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Abstract

In this paper we initiate the study of width in semi-algebraic proof
systems and various cut-based procedures in integer programming.
We focus on two important systems: Gomory-Chvátal cutting planes
and Lovász-Schrijver lift-and-project procedures. We develop general
methods for proving width lower bounds and apply them to random
k-CNFs and several popular combinatorial principles like the perfect
matching principle and Tseitin tautologies. We also show how to
apply our methods to various combinatorial optimization problems.
We establish an “ultimate” trade-off between width and rank, that is
give an example in which small width proofs are possible but require
exponentially many rounds to perform them.

1. Introduction

The duality between proof complexity of semi-algebraic proof systems and
systematic approach to integer programming based on various LP and SDP
hierarchies has been extremely fruitful and beneficial for both areas as it
allows to bring together two a priori different communities working on the
same kind of problems with slightly different perspectives. The interest in
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this subject is also re-kindled by the realization that systems like Sum-of-
Squares, previously known under the names iPositivestellensatz [GHP02] and
Lasserre hierarchy [Las01], are in the midst of many exciting developments
in combinatorial optimization and many other areas, see [BS14] and the
references therein, and more recent [LRS15].

Philosophically, the connection is very simple and is similar to the con-
nection between SAT solving procedures and resolution proofs, only with
logic replaced by geometry. The “cut phase” of a branch-and-cut algorithm
for integer programming1 consists of shrinking the polytope2 of potential so-
lutions using various cuts until it approaches the positive hull made by all
integer solutions. In the dual, proof-complexity, world it can be alternately
viewed as generating more valid constraints following a set of prescribed
rules. The transcript of this execution makes a mathematical proof of the
resulting bound on the goal function or, depending on the context, of in-
feasibility of the original problem. Semi-algebraic proof systems precisely
capture the amount of geometric reasoning necessary to verify the validity
of the transcript. Like in many previous papers on the subject we confine
ourselves to two most popular systems: cutting planes3 proofs introduced
by Cook et al. [CCT87] as a way to capture Gomory-Chvátal mixed inte-
ger cuts [Gom63, Chv73] and Lovász-Schrijver procedures [LS91] capturing
various lift-and-project methods.

Given these parallel developments, it is no wonder that many fundamen-
tal concepts and ideas of theoretical proof complexity have their natural
counterparts in combinatorial optimization, and vice versa. We highly rec-
ommend Jukna’s detailed account [Juk12, Chapter 19] of the story for the
case of cutting planes. One notable exception (to the best of our knowledge),
however, is the notion of width of resolution proofs; it measures how many
literals a clause in a prospective resolution proof is allowed to contain. Its
importance has been increasingly realized since the seminal paper [BW01]
by Ben-Sasson and Wigderson, and by now width-based lower bound meth-

1If we also bring into the picture the branching steps, we will arrive at more sophisti-
cated proof systems mixing logic and geometry. Those are not considered in this paper.

2In this paper we primarily consider algorithms/proof systems operating with linear
constraints; see the concluding section 8 for a brief discussion of potential generalizations
to higher-degree polynomials.

3Many authors use this term more generally, for collectively denoting cuts of all possible
kind including those that are non-linear in their nature. In this paper we prefer to reserve
this term for its original meaning.
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ods is one of the most important tools for analyzing complexity of resolution
proofs. More precisely, the relation discovered in [BW01] says that

w(τn ` 0) ≤ O(n logS(τn ` 0))1/2 + w(τn), (1)

where w(τn ` 0) is the minimum width of a resolution refutation of an
unsatisfiable CNF τn in n variables, S(τn ` 0) is the minimum size of such a
refutation, and w(τn) is the maximum width of a clause C in τn itself. Hence
strong width lower bounds imply exponential lower bounds on the size of
resolution proofs of the same principle.

Width, however, is seldom mentioned for proof systems other than resolu-
tion. The reason for this is quite sound and simple: width is a fundamentally
semantical measure and, as a consequence, it is extremely robust with respect
to the choice of a particular proof system. More technically, once we care
only about the number of variables in a constraint rather than its logical
complexity, we can always expand arbitrarily fancy formulas as CNFs and
simulate the original reasoning by a resolution proof of the same width, as
long as the former is sound.

In this paper we attempt to argue that dynamic semi-algebraic proof
systems should be exempted from this rule. Let us immediately come straight
to the point and give a simple and somewhat extremal example illustrating
why we think so.

Example 1 Let G be a bipartite graph of bounded degree with parts U and
V such that |U | > |V |. Let G−PHP be the principle asserting that G does
not contain a matching from V to U that covers all vertices in U . Then if G
has good expansion properties, this principle does not possess any sub-linear
width proofs [BW01, Theorem 4.15]. But from the point of combinatorial
optimization it is completely trivial: summing up the constraints expressing
that all vertices in U are covered at least once, and deducting the sum of
constraints expressing that all v ∈ V are covered at most once, we see that
already the initial polytope P is empty so there is nothing to prove.

This example highlights what is the main difference between the two
views. The proof complexity community highly prefers proof systems with
binary or at least bounded fan-in rules, and often for good reasons. While
in the combinatorial optimization community primarily working with dual
objects in a closed form, the idea of convexity is so basic that splitting the
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convex combination rule into a binary tree of additions with two operands
each looks quite arbitrary. Moreover, Caratheodory’s theorem makes this
difference incremental or unimportant when we are interested in rank or
size; we again refer to [Juk12, Chapter 19] that very carefully elaborates on
the issue. As we have just seen in Example 1, it makes all the difference if
we are interested in width, and, as we hope to convince the reader, this leads
to an interesting and nice model non-trivially extending the notion of width
as it is known in logic-based proof complexity.

As follows from the above discussion, in this paper we regard taking
arbitrary convex combinations of the already deduced cuts as a primary
and relatively inexpensive step. Then we define the width of a proof or an
algorithm simply as the maximum number of variables involved in the cuts
it makes. Besides natural curiosity and importance of width in the logic-
based proof complexity, we may have yet another (unspoken) reason to be
interested in this model.

Most interesting theoretical results about LP/SDP hierarchies pertain to
rank, that is the minimum number of iterations one needs to shrink the orig-
inal polytope so that it approaches the positive hull of its integer points.
During one round we perform in parallel all possible cuts that immediately
results in the exponential blow-up in the number of constraints and becomes
prohibitive very soon. On the other side of the spectrum we have numerous
examples of algorithms for specific problems based on linear or SDP relax-
ations that essentially succeed by finding a golden needle in this stack of
hay (see e.g. the paper [AAT11] that collected several prominent examples).
Therefore, length of semi-algebraic proofs or algorithms defined, say, as the
number of cuts used appears at least as important as rank, both theoretically
and practically. Our current understanding of this measure, however, is quite
miserable: the only existing methods are manifestly indirect and are based
on the so-called “feasible interpolation theorem” [Pud97, Pud99]. Develop-
ing combinatorial or geometric approaches for this task is one of the most
prominent and difficult problems in modern proof complexity, and we would
like to express a cautious hope that our methods and concepts might turn
out useful here.

In another, more practical direction, what seems to be somewhat under-
developed are perhaps imperfect but still sufficiently general heuristics for
classifying available cuts into “useful” (to be kept) and “useless” (to be dis-
carded). This is in sharp contrast with the situation in the adjacent commu-
nity of practical (logic-based) SAT solving that can rightly boast heuristics
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of such kind as their success story. The idea of identifying “useful” cuts with
“local” or “myopic” cuts that involve only a few variables is clearly insuffi-
cient for most, if not all, applications. However, it is a very natural thing
to try, and we (again, cautiously) hope that understanding in precise math-
ematical terms why and how exactly it fails might be helpful for promoting
further research in this important direction.

1.1. Results and organization of the paper

In Section 2 we recall some necessary preliminaries and present our main def-
initions and ideas. As a part of this exposition, we also prove that the hierar-
chy of bounded-width proofs converges within finitely many steps (Theorem
2.8), and formulate a strong trade-off result stating that the crude exponen-
tial bound on the number of rounds in Theorem 2.8 can in fact sometimes be
nearly optimal (Theorem 2.11). Then we introduce w-obstructing polytopes
as our main (and universal) technical tool for proving lower bounds on width
in semi-algebraic proof systems (Definition 2.14). In Section 3 we give a gen-
eral recipe for actually constructing such polytopes (Theorem 3.4). These
polytopes can be viewed as a hybrid of protection matrices widely used for
rank lower bounds in semi-algebraic proof systems and formal complexity
measures employed for width lower bounds in logic-based proof complexity.

In Section 4 we give several applications of this technique to a few promi-
nent combinatorial principles; we are not aiming at a comprehensive list. We
start with expansion-based lower bounds on semi-algebraic width for systems
of F2-linear equations (Theorem 4.3). As usual, this almost immediately im-
plies lower bounds for random 3-CNFs (Theorem 4.9), as well as for Tseitin
tautologies (Theorem 4.12) and for random 3-XOR formulas (Theorem 4.8).
Next, we look at perfect matching principles (Section 4.2). We show that for
any fixed even d ≥ 14 and n → ∞, proving that a random d-regular graph
does not contain a perfect matching requires linear width cutting planes
proofs (Theorem 4.14). Besides the fact that the (perfect) matching poly-
tope is one of the most cherished polytopes in the combinatorial optimization
literature, this result is also interesting since [IPU94] showed that in every
graph the absence of a perfect matching can be verified by a cutting plane
proof (actually, even a tree-like proof) of polynomial size. Together, these
two facts imply that no useful analogue of the width-size relation (1) may
exist for semi-algebraic proof systems.

In the next section 5 we address the case of combinatorial optimization
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on feasible (that is, containing integer points) polytopes. As it turns out, the
mere presence of integer points makes the task of constructing w-obstructing
polytopes much easier even if for understandable reasons they can not be
used in them per se. As an illustration, we give relatively easy lower bounds
on the integrality gaps for VERTEX COVER, MAX CUT and MAX
SAT by essentially reducing them to known results about rank.

In Section 6 we prove our trade-off result, Theorem 2.11. We use for the
purpose the same CNFs that were used in [Raz15] to prove a proportionally
strong trade-off between width and tree-like resolution proof size. The rea-
soning, though, is rather different: as an indicator, let us mention that we
were not able to combine the two results into one unifying statement (see
Section 8 for more details).

In Section 7 we prove technical lemmas left over from Section 4.
The paper is concluded with a brief discussion and some open problems

in Section 8.

2. Preliminaries

Having discussed at length connections with propositional proof complexity,
in the technical part of the paper we try to stick to the language of combi-
natorial optimization (that is, of polytopes and convex bodies) as much as
possible. Also, we confine ourselves to the case of 0-1 integer programming:
firstly, because this is the most interesting case, and, secondly, because most
our notions can be straightforwardly extended, if desired, to integer programs
over Z.

We let [n]
def
= {1, 2, . . . , n}. [n]w and [n]≤w stand for the family of all

subsets J of [n] that have cardinality w and ≤ w, respectively (many authors

denote these by
(

[n]
w

)
and

(
[n]
≤w

)
).

Let P ⊆ [0, 1]n be a convex body (most often, P will be a polytope but we
need this more general case to properly treat the Lovász-Schrijver hierarchy).
We denote by P0−1 ⊆ P the convex hull of all {0, 1}-points in P . With a
slight abuse of terminology, let us call P integral if P0−1 = P , feasible if
P0−1 6= ∅ (equivalently, P ∩ {0, 1}n 6= ∅) and unfeasible if P0−1 = ∅. For
x ∈ [0, 1]n, E(x) denotes the set {j ∈ [n] | 0 < xj < 1}. For J ⊆ [n], x is
J-integral if ∀j ∈ J(xj ∈ {0, 1}) or, equivalently, E(x) ∩ J = ∅.
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Definition 2.1 (Gomory-Chvátal cuts) If cTx ≤ d is a linear inequality
satisfied by all points in a convex body P , where c ∈ Zn and d ∈ R, then
the inequality cTx ≤ bdc is called a Gomory-Chvatál cut for P . The Chvátal
closure of P is the convex body that consists of all points satisfying every
Gomory-Chvatál cut for P ; it is denoted by P ′. This operation is clearly
monotone: if P ⊆ Q then P ′ ⊆ Q′.

Proposition 2.2 ([Chv73, Sch80]) If P is a polytope then P ′ is also a
polytope. Defining the decreasing chain

P
def
= P (0) ⊇ P (1) ⊇ . . . ⊇ P (r) ⊇ . . .

by letting P (`+1) def
=
(
P (`)

)′
, there exists an integer r ≥ 0 such that P (r) =

P0−1.

In the unfeasible case, it is easy to see that one can actually take r = n,
simply because cutting planes simulate resolution (see Fact 2.10 below). The
feasible case is way more complicated; the best known polynomial upper
bound

r ≤ n2(1 + log2 n) (2)

was proved by Eisenbrand and Shulz [ES03].

Definition 2.3 ([LS91]) A linear inequality cTx ≤ d is called an N+-cut
for P ⊆ [0, 1]n if the linear form d− cTx allows a representation of the form

d− cTx =∑n
j=1

{(
bj1 − aTj1x

)
xj +

(
bj0 − aTj0x

)
(1− xj) + λj(x

2
j − xj)

}
+
∑m
k=1 f

2
k ,

(3)

where the constraints aTjεx ≤ bjε (j ∈ [n], ε ∈ {0, 1}) are satisfied by all points
in P , λj are arbitrary reals and fk are arbitrary linear functions. N+(P ) is
the convex body comprised of all points that satisfy every N+-cut. This
operation is also monotone in P .

The analogue of Proposition 2.2 for the Lovász-Schrijver hierarchy is much
simpler even in the feasible case. Let the operator N(P ) be defined analo-
gously to N+(P ) except that in (3) we disallow the last term

∑m
k=1 f

2
k .

Proposition 2.4 ([LS91]) Defining recursively N0(P )
def
= P and N `+1(P )

def
=

N(N `(P )), for any convex body P ⊆ [0, 1]n we have Nn[P ] = P0−1.
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The main technical (and, in fact, universal) tool for proving lower bounds
for N+-based hierarchies are so-called protection lemmas. We will only need
the most basic one:

Proposition 2.5 ([GT01]) Let P ⊆ [0, 1]n be a convex body, and let x ∈ P .
For j ∈ [n] and ε ∈ {0, 1}, let x(j,ε) be obtained from x by resetting xj := ε.

Assume that for every j ∈ E(x) and every ε ∈ {0, 1}, x(j,ε) ∈ P . Then
x ∈ N+(P ).

Let us now gradually proceed to our framework. By a cut for P we will
sometimes collectively mean either a Gomory-Chvátal cut or an N+-cut. The
width of a cut cTx ≤ d is the number of non-zero entries in the vector c. For
w ≤ n, let P

′,w and N+,w(P ) be defined similarly to P ′ and N+(P ), except
that we restrict them to cuts of width ≤ w. Similarly to Propositions 2.2,
2.4, let us define hierarchies

P = P (0,w) ⊇ P (1,w) ⊇ . . . ⊇ P (r,w) ⊇ . . . (4)

P = N0
+,w(P ) ⊇ N ′+,w(P ) ⊇ . . . ⊇ N r

+,w(P ) ⊇ . . . (5)

by letting P (`+1,w) def
=

(
P (`,w)

)′,w
and N `+1

+,w
def
= N+,w(N `

+,w(P )). We might
have also considered the mixed hierarchy allowing both kinds of cuts. But
since our primary goal will be to study the minimum width w for which these
hierarchies converge or ”nearly converge”, it will turn out soon (Corollary
2.17) that with respect to this “limit” measure, N+-cuts are more powerful
than Gomory-Chvatál cuts. Thus, this mixed hierarchy converges to the
same body as (5). Note that this is in sharp contrast with rank complexity:
in that model, CP can not in general be simulated by LS+ [GHP02, Theorem
7.1], albeit it becomes possible after allowing degree 3 polynomials, at least
for cutting planes with bounded coefficients [GHP02, Section 5].

Speaking of convergence, it is not a priori clear that the hierarchies (4),
(5) converge even within countably many steps. That is, denoting

P (∞,w) def
=
⋂
r≥0

P (r,w) N∞+,w(P )
def
=
⋂
r≥0

N r
+,w(P ), (6)

it might not be immediately obvious that even P ′
(
P (∞,w)

)
= P (∞,w). There-

fore, our first order of busyness is to prove that these hierarchies actually
converge within finitely many steps; the proof will also give a very good in-
sight into what kind of techniques we need for lower bound results. We need
to introduce some standard notation first.
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Definition 2.6 (partial assignments) A partial 0-1 assignment ρ that,
depending on the context, will be often called a restriction, is a mapping

ρ : [n] −→ {0, 1, ∗}. We let sup(ρ)
def
= ρ−1({0, 1}) be the set of assigned

variables. Two equivalent convenient representations of a partial assignment
ρ are by the vector of its values (ρ1, . . . , ρn), ρi ∈ {0, 1, ∗}, and as a pair
(J, a), where J = sup(ρ) and a ∈ {0, 1}J . We will use these representations
interchangeably. Let Rn be the set of all partial assignments in n variables,
and let

Rn,w
def
= {(J, a) ∈ Rn | |J | ≤ w} .

Note the trivial bound
|Rn,w| ≤ (2n)w. (7)

Definition 2.7 (geometric projections) For an n-dimensional vector x
or a convex body P ⊆ [0, 1]n and J ⊆ [n], let xJ [PJ ] be the projection of x
[P , respectively] onto [0, 1]J . Note that

P ⊆ PJ × [0, 1][n]\J . (8)

We say that (J, a) ∈ Rn is consistent with P if a ∈ PJ . Equivalently,
(ρ1, . . . , ρn) is consistent with P if we can replace all stars in this vector with
(possibly non-integer!) values in [0, 1] so that we obtain a point in P . Since
both cut operations are monotone in P , (8) readily implies that they are
well-behaved with respect to geometric projections:

(P ′)J ⊆ (PJ)′ , N+(P )J ⊆ N+(PJ). (9)

Theorem 2.8 Let P ⊆ [0, 1]n be a convex body, w ≤ n, and let

P = Q(0) ⊇ Q(1) ⊇ . . . ⊇ Q(r) ⊇ . . . (10)

be one of the two hierarchies (4), (5). Then

Q(r) = Q(r+1) = Q(r+2] = . . . ,

where
r = (2n)w · w2(1 + log2w). (11)

Proof. Before presenting the formal argument, let is briefly explain some
intuition behind it (cf. the beginning of Section 8). We split a width ≤ w
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proof in either CP or LS+ into “rounds”, such that during every round we
proceed locally within every J with |J | ≤ w and reduce QJ to (QJ)0−1. At
the end of each round all local constraints are put together, and we basically
show that we either get stuck or make a progress by decreasing the number
of restrictions in Rn,w consistent with our polytope.

Let us now formalize this simple idea. Let R(r) be the set of all partial
assignments in Rn,w that are consistent with Q(r). This sequence of sets is
clearly non-increasing. Therefore, due to the bound (7), we only have to
show that if this sequence stays constant for sufficiently long:

R(r) = R(r+1) = . . . = R(s) = R(s+1), (12)

where s = r + w2(1 + log2w), then Q(s) = Q(s+1), that is, the hierarchy (10)
collapses at that moment. For that we will show (under the assumption (12))
the following explicit characterization of Q(s) in terms of Q(r):

Q(s) = Q(r) ∩
⋂
|J |≤w

((
Q

(r)
J

)
0−1
× [0, 1][n]\J

)
. (13)

Denote the convex body in the right-hand side of (13) by R.

(⊆ part). Q(s) ⊆ Q(r) is obvious. Let |J | ≤ w. Then Q(s) ⊆
(
Q

(r)
J

)
0−1
×

[0, 1][n]\J is equivalent to

Q
(s)
J ⊆

(
Q

(r)
J

)
0−1

. (14)

Let S
def
= Q

(r)
J , and build in [0, 1]J the hierarchy S = S(0) ⊇ S(1) . . . ⊇ S(t) . . .

either from Proposition 2.2 or 2.4, depending on the type of the hierarchy
(10). Then these propositions, along with the bound (2), imply that in either

case S(s−r) = S0−1 =
(
Q

(r)
J

)
0−1

. On the other hand, monotonicity properties

(9) imply (by induction on t = 0, 1, . . . , s − r) that Q
(r+t)
J ⊆ S(t). Plugging

in t := s− r, we complete the proof of (14).

(⊇ part). We prove by induction on t = r, r + 1, . . . , s that R ⊆ Q(t). The
base case t = r is obvious. Assume that r ≤ t ≤ s and R ⊆ Q(t). Let
cTx ≥ d be a cut for Q(t) (of an appropriate type) that has width ≤ w, and

let J be the set of non-zero positions in c. By definitions,
(
Q

(r)
J

)
0−1

is the

integer polytope in [0, 1]J spanned by precisely those a ∈ {0, 1}J for which
(J, a) ∈ R(r), which is the same as R(t+1) since t ≤ s. Since cTx ≥ d is a cut
for Q(t), this constraint holds for all points in Q(t+1). In particular, cTJ a ≥ d
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as long as (J, a) ∈ R(r)(= R(t+1)) which means that the constraint cTJx ≥ d

holds on
(
Q

(r)
J

)
0−1

. Since R ⊆
(
Q

(r)
J

)
0−1
× [0, 1][n]\J , cTx ≥ d must hold on

R. We have proved that R satisfies every cut of width ≤ w for Q(t), therefore
R ⊆ Q(t+1).

Once we have established (13), the rest is easy. We have that Q(s+1) ⊇
Q(s) = R. On the other hand, as we have just proved, R ⊆ Q(s+1). Hence
Q(s) = Q(s+1) = R.

The bound (11) is discouragingly different from the neat polynomial
bounds in Propositions 2.2 and 2.4. One might think that this is an artifact
of our proof method. The following theorem, however, says that in certain
cases the incremental reduction of the set of consistent partial assignments
is (roughly) the only way of arriving at a contradiction when doing cuts of
limited width. Given the general nature of this result, we formulate it now,
and for that we need to introduce some logical notation, long overdue.

Definition 2.9 (clauses and resolution) A literal is either a Boolean vari-
able x or its negation x̄. A clause is either a disjunction of literals in which
no variable appears along with its negation or 1. 0 is the empty clause. The
width w(C) of a clause C is defined as the number of literals appearing in it

(w(1)
def
= 0). For a clause C, we let PC ⊆ [0, 1]n be the polytope spanned by

all {0, 1}-points satisfying C. That is, if C = `1 ∨ . . . ∨ `w, PC is defined by
the single linear constraint

fC
def
=

w∑
i=1

`i ≥ 1, (15)

where the negated literal x̄ is interpreted as (1 − x). In particular, P0 = ∅,
and we also let P1

def
= [0, 1]n. We will sometimes use the uniform notation

xε
def
=

x if ε = 1

1− x if ε = 0.
(16)

A CNF τ is a conjunction of clauses. The width w(τ) of a CNF τ is the
maximum width of a clause appearing in it. A k-CNF is a CNF of width

≤ k. For τ = C1 ∧ . . .∧Cm, we let Pτ
def
=
⋂m
i=1 PCi . Note that, unlike PC , the

polytope Pτ is not necessarily integral.
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The resolution proof system operates with clauses, and it allows just one
resolution rule

C ∨ x D ∨ x̄
C ∨D

.

The width w(Π) of a resolution proof is the maximum width of a clause
in it. For a CNF τ and a clause C, let wR(τ ` C) denote the minimum
possible value of w(Π) taken over all resolution proofs Π of C from τ (we

let wR(τ ` C)
def
= ∞ if no such proof exists). Of particular interest is the

quantity wR(τ ` 0), that is the minimum possible width of a refutation of τ .

The following well-known fact states that resolution is weaker than both
cutting planes and Lovász-Schrijver proof systems.

Fact 2.10 For any two clauses C and D, fC∨D is both a Gomory-Chvatál
cut and an N+-cut for the polytope PC∨x ∩ PD∨x̄. In particular:

a) (PC∨x ∩ PD∨x̄)
′,w ⊆ PC∨D for any w ≥ w(C ∨D);

b) N+,w(PC∨x ∩ PD∨x̄) ⊆ PC∨D, again for any w ≥ w(C ∨D);

c) if τ is an unsatisfiable CNF and w ≥ wR(τ ` 0), then each of the
two hierarchies (4), (5) converges to the empty polytope.

Theorem 2.11 Let k = k(n) ≥ 12 be an integer parameter, and let ε > 0 be
an arbitrary constant. Then there exists a sequence of unsatisfiable k-CNF
{τn}, where n is the number of variables, such that wR(τn ` 0) ≤ O(k), but
for any w ≤ n1−ε/k, it requires nΩ(k) steps for either of the two hierarchies
(4), (5) to converge to the empty polytope.

This theorem exhibits a very peculiar behavior called in an earlier version
of [Raz15] an ultimate trade-off: in the width-restricted world even the most
straightforward, exponential size proofs may cease to exist, and the complex-
ity may jump up by an extra exponent. We refer the reader to [Raz15] for an
extended discussion of this phenomenon in general, and we prove Theorem
2.11 in Section 6.

Finally, we are ready to give our main definitions.

Definition 2.12 (width of semi-algebraic proof systems) For an un-
feasible polytope P ⊆ [0, 1]n, we let wCP (P ` ∅) [wLS+(P ` ∅)] be the
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minimum w for which P (∞,w) = ∅ [N+,w(P ) = ∅, respectively]. In other
words, this is the minimum w for which P can be ”refuted” using cuts of the
specified nature and of width ≤ w. For a CNF τ , we abbreviate wCP (Pτ ` 0)
to wCP (τ ` 0) and wLS+(τ ` 0), respectively. Note that Fact 2.10c) implies
that wCP (τ ` 0) ≤ wR(τ ` 0) and wLS+(τ ` 0) ≤ wR(τ ` 0). A conclusive
separation between wR and wCP , wLS+ is provided by Example 1.

Definition 2.13 (integrality gaps) Let P ⊆ [0, 1]n be a feasible polytope
and g : [0, 1]n −→ R is a continuous goal function viewed as a minimization
problem. We define the integrality gap with respect to cuts of width ≤ w as

IGapLS+(P, g, w)
def
=

min
{
g(x)

∣∣∣ x ∈ N (∞)
+,w (P )

}
min {g(x) | x ∈ P0−1}

.

The definition of IGapmax
LS+(P, g, w) for maximization problems g or for CP

in place of LS+ is analogous.

An universal method for proving lower bounds on the width of semi-
algebraic proofs/algorithms is almost immediate from definitions and the
proof of Theorem 2.8.

Definition 2.14 A non-empty polytope P ⊆ [0, 1]n is w-obstructing for CP
[LS+] if any Gomory-Chvatál cut [any N+-cut, respectively] for P of width
≤ w is satisfied by P itself.

Lemma 2.15 Let P be either CP or LS+.

a) For an unfeasible polytope P , wP(P ` ∅) ≤ w if and only if P does
not contain any w-obstructing polytope for P.

b) For a feasible polytope P , IGapP(P, g, w) < α if and only if P does
not contain any w-obstructing polytope Q for P with minx∈Q g(x) ≥
αminx∈P g(x).

Proof. By Theorem 2.8, the hierarchies (4) and (5) converge to w-obstructing
bodies with required properties within finitely many steps, and we only
have to prove that N∞+,w(P ) is actually a polytope (for P (∞,w) it is obvi-
ous, and equally obvious is the opposite direction in Lemma 2.15). Denote
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Q
def
= N∞+,w(P ). Then the fact that Q is a polytope readily follows from the

following representation:

Q =
⋂
|J |≤w

(QJ)0−1 × [0, 1][n]\J .

To prove this, note that Q ⊆ (QJ)0−1 × [0, 1][n]\J for |J | ≤ w simply because
QJ is integral (otherwise we would have had non-trivial N+-cuts supported
on J). For the ⊇-part we once more utilize the identity (13), where this time
we choose r so large that Q(r) = Q(s) = Q.

In the case of cutting planes w-obstructing polytopes have a very clean
geometric meaning:

Fact 2.16 P ⊆ [0, 1]n is w-obstructing for CP if and only if PJ is integral
for any J with |J | ≤ w.

Proof. By Proposition 2.4, any non-integral polytope has at least one
non-trivial Gomory-Chvatál cut.

This fact reflects the local nature of Gomory-Chvatál cuts, and for that
reason w-obstructing polytopes for CP will be sometimes called w-integral
polytopes.

For the purposes of the following corollary, wCP+LS+(P ` ∅) and IGapCP+LS+(P, g, w)
are defined naturally, with respect to the mixed hierarchy combining both
kinds of cuts.

Corollary 2.17 a) wLS+(P ` ∅) = wCP+LS+(P ` ∅) ≤ wCP (P ` ∅).

b) For integrality gaps, we similarly have IGapLS+(P, g, w) = IGapCP+LS+(P, g, w) ≤
IGapCP (P, g, w).

Proof. By Proposition 2.4, every w-obstructing polytope P for LS+ must
be also w-integral, that is PJ must be integral for any J with |J | ≤ w. Hence,
by Fact 2.16, P is also a w-obstructing polytope for CP . Now we only have
to apply Lemma 2.15.

Like in any lower bound game, Lemma 2.15 in itself is totally useless
due to its universal nature. What we need are constructive methods for
establishing that concrete polytopes are w-obstructing. This makes for most
of the content of the next three sections.
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3. A general construction of w-obstructing poly-

topes

The general recipe for obtaining w-obstructing polytopes is suggested by the
proof of Theorem 2.8, and in particular by (13).

Definition 3.1 For a polytope P ⊆ [0, 1]n and J ⊆ [n], let us define

P [J ]
def
= (PJ)0−1 × [0, 1]n\J . (17)

Let ∆ ⊆ P([n]) be a non-empty family of subsets of [n] which is downward
closed, that is ∀J, J ′ ⊆ [n](J ⊆ J ′ ∧ J ′ ∈ ∆ =⇒ J ∈ ∆). Then we define

P [∆]
def
= P ∩

⋂
J∈∆

P [J ].

Example 2 (downward closed sets) The most natural downward closed
sets is [n]≤` for an integer ` ≤ n. It will be used in Section 4.1. For a graph
G and an integer `, let ∆G,` ⊆ P(E(G)) be the family of all sets of edges
E ⊆ E(G) that can be covered by at most ` vertices. This family will be
used in Section 4.2.

We are going to prove that under certain conditions on ∆, the polytope
P [∆] is w-obstructing. It might be tempting to assume that P [[n]≤w] itself
has this property, but unfortunately this is not the case in all interesting
cases: the obstruction property is rather subtle and unstable. The remedy is
traditional for proof complexity and consists in replacing [n]≤w with a larger
family ∆ that has nice “closure properties”.

Before proceeding to the corresponding statement (Theorem 3.4), we need
one more simple observation essentially stating that the definitions given in
the previous section behave well with respect to restrictions. We formulate
this property in a slightly more general context known in complexity theory
as (propositional) projections that we will need in Section 7.3.

Definition 3.2 (propositional projections) A (propositional) projection
is a mapping π from the set {x1, . . . , xn} of original propositional variables
to a set consisting of Boolean constants 0,1 and literals. Projections act
naturally on clauses, CNFs etc.; let in particular τ |π be the CNF obtained
from τ by applying the projection π.
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Any projection π : {x1, . . . , xn} −→ {0, 1, x1, x̄1, . . . , xn′ , x̄n′} defines the

dual mapping π] : [0, 1]n
′ −→ [0, 1]n. For a polytope P ⊆ [0, 1]n, let P |π def

=
(π])−1(P ). This operation is well-behaved:

P |τ |π = (Pτ )|π for any CNF τ, (P |π)′ ⊆ (P ′)|π, N+ (P |π) ⊆ N+(P )|π (18)

(the two latter containments readily follow from the fact that propositional
projections also naturally act on cuts) etc.

For J ⊆ [n] and a projection π as above, let

π(J)
def
= {j′ ∈ [n′] | ∃j ∈ J(π(xj) ∈ {xj′ , x̄j′})} .

For a downward closed family ∆ ⊆ P([n]), let

π(∆)
def
= {π(J) | J ∈ ∆} .

Restrictions can be viewed as a special kind of projections assigning every
variable to either a Boolean constant or to itself. For a restriction ρ = (J, a),
the general definitions given above simplify to:

P |ρ =
{
y ∈ [0, 1][n]\J | (a, y) ∈ P

}
and

ρ(∆) = {J \ sup(ρ) | J ∈ ∆} .

Lemma 3.3 For any non-empty ∆ and a propositional projection π, we have

P |π[π(∆)] ⊆ P [∆]|π.

Proof. Assume that y ∈ P |π[π(∆)]; we need to show that π](y) ∈ P [∆].
First, π](y) ∈ P simply because y ∈ P |π, hence we only need to prove that
π](y) ∈ P [J ] for any J ∈ ∆. Fix any such J . Then, since π(J) ∈ π(∆), we
know that y ∈ P |π[π(J)]. This means that there exist π(J)-integral points
z1, . . . , z` ∈ P |π such that y|π(J) is in the convex hull of z1|π(J), . . . , z`|π(J).
But for every j ∈ J , π(xj) is either a constant 0,1 or a literal of a variable xj′
such that j′ ∈ π(J). Hence π](y)J is in the convex hull of π](z1)J , . . . , π

](z`)J ,
and these latter points are integral points in PJ . This implies π](y) ∈ P [J ].

In the following theorem we could in principle let ∆ be equal to the
download closure of J . But that would be contrary to the spirit of its
applications in which ∆ is a natural and clean object, and J is constructed
ad hoc with the only purpose to make this ∆ work.
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Theorem 3.4 Let P ⊆ [0, 1]n be a non-empty polytope, w ≤ n, and let ∆ be
a downward closed family of subsets of [n]. Assume that there exists J ⊆ ∆
such that ∅ ∈ J and the following holds.

a) For every J ∈ [n]≤w there exists Ĵ ∈ J such that Ĵ ⊇ J (or, in other
words, the downward closure of J contains [n]≤w).

b) For every restriction ρ = (J, a) with J ∈ J that is consistent with
P , the polytope P |ρ[ρ(∆)] is non-empty.

Then P [∆] is w-integral, which in particular implies wCP (P ` ∅) > w.
If, moreover, in b) the conclusion can be strengthened to N+ (P |ρ[ρ(∆)]) 6=

∅, then P [∆] is w-obstructing for LS+.

Proof. We first note that P [∆] 6= ∅. Indeed, since P 6= ∅, the empty
restriction is consistent with it, and since ∅ ∈ J , we can apply b).

As for the rest, let us start with the case of cutting planes as it is a
bit simpler. Due to assumption a) and the fact that the integrality of a
polytope is preserved under projections, it is sufficient to prove that for every
J ∈ J , the polytope P [∆]J is integral. Fix J ∈ J ; we claim that in fact
P [∆]J = (PJ)0−1.

The inclusion P [∆]J ⊆ (PJ)0−1 immediately follows form (17) since P [∆] ⊆
P [J ]. For the opposite direction, let a ∈ {0, 1}J be a vertex of the polytope

(PJ)0−1. This means that ρ
def
= (J, a) is consistent with P . By assumption

b), P |ρ[ρ(∆)] 6= ∅. Lemma 3.3 then implies that P [∆]|ρ 6= ∅, that is precisely
a ∈ P [∆]J .

Assume now that in b) we have the stronger assumption N+ (P |ρ[ρ(∆)]) 6=
∅, and let cTx ≥ d be an N+-cut for P [∆] of width ≤ w. Let J ∈ J
be a set containing all non-zero coordinates in c that exists due to the as-
sumption a). We need to show that cTx ≥ d holds on P [∆], and since, as
we have just proved, P [∆]J = (PJ)0−1, it suffices to show that cTJ a ≥ d
for every a ∈ {0, 1}J such that ρ = (J, a) is consistent with P . From
N+(P |ρ[ρ(∆)]) 6= ∅ we conclude, by Lemma 3.3 and monotonicity of the
operator N+ that N+(P [∆]|ρ) 6= ∅. Since {a}×P [∆]|ρ ⊆ P [∆], we also have
{a} ×N+(P [∆]|ρ) ⊆ N+(P [∆]). Hence cTx ≥ d holds on {a} ×N+(P [∆]|ρ),
and since this polytope is non-empty, we conclude cTJ a ≥ d.
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4. Concrete lower bounds: unfeasible case

In this section we give several applications of Theorem 3.4 in the context
of proof complexity, i.e., lower bounds on wCP (τn ` 0) or wLS+(τn ` 0) for
unsatisfiable CNFs τn. In all our examples, τn will have constant width: even
if it is formally not stipulated by our definitions, we find the case when the
original polytope can not be even expressed in our proof system way less
natural and interesting.

In order to preserve momentum and highlight the main ideas, we present
our arguments in a distinctly modular way. As a part of this effort, we defer
to Section 7 the proofs of most context-specific lemmas, particularly since
some of them are rather tedious.

4.1. Systems of linear equations and random CNFs

Let A be a m× n 0-1 matrix, and let b ∈ {0, 1}m. For i ∈ [m] we let

Ji(A)
def
= {j ∈ [n] | aij = 1} .

For J ⊆ [n], XJ is the set of the corresponding propositional variables:

XJ
def
= {xj | j ∈ J }; let also Xi(A)

def
= XJi(A) and

⊕
Xi(A)

def
=
⊕

j∈Ji(A) xj.
For any row i ∈ [m] of the matrix A we introduce the corresponding linear
equation over the field F2: ⊕

Xi(A) = bi, (19)

and we let τ(A, b) be the CNF obtained from this F2-linear system AX = b
by expanding all equations as CNFs in the straightforward way. Our goal
is to prove a lower bound on wLS+(τ(A, b) ` 0) when A has relatively mild
expansion properties. Let us recall some necessary definitions.

Definition 4.1 For a set I ⊆ [m] of rows in the matrix A, we define its
boundary ∂A(I) as the set of all j ∈ [n] for which there exists a unique i ∈ I
with aij = 1. For r ≥ 1 we say that A is an (r, s, c)-boundary expander4 if
|Ji(A)| ≤ s for all i ∈ [m] and

∀I ⊆ [m](|I| ≤ r =⇒ |∂A(I)| ≥ c · |I|).
4In [ABRW04] such matrices were called simply expanders
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Whenever the upper bound on the size of Ji(A) is unimportant, (r,∞, c)-
boundary expanders will be simply called (r, c)-boundary expanders.

For a set of columns J ⊆ [n] let

Ker(J)
def
= {i ∈ [m] | Ji(A) ⊆ J }

be the set of rows completely contained in J . Let A \ J be the sub-matrix of
A obtained by removing all columns in J and all rows in Ker(J).

Random matrices have very good expansion properties, and statements
to that effect tailored to different ranges of parameters are abundant in the
literature. We will utilize [AR03, Lemma 4.1] that, in turn, was with minor
modifications adopted from [CS88].

Proposition 4.2 Assume that k ≥ 3 is a fixed integer constant, 0 < c <
k − 2 is a real constant and d = d(n) is an integer parameter satisfying

d ≤ o
(
n(k−c−2)/2

)
. Then a random (dn × n) matrix A in which every

row Ji(A) is picked from [n]k independently and uniform at random is an(
Ω
(

n
d2/(k−c−2)

)
, k, c

)
-expander with probability 1− o(1).

We can now state the main result of this section.

Theorem 4.3 Assume that c > 0 is an arbitrary fixed constant, and that
A is an (r, s, c)-boundary expander. Then for any b ∈ {0, 1}m we have
wLS+(τ(A, b) ` 0) ≥ Ω(r/s).

Before proving this theorem we need two auxiliary facts. The first one is
also omnipresent (in different forms) in the proof complexity literature.

Lemma 4.4 Let A be an m × n (r, s, c)-boundary expander, and let c′ < c.
Then for every J ⊆ [n] with |J | ≤ r

2
(c−c′) there exists Ĵ ⊇ J such that A\J

is an (r/2, c′)-boundary expander,
∣∣∣Ker

(
Ĵ
)∣∣∣ ≤ |J |

c−c′ and

∣∣∣Ĵ ∣∣∣ ≤ |J |(1 +
s

c− c′
)
. (20)

The proof is deferred to Section 7.1.

Lemma 4.5 Let A be an m×n (r, s, c)-boundary expander, where r ≥ 2 and
rc ≥ 2(s+ 1), and let

`
def
= brc

2
c − s− 1.

19



Then for any b ∈ {0, 1}m we have N+

(
Pτ(A,b)[[n]≤`]

)
6= ∅.

For the proof see Section 7.3.

Proof of Theorem 4.3. We abbreviate Pτ(A,b) to PA,b. Thus, PA,b =⋂m
i=1 Pi, where Pi is the polytope determined by the ith equation in (19) (the

polytopes Pi happen to be integral, but we will not need this fact in what
follows). These polytopes behave extremely well with respect to restrictions.
Namely, let us call a restriction ρ weakly consistent with the system (19) if
it does not reduce any of its equations to 1=0 (it is allowed to reduce them
to 0=0). Otherwise, it is strongly inconsistent.

Fact 4.6 If ρ is strongly inconsistent with the system Ax = b, then (PA,b)|ρ =
∅. Otherwise, if, say, ρ = (J, a), then (PA,b)|ρ = PA\J,b′ (that still may turn
out to be empty), where b′ ∈ {0, 1}[m]\Ker(J) is a vector naturally determined
by ρ.

Let us now proceed to the actual proof. We can assume w.l.o.g. that

r ≥ max
(

4,
20s

c

)
as otherwise the bound becomes trivial. Let

w
def
= min

{
rc

4
,
(
rc

8
− s− 1

)(
1 +

2s

c

)−1
}
,

and note that w ≥ Ω(r/s). We will prove that wLS+(PA,b ` 0) ≥ w. For that
purpose we are going to apply Theorem 3.4 with ∆ := [n]≤`, where

`
def
= w

(
1 +

2s

c

)
≤ O(ws).

We have to design the family J . Let us call a set of columns J closed if
A \ J is an (r/2, c/2)-boundary expander. Since

` ≤ rc

8
− s− 1 (21)

due to our choice of w, Lemma 4.4 with c′ := c/2 implies (note that w ≤ rc/4)
that every J with |J | ≤ w is contained in a closed set Ĵ of cardinality ≤ `. We
let J be the family of all such closed Ĵ . It remains to check the assumption
b) in the statement of Theorem 3.4 in its stronger form, i.e., for N+-cuts.
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Let J ∈ J , i.e., J is a closed set with |J | ≤ `, and let ρ = (J, a) be
consistent with PA,b. We need to prove that

N+

(
(PA,b)|ρ

[
ρ
(
[n]≤`

)])
6= ∅. (22)

But by Fact 4.6, (PA,b)|ρ = PA′,b′ , where A′
def
= A\J is an (r/2, c/2)-boundary

expander since J is closed. Note also that ρ
(
[n]≤`

)
= {J ′ ⊆ [n] \ J | |J ′| ≤ `}.

Hence (22) immediately follows from Lemma 4.5 applied to A := A′, r :=
r/2, c := c/2 using the bound (21). This completes the proof of Theorem
4.3

From Theorem 4.3 we can now derive the “traditional” set of corollaries.

Definition 4.7 A random 3-CNF with n variables and m clauses [a random
3-XOR formula with n variables and m equations] is obtained by picking in-
dependently and uniformly at random, with repetitions, m clauses [m affine
constraints over F2] from the set of all clauses of width 3 [all F2-affine con-
straints with 3 variables, respectively].

Theorem 4.8 Let h, ε > 0 be arbitrary constants, and let AX = b be a
random 3-XOR formula with n variables and n1+h equations. Then

wLS+(τ(A, b) ` 0) ≥ Ω(n1−2h−ε)

with probability 1− o(1).

Proof. Set k := 3, d := nh and c := ε
2h+ε

in Proposition 4.2. We can
assume w.l.o.g. that 2h+ ε < 1 since otherwise the bound is trivial. Then A
is an

(
Ω
(
n1−2h−ε

)
, 3, c

)
-boundary expander with probability 1− o(1). Now

we apply Theorem 4.3.

Theorem 4.9 Let h, ε > 0 be arbitrary constants, and let τ be a random
3-CNF with n variables and n1+h equations. Then

wLS+(τ ` 0) ≥ Ω(n1−2h−ε)

with probability 1− o(1).

Proof. Immediately follows from the previous theorem and the observation
that τ is a sub-CNF of τ(A, b), where A is the incidence matrix between
clauses and variables of τ , for an appropriate choice of b ∈ {0, 1}m.
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Definition 4.10 (Tseitin tautologies) Let G be a connected undirected
graph, and let σ : V (G) −→ {0, 1} be a function such that

⊕
v∈V (G) σ(v) = 1.

The Tseitin tautology T (G, σ) is defined as the unsatisfiable CNF in the
variables (xe | e ∈ E(G)) resulting from the system{⊕

e3v
xe = σ(v) | v ∈ V (G)

}
(23)

of F2-linear equations.

Definition 4.11 (edge cuts and edge expansion) For a graph G and a
set of vertices S ⊆ V (G), δ(S) is its edge cut defined as the set of edges
between S and its complement V (G) \ S. The graph G has edge expansion

≥ c if for every set S of vertices with |S| ≤ |V (G)|
2

, it holds that |δ(S)| ≥ c·|S|.

It is well known since [Pin73] that for d ≥ 3 random d-regular graphs
have edge expansion ≥ c with probability 1−o(1), where c > 0 is an absolute
constant.

Theorem 4.12 Let c > 0 be an arbitrary constant. Then for every constant-
degree graph G with n vertices and edge expansion ≥ c we have

wLS+(T (G, σ) ` 0) ≥ Ω(n).

Proof. Let m = |E(G)| and A be the n ×m (!) matrix corresponding to
the system (23), that is the transpose of the incidence matrix of the graph
G. Then the assumption on the edge expansion of G translates to the fact
that A is an (n/2,∆(G), c)-boundary expander, where ∆(G) is the maximum
degree of G. The result now immediately follows from Theorem 4.3.

4.2. Perfect matching principle

Matching and perfect matching polytopes, as well as their variations, are
among the most widely studied polytopes in combinatorial optimization, be-
ginning with the pioneering work by Edmonds [Edm65]. Remarkably (but
not surprisingly) these also were the first polytopes on which the cutting
plane method was demonstrated [Chv73]. In this section we apply Theorem
3.4 to obtain lower bounds on the width of cutting planes refutations of per-
fect matching principles for bounded-degree graphs. On the high level, the
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argument is similar to the one used in Section 4.1 and relies on a suitable
notion of a closed set of vertices (Definition 4.18) below. However, proofs of
essential lemmas in this section use ideas that are rather different from the
proof of Lemma 4.5; we defer further discussion to Section 7.3 in which both
will be presented, and to the concluding section 8.

Throughout the section G = (V (G), E(G)) will stand for a simple undi-
rected graph. We will work in the real space RE(G) (most of the time in the
cube [0, 1]E(G)); the corresponding variables will be denoted by xe (e ∈ E(G)).

For a set of edges E ⊆ E(G), x(E)
def
=
∑
e∈E xe. Recall (Definition 4.11) that

for a set of vertices S, δ(S) is the edge cut defined by S; we abbreviate
δ({v}) to δ(v). E(S) is the set of edges that have both endpoints in S; let

also N(S)
def
= E(S)

.
∪ δ(S) be the (edge) neighbourhood of S.

The fractional perfect matching polytope FPM(G) ⊆ [0, 1]E(G) is deter-
mined by the set of constraints xe ≥ 0 (e ∈ E(G)) and x(δ(v)) = 1 (v ∈
V (G)) [LP09]. 0-1 points in FPM(G) are precisely [characteristic functions
of] perfect matchings in G; thus FPM(G)0−1 = PM(G), where PM(G) is
the perfect imatching polytope. By the celebrated results due to Edmonds,
PM(G) is determined within FPM(G) by the set of additional constraints

x(E(S)) ≤ b|E|
2
c (S ⊆ V (G)).

These polytopes coincide when G is bipartite but in general they can be
different. In this section we essentially show that they can be quite different
as long as sublinear-width cutting planes procedures are concerned. More
exactly, our goal is to prove a linear lower bound on wCP (FPM(G) ` 0)
for constant-degree random graphs G. For the sake of completeness, let us
remind the uniform model that is a very handy way of generating such graphs
(see e.g. [Bol85, Wor99]).

Definition 4.13 (random graphs) Let dn be even. Consider a set V of dn
vertices partitioned into n cells V1, . . . , Vn, of d vertices each. Pick uniformly
at random a perfect matching Pn,d on V1

.
∪ . . .

.
∪ Vn and make an undirected

graph on [n] out of it by mapping every (v, w) ∈ Pn,d with v ∈ Vi and
w ∈ Vj to (i, j). The result G(Pn,d) of this operation is not necessarily
simple, but for any fixed d and n → ∞ it is simple with probability Ω(1)
[Wor99, Section 2.2]. Gn,d is the distribution resulted from conditioning by
the event “G(Pn,d) is simple”. The importance of this model stems from
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the fact that this distribution is actually uniform on the set of all labelled
d-regular graphs on n vertices, and we let Gn,d be the random variable
sampling from it.

Our main result in this section is the following theorem.

Theorem 4.14 Let d ≥ 14 be any fixed constant, and let n → ∞. Then
with probability 1− o(1) we have

wCP (FPM(Gn,d) ` ∅) ≥ Ω(n).

Note that if n→∞ is even, then for any fixed d Gn,d contains a perfect
matching with probability 1−o(1) [Bol85], and Theorem 4.14 holds for trivial
reasons. Thus we may assume w.l.o.g. that n is odd (and hence d must be
even). Also, the combinatorics can be simplified a bit if we compromise
on the exact value of d. But since one of our primary goals is to develop
techniques that can be potentially used elsewhere, we prefer to (reasonably)
optimize on it instead.

We begin the proof of Theorem 4.14 with distilling combinatorial prop-
erties of Gn,d that are needed for it.

Let us say that a graph G is (`, ε)-sparse if for every set of vertices U with
|U | ≤ ` we have |E(U)| ≤ (1 + ε)|U |. Clearly, this property is hereditary,
that is any (not necessarily induced) subgraph of an (`, ε)-sparse graph is
also (`, ε)-sparse.

Lemma 4.15 For every integer constant d > 0 and any ε > 0 there exists
b > 05 such that Gn,d is (bn, ε)-sparse with probability 1− o(1).

Lemma 4.15 implies that Gn,d may have only a few short cycles and that
it is an extremely good edge expander for r ≤ bn, where b is a tiny constant.
For our argument, however, we need to eliminate all such cycles whatsoever
and be sure that the graph has extremely good vertex expansion properties
that hold up to much larger values of r. We will combine all three goals into
one lemma, but before stating it we need to recall a few more key concepts
from graph theory.

Definition 4.16 (graph trivia) The girth g(G) of a graph G is the length
of the shortest cycle in it. ∆(G) is the maximum degree of a vertex v ∈ V (G).

5One can actually take b ∼ d−O(1/ε)
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A subgraph G′ of G is spanning if V (G′) = V (G). G − U is the subgraph
induced by the set of vertices V (G) \ U ; its edge set is E(V (G) \ U).

The (vertex) neighborhood ∂G(S) of a vertex set S ⊆ V (G) (that will be
denoted simply by ∂(S) whenever G is clear from the context) is the set of
vertices in V (G) \ S connected to at least one vertex in S. Equivalently,
∂G(S) is the set of all v 6∈ S that are endpoints of edges in δ(S). G is
an (r, c)-(vertex)expander if for any set of vertices S with |S| ≤ r we have
|∂(S)| ≥ c · |S|. Thus, the case r = n/2 corresponds to ordinary vertex
expansion.

Lemma 4.17 Let d ≥ 14 and g ≥ 0 be arbitrary integer constants. Then
with probability 1 − o(1) as n → ∞, Gn,d contains a spanning subgraph G
with g(G) ≥ g that is an (0.203n, 5/2)-vertex expander.

The most tedious part here is the bound on expansion. The reader inter-
ested in a stand-alone statement that in particular implies this bound should
consult Theorem 7.2.

Lemmas 4.15 and 4.17 will be proved in Section 7.2.

Definition 4.18 A subset S ⊆ V (G) is (r, c)-closed if for any D ⊆ ∂(S),
G− (S ∪D) is an (r, c)-expander.

The following is somewhat analogous to Lemma 4.4.

Lemma 4.19 Let G be an (r, c)-vertex expander, and let c′ < c, r′ < r.
Then for every U ⊆ V (G) with

|U | ≤ (r − r′)(c− c′)
∆(G)

(24)

there exists an (r′, c′)-closed set S ⊇ U with

|S| ≤ ∆(G)

c− c′
|U |.

The proof of Lemma 4.19 will be given in Section 7.1.

Recall from Example 2 that ∆G,` ⊆ P(E(G)) is the downward closed
family consisting of all edge sets E ⊆ E(G) such that E ⊆ N(U) for some U
with |U | ≤ `. We need an analogue of Lemma 4.5 to prove that under certain
conditions the polytopes FPM(G)[∆G,`] are non-empty. We again present
this proof (that is crucial for the entire argument) in the modular fashion
and find a point in this polytope via several more or less independent steps.
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Lemma 4.20 Let a, c be constants such that c > 2 and ac > 1/2. Then
there exists ε > 0 such that for sufficiently large n and for any (an, c)-vertex
expander G the polytope FPM(G) contains a point x with ||x||∞ ≤ 1−ε

2
.

In particular, FPM(G) 6= ∅.

The proof of Lemma 4.20 will be given in Section 7.3.
Next, we are going to show that for a “nice” graph G, every point

x ∈ FPM(G) with ||x||∞ ≤ 1−ε
2

actually belongs to FPM(G)[∆G,`] for
an appropriately chosen `. As an intermediate step in this proof we need to
introduce an auxiliary polytope nicely interpolating between matching and
perfect matching polytopes.

Definition 4.21 (S-matching polytopes) For S ⊆ V (G), a matching in
G is an S-matching if it covers all vertices in S (and possibly some other
vertices). Let MS(G) be the integral polytope spanned by S-matchings (here
and in what follows we identify matchings with their characteristic functions).

Thus, the matching polytope M(G) is simply M∅(G), and the perfect
matching polytope PM(G) is MV (G)(G). The dual description of the poly-
tope MS(G) is almost immediate from Edmond’s theorem:

Lemma 4.22 The polytope MS(G) is determined by the following set of con-
straints:

a) xe ≥ 0 (e ∈ E(G));

b) x(δ(v)) ≤ 1 (v ∈ V (G)) and, moreover, x(δ(v)) = 1 if v ∈ S;

c) x(E(U)) ≤ b |U |
2
c (U ⊆ V (G)).

Proof. Every S-matching clearly satisfies all these constraints, hence one
direction is obvious. In the opposite direction, assume that x ∈ [0, 1]E(G)

satisfies constraints a)-c). As this set contains Edmond’s original constraints,
x ∈M(G) (= M∅(G)). Hence x =

∑
i ciyi where ci ≥ 0,

∑
i ci = 1 and yi are

matchings. But
∑
v∈S x(δ(v)) = |S|, and for every i we have

∑
v∈S yi(δ(v)) ≤

|S|, with the equality taking place if and only if yi is an S-matching. Hence
all yis are actually S-matchings and x ∈MS(G) follows.

For our purposes we are more interested in the projection of this polytope
onto N(S).
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Lemma 4.23 The polytope MS(G)N(S) is determined by the following set of
constraints:

a) xe ≥ 0 (e ∈ N(S));

b) x(δ(v)) = 1 (v ∈ S) and x(δ(v) ∩N(S)) ≤ 1 (v ∈ ∂(S));

c) x(E(U) ∩N(S)) ≤ b |U |
2
c (U ⊆ S ∪ ∂(S)).

Proof. In one direction it is again obvious. In the opposite direction,
let x ∈ [0, 1]N(S) satisfies all these constraints. Extend x to x̂ ∈ [0, 1]E(G)

by zeros. Then this vector satisfies all constraints in Lemma 4.22 (for the
constraint c) note that x̂(E(U)) = x(E(U ∩ (S ∪ ∂(S))) ∩N(S)) for any set
U). Hence x̂ ∈MS(G) and thus x ∈MS(G)N(S).

Now, Lemma 4.23 will allow us to place the (projection of the) point x
guaranteed by Lemma 4.20 into the (projection of the) polytope MS(G).

Lemma 4.24 Assume that G is an (r, ε)-sparse graph with g(G) ≥ ε−2.
Then for every S ⊆ V (G) with |S| ≤ r

∆(G)+1
and x ∈ FPM(G) with ||x||∞ ≤

1−ε
2

we have
xN(S) ∈MS(G)N(S).

Proof. xN(S) obviously satisfies constraints a), b) in Lemma 4.23. In order
to check c), fix U ⊆ S ∪ ∂(S). Note first that |U | ≤ |S|(∆(G) + 1) ≤ r.
Also, xN(S)(E(U) ∩ N(S)) ≤ x(E(U)). Now, if |U | < ε−2 then G|U is a

forest (since g(G) ≥ ε−2), hence it is bipartite and x(E(U)) ≤ b |U |
2
c follows

simply because b |U |
2
c is an upper bound on the size of at least one of its two

parts. On the other hand, if |U | ≥ ε−2, we apply the sparsity condition and
conclude that

x(E(U)) ≤ 1− ε
2
|E(U)| ≤ 1− ε2

2
· |U | ≤ |U | − 1

2
≤ b|U |

2
c.

The polytope MS(G)N(S) may in general be larger than the polytope
(FPM(G)N(S))0−1 we are interested in (see Definition 3.1). Roughly speak-
ing, the former is generated by all S-matchings while the latter is generated
only by those S-matchings that are extendable to a point in FPM(G). How-
ever, they happen to coincide when S is closed in the sense of Definition 4.18,
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and it turns out to be good enough for our purposes. Moreover, we will also
be able to re-use Lemma 4.20 for this concluding step (even if it is a bit of
an overkill here) rather than prove a separate statement to that effect.

Having thus postponed to Section 7 all real work that, for the record,
consists of Lemmas 4.15, 4.17, 4.19, 4.20, we can comfortably finish the
proof.

Proof of Theorem 4.3. Pick up some constants a′ < a < 0.203 and
c′ < c < 5/2 such that a′c′ > 1/2 (that in particular implies c′ > 2). Let
ε > 0 be the constant guaranteed by Lemma 4.20 (note that ac > a′c′ > 1/2
and c > c′ > 2). Pick b > 0 according to Lemma 4.15 so that Gn,d is
(bn, ε)-sparse with probability 1− o(1). Let

L
def
=

bn

d+ 1

`
def
= min

{
(a− a′)(c− c′)

d
n,

c− c′

d
L

}

w
def
= min

{
(0.203− a)(5/2− c)

d
n,

5/2− c
d

`

}
. (25)

Note that L.`, w ≥ Ω(n), and we are going to prove that with probability
1− o(1) we have

wCP (FPM(Gn,d) ` ∅) ≥ w. (26)

By Lemma 4.17, it is sufficient to prove (26) for any graph G that has the
following set of properties:

1. ∆(G) ≤ d;

2. g(G) ≥ ε−2;

3. G is (bn, ε)-sparse;

4. G is an (0.203n, 5/2)-vertex expander.

Fix any such graph G and note for the record that the first three properties
here are hereditary and hence holds for an arbitrary subgraph of G.

To prove the bound (26) for the graph G, we will show that the polytope
FPM(G)[∆G,`] is w-integral, and as in the previous section we are going to
apply Theorem 3.4. This time J ⊆ ∆G,` will consist of all sets of edges
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that are of the form N(S), where S is (an, c)-closed (see Definition 4.18) and
|S| ≤ `. Then property a) in the statement of Theorem 3.4 follows from
Lemma 4.19. Namely, given a set of edges E with |E| ≤ w, pick an arbitrary
set of vertices U with |U | ≤ w such that E ⊆ N(U). Apply Lemma 4.19 with
r := 0.203n, c := 5/2, r′ := an, c′ := c; (24) is guaranteed by the first term
in (25). This gives us the desired set S ⊇ U of cardinality at most d

5/2−cw

which is ≤ ` by the second term in (25).

Let us now check the second condition b) in Theorem 3.4. Fix an (an, c)-
closed S and a restriction ρ with sup(ρ) = N(S) that is consistent with
FPM(G). The latter condition in particular implies that ρ−1(1) is an S-
matching, and the polytope FPM(G)|ρ is isomorphic to FPM(G′) for G′ =
G−(S∪D), where D is the set of vertices in ∂(S) covered by this S-matching.
Moreover, ρ(∆G,`) ⊆ ∆G′,`. By Definition 4.18, G′ is an (an, c)-expander, and
G′ inherits from G the three hereditary properties above. We are left to show
that

FPM(G′)[∆G′,`] 6= ∅. (27)

By Lemma 4.20, FPM(G′) contains a point x with ||x||∞ ≤ 1−ε
2

. We
claim that in fact x ∈ FPM(G′)[∆G′,`]. Indeed, by Definition 3.1 we have to
prove that x ∈ FPM(G′)[N(U)] for any U ⊆ V (G′) with |U | ≤ `. Applying
Lemma 4.19 again, this time with r := an, r′ := a′n, we find an (a′n, c′)-
closed set V (G′) ⊇ S ′ ⊇ U such that |S ′| ≤ L, and it suffices to show that
x ∈ FPM(G′)[N(S ′)] or, equivalently,

xN(S′) ∈
(
FPM(G′)N(S′)

)
0−1

. (28)

We note that all assumptions of Lemma 4.24 are satisfied for G := G′ and
r := bn, hence

xN(S′) ∈MS′(G)N(S′). (29)

So, in order to finish the proof we only have to show that

MS′(G)N(S′) =
(
FPM(G′)N(S′)

)
0−1

. (30)

In the ⊇ direction it is obvious, and in the opposite direction (which is
actually the one we need) it amounts, as we already noticed above, to showing
that any S ′-matching, viewed as a restriction ρ′ with sup(ρ′) = N(S ′), is
consistent with FPM(G′). This is done simply by re-using Lemma 4.20.

First, FPM(G′)|ρ′ = FPM(G′′), where G′′
def
= G′ − (S ′ ∪D′) for some D′ ⊆

29



∂(S ′). Since S ′ is (a′n, c′)-closed, G′′ is an (a′n, c′)-expander and hence, by
Lemma 4.20, FPM(G′′) 6= ∅ (the bound on ||x||∞ is irrelevant this time).

To re-cap the argument, we have proved (30) which, along with (29),
gives (28). This proves FPM(G′)[∆G′,`] 6= ∅ and, in particular, gives us (27).
Thus, we have verified the condition b) in Theorem 3.4, and this completes
the proof of Theorem 4.14.

5. Concrete lower bounds: feasible case

In this section we present applications of Theorem 3.4 in the context of
combinatorial optimization, that is to proving integrality gaps (see Definition
2.13) for feasible problems. As we will see in Section 7.3, in the unfeasible
case proving that P [∆] 6= ∅ can be a bit challenging. In the feasible case,
however, since P0−1 ⊆ P [∆] for any P and any ∆, all we have to do is to
exhibit an integral point in P . This is not the whole story since, unlike
before, we still have to show integrality gap for the w-obstructing body we
have constructed. But we can often re-use for this purpose rank lower bounds
that are abundant in the literature using the following

Fact 5.1 For any polytope P ⊆ [0, 1]n and ` ≤ n, we have N `(P ) ⊆ P [[n]≤`].

Proof. Immediate from Definition 3.1 and Proposition 2.4.

These two simple observations allow us to routinely transfer integrality gaps
for bounded rank procedures into integrality gaps in the bounded width
context. An interesting feature is hardness amplification, when integrality
gaps for the LS-hierarchy (and potentially for any system that is sufficiently
strong to satisfy Proposition 2.4, like LS0) lead to integrality gaps for the
width hierarchy based on much stronger N+-cuts.

Let us now see a few applications of this ”transference principle”.

Example 3 (vertex cover and independent set) For a graphG = (V,E),
its vertex cover polytope V C(G) is determined within [0, 1]V by the set of ad-
ditional constraints xu+xv ≥ 1 ((u, v) ∈ E). MINIMUM VERTEX COVER

is the minimization problem specified by the goal function g(G)
def
=
∑
v∈V xv.

We apply Theorem 3.4 with ∆ := J := [n]≤w, where n
def
= |V | and w

is arbitrary. Given U ⊆ V and a restriction ρ = (U, a) that is consistent
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with V C(G), ρ must satisfy the constraints xu + xv ≥ 1 for (u, v) ∈ E(U).
Now, P |ρ is feasible since setting xv := 1 for v 6∈ U satisfies all the remaining
constraints. Hence the polytope P [[n]≤w] is w-obstructing for NS+, and
therefore the result from [STT07], along with Fact 5.1 implies the bound

IGLS+(V C(Gn), g(Gn), δn) ≥ 2− ε, (31)

where ε > 0 is an arbitrary constant, δ = δ(ε) > 0 and Gn are the graphs
from [STT07].

Another prominent problem in combinatorial optimization (dual to the
MINIMUM VERTEX COVER) is the MAXIMUM INDEPENDENT SET
IS(G) defined in [0, 1]V (G) by additional constraints xu +xv ≤ 1 ((u, v) ∈ E)
and the same goal function g(G) =

∑
v∈V xv, except that now it is viewed as

a maximization problem. It is analyzed in exactly the same way as the MINI-
MUM VERTEX COVER, the only difference is that the variables xu (u 6∈ U)
are now set to 0 rather than to 1. This again allows us to apply to it the
transference principle and convert known rank bounds for this problem (see
e.g. [Tul09]) to respective lower bounds on IGmax

LS+(MC(Gn), g(Gn), w).

Example 4 (Max Cut etc.) Let again G = (V,E) be an arbitrary graph,
but this time we introduce two groups of variables: xv (v ∈ V ) and ye (e ∈ E).
The MAX-CUT polytope MC(G) is the polytope PA,0|V | (in the notation of
Section 4.1) corresponding to the following system A of F2-linear equations:

y(u,v) = xu ⊕ xv ((u, v) ∈ E). (32)

This is the maximization problem with the goal function gMC(Gn)
def
=
∑
e∈E ye.

Let us call a set of variables Z closed if along with every yuv ((u, v) ∈ E)

it also contains xu, xv. Let ∆
def
= [n]≤3w and J consist of all closed sets of

cardinality ≤ 3w. Then any J ∈ [n]≤w can be extended to a closed Ĵ ∈ J
simply by adding relevant x-variables. Moreover, every restriction ρ of a
closed set of variables that is consistent with MC(G) can be extended to
an assignment satisfying all constraints (32). Namely, we first assign all
unassigned x-variables arbitrarily, and then assign the remaining y-variables
according to (32). Hence MC(G)[[n]≤3w] is w-obstructing for NS+, and from
the same paper [STT07] we have the bound

IGmax
LS+(MC(Gn), gMC(Gn), δn) ≤ 1

2
+ ε,
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where ε, δ and Gn have the same meaning as in (31).
An analogous argument can be applied to a host of optimization problems

that share the ground polytope MC(Gn) with MAX-CUT. The list includes
many prominent problems in combinatorial optimization, like SPARSEST
CUT or c-BALANCED SEPARATOR.

Example 5 (MAX-SAT) Given a CNF τ with variables x1, . . . , xn and

clauses C1, . . . , Cm, we consider the CNF τ̂
def
= (C1 ∨ ȳ1) ∧ (C2 ∨ ȳ2) ∧ . . . ∧

(Cm ∨ ȳm) in the variables x1, . . . , xn, y1, . . . , ym; let MSAT (τ)
def
= Pτ̂ be its

associated polytope. The MAX-SAT problem is the maximization problem
with the goal function

∑m
i=1 yi, and whenever τ is a k-CNF, it is called kMAX-

SAT problem.
This problem (and its numerous variants obtained by varying the set of

admissible constraints) is treated similarly to MAX-CUT. Namely, we call a
set of variables Z closed if along with every yi it also contains all x-variables
appearing in Ci. In order to extend a MSAT (τ)-consistent restriction ρ with
closed support, we set all remaining y-variables to 0, and all remaining x-
variables arbitrarily. This shows that for a k-CNF τ , MSAT (τ)[[n]≤(k+1)w]
is w-obstructing for NS+. Hence, by utilizing e.g. the result from [Sch08] we
get

IGmax
LS+(MSAT (τn), gMS(τn), δ(ε)n) ≤ 7

8
+ ε,

for some sequence τn of 3-CNFs.

Etc.

6. A tradeoff between width and rank

In this section we prove Theorem 2.11. Our construction is identical to
[Raz15], although the reasoning is somewhat different: as we already noticed,
we have not been able to prove a common generalization of [Raz15, Theorem
3.1] and Theorem 2.11 even if it is clear how it should look like, see Section
8 for more details.

Definition 6.1 ([Raz15]) For a clause C or a CNF τ in the variables
y1, . . . , ym and a 0-1 m × n matrix A, we let C[A] [τ [A]] be the CNF in
new variables x1, . . . , xn obtained from C [τ , respectively] by the F2-linear
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substitution yi 7→
⊕
Xi(A) followed by expanding the resulted functions as

CNFs in such a way that for every clause F appearing in C[A] we have

V ars(F ) =
⋃
{Xi(A) | yi ∈ V ars(C)} . (33)

The depth D(Π) of a resolution derivation Π is the height (the number
of edges in the longest path) of its underlying tree. For a CNF τ and a
clause C, we let D(τ ` C) be the minimum possible depth of a resolution

derivation of C from τ (D(τ ` C)
def
= ∞ if C is not derivable). This is the

exact (and, surprisingly, not well-studied) propositional analogue of rank in
semi-algebraic proof systems we are interested in this section. More precisely,
Fact 2.10 (in which we set w := n) readily implies that

D(τ ` C) ≤ r =⇒ (Pτ )
(r) ⊆ PC and N r

+(P ) ⊆ PC .

Theorem 6.2 Let τm be an arbitrary unsatisfiable CNF in the variables
y1 . . . , ym, and let A be an m× n (r, 4)-boundary expander for some r. Then

for any ` ≥ 0, any one of the two facts P
(`,r/4)
τm[A] = ∅ or N `

+,r/4(Pτm[A]) = ∅
implies

D(τm ` 0) ≤ r

2
`.

Remark. Theorem 6.2 also holds for the mixed hierarchy combining Gomory-
Chvátal and N+-cuts.

Proof of Theorem 6.2. As in [Raz15], we formulate a more general claim
so that we can reason by induction. Call a set J of columns closed (cf.
the proof of Theorem 4.3) if A \ J is an (r/2, 5/2)-boundary expander. A
restriction ρ is closed if sup(ρ) is closed. Let xρ ∈ [0, 1]n be the extension of
a restriction ρ obtained by letting x(ρ)j := 1/2 whenever ρ(xj) = ∗.

Claim 6.3 In the set-up of Theorem 6.2, assume that ρ = (J, a) is a closed
restriction such that

x(ρ) 6∈ P (`,r/4)
τm[A] ∩N

`
+,r/4(Pτm[A]).

Let C be the (uniquely determined) clause with V ars(C) = {yi | i ∈ Ker(J)}
such that C[A]|ρ ≡ 0. Then

D(τm ` C) ≤ r

2
`. (34)
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Note for the record that Claim 6.3 immediately implies Theorem 6.2 if
we let ρ be the empty restriction (in which case C = 0).

Proof of Claim 6.3. By induction on `.

Base ` = 0, that is x(ρ) 6∈ Pτm[A]. Then x(ρ) 6∈ P
C̃[A]

for some clause C̃

appearing in τm. This in turn means that x(ρ) 6∈ PF for some clause F
appearing in the CNF C̃[A]. We claim that in fact C̃ is a subclause of C
which makes the bound (34) vacuous. Indeed, since J is closed, for any
i 6∈ Ker(J) at least two variables in Xi(A) \ J are set by x(ρ) to 1/2. Since
x(ρ) 6∈ PF , we conclude that C̃ may not contain literals of such variables,
that is V ars(C̃) ⊆ {yi | i ∈ Ker(J)} = V ars(C). Also, both C[A] and C̃[A]
are set by ρ to 0. Hence C and C̃ must be consistent, which precisely means
that C̃ is a sub-clause of C.

Inductive step ` > 0. Our assumption implies that x(ρ) is violated by a cut

eTx ≤ d for the polytope P
(`−1,r/4)
τm[A] ∩N `−1

+,r/4(Pτm[A]) (of either type) that has
width ≤ r/4. Let J ′ be the set of non-zero positions in e. Since |J ′| ≤ r/4, we
can apply Lemma 4.4 with c := 4, c′ := 7/2 and J := J ′ and conclude that
there exists J ′′ ⊇ J ′ with |Ker(J ′′)| ≤ r/2 (the bound (20) is irrelevant for our
current purposes) and such that A \ J ′′ is an (r/2, 7/2)-boundary expander.
Let ρ′ be the restriction obtained from ρ by un-assigning all values ρ(xj) for
j ∈ J \ J ′′. Since ρ and ρ′ agree on XJ ′ , x(ρ′) is also violated by the chosen
cut eTx ≤ d. Let us note in the brackets that it is this un-assigning step that
makes the main novelty compared to traditional rank lower bounds proofs:
in the latter, ρ can only increase in the course of the argument.

By Proposition 2.5, there exist j0 6∈ J ∩J ′′(= sup(ρ′)) and ε ∈ {0, 1} such
that

x(ρ′)(j0,ε) 6∈ P (`−1,r/4)
τm[A] ∩N `−1

+,r/4(Pτm[A]).

Set
Ĵ

def
= J ′′ ∪ {j0}, (35)

and let ρ+ be the restriction that extends ρ′ by additionally assigning xj0 to
ε so that x(ρ′)(j0,ε) = x(ρ+). We thus have

x(ρ+) 6∈ P (`−1,r/4)
τm[A] ∩N `−1

+,r/4(Pτm[A]). (36)

Removing one extra column j0 from an (r/2, 7/2)-expander A\J ′′ results
in an (r/2, 5/2)-expander. Hence Ĵ is closed.

Next, let us fix for the time being an arbitrary clause Ĉ in the variables{
yi
∣∣∣ i ∈ Ker

(
Ĵ
)}

that agrees with C on their common variables
{
yi
∣∣∣ i ∈ Ker

(
Ĵ
)
∩Ker(J)

}
.
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Our goal is to find an extension ρ̂ of the restriction ρ+ to all the remaining
variables XJ ′′\(J∪{j0}) in X

Ĵ
in such a way that the assumptions of Claim 6.3

will be fulfilled with J := Ĵ , ρ := ρ̂, ` := ` − 1, C := Ĉ. Let us first note
that this would suffice to finish the inductive step. Indeed, by the inductive
assumption, we would have that D(τm ` Ĉ) ≤ r

2
(` − 1). But since Ĉ is an

arbitrary clause in the variables
{
yi
∣∣∣ i ∈ Ker(Ĵ)

}
consistent with C, we can

glue together all these derivations to derive C in additional depth∣∣∣Ker
(
Ĵ
)
\Ker(J)

∣∣∣ ≤ ∣∣∣Ker
(
Ĵ
)∣∣∣ = |Ker(J ′′)| ≤ r/2. (37)

Thus, it remains to prove the existence of an extension ρ̂ of ρ+ that has these
two properties:

x (ρ̂) 6∈ P
(`−1,r/4)
τm[A] ∩N `−1

+,r/4(Pτm[A]); (38)

Ĉ[A]|ρ̂ = 0. (39)

Let us first examine (39). We can view ρ̂ as an element of the F2-linear

vector space {0, 1}J̃ , where J̃
def
= J ′′ \ (J ∪ {j0}) is the set of (indices of)

the variables to be assigned. The condition (39) then means that for every

i ∈ Ker
(
Ĵ
)

we have

⊕{
ρ̂(xj)

∣∣∣ j ∈ Ji(A) ∩ J̃
}

= bi, (40)

where bi are some constants fully determined by the sign with which yi ap-
pears in Ĉ, as well as by the already known part ρ+. Note that if also
i ∈ Ker(J) then Xi(A) ⊆ J ∩ J ′′ and hence xj0 6∈ Xi(A). Thus, ρ and ρ+

are consistent on Xi(A) and since we also know that yi occurs with the same
sign in C and Ĉ, C[A]|ρ = 0 implies that (40) has the form 0=0, whenever
i ∈ Ker(J). We conclude that the set of all extensions ρ̂ satisfying (39) is an

F2-linear subspace in {0, 1}J̃ determined by those constraints (40) for which

i ∈ Ker
(
Ĵ
)
\Ker(J).

Claim 6.4 Every non-trivial affine form in its dual space, i.e., in the affine
subspace generated by the constraints (40), has width ≥ 2.

Proof of Claim 6.4. For any non-empty I ⊆ Ker(Ĵ) \ Ker(J), the sum
(over F2) of the corresponding constraints (40) contains all variables xj with
j ∈ ∂A(I) ∩ J̃ = ∂A\J(I) \ {j0} as they do not cancel. But since by our
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original assumption A \J is an (r/2, 5/2)-boundary expander, |∂A\J(I)| ≥ 3,
and this proves our claim.

Now, Claim 6.4, along with elementary duality, immediately implies that if
we take the uniform distribution ρ̂ on the set of all solutions of the system
(40), then for any particular j ∈ J̃ , ρ̂ takes values 0 and 1 with probability
1/2 each. Hence E[x (ρ̂)] = x(ρ+) and now (36) implies that (38) is also true
for at least one vertex ρ̂ of this polytope.

This gives us the desired ρ̂, and, as we already noted, we can now complete
the inductive step by applying to these restrictions the inductive assumption.
This completes the proof of Claim 6.3.

As we also noted above, Theorem 6.2 is a special case of Claim 6.3.

Proof of Theorem 2.11. As in [Raz15], our starting point is a slightly
weaker 6 form of the following result by Ben-Sasson, Impagliazzo and Wigder-
son:

Proposition 6.5 There exists an increasing sequence {τm} of 4-CNF con-
tradictions such that w(τm ` 0) ≤ 6, but D(τm ` 0) ≥ Ω(m/ logm).

Let us first do the case k ≤ O(1) in Theorem 2.11. In that case let Am be
the m× 3m matrix in which all sets Ji(A) are disjoint and have cardinality
3 each.

It is easy to see that the proof of Theorem 6.2 can be adapted to this ma-
trix even if it is only a (m, 3)-boundary expander. Namely, a set of columns
turns out to be closed iff it is a (disjoint) union of sets of the form Ji(A).
Finding a closed J ′′ is trivial, with the better bound

|Ker(J ′′)| ≤ |J ′| ≤ r/4. (41)

One minor difference is that in (35) we should let Ĵ be the closure of the set
in the right-hand side, that is along with j0 we also append to J ′ its two twin
columns; that may increase the size of Ker

(
Ĵ
)

by 1. But the estimate (37)

will still hold as now we have the better bound (41).

Remark. For this particular matrix we do not need the “shrinking” step

ρ 7→ ρ′ and we could simply let instead J ′′
def
= J . That would have resulted

in the stronger conclusion D(τm ` C) ≤ r regardless of the width of the

6The original result was formulated for tree-like resolution size
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original CP + LS+-proof. This kind of techniques is quite well-known in
proof complexity under the name “substitution formulas” (see e.g. [Nor13,
Section 2.4]) but we preferred to stick to the letter of the proof of Theorem
2.11 in order to not complicate things any further.

Thus, when k ≤ O(1), Theorem 2.11 is witnessed by the CNF τm[Am],
where τm are the 4-CNFs from Proposition 6.5. Hence for the rest of the
proof we assume w.l.o.g. that k is arbitrarily large.

We need the following slight variation of Proposition 4.2 (the differences
are as follows: k need not be a constant any longer, but we impose a stronger
condition on the expansion rate c).

Proposition 6.6 ([Raz15, Lemma 2.2]) Let n→∞ and m, s, c, r be ar-
bitrary integer parameters possibly depending on n such that c ≤ 3

4
s and

r ≤ o(n/s) ·m−
2
s−c .

Then for sufficiently large n there exist m× n (r, s, c)-boundary expanders.

With this proposition, the proof of Theorem 2.11 is completed almost
literally as in [Raz15]. Namely, we set w := n1−ε/k, r := 4w and s := bk/4c.
Since k is arbitrarily large, we have s ≥ 6, and we can apply Proposition
6.6 with c := 4. This gives us an m × n (r, s, 4)-boundary expander A with
m ≥ (n/kw)Ω(k) ≥ nΩ(k). Recalling once more that k is arbitrarily large,
we can assume that m ≥ n2. The required CNF is τm[A], where τm is
again provided by Proposition 6.5; D(τm ` 0) ≥ Ω(m/ logm). The width
6 refutation of τm can be converted into a width O(k) refutation of τm[A]
simply by applying the operator C 7→ C[A] to its lines. On the other hand,
if either of the two hierarchies (4), (5) converges within ` steps, Theorem 6.2

implies that ` ≥ Ω
(
D(τm`0)

r

)
. The proof of Theorem 2.11 is now completed

by the calculation

D(τm ` 0)

r
≥ exp

(
Ω

(
m

r logm

))
≥ exp

(
Ω

(
m

n logm

))
since m≥n2

≥ exp(mΩ(1)) ≥ exp(nΩ(k)).

7. Lemmas

In this section we prove auxiliary statements deferred from Section 4. We
group them by topic rather than by the order of appearance in that section.
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7.1. Closure properties of expanders

Here we prove Lemmas 4.4, 4.19. The former is a very minor modification of
[Raz15, Lemma 2.3], and the proof of the latter to a considerable extent goes
along similar lines. We present a self-contained proof of the easier Lemma
4.4, and then indicate how to adapt it to get Lemma 4.19.
Lemma 4.4 Let A be an m × n (r, s, c)-boundary expander, and let c′ < c.
Then for every J ⊆ [n] with |J | ≤ r

2
(c−c′) there exists Ĵ ⊇ J such that A\J

is an (r/2, c′)-boundary expander,
∣∣∣Ker

(
Ĵ
)∣∣∣ ≤ |J |

c−c′ and∣∣∣Ĵ ∣∣∣ ≤ |J |(1 +
s

c− c′
)
.

Proof. Define a strictly increasing sequence of sets of columns J0 ⊂ J1 ⊂

. . . ⊂ Jt ⊂ . . . as follows. Let J0
def
= J . For t > 0, we first let St be an

arbitrary set of rows in A \ Jt−1 violating the (r/2, c′)-boundary expansion
condition if such a set exists; otherwise, the construction terminates. Then
we let

Jt
def
= Jt−1 ∪

⋃
i∈St

Ji(A).

Note that since the chain J0 ⊂ J1 ⊂ . . . ⊂ Jt . . . is strictly increasing,
the process does terminate at some point, and let JT be the set at which it
happens. We will prove that Ĵ := JT has all the required properties.

Claim 7.1 For every t = 0, 1, . . . , T we have |Ker(Jt)| ≤ |J |
c−c′ .

Proof of Claim 7.1. By induction on t. Assume that |Ker(Jt−1)| ≤ |J |
c−c′

where for the uniformity of notation we let J−1
def
= ∅ and S0 := ∅. Since

|St| ≤ r/2, |Ker(Jt−1)| ≤ |J |
c−c′ ≤ r/2 and Ker(Jt−1) ∪ St ⊆ Ker(Jt), we can

choose a set of rows I such that Ker(Jt−1) ∪ St ⊆ I ⊆ Ker(Jt) and

|I| = min(r, |Ker(Jt)|). (42)

Applying to I the expansion condition, we get

|∂A(I)| ≥ c|I|. (43)

On the other hand, Ker(Jt) ⊇ I ⊇ Ker(Jt−1) ∪ St implies that

∂A(I) ⊆ J ∪
t⋃

u=1

∂A\Ju−1(Su).
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Since Su’s violate the (r/2, c′)-boundary expansion conditions in their respec-
tive matrices, we conclude that

|∂A(I)| ≤ |J |+ c′
t∑

u=1

|Su| ≤ |J |+ c′|I|. (44)

Comparing (43) and (44), we see that |I| ≤ |J |
c−c′ . Since |J |

c−c′ ≤ r/2, the
minimum in (42) must be realized by the second term, and hence |Ker(Jt)| =
|I| ≤ |J |

c−c′ . This completes the proof of Claim 7.1.

Now, the bound
∣∣∣Ker

(
Ĵ
)∣∣∣ ≤ |J |

c−c′ is simply Claim 7.1 with t := T . The

required bound on
∣∣∣Ĵ ∣∣∣ is also immediate from the construction: since Ĵ is

obtained from J by adding entire rows Ji(A), we conclude that

∣∣∣Ĵ ∣∣∣ ≤ |J |+ s ·
∣∣∣Ker

(
Ĵ
)∣∣∣ ≤ |J |(1 +

s

c− c′
)
.

Recall that (r, c)-closed sets in simple graphs G were introduced in Section
4.2 (see Definition 4.18).
Lemma 4.19. Let G be an (r, c)-vertex expander, and let c′ < c, r′ < r.
Then for every U ⊆ V (G) with

|U | ≤ (r − r′)(c− c′)
∆(G)

(45)

there exists an (r′, c′)-closed set S ⊇ U with

|S| ≤ ∆(G)

c− c′
|U |.

Proof. Similarly to the previous proof, we build up an increasing sequence

U0 ⊂ U1 ⊂ . . . ⊂ Ut ⊂ . . . of sets of vertices starting with U0
def
= U . We let

Dt ⊆ ∂(Ut−1) be such that G− (Ut−1∪Dt) is not an (r′, c′)-expander, pick an
arbitrary set of vertices St violating this property (note for the record that

|St| ≤ r′ and St ∩ (Ut−1 ∪Dt) = ∅) and let Ut
def
= Ut−1 ∪ St. Note (and this is

crucial for the argument) that Dt is not included into Ut. As in the previous
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proof, we continue in this way for as long as possible, and take as Û the final
set UT in the chain we have constructed. It only remains to prove that

|Ut−1| ≤
∆(G)

c− c′
|U | (46)

implies |Ut| ≤ ∆(G)
c−c′ |U |, as this gives us

∣∣∣Û ∣∣∣ ≤ ∆(G)
c−c′ |U | by induction (the base

follows from ∆(G)
c−c′ ≥

∆(G)
c
≥ 1).

The assumption (45), along with the inductive assumption (46) imply
|Ut−1| ≤ r − r′. Hence |Ut| ≤ r, and we can apply to it the expansion
property in the original graph G:

|∂G(Ut)| ≥ c|Ut|. (47)

The crucial observation is that

∂G(Ut) ⊆ ∂G(U) ∪
t⋃

u=1

∂G−(Uu−1∪Du)(Su). (48)

Let us check this.
Fix v ∈ ∂G(Ut), and let u ∈ [0, t] be the minimum index for which v ∈

∂G(Uu). If u = 0, we are done. Otherwise v ∈ ∂G(Su) and v 6∈ Du ∪ Uu−1

since Du ⊆ ∂(Uu−1) and Uu−1 ⊆ Ut. Hence v ∈ ∂G−(Uu−1∪Du)(Su), which
proves (48).

The rest is standard: (48) gives the bound

|∂G(Ut)| ≤ ∆(G) · |U |+ c′
t∑

u=1

|Su| = ∆(G) · |U |+ c′|Ut|.

from which the required inequality |Ut| ≤ ∆(G)
c−c′ |U | follows immediately given

(47).

7.2. Random regular graphs

In this section we prove Lemmas 4.15 and 4.17.
Lemma 4.15. For every integer constant d > 0 and any ε > 0 there exists
b > 0 such that Gn,d is (bn, ε)-sparse with probability 1− o(1).
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Proof. First, by the union bound we have

P[Gn,d is not (bn, ε)-sparse] ≤
bbnc∑
h=1

∑
U∈[n]h

P[|E (Gn,d|U)| ≥ (1 + ε)h] . (49)

Fix 1 ≤ h ≤ bbnc and an individual U ∈ [n]h. Recall that Gn,d is the
random variable G(Pn,d) conditioned by the event that this projected graph
is simple. Whenever G(Pn,d) is simple,

|E (Gn,d|U)| =
∣∣∣Pn,d|Û

∣∣∣ ,
where Û

def
=
⋃
u∈U Vu is the union of the corresponding cells;

∣∣∣Û ∣∣∣ = dh. As

G(Pn,d) is simple with probability Ω(1), we have

P[|E (Gn,d|U)| ≥ (1 + ε)h] ≤ O
(
P
[∣∣∣Pn,d|Û

∣∣∣ ≥ (1 + ε)h
])
. (50)

In order to save on tiresome manipulations with factorials (we will have
an opportunity to practise them in the proof of our next lemma), we apply
a simple, and most likely well-known trick. Order all dn vertices in such a
way that Û makes an initial segment of length dh in this order, and build a
random perfect matching step by step, using the following Markov chain M .
Its states are matchings (not necessarily perfect), and in a state marked with
a non-perfect matching, M picks up the minimum unmatched vertex and
matches it with another vertex picked uniformly at random among all other
unmatched vertices. Then, by symmetry, in (dn)/2 steps this Markov chain
converges to the uniform distribution on perfect matchings, i.e., precisely to
Pn,d.

The set Pn,d|Û is completely built within at most
∣∣∣Û ∣∣∣ = dh steps. After

` steps we have at most dh − ` unmatched vertices inside Û , and at least
d(n−h)−` choices outside Û . Thus, the probability that the new edge added
by M will also have the second endpoint in Û is bounded by dh−`

d(n−h)−` . Let

x
def
= h/(n − h); note that x ≤ b/(1 − b). We can also assume w.l.o.g. that

b ≤ 1
d+1

; this in particular implies that x ≤ 1 and thus dh−`
d(n−h)−` ≤ x. Hence

P
[∣∣∣Pn,d|Û

∣∣∣ ≥ (1 + ε)h
]
≤ P[Sx,hd ≥ (1 + ε)h] , (51)

where Sp,m is the sum of m independent Bernoulli random variables taking
values 1 with probability p. Since x ≤ 1/d, we know that E[Sx,hd] ≤ h and
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we can bound the right-hand side in (51) by the Chernoff-Hoeffding bound
[Hoe63, (2.1)]. We conclude that

P[Sx,hd ≥ (1 + ε)h] ≤ 2−D((1+ε)/d||x)hd, (52)

where

D(p||q) def
= p log2

p

q
+ (1− p) log2

1− p
1− q

is the Kullback-Leibler divergence.
Let now b→ 0 (for fixed d, ε), so that also x→ 0. Then

D ((1 + ε)/d||x) ≥ (1 + ε)

d
log2

1

x
−O(1)

and thus, recalling that x = h
n−h , we get

D ((1 + ε)/d||x)hd ≥ {(1 + ε)H(x)−O(x)}n,

where

H(x)
def
= x log2

1

x
+ (1− x) log2

1

1− x
is the binary entropy function. Therefore, for sufficiently small b (and hence
x as well) we have the bound

D ((1 + ε)/d||x)hd ≥
(

1 +
ε

2

)
H(x)n ≥

(
1 +

ε

2

)
H(h/n)n. (53)

Putting together (49), (50), (51), (52) and (53), we get

P[Gn,d is not (b, ε)-sparse] ≤ O

bbnc∑
h=1

∑
U∈[n]h

(
n

h

)
· 2−(1+ ε

2)H(h/n)n

 .
But

(
n
h

)
≤ 2H(h/n)n (see e.g. [Ash90, Lemma 4.7.1]), and hence we are only

left to prove that
bbnc∑
h=1

2−
ε
2
H(h/n)n ≤ o(1). (54)

The first term in this sum is O(n−ε/2). Also, since we can assume w.l.o.g.
that H ′(x) ≥ 1 for x ∈ [0, b/(1 − b)], H((h + 1)/n) ≥ H(h/n) + 1/n, and
hence the sum decays as a geometric progression.
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This proves (54) and completes the proof of Lemma 4.15.

As we mentioned before, the most non-trivial part in the proof of Lemma
4.17 is to show that Gn,d is an (an, c)-expander for appropriate values of
d, a, c, and we could in principle employ for this purpose the same Markov
chain trick as in the previous proof. That, however, would have resulted in
a significantly sub-optimal bound on the degree d. Instead, we do an un-
pretentious factorial calculation in the style of Bassalygo ([Bas81], bipartite
graphs with a slightly different random model) and Bollobás ([Bol88], edge
expansion). We do not aim at a complete analysis of the resulting expres-
sion as it turns out to be even messier than in the two previous cases just
mentioned.

We need some more preliminaries. Recall that for p1, . . . , pr ≥ 0 with∑
i pi = 1, H[p1, . . . , pr] is the binary entropy of the corresponding distribu-

tion:

H[p1, . . . , pr] =
r∑
i=1

pi log2

1

pi

(thus, H(p) = H[p, 1 − p]). The bound
(
n
pn

)
≤ 2H(p)n used in the proof of

Lemma 4.15 is actually two-sided (see e.g. the same source [Ash90, Lemma
4.7.1]):

2H(p)n

√
8pn
≤
(
n

pn

)
≤ 2H(p)n. (55)

The right-hand side here can be generalized, by an obvious induction, to
multinomial coefficients as follows:(

n

p1n . . . prn

)
≤ 2H[p1,...,pr]n. (56)

Theorem 7.2 Assume that c ≥ 1 and d > 2(1 + c) are fixed constants, with
d being integer. Consider the function

α(x, y)
def
= H[x, cx, 1− x− cx]

+d
(
y −H(x) +

1

2
H[x− y, 2y, 1− x− y] + cxH(y/cx)− (1− x)H(y/(1− x))

)
,

that is well defined in the region 0 ≤ y ≤ x ≤ 1
1+c

.
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a) For x ∈ [0, 1/(1 + c)] we have c2x− 4cx− 4x+ 4 ≥ 0. Let

y0(x)
def
=

2cx3/2

√
x(2 + c) +

√
c2x− 4cx− 4x+ 4

.

Then y0(x) is a root of the equation ∂
∂y
α(x, y) = 0 lying on the interval

[0, x].

b) Let also 0 ≤ a ≤ 1
1+c

, and assume that x ∈ (0, a] =⇒ α(x, y0(x)) < 0.
Then Gn,d is an (an, c)-vertex expander with probability 1− o(1).

Proof. a) Let L
def
= c2x−4cx−4x+4. Then L|x=0 = 4 and L|x=1/(c+1) = c2

c+1

which proves L ≥ 0 whenever x ∈ [0, 1/(c + 1)]. y0 ≥ 0 is obvious, and
∂α
∂y
|y=y0 = 0 is by a direct calculation. Finally, x− y0 = β · (

√
x(2− c) +

√
L),

where β = x√
x(2+c)+

√
L
≥ 0. From this, y0 ≤ x is immediate when c ≤ 2. For

c ≥ 2 we do one more radical manipulation:
√
x(2− c)+

√
L = 4(1−2x)√

x(c−2)+
√
L
≥

0.
b) Gn,d is not an (an, c)-vertex expander if and only if there exists h ∈

{1, 2, . . . , banc} and two disjoint sets of vertices U, V such that |U | = h, |V | =
dche − 1 and ∂(U) ⊆ V . For any fixed h, the number of overall choices of

the pair (U, V ) is
(

n
h dche−1 n−h−dche+1

)
. Fix any such U, V , and let Û , V̂ be

the corresponding sets of cells.
We further partition P

[
∂Pn,d

(Û) ⊆ V̂
]

according to the number δPn,d
(Û)

of cross-edges between Û and V̂ in the matching Pn,d. For any fixed `, the

number of configurations with ∂Pn,d
(Û) ⊆ V̂ and

∣∣∣δPn,d
(Û)

∣∣∣ = ` is equal to(
dh

`

)(
d(dche − 1)

`

)
`!N

(
dh− `

2

)
N

(
d(n− h)− `

2

)
,

where N(t) is the number of perfect matchings on 2t vertices:

N(t)
def
=

(2t)!

t!
2−t.

Putting it together,

P[Gn,d is not an (an, c)− vertex expander]

≤
banc∑
h=1

∑
`∈{0,...,hd}
hd−` even

(
n

h dche−1 n−h−dche+1

)(
dh
`

)(
d(dche−1)

`

)
`!N

(
dh−`

2

)
N
(
d(n−h)−`

2

)
N
(
dn
2

) .
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Let x
def
= h/n and y

def
= `/(dn) so that 0 ≤ y ≤ x ≤ 1

1+c
. Then, re-arranging

the factorials a bit and applying the bounds (55) and (56), we obtainP[Gn,d is not an (an, c)− vertex expander]

≤ ∑x∈{1/n,2/n,...,a}
∑
y∈{0,(dn)−1,...,x}O(nx)2α(x,y)n.

(57)

Next,
∂2

∂y2
α(x, y) = γ ·Q(x, y),

where γ = d
2 ln 2(x−y)(cx−y)y(1−x−y)

≥ 0, and

Q(x, y) = 2cx3 + 2cx2y − 2cxy2 − 2cx2 + cxy − 2xy2 + y2

is a polynomial that is quadratic in y. ∂Q
∂y
|y=0 = cx(1+2x) ≥ 0 and ∂Q

∂y
|y=x =

x(1 − 2x)(2 + c) ≥ 0 hence ∂Q
∂y
≥ 0 for all y ∈ [0, x]. Also, Q(x, x) =

−x2(1 − 2x)(c − 1) ≤ 0, hence Q(x, y) ≤ 0 for all y ∈ [0, x]. In other
words, α(x, y) is concave in y on the interval [0, x]. Since y0(x) is a root of
∂Q
∂y

lying on this interval, it is also the global maximum of α(x, y), that is

α(x, y) ≤ α(x, y0(x)) for all 0 ≤ y ≤ x ≤ 1
c+1

, and hence, by our assumption
α(x, y) < 0 whenever x ≥ 0. By compactness, for any fixed ε > 0 there
exists a constant δ(ε) > 0 such that α(x, y) ≤ −δ(ε) whenever x ≥ ε. Hence
(since the pair (h, `) may take only O(n2) values), (57) implies the required
expansion property with probability 1− o(1) for all U with |U | ≥ εn, where
ε is an arbitrary constant of our choice.

We still have to analyze the case of very small h. For that we note the
behavior of the function α(x, y0(x)) when x→ 0:

lim
x→0

α(x, y0(x))

H(x)
= 1 + c− d

2
. (58)

which is negative since by our assumption d > 2(1 + c). Now the proof
for small values of h is completed by the same argument as in the proof of
Lemma 4.15: the extra term O(nx) in (57) is constant when the decaying
geometric progression (54) starts, and hence its contribution to the sum is
negligible.

Corollary 7.3 For any fixed d ≥ 14, Gn,d is an (0.204n, 5/2)-vertex ex-
pander with probability 1− o(1).
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Proof. For d = 14 and x ∈ (0, 0.204], the condition α(x, y0(x)) < 0 is
checked by plotting. Since H[x, cx, 1 − x − cx] ≥ 0, α(x, y) < 0 for d = 14
implies that α(x, y) < 0 for all d ≥ 14. Thus, all requirements of Theorem
7.2 are fulfilled.

Lemma 4.17 Let d ≥ 14 and g ≥ 0 be arbitrary integer constants. Then
with probability 1 − o(1) as n → ∞, Gn,d contains a spanning subgraph G
with g(G) ≥ g that is an (0.203n, 5/2)-vertex expander.

Proof. G will be obtained fromGn,d simply by removing all cycles of length
≤ (g − 1). Clearly, g(G) ≥ g. The number of such cycles is (say) O(log n),
see e.g. [Bol80], which means that for any set U , ∂Gn,d

(U) and ∂G(U) differ
by a set of size O(log n). Hence Corollary 7.3 implies the required expansion
condition for all sets U with |U | ≥ εn, where ε is an arbitrary constant of
our choice. Moreover, if ε is sufficiently small, then by (58), Gn,d is actually
an (ε, 5)-expander, with probability 1− o(1).

But Lemma 4.15 also implies that all cycles of length ≤ (g−1) are vertex

disjoint (otherwise, Gn,d could not be
(
2g − 3, 2g−2

2g−3

)
-sparse). Hence we have

removed at most two edges adjacent to every vertex, and therefore, since
Gn,d is an (εn, 5)-expander, G is an (εn, 3)-expander.

7.3. Non-emptiness of the polytopes P [∆]

In this section we prove Lemmas 4.5, 4.20.
Lemma 4.5 Let A be an m× n (r, s, c)-boundary expander, where r ≥ 2

and rc ≥ 2(s+ 1), and let

`
def
= brc

2
c − s− 1.

Then for any b ∈ {0, 1}m we have N+

(
PA,b[[n]≤`]

)
6= ∅.

Proof. Let
L

def
= brc/2c = s+ `+ 1 ≥ 2.

Let us call a F2-linear constraint f(x) = b derivable if its width w(f) is at
most L, and it can be represented as a F2-linear combination of at most r/2
initial constraints (19).

Claim 7.4 a) All initial constraints (19) are derivable.
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b) If f = b and f ′ = b′ are derivable and w(f ⊕ f ′) ≤ L then f ⊕ f ′ =
b⊕ b′ is derivable.

c) 0 = 1 is not derivable.

Proof of Claim 7.4. a) Note that s ≤ L. Since r ≥ 2, every initial
constraint (19) forms its own derivation.

b) The constraint f ⊕ f ′ = b⊕ b′ can be represented as a F2-linear com-
bination of a set I of initial constraints with |I| ≤ r. Hence |∂A(I)| ≥ c · |I|.
Since all variables in X∂A(I) must appear in f ⊕ f ′, we have w(f ⊕ f ′) ≥
|∂A(I)| ≥ c · |I|. Thus, in fact |I| ≤ L/c ≤ r/2.

c) is obvious.

Claim 7.4 implies that derivable constraints of width ≤ 2 induce the
following nice structure on the set of variables {x1, . . . , xn}. We have a subset
X0 ⊆ {x1, . . . , xn} consisting of those variables xj for which there exists a
derivable constraint of the form xj = εj, for a uniquely (due to part c))
defined εj. On the remaining set {x1, x2, . . . , xn}\X0 we have an equivalence
relation ≈ such that for any xj ≈ xj′ there exists a derivable constraint of the
form xj ⊕xj′ = εjj′ , where the constants εjj′ satisfy the consistency relations
εjj′⊕εj′j′′ = εjj′′ (xj ≈ xj′ ≈ xj′′). Finally, every derivable constraint of width
≤ 2 is either one of xj ⊕ xj′ = εjj′ , or is the sum of at most two derivable
constraints xj = εj with xj ∈ X0.

Negating some of the variables xj if necessary, we can assume w.l.o.g.
that all constants εj, εjj′ are equal to 0. For every equivalence class C of
≈ introduce a new propositional variables yC . Consider the propositional
projection π (see Definition 3.2) defined by

π(xj)
def
=

0 if xj ∈ X0

yC if xj ∈ C,

and apply it to the system (19). Let ÂY = b̂ be the matrix representation of
the resulting system (it is easy to see from Claim 7.4 that this system does
not contain trivial/contradictory equations 0=0, 1=0). Since the operators
P 7→ P [∆] and P 7→ N+(P ) behave well with respect to projections (see (18)
and Lemma 3.3), it suffices to show that N+(P

Â,̂b
([[n]≤`])) 6= ∅. We will in

fact prove that
y1/2 ∈ N+(P

Â,̂b
([[n]≤`])), (59)
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where y1/2 is the vector in which all coordinates are equal to 1/2.
Denote byD the set of all derivable constraints (in the original x-variables),

and consider the set D̂ obtained by applying π to the elements of D in a nat-
ural way, followed by all possible cancellations. As it turns out, D̂ enjoys all
the properties in Claim 7.4, with an extra addition in item c) that is very
crucial for our purposes.

Claim 7.5 a) All initial constraints of the system ÂY = b̂ are in D̂.

b) if g = b and g′ = b′ are in D̂ and w(g ⊕ g′) ≤ L then g ⊕ g′ = b⊕ b′
is in D̂.

c) (0 = 1) is not in D̂ and, moreover, every non-trivial constraint in D̂
has width ≥ 3.

Proof of Claim 7.5. a) is obvious.
b) Let f(x1, . . . , xn) = b and f ′(x1, . . . , xn) = b′ be derivable constraints

such that π(f) = g and π(f ′) = g′. yC occurs in g if and only if f contains an
odd number of variables in C. Pick arbitrarily a representative xC ∈ V ars(f)

in any such class C. Then we note that the constraint f̃
def
= ⊕yC∈V ars(g)xC = b

is derivable (and, clearly, π(f̃) = g). Indeed, we can repeatedly use Claim
7.4b) to remove from f , one by one, all variables xj ∈ X0 as well appropriate

pairs {xj, xj′} with xj ≈ xj′ until we are left with f̃ . As the variables
only get removed, the width condition is never violated. Apply the same
procedure to g′ to get f̃ ′. Finally, if a variable yC appears in both g and g′,
and its pre-images xC , x

′
C turn out to be different in f̃ and f̃ ′, we replace

in f̃ , using Claim 7.4b) one more time, xC with x′C . Repeating this for all
clauses C, we end up with f̃ ∗, f̃ ′∗ such that π(f̃ ∗) = g, π(f̃ ′∗) = g′ and
w(f̃ ∗ ⊕ f̃ ′∗) = w(g ⊕ g′) ≤ L. Applying Claim b) one last time, we see that
f ⊕ f ′ = b⊕ b′ is in D and hence g ⊕ g′ = b⊕ b′ is in D̂.

c) As we have just seen, every constraint (g = b) in D̂ has a pre-image
f = b in D with w(f) = w(g). Now the first statement follows from Claim c),
and the width bound follows from the fact that the projection π trivializes
al derivable constraints of width ≤ 2.

With Claim 7.5 at our disposal, finishing the proof of (59) is routine (cf.
the last part of the proof of Claim 6.3). By Proposition 2.5, it suffices to

show that y
(C0,ε)
1/2 ∈ P

Â,̂b
([[n]≤`]) for any equivalence class C0 and ε. By Claim
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7.5, parts a) and c), all equations in the system ÂY = b̂ have width ≥ 3,

hence y
(C0,ε)
1/2 ∈ P

Â,̂b
.

Fix now any set C of equivalence classes with |C| ≤ `, and let C0
def
=

C ∪ {C0}. It remains to prove that
(
y

(C0,ε)
1/2

)
|C0 ∈

(
P
Â,̂b
|C0
)

0−1
.

For that purpose, let us consider the set D0 of all constraints g = b in
D̂ that satisfy V ars(g) ⊆ C0. Since |C0| ≤ L, this set is actually a F2-linear
subspace (by Claim 7.4b)) that, moreover, does not contain any element of
width ≤ 2 by Claim 7.4c). Add to it one extra constraint yC0 = ε; the
resulting linear subspace A will not contain constraints of width ≤ 1. Hence(
y

(C0,ε)
1/2

)
|C0 is equal to the uniform convex combination of all restrictions ρ in

the dual solution space A∗ of the system A, and we only have to prove that
every ρ ∈ A∗ can be extended to an element in P

Â,̂b
.

We inductively define increasing sets of y-variables (identified, for better
readability, with their indices) C0 ⊂ C1 ⊂ . . . ⊂ CT as follows: while there

exists a row it in the matrix Â with
∣∣∣Jit(Â) \ Ct−1

∣∣∣ = 1 (say, Jit(Â) \ Ct−1 =

{Ct}), we arbitrarily pick any such it and let

Ct def
= Ct−1 ∪ {Ct}.

Let us remark that while this construction is analogous to those used in
Section 7.1, this time we do not have any a priori bound on the number of
steps T ; neither we need one.

Claim 7.6 For every 1 ≤ t ≤ T there exists a constraint g = b in D̂ such
that yCt ∈ V ars(g) ⊆ C0 ∪ {Ct}.

Proof of Claim 7.6. We only have to note that since
∣∣∣Jit(Â) ∪ C0

∣∣∣ ≤
s+`+1 = L, the set of all constraints (g = b) ∈ D̂ with V ars(g) ⊆ Jit(Â)∪C0

makes a linear subspace. Now the claim is proved by an obvious induction
on t.

Using Claim 7.6, we recursively extend ρ by picking ρ(yCt) in such a way
that it satisfies the constraint from that claim; note that this value does not
depend on the choice of the constraint. Let ρ̂ be the resulting restriction with
sup (ρ̂) = CT and, as in Section 6, let x (ρ̂) be obtained from ρ̂ by extending
it with values 1/2 outside of CT . We claim that in fact x (ρ̂) ∈ P

Â,̂b
.

Indeed, by our construction every row Ji(Â) has either ≥ 2 or 0 variables
outside of CT . In the first case the corresponding (real) constraint (15) is
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satisfied by any two variables in Ji(Â) \ CT . In the second case we represent
the corresponding initial constraint as a F2-linear combination of constraints
stipulated by Claim 7.6 and a constraint (g = b) ∈ D̂ with V ars(g) ⊆ C0.
As ρ satisfies all of them, Lemma 4.5 is proved.

For Lemma 4.20, let us first note one simple combinatorial property of
expanders.

Lemma 7.7 Let G be an (an, c)-vertex expander, where a ≤ 1/4, and let
c′ < 4ac (so that in particular c′ < c). Then for every disjoint sets of vertices
S,D ⊆ V (G) with |S| ≤ n/2, for sufficiently large n we have

|N(S) \N(D)| ≥ c′|S| − 2|D|.

In particular (D = ∅),
|N(S)| ≥ c′|S|,

and
c′ ≥ 2 =⇒ |N(S) \N(D)| ≥ c′(|S| − |D|).

Proof. If |S| ≤ an then we have the following, much stronger, bound:

|δ(S) \N(D)| ≥ |∂(S) \D| ≥ c|S| − |D|. (60)

Thus, let us assume |S| ≥ an, and let `
def
= b2a|S|c. Note that ` ≤ |S|

2
(since

a ≤ 1/4) and ` ≤ an (since |S| ≤ n/2).
Let A and B be two disjoint subsets of S, of cardinality ` each. Then,

using (60), we obtain the estimate

|N(S) \N(D)| ≥ |N(A ∪B) \N(D)|
= |N(A) \N(D)|+ |N(B) \N(D)| − |E(A,B)|
= |δ(A) \N(D)|+ |E(A)|+ |δ(B) \N(D)|

+|E(B)| − |E(A,B)|
≥ 2(c`− |D|) + |E(A)|+ |E(B)| − |E(A,B)|.

(61)

Randomizing over all possible choices of the pair (A,B), we see that the

expectation of the quantity |E(A,B)|−|E(A)|−|E(B)| is O
(
|E(S)|`
n2

)
, which

is O(1) since we can assume w.l.o.g. that |E(S)| ≤ O(n) (otherwise the
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statement is trivial). Applying (61) to the pair minimizing this quantity, we
immediately get

|N(S) \N(D)| ≥ 2(2ac|S| − |D|)−O(1) ≥ c′|S| − 2|D|

since c′ < 4ac.

Lemma 4.20. Let a, c be constants such that c > 2 and ac > 1/2. Then
there exists ε > 0 such that for sufficiently large n and for any (an, c)-vertex
expander G the polytope FPM(G) contains a point x with ||x||∞ ≤ 1−ε

2
.

Proof. Decreasing a if necessary, we can assume that a ≤ 1/4. Pick up c′

in accordance with Lemma 7.7 so that c > c′ > 2, and let

ε
def
= 1− 2

c′
.

We have to prove that the following linear program is feasible: 0 ≤ xe ≤ 1
c′

(e ∈ E(G))

x(δ(v)) = 1 (v ∈ V (G)).

By a standard duality argument, it suffices to show that for any fixed real
weights wv (v ∈ V (G)), there exists x ∈ [0, 1/c′]E(G) that satisfies∑

v∈V (G)

wvx(δ(v)) ≥
∑

v∈V (G)

wv. (62)

Let V (G) = [n] and assume w.l.o.g. that w1 ≥ w2 ≥ . . . ≥ wn. For an edge

e = (u, v) ∈ E(G), we let α(e)
def
= min(u, v) and β(e)

def
= max(u, v). In this

notation, (62) can be re-written as

∑
e∈E(G)

wα(e)xe +
∑

e∈E(G)

wβ(e)xe ≥
n∑
v=1

wv. (63)

Assume for the ease of notation that n is even (if n is odd, we will have to
adjust by 1

2
w(n+1)/2 each of the two right-hand sides in (64)). We split the

inequality (63) into two parts and show how to construct x ∈ [0, 1/c′]E(G) so
that 

∑
e∈E(G) wα(e)xe ≥

∑n/2
v=1 wv∑

e∈E(G) wβ(e)xe ≥
∑n
v=n/2+1wv.

(64)
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For that purpose we recursively construct a sequence x(0), x(1), . . . , x(n/2) of
vertices such that x(0) ≤ x(1) ≤ . . . ≤ x(n/2) (pointwise) and all x(v) possess
the following properties:

x(v) ∈ [0, 1/c′]E(G);

||x(v)||1 = v;{
e ∈ E(G)

∣∣∣ x(v)
e > 0

}
⊆ N([v]) (= {e ∈ E(G) | α(e) ≤ v}).

First we let x(0) be the zero vector. For v > 0, we note that |N([v])| ≥ c′v by
Lemma 7.7, hence an extension x(v) ≥ x(v−1) with the required properties is
always possible. We construct a specific x(v) by consecutively saturating all
x(v−1)
e with e ∈ N([v]) to the maximum possible value 1/c′ giving priority to

edges e ∈ N([v]) with smaller values of β(v) until we eventually increase the
`1-norm of x(v−1)

e by 1. In this way we enforce the following property:
For every e ∈ N([v]) we have either x(v)

e = x(v−1)
e or ∀f ∈ N([v])(β(f) <

β(e) =⇒ x
(v)
f = (1/c′)).

Let x
def
= x(n/2); we are left to check the conditions (64).

For the first inequality, let

Xv =
∑

α(e)≤v
xe.

Then we estimate the left-hand side as follows:

∑
e∈E(G)

wα(e)xe =
n/2∑
v=1

wv
∑

{e| α(e)=v }
xv =

n/2∑
v=1

wv(Xv−Xv−1) =
n/2−1∑
v=1

(wv−wv+1)Xv+wn/2Xn/2.

But by our construction, Xv ≥
∑
α(e)≤v x

(v)
e = v, with equality for v = n/2.

Hence, since wv − wv+1 ≥ 0, we further have

∑
e∈E(G)

wα(e)xe ≥
n/2−1∑
v=1

(wv − wv+1)v + wn/2 · (n/2) =
n/2∑
v=1

wv.

Similarly, the same “Abelian-summation” trick reduces the second in-
equality in (64) to proving that for any u ∈ [n/2+1, n],

∑
β(e)≤u xe ≥ (u−n/2)

or, equivalently, (since ||x||1 = n/2)
∑
β(e)>u xe ≤ n−u. Assume the contrary,

and let u ∈ [n/2 + 1, n] be an arbitrary vertex for which this inequality is
violated. Let v ∈ [1, n/2] be the first vertex for which

∑
β(e)>u x

(v)
e > n − u.
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Let S
def
= [v] and D

def
= {u + 1, . . . , n}. Then x(v)

e > x(v−1)
e for at least one

edge with β(e) > u, which, as we noted when constructing this consequence,
is possible only when all edges e ∈ N(S) \ N(D) (that is, precisely those
with α(e) ≤ v and β(e) ≤ u) satisfy xe = 1/c′. Applying Lemma 7.7 once
more, we conclude that in the vector x(v) these edges carry `1-norm at least
|S| − |D|. Since ||x(v)||1 = |S|, we have

∑
β(e)>u x

(v)
e ≤ |D| = n − u. This

contradiction proves the second inequality in (64) and hence Lemma (4.20).

8. Conclusion and open questions

In this paper we have attempted to point out a somewhat strange gap in the
literature (at least in its theoretical segment) on the complexity of dynamic
semi-algebraic proof systems and combinatorial algorithms. Namely we have
proposed to quantify the complexity of a proof/algorithm simply by the max-
imum number of variables involved in the cuts it is making. One way to think
of this complexity measure (cf. the proof of Theorem 2.8) is by viewing the
proof/algorithm as a highly parallel protocol that works independently and
exhaustively for all small sets of variables J , thus producing the polytopes
(PJ)|0−1 in each of them. After that these processors MJ come to a general
meeting where they exchange this information by forming the intersection
P [∆], upon which they return to their own “districts” J to refine their local
polytopes on the base of the information they gained at the meeting. These
two stages repeat until there is no new information exchanged.

Our lower bounds are based on capturing this intuition by the notions of
w-integral and w-obstructing polytopes. They are specified by the amount
of local information that can be distributed among the processos MJ in such
a way that they do not learn anything new by exchanging it. We have
developed tools for constructing such polytopes that has turned out to be a
not so trivial task in the unfeasible case (see the proofs in Section 4.2 and
7.3). We hope that these concepts will become useful in further study of
dynamic semi-algebraic proof systems/algorithms. One particular goal that
we have in mind is one of the most important open problems in the area: find
“direct”, “combinatorial” proofs of size lower bounds in such systems. As we
mentioned in Introduction, the only results currently available are manifestly
indirect (and, in the case of LS+, are only conditional!) and based on the
feasible interpolation theorem [Pud97, Pud99].
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In our lower bounds for natural problems (Sections 4, 5) the parallel
game described at the beginning of this section terminates in essentially7

one round. On the other hand, our tradeoff result Theorem 2.11 displays
the opposite behavior: at each of the conventions, only a small number of
processors learn something new, and they need exponentially many (in w)
rounds to converge. Moreover, this lower bound on the number of rounds
works for widths that are much larger than the minimum width.

The combinatorial principle underlying Theorem 2.11, however, is all but
natural. Are there any “natural” problems in either proof complexity or
algorithms that display an “interesting” behavior in terms of the number of
rounds required for them to “essentially converge” (we deliberately prefer to
leave this question quantitatively loose)?

Speaking of strong tradeoffs, our tradeoff between rank and width (The-
orem 2.11) is very similar to the tradeoff between resolution tree-like size
and width given in [Raz15]. Thus it would be very natural to ask if these
two results can be combined into one. In other words, do there exist similar
tradeoffs between tree-like cutting plane proof size and width? This seems to
be an interesting and clean problem that is left open by our paper.

Another thing I tried for a while was to make the lower bound for the
perfect matching principle, Theorem 4.14, work for the Lovász-Schrijver sys-
tem as well. It looks as if the difficulties here are general and stem from the
fact that the whole powerful apparatus of protection matrices, pseudoexpec-
tations etc. works best in the presence of useful structure like a rich group of
symmetry, the structure of a linear space over the finite field etc. For exam-
ple, the only LS+ lower bounds for the matching principles in the standard
(width-unrestricted) rank model we are aware of pertain to complete graphs
and heavily exploit their symmetries (see e.g. [MS09] and the references
therein). In our paper, it took a considerable pain to prove even the most
intuitively obvious fact about the perfect matching polytope (Lemma 4.20).
We feel it might potentially turn out to be very useful to develop methods
for analyzing more general (that is, less symmetric) situations, both in terms
of rank and width lower bounds. Is it true that it takes nΩ(1) rounds for the
LS or LS+-hierarchy to converge from FPM(Gn,d) to PM(Gn,d) a.s.? In
fact, I believe it is open even for the cutting planes hierarchy: our Theorem

7Strictly speaking, the w-obstructing polytopes P [∆] used for lower bounds purposes
are not exactly P

′,w or N+,w(P ). But they can be placed between, say, N+,w(P ) and
N+,Cw(P ) for an absolute constant C > 0, so we view this as a technicality for the
purpose of this generic discussion.
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4.14 does not have any direct bearing for rank lower bounds. Can Theorem
4.14 itself be generalized to the complexity measure wLS+?

On a more general note, how large can be the gap between wLS+(τ ` 0)
and wCP (τ ` 0) for O(1)-CNFs τ?

Finally, our model does not seem to have any straightforward exten-
sion to static proof systems like Sherali-Adams or Sum-of-Squares. There
still are, however, a few dynamic proof systems of interest operating with
higher-degree polynomials, notably the systems LSd+ LSd, LSd+ introduced in
[GHP02]. Can we extend our lower bound for F2-linear equations, that is
Theorem 4.3, to, say, LSd for some d > 2? One reason why it might be inter-
esting is because for this higher-order systems even indirect, interpolation-
based size lower bounds completely fall apart [GHP02, Section 4].

References

[AAT11] M. Alekhnovich, S. Arora, and I. Tourlakis. Toward strong non-
approximability results in the Lovász-Schrijver hierarchy. Com-
putational Complexity, (4):615–648, 2011.

[ABRW04] M. Alekhnovich, E. Ben-Sasson, A. Razborov, and A. Wigder-
son. Pseudorandom generators in propositional proof complexity.
SIAM Journal on Computing, 34(1):67–88, 2004.

[AR03] M. Alekhnovich and A. Razborov. Lower bounds for the poly-
nomial calculus: non-binomial case. Proceedings of the Steklov
Institute of Mathematics, 242:18–35, 2003.

[Ash90] R. Ash. Information Theory. Dovers Publications, 1990.

[Bas81] L. A. Bassalygo. Asymptotically optimal switching circuits.
Problems of Information Transmission, 17(3):206–211, 1981.

[Bol80] B. Bollobás. A probabilistic proof of an asymptotic formula for
the number of labelled regular graphs. European Journal of Com-
binatorics, 1:311–316, 1980.

[Bol85] B. Bollobás. Random Graphs. Academic Press, London, 1985.

[Bol88] B. Bollobás. The isoperimetric number of random regular graphs.
European Journal of Combinatorics, 9:241–244, 1988.

55



[BS14] B. Barak and D. Steurer. Sum-of-squares proofs and the quest
toward optimal algorithms. In Proceedings of International
Congress of Mathematicians (ICM), volume IV, pages 509–533,
2014.

[BW01] E. Ben-Sasson and A. Wigderson. Short proofs are narrow -
resolution made simple. Journal of the ACM, 48(2):149–169,
2001.

[CCT87] W. Cook, C. R. Coullard, and G. Turán. On the complexity of
cutting plane proofs. Discrete Applied Mathematics, 18:25–38,
1987.
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