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Abstract. In this paper, we reduce the logspace shortest path problem
to biconnected graphs; in particular, we present a logspace shortest path
algorithm for general graphs which uses a logspace shortest path oracle
for biconnected graphs. We also present a linear time logspace shortest
path algorithm for graphs with bounded vertex degree and biconnected
component size, which does not rely on an oracle. The asymptotic time-
space product of this algorithm is the best possible among all shortest
path algorithms.
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1 Introduction

The logspace computational model entails algorithms which use a read-only in-
put array and O(log n) working memory. For general graphs, there is no known
deterministic logspace algorithm for the shortest path problem. In fact, the short-
est path problem is NL-complete, so the existence of a logspace algorithm would
imply that L=NL [9]. In this paper, we reduce the logspace shortest path prob-
lem to biconnected graphs, and present a linear time logspace shortest path
algorithm for parameter-constrained graphs.

An important result under the logspace computational model which is used
in the sequel is Reingold’s deterministic polynomial time algorithm [13] for the
undirected st-connectivity problem (USTCON) of determining whether two ver-
tices in an undirected graph belong to the same connected component. There
are a number of randomized logspace algorithms for USTCON (see, for example,
[2, 6, 11]) which perform faster than Reingold’s algorithm but whose output may
be incorrect with a certain probability.

There are also a number of logspace algorithms for the shortest path problem
and other graph problems on special types of graphs (see [1, 4, 5, 9, 12]). As a
rule, due to time-space trade-off, improved space-efficiency is achieved on the
account of higher time-complexity. Often the trade-off is rather large, yielding
time complexities of O(nc) “for some constant c significantly larger than 1” [10].
In particular, the time complexity of Reingold’s USTCON algorithm remains
largely uncharted but is possibly of very high order. The linear time logspace
shortest path algorithm presented in this paper avoids this shortcoming, at the
expense of some loss of generality. In fact, its time (and space) complexity is the
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best possible, since a hypothetical sublinear-time algorithm would fail to print
a shortest path of length Ω(n).

This paper is organized as follows. In the next section, we recall some basic
definitions and introduce a few concepts which will be used in the sequel. In
Section 3, we present a reduction of the logspace shortest path algorithm to
biconnected graphs. In Section 4, we present a linear time logspace algorithm for
parameter-constrained graphs. We conclude with some final remarks in Section 5.

2 Preliminaries

A logspace algorithm is an algorithm which uses O(log n) working memory, where
n is the size of the input. In addition, the input and output are respectively read-
only and write-only, and do not count toward the space used. The shortest path
problem requires finding a path between two given vertices s and t in a graph G,
such that the sum of the weights of the edges constituting the path is as small
as possible. In general, if s and t are not in the same connected component, or
if the connected component containing s and t also contains a negative-weight
cycle, the shortest path does not exist. For simplicity, we will assume there are
no negative-weight cycles in G, although the proposed algorithms can be easily
modified to detect (and terminate at) such cycles without any increase in overall
complexity. We will also assume that G is encoded by its adjacency list, where
vertices are labeled with the first n natural numbers. The jth neighbor of vertex
i is accessed with Adj(i, j) in O(1) time, and degree(i) = |Adj(i)|.

An articulation point in G is a vertex whose deletion increases the number of
connected components of G. A block is a maximal subgraph of G which has no
articulation points; if G has a single block, then G is biconnected. The block tree T
of G is the bipartite graph with parts A and B, where A is the set of articulation
points of G and B is the set of blocks of G; a ∈ A is adjacent to b ∈ B if and
only if b contains a. We define the id of a block in G to be (largest, smallest),
where largest and smallest are the largest and smallest vertices in the block with
respect to their labeling from 1 to n. Clearly, each block in G has a unique id.
Note also that it is possible to lexicographically compare the ids of two or more
blocks, i.e., if id1 = (`1, s1) and id2 = (`2, s2), then id1 > id2 if `1 > `2 or if
`1 = `2 and s1 > s2.

Given numbers a1, a2, and p, we define the next number after p as follows:

next(a1, a2, p) =

{
a1 if a2 ≤ p < a1 or p < a1 ≤ a2 or a1 ≤ a2 ≤ p
a2 otherwise.

We extend this definition to a list L of not necessarily distinct numbers by
defining the next number in L after p to be a number in L larger than p by
the smallest amount, or if no such number exists, to be the smallest number in
L. The next number in L can be found with logspace and O(|L|) time, given
sequential access to the elements of L, by repeatedly applying the next function.
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3 Reducing the logspace shortest path problem to
biconnected graphs

Let connected(H; v1, v2) be an implementation of Reingold’s USTCON algorithm
which takes in two vertices of a graph H and returns true if they belong to the
same connected component, and false otherwise. Let pathInBlock(H; v1, v2) be
a polynomial time, logspace oracle which takes in two vertices of a biconnected
graph H and prints the shortest path between them.

Clearly, the encoding of a graph H can be reduced with logspace and poly-
nomial time to the encoding of some induced subgraph H[S]. Thus, by transitiv-
ity and closure of reductions, the functions connected(H[S]; v1, v2) and pathIn-
Block(H[B]; v1, v2) can be used with logspace and polynomial time, where S and
B are sets of vertices computed at runtime and H[B] is biconnected.

The connected function reduces the logspace shortest path problem to con-
nected graphs. In this section, we will further reduce this problem to biconnected
graphs, by presenting a logspace algorithm for finding the shortest path between
two vertices in an arbitrary graph using the oracle pathInBlock.

3.1 Constructing a logspace traversal function

Let G be a graph of order n, and v1 and v2 be two vertices that belong to the
same block; the set of all vertices in this block will be referred to as block(v1, v2).
Using the connected function, is easy to construct a logspace function isIn-
Block(v1, v2, v) which returns true when v is part of block(v1, v2) and false oth-
erwise; see Table 1 for pseudocode. This procedure can be used to access the
vertices in block(v1, v2) sequentially. A similar procedure areInBlock(u, v) can
be defined which returns true when u and v are in the same block, and false
otherwise.

A vertex of G is an articulation point if and only if two of its neighbors are
not in the same block. Thus, using the isInBlock function, we can construct a
function isArticulation(v) which returns true when v is an articulation point
and false otherwise; see Table 1 for pseudocode. We also define the function
id(v1, v2), which goes through the vertices of block(v1, v2) and returns (largest,
smallest), where largest and smallest are respectively the largest and smallest
vertices in block(v1, v2) according to their labeling.

Let p be an articulation point1 in block(v1, v2). To find the next articulation
point in block(v1, v2) after p, we can create a function nextArticulation(v1, v2, p)
which uses each articulation point in block(v1, v2) as a member of list L and
applies the next function. Note that the vertices in L do not have to be stored,
but can be generated one at a time; see Table 1 for pseudocode. Similarly, to
identify the block containing p and having the next id after id(v1, v2), we can
create a function nextBlock(v1, v2, p) which uses the ids of the blocks identified
by p and each of its neighbors as members of a list L and applies the next

1 The subsequent definitions and functions remain valid when p is not an articulation
point, and can be used in special cases, e.g., when G only has one block.
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function. Note that the ids in L do not have to be stored but can be computed
one at a time; see Table 1 for pseudocode.

Finally, given articulation point p and vertex v in the same block, we will
call the component of G − {block(v, p)\{p}} which contains p the subgraph of
G rooted at block(v, p) containing p, or subgraph(v, p). This subgraph can be
traversed with logspace by starting from p and repeatedly moving to the next
block and to the next articulation point until the starting block is reached again.
This procedure indeed gives a traversal, since it corresponds to visiting the next
neighbor in the block tree T of G, which generates an Euler subtour traversal
(cf. [14]). In addition, during the traversal of subgraph(v, p), each vertex can
be compared to a given vertex t, in order to determine whether the subgraph
contains t. Thus, we can create a function isInSubgraph(v, p, t) which returns
true if t is in subgraph(v, p) and false otherwise; see Table 1 for pseudocode.

Table 1: List of subroutines

function isInBlock(v1, v2, v)
if v = v1 or v = v2 then return true;
for i = 1 to n, i 6= v1, i 6= v do

if ¬connected(G− i; v1, v) then return false;

if ¬connected(G− v1; v2, v) then return false;
return true;

function isArticulation(v)
for i = 2 to degree(v) do

if ¬isInBlock(v,Adj(v, 1), Adj(v, i)) then return true;

return false;

function nextArticulation(v1, v2, p)
a = p;
for v = 1 to n do

if isInBlock(v1, v2, v) and isArticulation(v) then a = next(a, v, p);

return a;

function nextBlock(v1, v2, p)
id∗ = id(v1, v2); a = id(p,Adj(p, 1)); i∗ = 1;
for i = 2 to degree(p) do

b = id(p,Adj(p, i));
if a ≤ id∗ < b or id∗ < b ≤ a or b ≤ a ≤ id∗ then a = b; i∗ = i;

return Adj(p, i∗);

function isInSubgraph(v, p, t)
v1 = p; v2 = v; id∗ = id(v1, v2); v2 = nextBlock(v1, v2, p);
while id(v1, v2) 6= id∗ do

p = nextArticulation(v1, v2, p); v = nextBlock(v1, v2, p);
if isInBlock(v1, v2, t) then return true;
v1 = p; v2 = v;

return false;
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3.2 Main Algorithm

Using the subroutines outlined in the previous section and the oracle pathInBlock,
we propose the following logspace algorithm for finding the shortest path in a
graph G. The main idea is to print the shortest path one block at a time by
locating t in one of the subgraphs rooted at the current block.

Algorithm 1: Shortest path using oracle

function shortestPath(G; s, t)
if ¬connected(G; s, t) then return “Path does not exist”;
current = s;
start
if areInBlock(current, t) then

return pathInBlock(G[block(current, t)]; current, t);

for i = 1 to degree(current) do
for potential = 1 to n do

if isInBlock(current, Adj(current, i), potential) and
isArticulation(potential) and
isInSubgraph(current, potential, t) then

pathInBlock(G[block(current, potential)]; current, potential);
current = potential;
goto start ;

Theorem 1. Algorithm 1 finds the correct shortest path between vertices s and
t in graph G with logspace and polynomial time, using a shortest path oracle for
biconnected graphs.

Proof. Let p0 = s and p`+1 = t; the shortest path between p0 and p`+1 is P =
p0P0p1P1 . . . p`P`p`+1, where p1, . . . , p` are articulation points and P0, . . . , P`
are (possibly empty) subpaths which contain no articulation points. Let bi =
block(pi, pi+1) for 0 ≤ i ≤ `, so that pathInBlock(G[bi]; pi, pi+1) = piPipi+1.

Suppose the subpath p0P0 . . . pi, i ≥ 0, has already been printed and that the
vertex pi is stored in memory. In each iteration of the main loop, the function
isInSubgraph(pi, p, t) returns true only for p = pi+1 when run for all articulation
points p in all blocks containing pi. The function pathInBlock(G[bi], pi, pi+1) is
then used to print Pi+1 and pi+1. Finally, pi is replaced in memory by pi+1, and
this procedure is repeated until p`+1 is reached. Since the main loop is entered
only if the shortest path is of finite length, the algorithm terminates, and since
each subpath printed is between two consecutive articulation points of P , the
output of Algorithm 1 is the correct shortest path between s and t.

Since the connected function is logspace, the isInBlock, isArticulation and
isInSubgraph functions are each logspace. Only a constant number of variables,
each of size O(log n), are simultaneously stored in Algorithm 1, and every func-
tion call is to a logspace function (assuming the pathInBlock oracle is logspace);
thus, the space complexity of Algorithm 1 is O(log n). Note that since the ver-
tices in block(v1, v2) cannot be stored in memory simultaneously, a call to the
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function pathInBlock(G[block(v1, v2)], v1, v2) needs to be realized by a logspace
reduction, i.e., the vertices v1 and v2 are stored, and whenever the function
pathInBlock needs to access an entry of the adjacency list of G[V (block(v1, v2))],
it recomputes it by going through the vertices of G and using the function isIn-
Block.

Similarly, since the connected function uses polynomial time, the isInBlock,
isArticulation and isInSubgraph functions each use polynomial time. The main
loop is executed at most O(n) times, and each iteration calls a constant number
of polynomial time functions (assuming the pathInBlock oracle uses polynomial
time); thus, the time complexity of Algorithm 1 is O(nc) for some constant c. �

4 Linear time logspace algorithm for parametrically
constrained graphs

Let BellmanFord(H; v1, v2) be an implementation of the Bellman-Ford shortest
path algorithm [3] which takes in two vertices of a graph H and prints out the
shortest path between them. Let HopcroftTarjan(H) be an implementation of
Hopcroft and Tarjan’s algorithm [8] which returns all blocks and articulation
points of a graph H. If the size of H is bounded by a constant, BellmanFord and
HopcroftTarjan can each be used with constant time and a constant number of
memory cells.

Let G be a graph of order n with maximum vertex degree ∆ and maxi-
mum biconnected component size k. We will regard ∆ and k as fixed constants,
independent of n. Using these constraints and some additional computational
techniques, we will reformulate Algorithm 1 as a linear-time logspace shortest
path algorithm which does not rely on an oracle. Asymptotically, both the time
and space requirements of this algorithm are the best possible and cannot be
improved; see Corollary 1 for more information.

4.1 Constructing a linear time logspace traversal function

By the assumption on the structure of G, the number of vertices at distance at

most k from a specified vertex v is bounded by b∆
k+1−1
∆−1 c. Thus, any operations

on a subgraph induced by such a set of vertices can be performed with constant
time and a constant number of memory cells, each with size O(log n); note that
since each vertex of G has a bounded number of neighbors, G[S] can be found
in constant time for any set S of bounded size. In particular, we can construct
a function blocksContaining(v) which uses HopcroftTarjan to return all blocks
containing a given vertex v and all articulation points in these blocks; see below
for pseudocode.

Using the set of blocks and articulation points given by the blocksContaining
function, we can define functions isInBlock(v1, v2, v), areInBlock(u, v), isArtic-
ulation(v), id(v1, v2), nextArticulation(v1, v2, p), and nextBlock(v1, v2, p) analo-
gous to the ones described in Section 3, each of which uses O(log n) space and
O(1) time. We can also construct an analogue of isInSubgraph(v, p, t), which



On logspace shortest path problem 7

Subroutine: Finding all blocks containing v, and their articulation points

function blocksContaining(v)
S = {v};
for i = 1 to k do S =

⋃
v∈S Adj(v);

(B,A) = HopcroftTarjan(G[S]);
// B is set of blocks, A is set of articulation points of G[S]
return

(
B = {b ∈ B : b ∩Adj(v) 6= ∅}, A = A ∩

⋃
b∈B b

)
;

uses time proportional to the size of subgraph(v, p); in particular, the time for
traversing the entire graph G via an Euler tour of its block tree is O(n) (provided
G is connected) since there are O(n) calls to the nextArticulation function and
O(n) calls to the nextBlock function.

Finally, it will be convenient to define the following functions: adjacent-
Points(v1, v2) which returns the set of articulation points belonging to blocks
containing v2 but not v1 if v1 6= v2 and the set of articulation points belong-
ing to blocks containing v2 if v1 = v2 (this function is slight modification of
blocksContaining); last(L) which returns the last element of a list L; traverseC-
omponent(s, t) which traverses the component containing a vertex s and returns
true if t is in the same component and false otherwise (this function is identical
to isInSubgraph, with a slight modification in the stopping condition).

4.2 Linear time logspace shortest path algorithm

We now present a modified version of Algorithm 1, which uses the subroutines
outlined in the previous section as well as some additional computational tech-
niques such as “simulated parallelization” (introduced by Asano et al. [1]) aimed
at reducing its runtime.

Algorithm 2: Shortest path in parameter constrained graph

function shortestPath(G; s, t)
if ¬ traverseComponent(s, t) then return “Path does not exist”;
previous = s; current = s;
start
if areInBlock(current, t) then

return BellmanFord(G[block(current, t)]; current, t);

for potential ∈ L := adjacentPoints(previous, current) using two
pointers in serial do

if potential = last(L) or isInSubgraph(current, potential, t) then
BellmanFord(G[block(current, potential)]; current, potential);
previous = current; current = potential;
goto start ;
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Theorem 2. Algorithm 2 finds the correct shortest path between vertices s and
t in graph G with bounded degree and biconnected component size using logspace
and linear time.

Proof. Using the notation in the proof of Theorem 1, suppose the subpath
p0P0 . . . pi has already been printed; p`+1 cannot be in subgraph(pi, pi−1), so
there is no need to run isInSubgraph(pi, pi−1, t). Thus, adjacentPoints(pi−1, pi)
is the set of feasible articulation points. Moreover, if p`+1 is not in subgraph(pi, p)
for all-but-one feasible articulation points, then the last of these must be pi+1 and
there is no need to run isInSubgraph(pi, pi+1, t). Finally, two subgraphs rooted
at block(pi−1, pi) can be traversed concurrently with the technique of simulated
parallelization: instead of traversing the feasible subgraphs one-after-another, we
maintain two copies of the isInSubgraph function and use them to simultaneously
traverse two subgraphs. We do this in serial (without the use of a parallel proces-
sor) by iteratively advancing each copy of the function in turn; if one subgraph is
traversed, the corresponding copy of the function terminates and another copy is
initiated to traverse the next unexplored subgraph. Thus, Algorithm 2 is struc-
turally identical to Algorithm 12 and prints the correct shortest path between s
and t.

Only a constant number of variables, each of size O(log n), are simultaneously
used in Algorithm 2, and every function call is to a logspace function; moreover,
keeping track of the internal states of two logspace functions can be done with
logspace, so the space complexity of Algorithm 2 is O(log n).

Finally, to verify the time complexity, note that by traversing two subgraphs
at once, we can deduce which subgraph contains t in the time it takes to tra-
verse all subgraphs which do not contain t or s. Thus, each subgraph rooted at
block(pi, pi+1), 0 ≤ i ≤ `, which does not contain t or s will be traversed at most
once, so the time needed to print the shortest path is of the same order as the
time needed to traverse G once. �

Corollary 1. The time and space complexity of Algorithm 2 is the best possible
for the class of graphs considered.

Proof. Let G be a graph of order n; the shortest path between two vertices in G
may be of length Ω(n) so any shortest path algorithm will require at least Ω(n)
time to print the path. Moreover, a pointer to an entry in the adjacency list of
G has size Ω(log n), so printing each edge of the shortest path requires at least
Ω(n) space. �

5 Conclusion

We have reduced the logspace shortest path problem to biconnected graphs using
techniques such as computing instead of storing, transitivity of logspace reduc-
tions, and Reingold’s USTCON result. We have also proposed a linear time

2 Indeed each of the described modifications can be implemented in Algorithm 1 as
well, but would not make a significant difference in its time complexity.
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logspace shortest path algorithm for graphs with bounded degree and bicon-
nected component size, using techniques such as simulated parallelization and
constant-time and -space calls to functions over graphs with bounded size.

Future work will be aimed at further reducing the logspace shortest path
problem to triconnected graphs using SPQR-tree decomposition, and to k-
connected graphs using branch decomposition or the decomposition of Holberg
[7]. Another direction for future work will be to generalize Algorithm 2 by re-
moving or relaxing the restrictions on vertex degree and biconnected component
size.
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