
Identity Testing for constant-width, and commutative, read-once

oblivious ABPs

Rohit Gurjar∗2, Arpita Korwar†1, and Nitin Saxena‡1

1Department of Computer Science and Engineering, IIT Kanpur, India
2Aalen University, Germany

January 28, 2016

Abstract

We give improved hitting-sets for two special cases of Read-once Oblivious Arithmetic
Branching Programs (ROABP). First is the case of an ROABP with known variable order.
The best hitting-set known for this case had cost (nw)O(logn) where n is the number of
variables and w is the width of the ROABP. Even for a constant-width ROABP, nothing
better than a quasi-polynomial bound was known. We improve the hitting-set complexity
for the known-order case to nO(logw). In particular, this gives the first polynomial time
hitting-set for constant-width ROABP (known-order). However, our hitting-set works only
over those fields whose characteristic is zero or large enough. To construct the hitting-set,
we use the concept of the rank of partial derivative matrix. Unlike previous approaches
whose basic building block is a monomial map, we use a polynomial map.

The second case we consider is that of commutative ROABP. The best known hitting-set
for this case had cost dO(logw)(nw)O(log logw), where d is the individual degree. We improve
this hitting-set complexity to (ndw)O(log logw). We get this by achieving rank concentration
more efficiently.

1 Introduction

The polynomial identity testing (PIT) problem asks if a given multivariate polynomial is identi-
cally zero. The input to the problem is given via an arithmetic model computing a polynomial,
for example, an arithmetic circuit or an arithmetic branching program. These are arithmetic
analogues of boolean circuits and boolean branching programs, respectively. The degree of
the given polynomial is assumed to be polynomially bounded. Usually, any such circuit or
branching program can compute a polynomial with exponentially many monomials (exponen-
tial in the circuit size). Thus, one cannot compute the polynomial explicitly. However, given
such an input, it is possible to efficiently evaluate the polynomial at a point in the field. This
property enables a randomized polynomial identity test with one-sided error. It is known that
evaluating a small-degree nonzero polynomial over a random point gives a nonzero value with a
good probability [DL78, Sch80, Zip79]. Thus, the randomized test is to just evaluate the input
polynomial, given as an arithmetic circuit or an arithmetic branching program at a random
point.

Finding an efficient deterministic algorithm for PIT has been a major open question in
complexity theory. The question is also related to arithmetic circuit lower bounds [Agr05,

∗rgurjar@cse.iitk.ac.in, supported by DFG grant TH 472/4 and TCS research fellowship
†arpk@cse.iitk.ac.in
‡nitin@cse.iitk.ac.in, supported by DST-SERB

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 9 (2016)

HS80, KI03]. The PIT problem has been studied in two paradigms: (i) blackbox test, where
one can only evaluate the polynomial at a chosen point, (ii) whitebox test, where one has access
to the input circuit or arithmetic branching program. A blackbox test is essentially the same as
finding a hitting-set – a set of points such that any nonzero polynomial evaluates to a nonzero
value on at least one of the points in the set. This work concerns finding hitting-sets for a
special model, called read-once oblivious arithmetic branching programs (ROABP).

An arithmetic branching program (ABP) is a directed layered graph, with edges going from
a layer of vertices to the next layer. The first and the last layers have one vertex each, called
the source and the sink. Each edge of the graph has a label, which is a simple polynomial, for
example a univariate polynomial. For any path p, its weight is defined to be the product of labels
on all the edges in p. The ABP is said to compute a polynomial which is the sum of weights of
all the paths from the source to the sink. ABPs are a strong model for computing polynomials.
It is known that for any arithmetic circuit with polynomially bounded degree, one can find an
ABP of quasi-polynomial size computing the same polynomial (see for example [Koi12]). Apart
from its size, another important parameter for an ABP is its width. The width of an ABP is
the maximum number of vertices in any layer of the associated graph. Even when the the width
is restricted to a constant, the ABP model is quite powerful. Ben-Or and Cleve [BOC92] have
shown that width-3 ABPs have the same expressive power as arithmetic formulas.

An ABP is called a read-once oblivious ABP or ROABP if every variable occurs in at most
one layer of edges in the ABP. For an ROABP, one can assume without loss of generality that
any variable occurs in exactly one layer of edges. The order of the variables in consecutive
layers is said to be the variable order of the ROABP. The read-once property severely restricts
the power of the ABP. There are polynomials known which can be computed by a simple
depth-3 (ΣΠΣ) circuit but require an exponential size ROABP [KNS15]. Also note that there
are polynomials which have a small ROABP in one variable order but require exponential size
in another variable order. Nisan [Nis91] gave the exact characterization of the polynomials
computed by width-w ROABPs in a certain variable order. In particular, they gave exponential
lower bounds for this model. Their work is actually on non-commutative ABPs but the same
results also apply to ROABP.

The question of whitebox identity testing of ROABPs has been settled by Raz and Sh-
pilka [RS05], who gave a polynomial time algorithm for this. However, though ROABPs are a
relatively well-understood model, we still do not have a polynomial time blackbox algorithm.
The blackbox question is studied with two variations: one where we know the variable order of
the ROABP and the other where we do not know it. For known-order ROABPs, Forbes and
Shpilka [FS13] gave the first efficient blackbox test with (ndw)O(logn) time complexity, where n
is the number of variables, w is the width of the ROABP, and, d is the individual degree bound
of each variable. For the unknown-order case, Forbes et al. [FSS14] gave an nO(d logw logn)-
time blackbox test. Observe that their complexity is quasi-polynomial only when d is small.
Subsequently, Agrawal et al. [AGKS15] removed the exponential dependence on the individual
degree. They gave an (ndw)O(logn)-time blackbox test for the unknown-order case. Note that
these results remain quasi-polynomial even in the case of constant width. Studying ROABPs
has also led to PIT results for other computational models, for example, sub-exponential size
hitting-sets for depth-3 multilinear circuits [dOSV15] and sub-exponential time whitebox test
for read-k oblivious ABPs [AFS+15]. It is possible that the results and techniques for ROABPs
can help solve the PIT problem for more general models.

Another motivation to study ROABPs comes from their boolean analogues, called read-once
ordered branching programs (ROBP). ROBPs have been studied extensively, with regard to the
RL versus L question (randomized log-space versus log-space). The problem of finding hitting-
sets for ROABP can be viewed as an analogue of finding pseudorandom generators (PRG) for
ROBP. A pseudorandom generator for a boolean function f is an algorithm which can generate a
probability distribution (with a small sample space) with the property that f cannot distinguish

2

it from the uniform random distribution (see [AB09] for details). Constructing an optimal PRG
for ROBP, i.e., with O(log n) seed length or polynomial size sample space, would imply RL = L.
This question has similar results as those for PIT of ROABPs, though no connection is known
between the two questions. The best known PRG is of seed length O(log2 n) (nO(logn) size
sample space), when variable order is known [Nis90, INW94, RR99]. On the other hand, in
the unknown-order case, the best known seed length is of size n1/2+o(1) [IMZ12]. Finding an
O(log n)-seed PRG even for constant-width known-order ROBPs has been a challenging open
question.

Our first result addresses the analogous question in the arithmetic setting. We give the
first polynomial time blackbox test for constant-width known-order ROABPs. However, it
works only for zero or large characteristic fields. Our idea is inspired from the pseudorandom
construction of Impagliazzo, Nisan and Wigderson [INW94] for ROBPs. While their result does
not give better PRGs for the constant-width case, we are able to achieve this in the arithmetic
setting.

Theorem (Theorem 3.6). Let C be the class of n-variate, individual degree d polynomials in
F[x] computed by a width-w ROABP in the variable order (x1, x2, . . . , xn). Then there is a
dnO(logw)-time hitting-set for C, when char(F) = 0 or char(F) > ndwlogn.

Our test actually works for any width. Its time complexity is better than the previous
results on ROABP, when w < n and is same in the other case. Our main technique uses
the notion of rank of the partial derivative matrix defined by Nisan [Nis91]. We show that
for a nonzero bivariate polynomial f(x1, x2) computed by a width-w ROABP, the univariate
polynomial f(tw, tw + tw−1) is nonzero. Our argument is that any bivariate polynomial which
becomes zero on (tw, tw+tw−1) has rank more than w, while a polynomial computed by a width-
w ROABP has rank w or less. Then, we use the map (x1, x2) 7→ (tw, tw + tw−1) recursively in
log n rounds to achieve the above mentioned hitting-set. Our technique has a crucial difference
from previous works on ROABPs [FSS14, FS13, AGKS15]. The basic building block in all the
previous techniques is a monomial map, i.e., each variable is mapped to a univariate monomial.
On the other hand we use a polynomial map. Our approach can potentially lead to a polynomial
time hitting-set for ROABPs. The goal would be to obtain a univariate n-tuple (p1(t), . . . , pn(t)),
such that any polynomial which becomes zero on (p1(t), . . . , pn(t)) must have rank or evaluation
dimension higher than w. We conjecture that (tr, (t + 1)r, . . . , (t + n − 1)r) is one such tuple,
where r is polynomially large (Conjecture 3.8).

It is also possible that our ideas for the arithmetic setting can help constructing an optimal
PRG for constant-width ROBP.

Our second result is for a special case of ROABPs, called commutative ROABPs. An
ROABP is commutative if its edge layers can be exchanged without affecting the polynomial
computed. In particular, if all paths from the source to the sink are vertex disjoint, then the
ROABP is commutative. Note that for a commutative ROABP, knowing the variable order is
irrelevant. Commutative ROABPs have slightly better hitting-sets than the general case, but
still no polynomial time hitting-set is known. The previously best known hitting-set for them
has time complexity dO(logw)(nw)O(log logw) [FSS14]. We improve this to (ndw)O(log logw).

Theorem (Theorem 4.10). There is an (ndw)O(log logw)-time hitting-set for n-variate commu-
tative ROABPs with width w and individual degree d.

To get this result we follow the approach of Forbes et al. [FSS14], which uses the notion
of rank concentration. We achieve rank concentration more efficiently using the basis isolation
technique of Agrawal et al. [AGKS15]. The same technique also yields a more efficient concen-
tration in depth-3 set-multilinear circuits (see Section 2 for the definition). However, it is not
clear if it gives better hitting-sets for them. The best known hitting-set for them has complexity
nO(logn) [ASS13].

3

2 Preliminaries

2.1 Definitions and Notations

N denotes the set of all non-negative integers, i.e., {0, 1, 2, . . . }. [n] denotes the set {1, 2, . . . , n}.
[[d]] denotes the set {0, 1, . . . , d}. x will denote a set of variables, usually the set {x1, x2, . . . , xn}.
For a set of n variables x and for an exponent a = (a1, a2, . . . , an) ∈ Nn, xa will denote the
monomial

∏n
i=1 x

ai
i . The support of a monomial xa, denoted by Supp(a), is the set of variables

appearing in that monomial, i.e., {xi | i ∈ [n], ai > 0}. The support size of a monomial is
the cardinality of its support, denoted by supp(a). A monomial is said to be `-support if its
support size is `. For a polynomial P (x), the coefficient of a monomial xa in P (x) is denoted
by coefP (xa). In particular, coefP (1) denotes the constant term of the polynomial P .

For a monomial xa,
∑

i ai is said to be its degree and ai is said to be its degree in variable
xi for each i. Similarly for a polynomial P , its degree (or degree in xi) is the maximum degree
(or maximum degree in xi) of any monomial in P with a nonzero coefficient. We define the
individual degree of P to be indv-deg(P) = maxi{degxi(P)}, where degxi denotes degree in xi.

To better understand polynomials computed by ROABPs, we often use polynomials over an
algebra A, i.e., polynomials whose coefficients come from A. Matrix algebra is the vector space
of matrices equipped with the matrix product. Fm×n represents the set of all m × n matrices
over the field F. Note that the algebra of w × w matrices, has dimension w2.

We often view a vector/matrix with polynomial entries, as a polynomial with vector/matrix
coefficients. For example,

D(x, y) =

(
1 + x y − xy
x+ y 1 + xy

)
=

(
1 0
0 1

)
1 +

(
1 0
1 0

)
x+

(
0 1
1 0

)
y +

(
0 −1
0 1

)
xy.

Here, the coefD operator will return a matrix for any monomial, for example, coefD(y) =(
0 1
1 0

)
. For a polynomial D(x) ∈ A[x] over an algebra, its coefficient space is the space

spanned by its coefficients.
For a matrix R, R(i, j) denotes its entry in the i-th row and j-th column.
As mentioned earlier, a deterministic blackbox PIT is equivalent to constructing a hitting-

set. A set of points H ∈ Fn is called a hitting-set for a class C of n-variate polynomials if for any
nonzero polynomial P in C, there exists a point in H where P evaluates to a nonzero value. An
f(n)-time hitting-set would mean that the hitting-set can be generated in time f(n) for input
size n.

2.2 Arithmetic Branching Programs

An ABP is a directed graph with q+ 1 layers of vertices {V0, V1, . . . , Vq} and a start node u and
an end node t such that the edges are only going from u to V0, Vi−1 to Vi for any i ∈ [q] and
Vq to t. The edges have univariate polynomials as their weights and as a convention, the edges
going from u and those coming to t have weights from the field F. The ABP is said to compute
the polynomial C(x) =

∑
p∈paths(u,t)

∏
e∈pW (e), where W (e) is the weight of the edge e.

The ABP has width w if |Vi| ≤ w for all i ∈ [[q]]. Without loss of generality we can assume
|Vi| = w for each i ∈ [[q]].

It is well-known that the sum over all paths in a layered graph can be represented by an
iterated matrix multiplication. To see this, let the set of nodes in Vi be {vi,j | j ∈ [w]}. It is
easy to see that the polynomial computed by the ABP is the same as UT(

∏q
i=1Di)T , where

U, T ∈ Fw×1 and Di is a w × w matrix for 1 ≤ i ≤ q such that

U(`) = W (u, v0,`) for 1 ≤ ` ≤ w
Di(k, `) = W (vi−1,k, vi,`) for 1 ≤ `, k ≤ w and 1 ≤ i ≤ q
T (k) = W (vq,k, t) for 1 ≤ k ≤ w

4

2.2.1 Read-once Oblivious ABP

An ABP is called a read-once oblivious ABP (ROABP) if the edge weights in different layers
are univariate polynomials in distinct variables. Formally, the entries in Di come from F[xπ(i)]
for all i ∈ [q], where π is a permutation on the set [q]. Here, q is the same as n, the number of
variables. The order (xπ(1), xπ(2), . . . , xπ(n)) is said to be the variable order of the ROABP.

Viewing Di(xπ(i)) ∈ Fw×w[xπ(i)] as a polynomial over the matrix algebra, we can write the
polynomial computed by an ROABP as

C(x) = UTD1(xπ(1))D2(xπ(2)) · · ·Dn(xπ(n))T.

An equivalent representation of a width-w ROABP can be

C(x) = D1(xπ(1))D2(xπ(2)) · · ·Dn(xπ(n)),

where D1 ∈ F1×w[xπ(1)], Di ∈ Fw×w[xπ(i)] for 2 ≤ i ≤ n− 1 and Dn ∈ Fw×1[xπ(n)].

2.2.2 Commutative ROABP

An ROABP UT (
∏q
i=1Di)T is a commutative ROABP, if all Dis are polynomials over a com-

mutative subalgebra of the matrix algebra. For example, if the coefficients in the polynomials
Dis are all diagonal matrices. Note that the order of the variables becomes insignificant for a
commutative ROABP. A polynomial computed by a commutative ROABP can be computed by
an ROABP in any variable order.

2.2.3 Set-multilinear Circuits

A depth-3 set-multilinear circuit is a circuit of the form

C(x) =
k∑
i=1

li,1(x1) li,2(x2) · · · li,q(xq),

where li,js are linear polynomials and x1,x2, . . . ,xq form of partition of x. It is known that these
circuits are subsumed by ROABPs [FSS14]. However, they are incomparable to commutative
ROABPs. Consider the corresponding polynomial over a k-dimensional algebra

D(x) = D1(x1)D2(x2) · · ·Dq(xq),

where Dj = (l1,j , l2,j , . . . , lk,j) and the algebra product is coordinate-wise product. It is easy to
see that C = (1, 1, . . . , 1) ·D. Note that the polynomials Dis are over a commutative algebra.
Hence, some of our techniques for commutative ROABPs also work for set-multilinear circuits.

3 Hitting-set for Known-order ROABP

3.1 Bivariate ROABP

To construct a hitting-set for ROABPs, we start with the bivariate case. Recall that a bivariate
ROABP is of the form UTD1(x1)D2(x2)T , where U, T ∈ Fw×1, D1 ∈ Fw×w[x1] and D2 ∈
Fw×w[x2]. It is easy to see that a bivariate polynomial f(x1, x2) computed by a width-w
ROABP can be written as f(x1, x2) =

∑w
r=1 gr(x1)hr(x2). To give a hitting-set for this, we

will use the notion of a partial derivative matrix defined by Nisan [Nis91] in the context of
lower bounds. Let f ∈ F[x1, x2] have its individual degree bounded by d. The partial derivative
matrix Mf for f is a (d+ 1)× (d+ 1) matrix with

Mf (i, j) = coeff (xi1x
j
2) ∈ F,

for all i, j ∈ [[d]]. It is known that the rank of Mf is equal to the smallest possible width of an
ROABP computing f [Nis91].

5

Lemma 3.1 (rank ≤ width). For any polynomial f(x1, x2) =
∑w

r=1 gr(x1)hr(x2), rank(Mf) ≤
w.

Proof. Let us define fr = grhr, for all r ∈ [w]. Clearly, Mf =
∑w

r=1Mfr , as f =
∑w

r=1 fr. We
will show that rank(Mfr) ≤ 1, for all r ∈ [w]. As fr = gr(x1)hr(x2), its coefficients can be
written as a product of coefficients from gr and hr, i.e.,

coeffr(xi1x
j
2) = coefgr(xi1) coefhr(xj2).

Now, it is easy to see that
Mfr = urv

T
r ,

where ur, vr ∈ Fd+1 with ur = (coefgr(xi1))
d
i=0 and vr = (coefhr(xi2))

d
i=0.

Thus, rank(Mfr) ≤ 1 and rank(Mf) ≤ w.

One can also show that if rank(Mf) = w then there exists a width-w ROABP computing
f . We skip this proof as we will not need it. Now, using the above lemma we give a hitting-set
for bivariate ROABPs.

Lemma 3.2. Let char(F) = 0, or char(F) > d. Let f(x1, x2) =
∑w

r=1 gr(x1)hr(x2) be a nonzero
bivariate polynomial over F with individual degree d. Then f(tw, tw + tw−1) 6= 0.

Proof. Let f ′(t) be the polynomial after the substitution, i.e., f ′ = f(tw, tw+ tw−1). Any mono-
mial xi1x

j
2 will be mapped to the polynomial twi(tw + tw−1)j , under the mentioned substitution.

The highest power of t coming from this polynomial is tw(i+j). We will cluster together all
the monomials for which this highest power is the same, i.e., i + j is the same. The coeffi-
cients corresponding to any such cluster of monomials will form a diagonal in Mf . The set
{Mf (i, j) | i+ j = k} is defined to be the k-th diagonal of Mf , for all 0 ≤ k ≤ 2d. Let ` be the
highest number such that `-th diagonal has at least one nonzero element, i.e.,

` = max{i+ j |Mf (i, j) 6= 0}.

As rank(Mf) ≤ w (from Lemma 3.1), we claim that the `-th diagonal has at most w nonzero
elements. To see this, let {(i1, j1), (i2, j2), . . . , (iw′ , jw′)} be the set of indices where the `-th
diagonal of Mf has nonzero elements, i.e., the set {(i, j) | Mf (i, j) 6= 0, i + j = `}. As
Mf (i, j) = 0 for any i+ j > `, it is easy to see that the rows {Mf (i1),Mf (i2), . . . ,Mf (iw′)} are
linearly independent. Thus, w′ ≤ rank(Mf) ≤ w.

Now, we claim that there exists an r with w(` − 1) < r ≤ w` such that coeff ′(t
r) 6= 0.

To see this, first observe that the highest power of t which any monomial xi1x
j
2 with i + j < `

can contribute is tw(`−1). Thus, for any w(` − 1) < r ≤ w`, the term tr can come only from
the monomials xi1x

j
2 with i + j ≥ `. We can ignore the monomials xi1x

j
2 with i + j > ` as

coeff (xi1x
j
2) = Mf (i, j) = 0, when i+ j > `. Now, for any i+ j = `, the monomial xi1x

j
2 goes to

tw(`−j)(tw + tw−1)j =

j∑
p=0

(
j

p

)
tw`−p.

Hence, for any 0 ≤ p < w,

coeff ′(t
w`−p) =

w′∑
a=1

Mf (ia, ja)

(
ja
p

)
.

Writing this in the matrix form we get

[coeff ′(t
w`) · · · coeff ′(t

w`−w+1)] = [Mf (i1, j1) · · · Mf (iw′ , jw′)]C,

6

where C is a w′ × w matrix with C(a, b) =
(
ja
b−1
)
, for all a ∈ [w′] and b ∈ [w]. If all the rows of

C are linearly independent then clearly, coeff ′(t
r) 6= 0 for some w(` − 1) < r ≤ w`. We show

the linear independence in Claim 3.3. To show this linear independence we need to assume that
the numbers {ja}a are all distinct. Hence, we need the field characteristic to be zero or strictly
greater than d, as ja can be as high as d for some a ∈ [w′].

Claim 3.3. Let C be a w × w matrix with C(a, b) =
(
ja
b−1
)
, for all a ∈ [w] and b ∈ [w], where

{ja}a are all distinct numbers. Then C has full rank.

Proof. We will show that for any nonzero vector α := (α1, α2 . . . , αw) ∈ Fw×1, Cα 6= 0. Consider

the polynomial h(y) =
∑w

b=1 αb
y(y−1)···(y−b+2)

(b−1)! . As h(y) is a nonzero polynomial with degree

bounded by w − 1, it can have at most w − 1 roots. Thus, there exists an a ∈ [w] such that
h(ja) =

∑w
b=1 αb

(
ja
b−1
)
6= 0.

As mentioned above, the hitting-set proof works only when the field characteristic is zero
or greater than d. We given an example over a small characteristic field, which demonstrates
that the problem is not with the proof technique, but with the hitting-set itself. Let the field
characteristic be 2. Consider the polynomial f(x1, x2) = x22 + x21 + x1. Clearly, f has a width-
2 ROABP. For a width-2 ROABP, the map in Lemma 3.2 would be (x1, x2) 7→ (t2, t2 + t).
However, f(t2, t2 + t) = 0 (over F2). Hence, the hitting-set does not work.

Now, we move on to getting a hitting-set for an n-variate ROABP.

3.2 n-variate ROABP

Observe that the map given in Lemma 3.2 works irrespective of the degree of the polynomial,
as long as the field characteristic is large enough. We plan to obtain a hitting-set for general
n-variate ROABP by applying this map recursively. For this, we use the standard divide and
conquer technique. First, we make pairs of consecutive variables in the ROABP. For each pair
(x2i−1, x2i), we apply the map from Lemma 3.2, using a new variable ti. Thus, we go to n/2
variables from n variables. In Lemma 3.4, we show that after this substitution the polynomial
remains nonzero. Moreover, the new polynomial can be computed by a width-w ROABP. Thus,
we can again use the same map on pairs of new variables. By repeating the halving procedure
log n times we get a univariate polynomial. In each round the degree of the polynomial gets
multiplied by w. Hence, after log n rounds, the degree of the univariate polynomial is bounded
by wlogn times the original degree. Without loss of generality, let us assume that n is a power
of 2.

Lemma 3.4 (Halving the number of variables). Let char(F) = 0, or char(F) > d. Let f(x) =
D1(x1)D2(x2) · · ·Dn(xn) be a nonzero polynomial computed by a width-w and individual degree-
d ROABP, where D1 ∈ F1×w[x1], Dn ∈ Fw×1[xn] and Di ∈ Fw×w[xi] for all 2 ≤ i ≤ n− 1. Let
the map φ : x→ F[t] be such that for any index 1 ≤ i ≤ n/2,

φ(x2i−1) = twi ,

φ(x2i) = twi + tw−1i .

Then f(φ(x)) 6= 0. Moreover, the polynomial f(φ(x)) ∈ F[t1, t2, . . . , tn/2] is computed by a
width-w ROABP in the variable order (t1, t2, . . . , tn/2).

Proof. Let us apply the map in n/2 rounds, i.e., define a sequence of polynomials (f =
f0, f1, . . . , fn/2 = f(φ(x))) such that the polynomial fi is obtained by making the replace-
ment (x2i−1, x2i) 7→ (φ(x2i−1), φ(x2i)) in fi−1 for each 1 ≤ i ≤ n/2. We will show that for each
1 ≤ i ≤ n/2, if fi−1 6= 0 then fi 6= 0. Clearly this proves the first part of the lemma.

7

Note that fi−1 is a polynomial over variables {t1, . . . , ti−1, x2i−1, . . . , xn}. As fi−1 6= 0,
there exists a constant tuple α ∈ Fn−i−1 such that after replacing the variables (t1, . . . , ti−1,
x2i+1, . . . , xn) with α, fi−1 remains nonzero. After this replacement we get a polynomial f ′i−1
in the variables (x2i−1, x2i). As f is computed by the ROABP D1D2 · · ·Dn, the polynomial
f ′i−1 can be written as UTD2i−1(x2i−1)D2i(x2i)T for some U, T ∈ Fw×1. In other words, f ′i−1
has a bivariate ROABP of width w. Thus, f ′i−1(φ(x2i−1), φ(x2i)) is nonzero from Lemma 3.2.
But, f ′i−1(φ(x2i−1), φ(x2i)) is nothing but the polynomial obtained after replacing the variables
(t1, . . . , ti−1, x2i+1, . . . , xn) in fi with α. Thus, fi is nonzero. This finishes the proof.

Now, we argue that f(φ(x)) has a width w ROABP. Let D′i := D2i−1(t
w
i)D2i(t

w
i + tw−1i)

for all 1 ≤ i ≤ n/2. Clearly, D′1D
′
2 · · ·D′n/2 is an ROABP computing f(φ(x)) in variable order

(t1, t2, . . . , tn/2), as D′1 ∈ F1×w[t1], D
′
n/2 ∈ Fw×1[tn/2] and D′i ∈ Fw×w[ti] for all 2 ≤ i ≤

n/2− 1.

By applying the map φ in Lemma 3.4, we reduced an n-variate ROABP to an (n/2)-variate
ROABP, while preserving the non-zeroness. The resulting ROABP has same width w, but the
individual degree goes up to become 2dw, where d is the original individual degree. As our

map φ is degree independent, we can apply the same map again on the variables {ti}n/2i=1. It is
easy to see that when the map φ is repeatedly applied in this way log n times, we get a nonzero
univariate polynomial of degree ndwlogn. Next lemma puts it formally. For ease of notation,
we use the variable numbering from 0 to n− 1. Let p0(t) = tw and p1(t) = tw + tw−1.

Lemma 3.5. Let char(F) = 0, or char(F) ≥ ndwlogn. Let f ∈ F[x] be a nonzero polynomial,
with individual degree d, computed by a width-w ROABP in variable order (x0, x1, . . . , xn−1).
Let the map φ : {x0, x1, . . . , xn−1} → F[t] be such that for any index 0 ≤ i ≤ n− 1,

φ(xi) = pi1(pi2 · · · (pilogn
(t))),

where ilogn ilogn−1 · · · i1 is the binary representation of i.
Then f(φ(x)) is a nonzero univariate polynomial with degree ndwlogn.

Note that the map φ crucially uses the knowledge of the variable order. In the last round
when we are going from two variables to one, the individual degree is ndwlogn−1 and Lemma 3.2
requires char(F) to be higher than the individual degree. Thus, having char(F) ≥ ndwlogn

suffices. For a univariate polynomial, the standard hitting-set is to plug-in distinct field values
as many as one more than the degree. Thus, we get the following theorem.

Theorem 3.6. For an n-variate, individual degree d and width-w ROABP, there is a blackbox
PIT with time complexity O(ndwlogn), when the variable order is known and the field charac-
teristic is zero or at least ndwlogn.

From this, we immediately get the following result for constant-width ROABPs. Note that
when w is constant, the lower bound on the characteristic also becomes poly(n).

Corollary 3.7. There is a polynomial time blackbox PIT for constant width ROABPs, with
known variable order and field characteristic being zero (or polynomially large).

As mentioned earlier, our approach can potentially lead to a polynomial time hitting-set for
ROABPs. We make the following conjecture for which we hope to get a proof on the lines of
Lemma 3.2.

Conjecture 3.8. Let char(F) = 0. Let f(x) ∈ F[x] be an n-variate, degree-d polynomial
computed by a width-w ROABP. Then f(tr, (t + 1)r, . . . , (t + n − 1)r) 6= 0 for some r bounded
by poly(n,w, d).

8

4 Commutative ROABP

In this section, we give better hitting-sets for commutative ROABPs. Recall that an ROABP is
commutative if the matrices involved in the matrix product come from a commutative algebra.
To elaborate, a commutative ROABP is of the form UTD1D2 · · ·DnT , where U, T ∈ Fw×1
and Di ∈ Fw×w[xi] is a polynomial over a commutative subalgebra of Fw×w for each i. In
simple words, DiDj = DjDi for any i, j ∈ [n]. As the order of variables does not matter for a
commutative ROABP, we take the standard variable order (x1, x2, . . . , xn). Here we work with
the polynomial D = D1D2 · · ·Dn over the matrix algebra. With an abuse of notation, we say
D1D2 · · ·Dn is an ROABP computing a polynomial over matrices.

Forbes et al. [FSS14] gave a dO(logw)(nw)O(log logw)-time hitting-set for width-w, n-variate
commutative ROABPs with individual degree bound d. Note that when d is small, this time
complexity is much better than that for general ROABP, i.e., (ndw)O(logn) [AGKS15]. However
when d is O(n), the complexity is comparable to the general case. We improve the time
complexity for the commutative case to (ndw)O(log logw). This is significantly better than the
general case for all values of d.

Forbes et al. [FSS14] constructed the hitting-set using the notion of rank-concentration
defined by Agrawal et al. [ASS13].

Definition 4.1 ([ASS13]). A polynomial D(x) over an algebra is said to be `-concentrated if
its coefficients of (< `)-support monomials span all its coefficients.

Note that for a polynomial in F[x], `-concentration simply means that it has a monomial
of (< `)-support with a nonzero coefficient. For a polynomial which has low-support concen-
tration, it is easy to construct hitting-sets. However, not every polynomial has a low-support
concentration, for example C(x) = x1x2 · · ·xn. Agrawal et al. [ASS13] observed that concen-
tration can be achieved by a shift of variables, e.g., C(x + 1) = (x1 + 1)(x2 + 1) · · · (xn + 1)
has 1-concentration. For a polynomial C(x), shift by a tuple f = (f1, f2, . . . , fn) would mean
C(x + f) = C(x1 + f1, x2 + f2, . . . , xn + fn). The first step of Forbes et al. [FSS14] is to show
that for a given commutative width-w ROABP, O(logw)-concentration can be achieved by a
shift with cost ndO(logw). Their second step is to show that if a given commutative ROABP is
O(logw)-concentrated then there is a hitting-set for it of size (ndw)O(log logw). We improve the
first step by giving a shift with cost (ndw)O(log logw), which gives us the desired hitting-set.

First, we elaborate the first step of Forbes, Saptharishi and Shpilka [FSS14]. To achieve con-
centration they use the idea of Agrawal, Saha and Saxena [ASS13], i.e., achieving concentration
in small sub-circuits implies concentration in the whole circuit. For the sake of completeness,
we rewrite the lemma using the terminology of this paper.

Lemma 4.2 ([ASS13, FSS14]). Let D(x) = D1(x1)D2(x2) · · ·Dn(xn) be a product of univariate
polynomials over a commutative algebra Ak. Suppose there exists an ` such that for any S ∈ [n]
with |S| = `, the polynomial

∏
i∈S Di has `-concentration. Then D(x) has `-concentration.

Proof. For any set S ⊆ [n], let us define a sub-circuit DS of D as
∏
i∈S Di(xi). We will show

`-concentration in all the sub-circuits DS of D, using induction on the size of S.
Base Case: DS is trivially `-concentrated if |S| < `. In the case of |S| = `, DS is `-

concentrated from the hypothesis in the lemma.
Induction Hypothesis: DS has `-concentration for any set S with |S| < j.
Induction Step: We will prove `-concentration in DS for a set S with |S| = j. Let S =

{xi1 , xi2 , . . . , xij}. Consider a monomial xa = xa1i1 x
a2
i2
· · ·xajij with support from the set S.

Without loss of generality let us assume a1 6= 0. Now, let the set S′ = S \ {xi1} and let the
monomial xa′ = xa/xa1i1 . As |S′| = j − 1, by the inductive hypothesis DS′ is `-concentrated.
Thus,

coefDS′ (x
a′) ∈ span{coefDS′ (x

b) | Supp(b) ⊆ S′, supp(b) < `}. (1)

9

It is easy to see that for any monomial xb with its support in S′,

coefDS
(xbxa1i1) = coefDS′ (x

b) coefDi1
(xa1i1).

Thus, by multiplying coefDi1
(xa1i1) in (1), we get

coefDS
(xa) ∈ span{coefDS

(xbxa1i1) | Supp(b) ⊆ S′, supp(b) < `}.

Hence,
coefDS

(xa) ∈ span{coefDS
(xb) | Supp(b) ⊆ S, supp(b) ≤ `}. (2)

Now, we claim that for any monomial xb with Supp(b) ⊆ S and supp(b) = `,

coefDS
(xb) ∈ span{coefDS

(xc) | Supp(c) ⊆ S, supp(c) < `}. (3)

To see this, let T be the support of the monomial xb. As |T | = `, DT has `-concentration.
Thus,

coefDT
(xb) ∈ span{coefDT

(xc) | Supp(c) ⊆ T, supp(c) < `}. (4)

For any monomial xc with support in T , one can write

coefDS
(xc) = coefDT

(xc)
∏
i∈S\T

coefDi(1).

Note that the commutativity of the underlying algebra is crucial for this. Thus, multiplying (4)

by
(∏

i∈S\T coefDi(1)
)

, we get (3).

By combining (3) with (2), we get

coefDS
(xa) ∈ span{coefDS

(xc) | Supp(c) ⊆ S, supp(c) < `},

for any monomial xa with Supp(a) ⊆ S. This proves `-concentration in DS .
Taking S = [n], we get `-concentration in D.

Now, the goal is just to achieve `-concentration in an `-variate ROABP (computing a poly-
nomial over the matrix algebra). We would remark here that for an `-variate polynomial over
a k-dimensional algebra, one can hope to achieve `-concentration only when ` ≥ log(k+ 1). To
see this, consider the polynomial D(x) =

∏`
i=1(1 +vixi) over a k-dimensional algebra such that

k > 2` − 1. Suppose the vector vis are such that all the 2` coefficients of the polynomial D are
linearly independent. There are only 2` − 1 coefficients of D with (< `)-support. Hence, they
cannot span the whole coefficient space of D, whatever the shift we use.

Agrawal et al. [ASS13] and Forbes et al. [FSS14] achieve `-concentration in arbitrary `-
variate polynomials over a k-dimension algebra for ` = log(k + 1) by a shift with cost dO(`),
where d is the individual degree. Forbes et al. [FSS14] use it to give a single shift on n variables
such that it works for any choice of ` variables. This has cost ndO(`).

We give a new shift with cost (ndw)O(log `) = (ndw)O(log logw), for a width-w, `-variate
ROABP (w2 is the dimension of the underlying algebra). The cost has n as a parameter
because the shift works for any size ` subset of n variables. Like [ASS13, FSS14], we use a
shift by univariate polynomials in a new variable t. In this case, the concentration is considered
over the field F(t). Note that while the shift of [ASS13, FSS14] works for an arbitrary `-variate
polynomial, our shift works only for `-variate ROABPs. The univariate map we use is the basis
isolating weight assignment for ROABPs from Agrawal et al. [AGKS15]. We simply use the fact
that for any polynomial over a k-dimensional algebra, shift by a basis isolating map achieves
log(k + 1)-concentration [GKST15].

Let us first recall the definition of a basis isolating weight assignment. Let M denote the set
of all monomials over the variable set x with individual degree ≤ d. Any function w: x → N
can be naturally extended to the set of all monomials as follows: w(

∏n
i=1 x

γi
i) =

∑n
i=1 γiw(xi),

for any (γi)
n
i=1 ∈ Nn. Note that if the variable xi is replaced with tw(xi) for each i, then any

monomial m just becomes tw(m). Ak denotes a k-dimensional algebra.

10

Definition 4.3 ([AGKS15]). A weight function w: x → N is called a basis isolating weight
assignment for a polynomial D(x) ∈ Ak[x], if there exists a set of monomials S ⊆ M (k′ :=
|S| ≤ k) whose coefficients form a basis for the coefficient space of D(x), such that

– for any m,m′ ∈ S, w(m) 6= w(m′) and

– for any monomial m ∈M \ S,

coefD(m) ∈ span{coefD(m′) | m′ ∈ S, w(m′) < w(m)}.

Gurjar et al. [GKST15, Lemma 5.2] have shown that shifting by a basis isolating weight
assignment achieves concentration.

Lemma 4.4 (Isolation to concentration). Let A(x) be a polynomial over a k-dimensional alge-
bra Ak. Let w be a basis isolating weight assignment for A(x). Then A(x+tw) is `-concentrated,
where ` = dlog(k + 1)e and tw denotes the n-tuple (tw(x1), tw(x2), . . . , tw(xn)).

We now recall the construction of a basis isolating weight assignment for ROABP from
[AGKS15]. Here, we present a slightly modified version of their Lemma 8, which easily follows
from it.

Lemma 4.5. Let x be a set of n variables. Let D(x) = D1(xi1)D2(xi2) · · ·D`(xi`) be an `-
variate polynomial over a k-dimensional algebra Ak. Then we can construct a basis isolating
weight assignment for D(x) with the cost being (poly(k, n, d))log `, where d is the individual
degree.

The construction in [AGKS15, Lemma 8] actually gives a family B of (knd)O(log `) weight
assignments such that for any `-variate ROABP, at least one of them is basis isolating. However,
we are interested in a single map which works for every `-variate ROABP. To get a single shift for
every ROABP, we follow the technique of [FSS14, GKST15] and take a Lagrange Interpolation
of all the n-tuples in the family {tw}w∈B.

Let F = {f1(t),f2(t), . . . ,fN (t)} be this family of n-tuples, where f i = {fi,1(t), fi,2(t), . . . ,
fi,n(t)} for each i. Here, N = (knd)O(log `). Let their degrees be bounded by D, i.e., D =
max{deg(fi,j) | i ∈ [N] and j ∈ [n]}. From the construction in [AGKS15], D = (knd)O(log `).
Also, the family F can be generated in time (knd)O(log `).

Let L(y, t) ∈ F[y, t]n be the Lagrange interpolation of F . That is, for all j ∈ [n],

Lj =
∑
i∈[N]

fi,j(t)
∏
i′∈[N]
i′ 6=i

y − αi′
αi − αi′

,

where {αi}i∈[N] are distinct field elements (we go to a large enough field extension where these
many elements exist). Note that Lj |y=αi = fi,j . Thus, L|y=αi = f i. Also, degy(Lj) = N − 1
and degt(Lj) ≤ D. The following lemma from [GKST15, Lemma 5.5] shows that a shift by the
interpolation works for every polynomial simultaneously.

Lemma 4.6. Let A(x) be a polynomial over Ak such that there exists an f ∈ F for which
A′(x, t) = A(x + f) ∈ Ak(t)[x] is `-concentrated. Then, A′′(x, y, t) = A(x + L) ∈ Ak(y, t)[x] is
`-concentrated.

Proof. Let rankF{coefA(xa) | xa ∈M} = k′, for some k′ ≤ k, and M` = {xa ∈M | supp(a) <
`}. We need to show that rankF(y,t) {coefA′′(x

a) | xa ∈M`} = k′.
Since A′(x) is `-concentrated, we have that rankF(t) {coefA′(x

a) | xa ∈M`} = k′. Recall
that A′(x) is an evaluation of A′′ at y = αi, i.e., A′(x, t) = A′′(x, αi, t) for some αi. Thus, for
all xa ∈M , we have coefA′(x

a) = coefA′′(x
a)|y=αi .

11

Let C ∈ F[t]k×|M`| be the matrix whose columns are coefA′(x
a), for xa ∈M`. Let similarly

C ′ ∈ F[y, t]k×|M`| be the matrix whose columns are coefA′′(x
a), for xa ∈ M`. Then we have

C = C ′|y=αi .
As rankF(t)(C) = k′, there is a k′ × k′ submatrix in C, say indexed by (R, T), such that

det(C(R, T)) 6= 0. Since det(C(R, T)) = det(C ′(R, T))|y=αi , it follows that det(C ′(R, T)) 6= 0.
Hence, we have rankF(y,t)(C

′) = k′. Thus, the (< `)-support coefficients of A′′ span its coefficient
space.

Hence, the Lagrange interpolation gives us a single shift which works for all `-variate
ROABPs.

Lemma 4.7. Given n, d, w and ` = log(w2 + 1), in time (ndw)O(log `) one can compute a poly-
nomial tuple f(t) ∈ F[t]n of degree (ndw)O(log `) such that for any `-variate polynomial A(x) ∈
Fw×w[x] of individual degree d that can be computed by an ROABP of width w, the polyno-
mial A(x + f(t)) is `-concentrated.

Proof. Note that the dimension k of the underlying algebra is bounded by w2. After shifting
the polynomial A(x) by L(y, t) as defined above, its coefficients will be polynomials in y and t,
with degree d′ = dn(ndw)O(log `). Consider the determinant polynomial det(C ′(R, T)) from the
proof of Lemma 4.6. As k′ ≤ k, det(C ′(R, T)) has degree bounded by d′′ := kd′. So, when
we replace y by td

′′+1, it does not affect the non-zeroness of the determinant, and hence, the
concentration is preserved. Thus, f = L(td

′′+1, t) is an n-tuple of univariate polynomials in t
that fulfils the claim of the lemma.

Combining Lemma 4.2 and Lemma 4.7 we get the following.

Lemma 4.8. Given n, d, w, one can compute an n-tuple f(t) with cost (ndw)O(log logw) such
that for any n-variate, individual degree-d polynomial D(x) ∈ Fw×w[x] computed by a width-w
commutative ROABP, D(x + f(t)) is O(logw)-concentrated.

Note that if the polynomial D(x) ∈ Fw×w[x] is `-concentrated then the polynomial C(x) =
UTDT is also `-concentrated, where U, T ∈ Fw×1. This is true because multiplication by UT

and T are linear operations. Recall that for polynomial C(x) ∈ F[x], O(logw)-concentration
means that there is a monomial with O(logw)-support which has a nonzero coefficient.

Lemma 4.8 gives a shift f(t) of univariate polynomials. To get a constant shift, we substitute
(ndw)O(log logw) distinct values for t. As the degree in t is bounded by (ndw)O(log logw), at least
for one value of t, the non-zeroness of the particular coefficient will be preserved.

Now, we move on to the second step of Forbes, Shpilka and Saptharishi [FSS14]. They give
an (ndw)O(log logw)-time hitting-set for an already O(logw)-concentrated commutative ROABP.
They do this by reducing the PIT question to an O(logw)-variate ROABP [FSS14, Lemma 7.6].

Lemma 4.9 ([FSS14]). Let C(x) ∈ F[x] be an n-variate, individual degree-d polynomial com-
puted by a width-w ROABP. Suppose C(x) has an (≤ `)-support monomial with a nonzero coef-
ficient. Then, there is a poly(n,w, d)-time computable m-variate map φ : x → F[y1, y2, . . . , ym]
such that C(φ(x)) is a nonzero polynomial with degree < d2n4, where m = O(`2). Moreover,
C(φ(x)) is computed by a width-w, m-variate commutative ROABP.

From the results of [FS13, AGKS15], we know that an m-variate, width-w commutative
ROABP has an (mdw)O(logm)-time hitting-set. Combining Lemma 4.8 and Lemma 4.9 with
this fact and putting m = O(log2w), we get the following.

Theorem 4.10. There is an (ndw)O(log logw)-time hitting-set for n-variate commutative ROABPs
with width w and individual degree d.

12

Concentration in Set-multilinear Circuits: Similar to Theorem 4.10, it would be inter-
esting to achieve the same time complexity for set-multilinear circuits. Recall from Section 2.2.3
that a polynomial computed by a depth-3 set-multilinear circuit can be written as (1, 1, . . . , 1)·D,
where D = D1(x1)D2(x2) · · ·Dq(xq) is a product of linear polynomials over a commutative al-
gebra. It is easy to see that the same arguments as for commutative ROABP work here. Hence,
we get the following result analogous to Lemma 4.8.

Corollary 4.11. Given n, k, one can compute an n-tuple f(t) with cost (nk)O(log log k) such that
for any n-variate polynomial C(x) computed by a depth-3 set-multilinear circuit with top fan-in
k, C(x + f(t)) is O(log k)-concentrated.

However, it is not clear whether the second step of the hitting-set construction can be done
for set-multilinear circuits, i.e., finding a better hitting-set by assuming that the polynomial is
already concentrated (Lemma 4.9).

5 Discussion

For our first result (Theorem 3.6), there are three directions of improvement. Ideally, one would
like to have all three at once.

1. Find a similar hitting-set for the unknown-order case. In fact, we conjecture that the
same hitting-set (Lemma 3.5) works for the unknown-order case as well.

2. Get a hitting-set for all characteristic fields. It is easy to construct examples over small
characteristic fields where our hitting-set does not work.

3. Reduce the time complexity to polynomial time. To achieve this, it seems one has to do
away with the divide and conquer approach.

We conjecture a polynomial-time hitting-set for the unknown-order case in Conjecture 3.8.
As mentioned earlier, the ideas here can help in finding a better PRG for ROBPs. In

particular, it is a big open question to find an O(log n)-seed-length PRG for constant-width
ROBPs (analogous to Corollary 3.7).

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, New York, NY, USA, 1st edition, 2009.

[AFS+15] Matthew Anderson, Michael Forbes, Ramprasad Saptharishi, Amir Shpilka, and
Ben Lee Volk. Identity testing and lower bounds for read-k oblivious algebraic
branching programs. Technical report, Electronic Colloquium on Computational
Complexity (ECCC), 2015.

[AGKS15] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets
for ROABP and sum of set-multilinear circuits. SIAM J. Comput., 44(3):669–697,
2015.

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators. In
FSTTCS, volume 3821 of Lecture Notes in Computer Science, pages 92–105, 2005.

[ASS13] Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial hitting-set
for set-depth-formulas. In STOC, pages 321–330, 2013.

13

[BOC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant
number of registers. SIAM J. Comput., 21(1):54–58, 1992.

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic
program testing. Information Processing Letters, 7(4):193 – 195, 1978.

[dOSV15] Rafael Mendes de Oliveira, Amir Shpilka, and Ben Lee Volk. Subexponential size
hitting sets for bounded depth multilinear formulas. In 30th Conference on Compu-
tational Complexity, CCC 2015, June 17-19, 2015, Portland, Oregon, USA, pages
304–322, 2015.

[FS13] Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In FOCS, pages
243–252, 2013.

[FSS14] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for
multilinear read-once algebraic branching programs, in any order. In Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014,
pages 867–875, 2014.

[GKST15] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Determinis-
tic identity testing for sum of read-once oblivious arithmetic branching programs.
In 30th Conference on Computational Complexity, CCC 2015, June 17-19, 2015,
Portland, Oregon, USA, pages 323–346, 2015.

[HS80] J. Heintz and C. P. Schnorr. Testing polynomials which are easy to compute (ex-
tended abstract). In Proceedings of the Twelfth Annual ACM Symposium on Theory
of Computing, STOC ’80, pages 262–272, New York, NY, USA, 1980. ACM.

[IMZ12] Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from
shrinkage. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 111–119, 2012.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for net-
work algorithms. In Proceedings of the Twenty-sixth Annual ACM Symposium on
Theory of Computing, STOC, pages 356–364, New York, NY, USA, 1994. ACM.

[KI03] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity
tests means proving circuit lower bounds. STOC, pages 355–364, 2003.

[KNS15] Neeraj Kayal, Vineet Nair, and Chandan Saha. Separation between read-once obliv-
ious algebraic branching programs (ROABPs) and multilinear depth three circuits.
Technical report, Electronic Colloquium on Computational Complexity (ECCC),
2015.

[Koi12] Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theoretical
Computer Science, 448:56–65, 2012.

[Nis90] N. Nisan. Pseudorandom generators for space-bounded computations. In Proceedings
of the Twenty-second Annual ACM Symposium on Theory of Computing, STOC ’90,
pages 204–212, New York, NY, USA, 1990. ACM.

[Nis91] Noam Nisan. Lower bounds for non-commutative computation (extended abstract).
In Proceedings of the 23rd ACM Symposium on Theory of Computing, ACM Press,
pages 410–418, 1991.

14

[RR99] Ran Raz and Omer Reingold. On recycling the randomness of states in space
bounded computation. In Proceedings of the Thirty-First Annual ACM Symposium
on Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA, pages 159–168,
1999.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-
commutative models. Computational Complexity, 14(1):1–19, 2005.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial iden-
tities. J. ACM, 27(4):701–717, October 1980.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the
International Symposiumon on Symbolic and Algebraic Computation, EUROSAM
’79, pages 216–226, London, UK, UK, 1979. Springer-Verlag.

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

