≤ (1− δ)µ] ≤ e

−δ2µ
2 when 0 < δ < 1; and

(3) Pr[X ≥ (1 + δ)µ] ≤ e
−δµ

3 when δ > 1

3 Hardness of representation for Sum of ROPs

Let X = {x1, . . . , x2n}, Y = {y1, . . . , y2n}, Z = {z1, . . . , z2n}. Define D′ as a distribution on
the functions ϕ : X → Y ∪ Z as follows : For 1 ≤ i ≤ 2n,

ϕ(xi) ∈
{
Y with prob. 1

2

Z with prob. 1
2

Observe that |ϕ(X) ∩ Y | = |ϕ(X) ∩ Z| is not necessarily true. Let F be a binary arithmetic
formula computing a polynomial f on the variables X = {x1, . . . , x2n}. Note that any gate
with at least one variable as a child can be classified as:

(1) type-A gates : sum gates both of whose children are variables,
(2) type-B gates : product gates both of whose children are variables,
(3) type-C gates : sum gates exactly one child of which is a variable and the other an internal

gate; and
(4) type- D gates: product gates exactly one child of which is a variable and the other an

internal gate

Given any ROF F , let there be a type-A gates, b type-B, c type-C and d type-D gates in
F . Note that 2a+ 2b+ c+ d ≤ 2n.

I Observation 3. Let F be a binary arithmetic formula computing a polynomial f . Then
we can construct a formula F ′ computing f such that no root to leaf path in F ′ has two
consecutive type-C gates. Therefore, for any binary arithmetic formula F , without the loss
of generality we have c ≤ a+ b+ d.

Let ϕ ∼ D′. Let there be a′ gates of type-A that achieve rank-1 under ϕ and let a′′ gates
of type-A that achieve rank-2 under ϕ. Then, a = a′ + a′′.

The following lemma gives an upper bound on the rank of Mfϕ . The proof can be found
in the appendix.

I Lemma 10. 1 Let F be an ROF computing an ROP f and ϕ : X → Y ∪ Z. Then,
rank(Mfϕ) ≤ 2a′′+ a′

2 + 2b
3 + c

2 .

I Lemma 11. Let F be a ROF. Let there be a type-A gates in F and a′ be the number type-A
gates in F that achieve rank-1 under ϕ ∼ D. Then, Prϕ∼D′

[ 2
5a ≤ a

′ ≤ 3
5a
]

= 1− 2−a/100.

Proof. Let v be a type-A gate in F . Then fv = xi + xj for some i, j ∈ [N ]. Then
Pr[rank(Mfϕv ) = 1] = Pr[(ϕ(xi), ϕ(xj) ∈ Z) ∨ (ϕ(xi), ϕ(xj) ∈ Y )] = 1

2 . Therefore, µ =
E[a′] = a/2. Applying Theorem 9 (2) and (3) with δ = 1/5, we get the required bounds. J

I Lemma 12. Let f be an ROP on 2n variables and ϕ ∼ D′. Then with probability at least
1− 2−Ω( n

logn ), rank(Mfϕ) ≤ 2n−
n

15 logn .

1 A brief outline of the proof of Lemma 10 was suggested by an anonymous reviewer, the details included
here for completeness and since the details were worked out completely by the authors.
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Proof. Consider the following two cases:
Case 1 : a+ c ≥ 2n

logn . Then either a ≥ n
logn or c ≥ n

logn .
(i) Suppose a ≥ n

logn , by Lemma 10, we have rank(Mfϕ) ≤ 2a′′+a′/2+2b/3+c/2 ≤ 2a′′+a′/2+b+c/2.
Since 2a′′ + 2a′ + 2b+ c+ d ≤ 2n, a′′ + a′/2 + b+ c/2 ≤ n− a′/2. By Lemma 11, a′ ≥
2a
5 ≥

2n
5 logn with probability 1 − 2−Ω( n

logn ). Therefore, rank(Mfϕ) ≤ 2a′′+a′/2+b+c/2 ≤
2n−a′/2 ≤ 2n−

n
5 logn .

(ii) Suppose c ≥ n
logn . By Observation 3, a + b + d ≥ c ≥ n

logn , then either a ≥ n
3 logn or

b ≥ n
3 logn or d ≥ n

3 logn .
If a ≥ n

3 logn , similar to (i) we have rank(Mfϕ) ≤ 2n−
n

15 logn with probability 1 −
2−Ω( n

logn ).
If b ≥ n

3 logn by Lemma 10, rank(Mfϕ) ≤ 2a+2b/3+c/2. Since 2a+ 2b+ c+ d ≤ 2n, we
have a+ c

2 ≤ n− b. Therefore rank(Mfϕ) ≤ 2n− b3 ≤ 2n−
n

9 logn ≤ 2n−
n

15 logn .
If d ≥ n

3 logn , since 2a+ 2b+ c+ d ≤ 2n, a+ b+ c
2 ≤ n−

d
2 . Therefore by Lemma 10

rank(Mfϕ) ≤ 2a′′+a′/2+2b/3+c/2 ≤ 2a+b+c/2 ≤ 2n− d2 ≤ 2n−
n

6 logn ≤ 2n−
n

15 logn .
Case 2 : a + c < 2n

logn . Observe that b ≤ n. By Lemma 10, rank(Mfϕ) ≤ 2a+2b/3+c ≤
22n/3+2n/ logn ≤ 2n−n/15 logn for large enough n. J

The following polynomial was introduced by Raz and Yehudayoff [18].
I Definition 5. Let n ∈ N be an integer. Let X = {x1, . . . , x2n} and W = {wi,k,j}i,k,j∈[2n].
For any two integers i, j ∈ N, we define an interval [i, j] = {k ∈ N, i ≤ k ≤ j}. Let |[i, j]| be the
length of the interval [i, j]. Let Xi,j = {xp | p ∈ [i, j]} and Wi,j = {wi′,k,j′ | i′, k, j′ ∈ [i, j]}.
For every [i, j] such that |[i, j]| is even we define a polynomial gi,j ∈ F[X,W] as gi,j = 1
when |[i, j]| = 0 and if |[i, j]| > 0 then, gi,j , (1 + xixj)gi+1,j−1 +

∑
k
wi,k,jgi,kgk+1,j . where xk,

wi,k,j are distinct variables, 1 ≤ k ≤ j and the summation is over k ∈ [i+ 1, j − 2] such that
the interval [i, k] is of even length. Let g , g1,2n.

In the following, we view g as polynomial in {x1, . . . , x2n} with coefficients from the
rational function field G , F(W). The following lemma builds on Lemma 4.3 in [18] and a
proof can be found in the appendix.

I Lemma 13. Let Let X = {x1, . . . , x2n}, Y = {y1, . . . , y2n}, Z = {z1, . . . , z2n} and W =
{wi,k,j}i,k,j∈[2n] be sets of variables. Suppose ϕ ∼ D′ such that ||ϕ(X)∩Y |− |ϕ(X)∩Z|| = `.
Then for the polynomial g as in Definition 5 we have, rank(Mgϕ) ≥ 2n−`/2.

I Lemma 14. For Q ∈ {Y, Z}, Prϕ∼D′ [n− n2/3 ≤ |ϕ(X) ∩Q| ≤ n+ n2/3] ≥ 1− 2−Ω(n1/3).

Proof. Proof is a simple application of Chernoff’s bound (Theorem 9) with δ = 1/n1/3. J

I Corollary 15. Prϕ∼D′ [rank(Mgϕ) ≥ 2n−n2/3 ] ≥ 1− 2−Ω(n1/3).

Proof. Apply Lemma 13 with ` = 2n/n1/3 = 2n2/3 and the probability bound follows from
Lemma 14. J

Proof of Theorem 1

Proof. Suppose s < 2o(n/ logn). Then by Lemma 12 and union bound, probability that
there is an i such that rank(Mfϕ

i
) ≥ 2n−n/15 logn is s2−Ω( n

logn ) = 2−Ω( n
logn ) and hence by

Lemma 5, rank(Mgϕ) ≤ s2n−n/15 logn ≤ 2n−n/20 logn with probability 1− 2−Ω( n
logn ) for large

enough n. However, by Corollary 15, rank(Mgϕ) ≥ 2n−n2/3
> 2n−n/20 logn with probability

at least 1− 2−Ω(n1/3), a contradiction. Therefore, s = 2Ω(n/ logn). J
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4 Sum of Products of ROPs

4.1 ROPs under random partition
Throughout the section, let m , N1/3, N , n2 and κ , 20 logn. Let X = {x11, . . . , xnn} be
a set of n2 variables and D denote the distribution on the functions ϕ : X → Y ∪ Z ∪ {0, 1}
defined as follows

ϕ(xij) ∈


Y with prob. m

N

Z with prob. m
N

1 with prob. κn
N

0 with prob. 1−
( 2m+κn

N

)
The following Lemmas show that bottom × gates do not contribute much to the rank. Proofs
can be found in the appendix.

I Lemma 16. Let F be a ROF and ϕ ∼ D. Let X be a random variable that denotes the
number of non-zero multiplication gates at depth 1. Then Pr

ϕ∼D

[
X > (N1/4)

]
≤ 2−Ω(N1/4).

I Lemma 17. Let F be an ROF computing an ROP f and ϕ ∼ D. Then there exists
an ROF F ′ such that every gate in F ′ at depth-1 is an addition gate, and rank(MFϕ) ≤
rank(MF ′ϕ)× 2O(N1/4) with probability atleast 1− 2−Ω(N1/4).

Recall that an arithmetic formula F over Z is said to be monotone if it does not have
any node labelled by a negative constant. We have:

I Lemma 18. Let F be an ROF, and ϕ ∼ D. Then there exists a monotone formula G such
that rank(MFϕ) ≤ value(G).

I Observation 4. Let F be an ROF and ϕ ∼ D. By Lemma 18, we have, Pr[rank(MFϕ) >
2r] ≤ Pr[value(G) > 2r].

Let F be an ROF and ϕ ∼ D. Then by Lemma 8 we have the following corollary,

I Corollary 19. Pr[rank(MFϕ) > 2r] ≤ Pr[∃ u1, . . . , u r
logN

∈ Fϕ s.t. ∀ i ui is a rank-(1, 2)-separator]

Now all we need to do is to estimate the probability that a given set of nodes u1, . . . , ut
where t > r

logN are a set of rank-(1, 2)-separators.

I Lemma 20. F be an ROF and let u1, . . . , ut be a set of + gates in F that have product
height at least 1 and are not descendants of each other. Suppose s(F ) ≤ N1/4. Then
Prϕ[

∧t
i=1 ui is a rank-(1, 2)-separator] ≤ ctN−5t/6, for some constant c > 0.

Proof. Note that for 1 ≤ i ≤ t rank(Muϕ
i

) = 2 only if |var(uϕi )∩Y | ≥ 1 and |var(uϕi )∩Z| ≥ 1.
Therefore Pr[ui is a (1, 2) separator] ≤ Pr[|var(uϕi ) ∩ Y | ≥ 1 and |var(uϕi ) ∩ Z| ≥ 1] ≤
Pr[|var(uϕi ) ∩ (Y ∪ Z)| ≥ 2]. Let `i1 , . . . , `iri be the addition gates at depth-1 in the sub-
formula rooted at ui. For 0 ≤ i ≤ t, we define Si , var(`i1) ∪ · · · ∪ var(`iri ). Then for
0 ≤ i ≤ t, Pr[ ui is a (1, 2) separator] ≤ Pr[|Si ∩ (Y ∪ Z)| ≥ 2]. Since |var(ui)| ≤ s(F ), we
have |Si| ≤ s(F ) ≤ N1/4. Since (1− 2m/N)|Si|−2 ≤ 1, |Si| ≤ N1/4 and m = N1/3, we have

Pr[|Si ∩ (Y ∪ Z)| = 2] =
(
|Si|
2

)(
2m
N

)2
(1− 2m/N)|Si|−2 ≤

(
|Si|
2

)(
2m
N

)2

≤ 22s(F )2N−4/3 = O(N−5/6).
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Similarly, Pr[|Si ∩ (Y ∪ Z)| = 3] ≤ O)(N−5/4). By union bound Pr[|Si ∩ (Y ∪ Z)| ≥ 3] ≤
|Y ∪ Z|Pr [|Si ∩ (Y ∪ Z)| = 3] ≤ N−11/12 ≤ O(N−5/6). Then for some constant c > 0

Pr
ϕ

[
t∧
i=1

ui is a (1, 2) separator
]
≤

t∏
i=1

Pr[|Si ∩ (Y ∪ Z)| ≥ 2] ≤
t∏
i=1
O(N−5/6) = ctN−(5t/6)J

I Lemma 21. Let f be an ROPon N variables computed by an ROF F , with s(F ) ≤ N1/4.
Then, Prϕ∼D[rank(Mfϕ) ≥ 2N4/15 ] ≤ 2−Ω(N1/4).

Proof. By Lemma 17, note that × gates in F with at least two variables as their input
contribute a multiplicative factor of 2N1/4 to rank(Mfϕ) with probability at least 1−2−Ω(N1/4).
Thus, without loss of generality we can assume that F has not × gate with at more than
two variables as its input. By Corollary 19 we have

Pr[rank(Mfϕ) ≥ 2N
4/15

] ≤ Pr[∃ rank-(1, 2)-separators u1, . . . , uN4/15
logN

]

≤ Pr[∃ rank-(1, 2)-separators u1, . . . , uN1/4 ] ≤
(

N

N1/4

)
cN

1/4
N−

5
6N

1/4

≤ cN
1/4
eN

1/4
N (3/4)N1/4−(5/6)N1/4

≤ N−Ω(N1/4).

The penultimate inequality follows by Lemma 20 and union bound. For the last inequality,
we use the fact that

(
n
k

)
≤ (ne/k)k, where e is the base of natural logarithm. J

4.2 Polynomials with High Rank
In this section, we prove rank lower bounds for two polynomials under a random partition
ϕ ∼ D. The first one is in VP and the other one is in VNP.

I Lemma 22. Let plin = `1 · · · `m′ where `j =
(∑jN/2m

i=(j−1)(N/2m)+1 xi

)
+ 1, where m′ = 2m.

Then, rank(Mplinϕ) = 2Ω(m) with probability 1− 2−Ω(m).

Proof. Let plin = `1 · · · `m′ where `j =
(

jN/2m∑
(j−1)(N/2m)+1

xi

)
+ 1 and m′ = 2m.

Define indicator random variables ρ1, ρ2, . . . , ρm′ , where ρi = 1 if rank(M`ϕ
i
) = 2 and 0

otherwise. Observe that for any 1 ≤ i ≤ m′, rank(M`ϕ
i
) = 2 iff `ϕi ∩ Y 6= ∅ and `

ϕ
i ∩ Z 6= ∅.

Therefore, Pr[rank(M`ϕ
i

) = 2] = Pr[`ϕi ∩Y 6= ∅ and `
ϕ
i ∩Z 6= ∅]. For any 1 ≤ j ≤ m′, Pr[`ϕj ∩

Y 6= ∅ and `ϕj ∩ Z 6= ∅] ≥ N
2m
(
N
2m − 1

) (
m
N

)2 (1− m
N

) N
2m−2 ≥ 1/16 for large enough N . Let

ρ =
∑m′

i=1 ρi. Then by linearity of expectation, µ , E[ρ] =
∑m′

i=1 E[ρi] ≥ m
8 . Since µ ≥ m/8,

we have Pr[ρ < (1− δ)m/8] ≤ Pr[ρ < (1− δ)µ] = 2−Ω(m) by Theorem 9 with δ = 1/4, since
rank(Mpϕ

lin
) = 2ρ. J

Throughout the section let ϕ denote a function of the form ϕ : X → Y ∪ Z ∪ {0, 1}. Let
Xϕ denote the matrix (ϕ(xij))1≤i,j≤n. If and when ϕ involved in a probability argument,
we assume that ϕ is distributed according to D.

I Definition 6. Let 1 ≤ i, j ≤ n. (i, j) is said to be a Y-special (respectively Z-special) if
ϕ(xij) ∈ Y (respectively ϕ(xij) ∈ Z), ∀i′ ∈ [n], i′ 6= i ϕ(xi′j) ∈ {0, 1} and ∀j′ ∈ [n], j′ 6=
j ϕ(xij′) ∈ {0, 1}.

The following lemma is an application of Chernoff’s bound. Proof can be found in the
appendix.
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I Lemma 23. Let Q ∈ {Y,Z}, ϕ as above and χ = |ϕ(X)∩Q| where ϕ(X) = {ϕ(xij)}i,j∈[n].
Then, Pr

ϕ∼D

[ 3m
4 < χ < 5m

4
]

= 1− 2−Ω(m).

Let C1, . . . , Cn denote the columns of Xϕ and R1, . . . , Rn denote the rows of Xϕ.
I Definition 7. Let Q ∈ {Y, Z}. A column Cj , 1 ≤ j ≤ n is said to be Q-good if ∃i ∈
[n], ϕ(xij) ∈ Q; and ∀i′ ∈ [n], i′ 6= i ϕ(xi′j) ∈ {0, 1}. Q-good rows are defined analogously.
I Observation 5. Let Ci be a Y-good column in Xϕ. Let i, i′ ∈ [n], R be the event that
ϕ(xij) ∈ Y and T be the event that ϕ(xi′j) ∈ Y . The events R and T are mutually exclusive.

By Observation 5 and union bound we have:

I Lemma 24. For 1 ≤ i ≤ n, let Ci be a column in Xϕ. Then for any Q ∈ {Y,Z},
Pr
ϕ∼D

[Ci is Q-good] = n · mN
(
1− 2m

N

)n−1
.

For Q ∈ {Y,Z} let ηQ , |{Ci | Ci is Q-good}| and ζQ , |{Rj | Rj is Q-good}. A proof of
following lemma can be found in the appendix.

I Lemma 25. With notations as above, ∀Q ∈ {Y,Z}, Pr
ϕ∼D

[ηQ ≥ 2m
3 ] = 1 − 2−Ω(m); and

Pr
ϕ∼D

[ζQ ≥ 2m
3 ] = 1− 2−Ω(m).

I Lemma 26. For Q ∈ {Y, Z}, let γQ denote the number of Q-special positions in Xϕ. Then
∀Q ∈ {Y,Z}, Pr

ϕ∼D

[
γQ ≥ m

12
]

= 1− 2−Ω(m).

Proof. We argue for Q = Y , the proof is analogous when Q = Z. Let ϕ be distributed
according to D. Consider the following events on Xϕ. E1 : 2m/3 ≤ |Xϕ ∩ Y | ≤ 5m/4;
E2 : The number of Y -good columns and Y -good rows is at least r , 2m/3.

By Lemmas 23 and 25, Xϕ satisfies the events E1 and E2 with probability 1− 2−Ω(m).
Henceforth we assume that Xϕ satisfies the events E1 and E2.

Without loss of generality, let R1, . . . , Rr be the first r Y -good rows in Xϕ. For every
Y -good row Ri, 1 ≤ i ≤ r there exists a corresponding witness column Cj , j ∈ [n] such that
ϕ(xij) ∈ Y . Without loss of generality, assume C1, . . . , Cr be columns that are witnesses for
R1, . . . , Rr being Y -good. Further, let Xϕ(Cj) denote the set of values along the column Cj .

Suppose among C1, . . . , Cr, t ≥ 0 columns are not Y-good, without loss of generality let
them be C1, C2, . . . , Ct.

Each of the column Cj has at least one variable from Y and hence the columns C1, . . . , Ct
contain at least t distinct variables from Y . By event E2, there are at least 2m

3 Y -good
columns that are distinct from C1, . . . , Ct, each containing exactly one distinct variable
from Y . Since the total number of variables from Y in Xϕ is at most 5m/4 (by E1) we
have, t ≤ 5m

4 −
2m
3 ≤

7m
12 . That is, at most 7m/12 of the columns among C1, . . . , Cr are not

Y -good. Therefore, at least r − t of the columns among C1, . . . , Cr are Y good and hence
the number of Y -special positions in Xϕ is atleast r− t ≥ (2/3− 7/12)m = m

12 . We conclude,
Pr
ϕ∼D

[
γY ≥ m

12
]

= 1− 2−Ω(m). J

A row R in the matrix A ∈ (Y ∪Z ∪ {0, 1})n×n said to be 1-good if there is at least one 1
in R in a column other than Y -special and Z-special positions. The following observation is
immediate :
I Observation 6. Let ϕ be distributed according to D. Then for any row (column) R:
Pr
ϕ∼D

[R is 1-good] ≥ (1− 1/n3).

Finally, we are ready to show that perm has high rank under a random ϕ ∼ D.
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I Theorem 27. Pr[rank(Mpermϕn ) ≥ 2m/12] ≥ (1−O(1/n2))/2.

We need a few notations and Lemmas before proving Theorem 27. Consider a ϕ : X →
Y ∪Z∪{0, 1} and let the number of Y -special positions and the number of Z-special positions
in Xϕ are both be at least γ. Let (i1, j1), (i2, j2), . . . , (iγ , jγ) be a set of distinct Y - special
positions that do not share any row or column and (k1, `1), (k2, `2), . . . , (kγ , `γ) be a set of
distinct Z - special positions in Xϕ that do not share any row or column.

Without loss of generality, suppose i1 < i2 < · · · < iγ and k1 < k2 < · · · < kγ . LetM be
the perfect matching ((i1, j1), (k1, `1)), . . . , ((iγ , jγ), (kγ , `γ)).
For an edge {(ip, jp), (kp, `p)} ∈ M, 1 ≤ p ≤ γ consider the 2× 2 matrix :

Bp =
(
Xϕ[ip, jp] Xϕ[ip, `p]
Xϕ[kp, jp] Xϕ[kp, `p]

)
.

There exists a partition ϕ : X → Y ∪ Z ∪ {0, 1} such that rank(MBϕp ) = 2. Let A be the
matrix obtained by permuting the rows and columns in Xϕ such that A can be written as in
the Figure 1 below. Since (ip, jp) is a Y -special position, (kp, `p) is a Z-special position we

A =




2γ columns︷ ︸︸ ︷
B1 ∗ · · · ∗ ∗

n− 2γ columns︷ ︸︸ ︷
∗ ∗ · · · ∗ ∗

∗ B2 ∗ · · · ∗ ∗ ∗ · · · ∗ ∗

∗ ∗ B3 · · · ∗ ∗ ∗ · · · ∗ ∗
...

...
...

...
...

...
...

...
...

...

∗ ∗ ∗ · · · Bγ ∗ ∗ · · · ∗ ∗

∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗

∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗

∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗
...

...
...

...
...

...
...

...
...

...

∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗








2γ rows





(n− 2γ) rows

A′

A′′

1

Figure 1 The matrix A after permuting the rows and columns. ∗ denotes unspecified entries.

have Xϕ[ip, jp] ∈ Y , Xϕ[kp, `p] ∈ Z. Also Xϕ[ip, `p] ∈ {0, 1} and Xϕ[kp, jp] ∈ {0, 1}. Further,
rank(Mperm(Bp)) = 2 if and only if Xϕ[kp, jp] = Xϕ[ip, `p] = 1. Consider the following
events: F1: γ ≥ m/12; and F2: Rows i1, . . . , iγ , k1 . . . , kγ are 1-good. The following lemma
estimates the probability of perm(A′′) 6= 0. Proof can be found in the appendix.

I Lemma 28. Let A′′ be matrix as in Figure 1. Then Prϕ[perm(A′′) 6= 0 | F1, F2] ≥ 1− 1
n2 .

Let F3 denote the event “perm(A′′) 6= 0”. Define sets of matrices:

A 4=
{
Xϕ |

Xϕ ∈ F1 ∩ F2 ∩ F3 and ∃i ≤
γ, rank(Mperm(Bi)) = 1

}
; B 4=

{
Xϕ |

Xϕ ∈ F1 ∩ F2 ∩ F3 and ∀i ≤
γ, rank(Mperm(Bi)) = 2.

}
I Observation 7. ∀A ∈ A, rank(Mperm(A′)) < 2γ and ∀B ∈ B, rank(Mperm(B)) ≥ 2γ .

I Lemma 29. Let A and B as defined above. Then (a) Pr
ϕ∼D

[rank(Mperm(Xϕ)) ≥ 2γ)] ≥ D(B);

and (b) D(B) ≥ D(A), where D(S) = Pr
ϕ∼D

[Xϕ ∈ S] for S ∈ {A,B}.

Proof. (a) follows from Observation 7. For (b), we establish a one-one mapping π : A →
B defined as follows. Let ϕ be such that Xϕ ∈ A. Consider 1 ≤ p ≤ γ such that
rank(Mperm(Bp)) = 1. Then either Xϕ[kp, jp] = 0 or Xϕ[ip, `p] = 0 or both. If Xϕ[kp, jp] = 0,
then set Xϕ′ [kp, jp] = 1, and Xϕ′ [kp, ιp] = 0 where ιp ∈ [n] \ {j1 . . . , jγ , `1 . . . , `γ} is the first
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index from left such that Xϕ[kp, ιp] = 1. Similarly, if Xϕ[ip, `p] = 0, then set Xϕ′ [ip, `p] = 1,
and Xϕ′ [ip, λp] = 0 where λp ∈ [n]\{j1 . . . , jγ , `1 . . . , `γ} is the first index from left such that
Xϕ[kp, λp] = 1. Let ϕ′ be the partition obtained from ϕ by applying the above mentioned
swap operation for every 1 ≤ p ≤ γ with rank(Mperm(Bp)) = 1, keeping other values of ϕ
untouched. Clearly Xϕ′ ∈ B. Set π(Xϕ) 7→ Xϕ′ . It can be seen that π is an one-one map.
Further, for any fixed A ∈ A, Prϕ[Xϕ = A] = Prϕ[Xϕ = π(A)] since ϕ is independently and
identically distributed for any position in the matrix. Thus we have D(A) ≤ D(B). J

Proof of Theorem 27. It is enough to argue that Prϕ∼D[Xϕ ∈ A∪B] = 1−O( 1
n2 ), asA∩B =

∅ . Now, Prϕ∼D[Xϕ ∈ A∪B] = Prϕ∼D[F1∩F2∩F3]. By Lemma 26, Prϕ∼D[F1] = 1−2−Ω(m).
Form Observation 6 combined with union bound we have Prϕ∼D[F2] ≥ 1 − γ/n3 and by
Lemma 28, Prϕ∼D[F3|F1, F2] ≥ 1−2/n2. Thus we conclude Prϕ∼D[F1∩F2∩F3] = 1−O( 1

n2 ).
As D(B ∪ A) = D(A) + D(B), by Lemma 29 we have Prϕ∼D[rank(Mperm(Xϕ)) ≥ 2γ ] ≥
1/2(1−O( 1

n2 )). J

4.3 Putting them all together
Proof of Theorem 2

Proof. Suppose plin =
∑s
i=1
∏t
j=1 fi,j where fi,j are syntactically multi-linear ΣΠΣ formula,

with s < 2N1/4 , Let fi,j =
∑s′

k=1 Ti,j,k, and Ti,j,k are products of variable disjoint linear
forms, and hence ROPs. Further, since the bottom fan-in of each fi,j is bounded by N1/4,
we have sTi,j,k ≤ 2N1/4 . Then by Lemma 21 and union bound there is an i, j, k such
that rank(MTϕ

i,j,k
) ≥ 2N4/15 with probability at most sts′2−Ω(N1/4). By Lemma 5 and

6, we have maxrank(Mpϕ
lin

) ≤ 2N4/15 with probability 1 − o(1). However by Lemma 22,
maxrank(Mpϕ

lin
) = rank(Mpϕ

lin
) = 2Ω(m) with probability at least 1−2−Ω(m), a contradiction.

Hence ss′ = 2Ω(N1/4). J

Proof of Theorem 3

Proof. Suppose s = 2o(N1/4). Then by Lemma 21, the probability that there is an fi,j

with rank(Mfϕ
i,j

) ≥ 2N4/15 is at most 2−Ω(N1/4)s = o(1). By Lemma 5 and 6 and since

maxrank(Mfϕ
i,j

) = rank(Mfϕ
i,j

), we have maxrank(Mpϕ
lin

) ≤ (s · 2N4/15)N
1/30

= 2o(N1/3) with
probability 1− o(1). However by Lemma 22, maxrank(Mpϕ

lin
) = rank(Mpϕ

lin
) = 2Ω(m) with

probability 1− 2−Ω(m), a contradiction. Hence s = 2Ω(N1/4). J

Proof of Theorem 4

Proof. Suppose s = 2o(N1/4). Then by Lemma 21, Probability that there is an fi,j with
rank(Mfϕ

i,j
) ≥ 2N4/15 is at most 2−Ω(N1/4)s = o(1). Then, by Lemma 5 and 6, we have

maxrank(Mpermϕn) ≤ s · (2N4/15)N1/30 = 2o(N1/3) with probability 1 − o(1). However, by
Theorem 27, maxrank(Mpermϕn) = rank(Mpermϕn) = 2Ω(m) with probability (1 − 1/n2)/2, a
contradiction. Hence s = 2Ω(N1/4). J

Acknowledgements: We thank anonymous reviewers of an earlier version of the paper
for suggestions which improved the presentation. Further, we thank one of the anonymous
reviewers for pointing an observation that lead to Lemma 10.



C. Ramya and B. V. R. Rao 13

References
1 Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In FOCS,

pages 67–75, 2008.
2 Walter Baur and Volker Strassen. The complexity of partial derivatives. Theor. Comput.

Sci., 22:317–330, 1983.
3 Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis

of Randomized Algorithms. Cambridge University Press, New York, NY, USA, 1st edition,
2009.

4 Michael Forbes. Polynomial identity testing of read-once oblivious algebraic branching
programs. PhD thesis, Massachusetts Institute of Technology, 2014.

5 Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berke-
ley, CA, USA, pages 243–252, 2013.

6 Dima Grigoriev and Marek Karpinski. An exponential lower bound for depth 3 arithmetic
circuits. In STOC, pages 577–582, 1998.

7 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching
the chasm at depth four. J. ACM, 61(6):33:1–33:16, 2014.

8 Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree
polynomials. Electronic Colloquium on Computational Complexity (ECCC), 19:81, 2012.

9 Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. Super-polynomial
lower bounds for depth-4 homogeneous arithmetic formulas. In STOC, pages 119–127, 2014.

10 Neeraj Kayal and Chandan Saha. Multi-k-ic depth three circuit lower bound. In STACS,
pages 527–539, 2015.

11 Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. An almost cubic lower bound
for depth three arithmetic circuits. Electronic Colloquium on Computational Complexity
(ECCC), 23:6, 2016.

12 Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor. Comput.
Sci., 448:56–65, 2012.

13 Mrinal Kumar, Gaurav Maheshwari, and Jayalal Sarma. Arithmetic circuit lower bounds
via maxrank. In Automata, Languages, and Programming - 40th International Colloquium,
ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, pages 661–672, 2013.

14 Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic
circuits. In FOCS, pages 364–373, 2014.

15 Meena Mahajan and Anuj Tawari. Sums of read-once formulas: How many summands
suffice? Electronic Colloquium on Computational Complexity (ECCC), 22:204, 2015.

16 Noam Nisan and Avi Wigderson. Lower bounds for arithmetic circuits via partial derivatives
(preliminary version). In FOCS, pages 16–25, 1995.

17 Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial
size. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago,
IL, USA, June 13-16, 2004, pages 633–641, 2004.

18 Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic circuits.
Computational Complexity, 17(4):515–535, 2008.

19 Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth multilin-
ear circuits. Computational Complexity, 18(2):171–207, 2009.

20 Amir Shpilka and Ilya Volkovich. Read-once polynomial identity testing. In STOC, pages
507–516, 2008.

21 Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of characteristic
zero. Computational Complexity, 10(1):1–27, 2001.



14 Sum of products of ROPs

22 Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. In MFCS,
pages 813–824, 2013.

23 Leslie G. Valiant. Completeness classes in algebra. In STOC, pages 249–261, 1979.
24 J. H. van Lint and R. M. Wilson. A Course In Combinatorics. Cambridge University Press,

2nd edition, 2001.

A Proofs from Section 2

A.1 Proof of Lemma 7
Proof. The proof is by induction on the size of the formula. Base Case : s = 1

If G has a single + gate then value(G) ≤ N +N ≤ N2.
If G has a single × gate then value(G) ≤ N ·N = N2.

Induction Step : Let u be the output gate of G with children u1 and u2. Let the number of
leaves in the sub formula rooted at u1 and u2 be t1 and t2 respectively.

If u is a + gate. Then, value(u) = value(u1) + value(u2). By induction hypothesis,
value(u) ≤ N t1 +N t2 ≤ N t1+t2 ≤ N t.
If u is a × gate. Then, value(u) = value(u1) × value(u2). By induction hypothesis,
value(u) ≤ N t1 ×N t2 ≤ N t1+t2 ≤ N t. J

A.2 Proof of Lemma 8
Proof. Let F be a binary monotone arithmetic formula with leaves labelled by either 1 or 2.
The statement trivially holds when value(F ) = 0 or value(F ) = 1. Now suppose value(F ) > 2,
First mark every gate u such that u is a rank-(1, 2)-separator and remove sub-formula rooted
at u except u. Consider any leaf v that remains unmarked. Then value(v) = 1 and along
the path from v to root there is no gate that is marked. Else v would have been removed.
Consider the unique path from v to root in F . Let p be the first gate in the path such that
value(p) > 2. Since value(F ) > 2, such a gate p must exist. Let p1 and p2 be the children
of p. Without loss of generality let p1 be an ancestor of v. Since v was not removed and
value(p) > 2, we have value(p2) ≥ 2. Therefore, there is atleast one marked node(say q) in
the sub-formula rooted at p2. Set value(q) = value(q) + 1 and remove v from the F , and make
necessary short-circuiting of the parent of v. Repeat this process until every unmarked leaf
in the formula is removed. Let u1, . . . , ut be the leaves of the resulting formula at the end of
this process. For every 1 ≤ i ≤ t, we have 2 ≤ value(ui) ≤ N . By Lemma 7, value(F ) ≤ N t

and hence 2r < N t. Therefore t > r
logN as required. J

B Proofs from Section 3

B.1 Proof of Lemma 10
Proof. Observe that for any type-D gate g = h × x, rank(Mgϕ) = rank(M(x·h)ϕ) ≤
rank(Mhϕ), and hence type-D gates do not contribute to the rank.

The proof is by induction on the structure of F . Let r be the root gate of F . Base case
is when F has depth 1. Then,

r is an type-A gate with children x1, x2 : f = x1 + x2. For any ϕ, rank(Mfϕ) ≤ 2. Then
a = 1, b = 0, c = 0. Therefore either a′ = 1 or a′′ = 1. In either case, rank(Mfϕ) ≤
2a′′+ a′

2 + 2b
3 + c

2 .
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r is a type-B gate with children x1, x2 : f = x1 · x2. For any ϕ, rank(Mfϕ) ≤ 1. Then
a = 0, b = 1, c = 0. Therefore rank(Mfϕ) ≤ 2a′′+ a′

2 + 2b
3 + c

2 .
For the induction step, we have the following cases based on the structure of F .

r is a type-C gate with children x, h, i.e., f = h+x. For any ϕ, we have by sub-additivity
rank(Mfϕ) ≤ rank(Mhϕ) + rank(Mxϕ). Let a′h, a′′h be the number of type-A gates in
the sub-formula rooted at h that achieve rank-1 and rank-2 under ϕ respectively. Let
bh, ch be the number of type-B and c type-C gates in the sub-formula rooted at h.
We now have a′ = a′h, a

′′ = a′′h, b = bh, c = ch + 1, and rank(Mfϕ) ≤ rank(Mhϕ) +

rank(Mxϕ). By Induction hypothesis rank(Mhϕ) ≤ 2a′′h+
a′
h
2 + 2bh

3 + ch
2 . First suppose the

case when a′′h + a′h
2 + 2bh

3 + ch
2 ≥ 1.5, then, rank(Mfϕ) ≤ 2a′′h+

a′
h
2 + 2bh

3 + ch
2 + rank(Mxϕ) =

2a′′h+
a′
h
2 + 2bh

3 + ch
2 + 1 ≤ 2a′′+ a′

2 + 2b
3 + c

2 . Now suppose a′′h + a′h
2 + 2bh

3 + ch
2 < 1.5, observe that

a′′h ≤ 1 and a′h, bh, ch ≤ 2. Consider the following cases :
If bh = 2, as a′′h + a′h

2 + 2bh
3 + ch

2 < 1.5, we have a′h, a′′h, ch = 0. Therefore, when bh = 2,
rank(Mϕ

f ) ≤ 2 ≤ 2a′′+ a′
2 + 2b

3 + c
2 .

If a′h = 2 as a′′h+ a′h
2 + 2bh

3 + ch
2 < 1.5, we have a′′h, bh, ch = 0. In that case, rank(Mϕ

f ) ≤
2 ≤ 2a′′+ a′

2 + 2b
3 + c

2 .
If c′h = 2 as a′′h + a′h

2 + 2bh
3 + ch

2 < 1.5, we have a′′h, a′h, bh = 0. Such a formula cannot
exist.
If a′′h = 1 then we have a′h = 0, bh = 0, ch = 0 as a′′h + a′h

2 + 2bh
3 + ch

2 < 1.5. In this case,
rank(Mϕ

f ) ≤ 2 ≤ 2a′′+ a′
2 + 2b

3 + c
2 .

Now the only remaining cases are a′′h = 0 and a′h, bh, ch ≤ 1. If a′′h = 0 then atmost two
of a′h, bh, ch can be non-zero as a′′h + a′h

2 + 2bh
3 + ch

2 < 1.5. In any case, rank(Mϕ
f ) ≤

2 ≤ 2a′′+ a′
2 + 2b

3 + c
2 .

r = g ∗ h be an internal gate with ∗ ∈ {+,×}. For H ∈ {g, h}, let a′H , a′′H be the
number of type-A gates that achieve rank-1 and rank-2 under ϕ respectively and bH , cH
be the number of type-B and c type-C gates in the sub-formula rooted at H. Then,
rank(Mfϕ) ≤ rank(Mgϕ) · rank(Mhϕ), and from Induction hypothesis rank(Mfϕ) ≤

2a
′′
g+

a′g
2 + 2bg

3 + cg
2 2a′′h+

a′
h
2 + 2bh

3 + ch
2 . Since a′ = a′g + a′h, a

′′ = a′′g + a′′h, b = bh + bg, c = cg + ch

we have rank(Mfϕ) ≤ 2a′′+ a′
2 + 2b

3 + c
2 . J

B.2 Proof of Lemma 13
Proof. The proof builds on Lemma 4.3 in [18] as a base case and is by induction on n+ `.
Base case: Either ` = 0 or ` = 2n. For ` = 0, the statement follows by Lemma 4.3 in [18].
When ` = 2n, then rank(Mgϕ) = 1 = 2n−`/2.
Induction step: Without loss of generality, assume that |ϕ(X) ∩ Y | = |ϕ(X) ∩ Z| + `.
There are three possibilities:
Case 1 : Let ϕ(x1) ∈ Y and ϕ(x2n) ∈ Z or vice versa. In this case

rank(Mgϕ) ≥ rank(M(1+x1x2n)ϕ) rank(Mgϕ2,2n−1
) = 2 · rank(Mgϕ2,2n−1

)

≥ 2 · 2n−1−`/2 = 2n−`/2 [By Induction Hypothesis.]
Case 2 : ϕ(x1) ∈ Y and ϕ(x2n) ∈ Y . Then

rank(Mgϕ) ≥ rank(M(1+x1x2n)ϕ) rank(Mgϕ2,2n−1
) = 1 · rank(Mgϕ2,2n−1

)

≥ 2(2n−2)/2−(`−2)/2 = 2n−`/2. [By Induction Hypothesis.]
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For the penultimate inequality above, note that g2,2n−1 is defined onX ′ = {x2, . . . , x2n−1}
and ||ϕ(X ′)∩Y |−|ϕ(X ′)∩Z|| = `−2 and hence by Induction Hypothesis, rank(Mgϕ2,2n−1

) ≥
2(2n−2)/2−(`−2)/2.

Case 3 ϕ(x1) ∈ Z and ϕ(x2n) ∈ Z. Then there is an i ∈ {2, 2n−1} such that ||ϕ(Xi)∩Y |−
|ϕ(Xi) ∩ Z|| = 0 and ||ϕ(X \Xi) ∩ Y | − |ϕ(X \Xi) ∩ Z|| = `, where Xi = {x1, . . . , xi}.
Then by the definition of g, over G, rank(Mgϕ) ≥ rank(Mgϕ1,i

) · rank(Mgϕ
i+1,2n

) ≥
2i/2 · 2(2n−i)/2−`/2 = 2n−`/2, since rank(Mgϕ1,i

) = 2i/2 by Lemma 4.3 in [18], and
rank(Mgϕ

i+1,2n
) ≥ 2(2n−i)/2−`/2 by Induction Hypothesis. J

C Proofs from Section 4

C.1 Proof of Lemma 16
Proof. Consider a multiplication gate g in F at depth 1, with at least two variables as
its input. Let m be the monomial (excluding the coefficient) computed by g, note that
d = deg(m) ≥ 2. we have,

Pr
ϕ∼D

[mϕ 6= 0] =
(

2m+ κn

N

)d
≤
(

2m+ κn

N

)2
≤
(

2κn
N

)2
≤
(

2κ
n

)2
≤ O

(
κ2

N

)
. (1)

In the above, we have used the fact that 2m < κn for large enough n. Corresponding to every
product gate in F computing the monomial mi, we define an indicator random variable Yi

Yi =
{

1 if mϕ
i 6= 0

0 otherwise

By Equation 1, Pr[Yi = 1] ≤ cκ2

N where c is the constant hidden in the O-notation. Let F
have r product gates

(
r ≤ N

2
)
and X = Y1 + Y2 + · · ·+ Yr. Note that Yi are independent

random variables and E[X ] ≤ r cκ
2

N . Without loss of generality, assume E[X ] 6= 0, else r = 0
and hence X = 0. Choosing δ = (N1/4 − E[X ])/E[X ] and applying Theorem 9 (3)

Pr
ϕ∼D

[
X > N1/4

]
≤ 2−δE[X ]/3 ≤ 2

−N1/4+E[X ]
3 = 2−Ω(N1/4).

J

C.2 Proof of Lemma 17
Proof. Given an arithmetic formula F we construct the formula F ′ by replacing every
multiplication gate v at depth-1 in F by the constant 1. Let X the random variable as
defined in the proof of Lemma 16. Then, by the construction of F ′,

rank(MFϕ) ≤ rank(MF ′ϕ)× 2X .

Now by Lemma 16, with probability atleast 1− 2−Ω(N1/4) we have,

rank(MFϕ) ≤ rank(MF ′ϕ)× 2O(N1/4).

J
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C.3 Proof of Lemma 18

Proof. Let F be an constant-minimal ROF, and ϕ ∼ D. Let G be a monotone formula
obtained from Fϕ as follows:
By short circuiting the gates if necessary, every leaf node v labelled by a constant is replaced
by 1. For every gate v in Fϕ with at least one leaf as a child,

If v =
∏k
j=1 vj , with v1, . . . , vi, i ≥ 1 are non-constant leaf gates, then replace the gates

v1 × v2 × . . .× vi by the rank of the polynomial computed by ϕ(v1 × v2 × . . .× vi).
Similarly, if v =

∑k
j=1 vj , with v1, . . . , vi, i ≥ 1 are non-constant leaf gates, then replace

the gates v1 +v2 + . . .+vi by the rank of the polynomial computed by ϕ(v1 +v2 + . . .+vi).
Clearly, the formula constructed above is monotone, since negative constants (if any) in
Fϕ have been replaced by 1. Then, by Lemmas 5 and 6, we have for any ϕ, rank(MFϕ) ≤
value(G). J

C.4 Proof of Lemma 23

Proof. Define indicator random variables χij for 1 ≤ i, j ≤ n:

χij =
{

1 if ϕ(xij) ∈ Q
0 otherwise.

Then χ =
∑n
i=1
∑n
j=1 χij and Eϕ∼D[χ] = m. Let δ = 1

4 , then by Chernoff bounds in
Theorem 9,

Pr
[
χ ≥ 5m

4

]
≤ e−

δ2µ
3 ≤ e−m48 = 2−Ω(m); andPr

[
χ ≤ 3m

4

]
≤ e−

δ2µ
2 ≤ e−m32 = 2−Ω(m).

Therefore, Pr
ϕ∼D

[ 3m
4 < χ < 5m

4
]

= 1− 2−Ω(m). J

C.5 Proof of Lemma 25

Proof. Proof is a simple application for Chernoff’s bound. We argue for the case of ηY , the
rest are analogous. For 1 ≤ i ≤ n, let

ηi =
{

1 if Ci is Y-good column
0 otherwise.

Then ηY = η1 + · · ·+ ηn and by Observation 5 and Lemma 24 E[ηi] = Pr[Ci is Y-good] =
n·mN

(
1− 2m

N

)n−1. By linearity of expectation, E[ηY ] = n2 ·mN
(
1− 2m

N

)n−1 = m
(
1− 2m

N

)n−1

as N = n2.
Set ρ =

(
1− 2m

N

)n−1 so that E[ηY ] = ρm. For δ = 1
4 , we have by Theorem 9,

Pr
[
ηY ≤

(
1− 1

4

)
ρm

]
≤ e

−(1/4)2µ
2 ≤ e−µ/32.

As m = o(n) and N = n2, lim
n→∞

2m
N = 0. Thus for sufficiently large n, ρ ≥ 9/10 and

hence µ ≥ 9m/10. We conclude Pr [ηY ≤ 27m/40] ≤ 2−Ω(m). Since 27/40 > 2/3 we have
Pr[ηY ≥ 2m

3 ] ≥ 1− 2−Ω(m) as required. J
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C.6 Proof of Lemma 28
Proof. Permanent of any matrix M with entries from Y ∪Z ∪ {0, 1} is zero if and only if M
has an all zero s× t sub matrix such that s+ t = n+ 1.(See Theorem 12.1 in [24].) We begin
with a bound on the probability that there is at least one column/row with all zero entries.
Note that under the event F1 one can assume that the entries of the matrix A′′ are in {0, 1},
and the event F2 is independent of the rows and columns of A′′. Thus, for any position (i, j)
in A′′, we have Pr[ϕ(xi,j) = 1|F1, F2] = κn/N(1− 2m/N) ≈ κn/N , for large enough n. Let
U and V respectively denote the set of row and column indices of A′′. Thus,

Pr[∀j ∈ V, ϕ(xij) = 0|F1, F2] ≤
(

1− κn

N

)n−2γ
and hence,

Pr[∃i ∈ U ∀j ∈ V, ϕ(xij) = 0|F1, F2] ≤ n ·
(

1− κn

N

)n−2γ
by union bound

Since γ = O(m) = o(n) and N = n2,

Pr[∃i ∈ U ∀j ∈ V, ϕ(xij) = 0|F1, F2] ≤ n
(
1− κ

n

)n(
1− κ

n

)2γ
As n→∞, the denominator

(
1− κ

n

)2γ → 1. Now, consider 1 < c < n′−1, where n′ = n−2γ.
We estimate the probability that there exists an c× (n′ − c+ 1) all zero sub-matrix of A′′.
For any c× (n′ − c+ 1) sub-matrix M of A′′, Pr[M = 0|F1, F2] = (1− κ/n)c(n′−c+1).

As there are
(
n′

c

)2
many such sub-matrices M of A′′, we get

Pr[∃M,M = 0|F1, F2] ≤
(
n′

c

)2
(1− κ/n)c(n

′−c+1)

≤ (n′e/c)c(1− κ/n)c(n
′−c+1) ≈ e2c log((n+1)/c)−κc(n′−c+1)/n ≤ e−4 logn

the last inequality follows since, κ = 20 logn, and hence 2c log(n+1/c)−κ(c−1)(n′−c+1)/n ≤
−2 for large enough n.

Pr[perm(A′′) = 0 | F1, F2] ≤ n ·
(

1− κ

n

)n
+ ne−4 logn ≤ n

[(
1− κ

n

)n/κ]κ
+ 1/n3 ≤ n · e−κ ≤ 1/n2.

The penultimate inequality in the above is obtained by substituting κ = 20 logn. J
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