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Abstract. Given a weighted graph G = (V,E,w), with weight function
w : E → Q+, a matching M is a set of pairwise non-adjacent edges. In the
optimization setting, one seeks to find a matching of maximum weight. In
the multi-criteria (or multi-budgeted) setting, we are also given ` length
functions α1, . . . , α` assigning positive numbers to each edge and ` num-
bers β1, . . . , β` ∈ Q+, each one associated with the corresponding length
function. The goal is to find a maximum weight matching M (under
function w) such that

∑
e∈M αi(e) ≤ βi, ∀i ∈ [`] (these are the budgets).

In this paper we are interested in the case where each edge e ∈ E belongs
to a unique budget, i.e., it has a unique color. In [30] an 1

2
-approximation

algorithm was given based on rounding the natural linear programming
relaxation of the problem, and this is optimal modulo the integrality
gap of the formulation. The purpose of this paper is to study to what
extend linear programming methods help us design algorithms with a
better performance guarantee. We prove the following unconditional in-
approximability result: even a large family of linear programs, generated
by a logarithmic number of rounds of the Sherali-Adams hierarchy [29]
or a linear number of rounds of the BCC operator [1], does not suffice to
change the integrality gap even the slightest.

1 Introduction And Problem Definition

In 1982, Papadimitriou & Yannakakis defined the Exact Matching (EM) prob-
lem: Given a bipartite graph B where some of its edges are painted red, and a
positive integer k, decide if B contains a perfect matching with exactly k red
edges. This is one of the very few problems whose complexity is not yet fully
understood. On one hand, there exists a randomized NC algorithms [24] which
suggests that EM is probably not NP-complete. Moreover, there exists an al-
gorithm which, in polynomial time, returns a matching of maximum cardinality
with at most k + 1 red edges, if such matching exists [32]. This last result puts
EM as close to P as possible (unless of course EM ∈ P).

To the best of our knowledge, the first time a generalization of the EM
problem was studied, at least from an approximation point of view, was in [26]
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where the authors defined and studied the so-called blue-red matching: Given a
graph G where each edge is either red or blue, find a maximum matching with
at most w red and at most w blue edges (their result extends in cases where
an edge is allowed to have more than one color). Their motivation was that
blue-red matchings can be used to approximately solve the Directed Maximum
Routing and Wavelength Assignment problem (DirMRWA) [25] in rings which
is a fundamental network topology, see [26], [5] and they provided an RNC2

algorithm and a 3/4 combinatorial algorithm. They also noticed that the simple
greedy procedure produces a 1/2-approximate solution.

In this paper we consider the following natural generalization of the EM
(as well as the blue-red Matching) problem in general graphs (which we call
Bounded Color Matching-BCM ): We are given a (simple, non-directed) graph
G = (V,E). The edge set is partitioned into k sets E1 ∪E2 ∪ · · · ∪Ek i.e., every
edge e has color Cj if e ∈ Ej , a profit pe and a length αe both ∈ Q+. We are
asked to find a maximum (weighted) matching M such that in M the sum of
the lengths of edges of color Cj is at most wj ∈ Q+ i.e. a matching M such that∑
e∈M∩Ej α(e) ≤ wj ,∀Cj . Let C = ∪i=1,...,kCi be the collection of all colors. The

problem is long known to be NP-hard even in bipartite graphs [13] (where the
problem was mentioned as multiple choice matching and APX-hardness can
be deduced even in 2-regular bipartite graphs from [23]. When the edges are
allowed to have multiple colors (be part of an unrestricted number of budgets)
the problem is equivalent to the Maximum Independent Set problem.

In [30] a 1
2 -approximation algorithm was given based on rounding the natu-

ral linear programming relaxation of the problem. The rounding procedure was
based on the elegant technique of approximate convex decompositions by Parekh
[27]. This gives an inductive process to write any basic feasible solution x∗ of the
relaxed LP (by dropping the integrality constraints) as an approximate sparse
convex combination of integral solutions, i.e., α·pTx∗ =

∑
i∈I λiµi where the λi’s

are non-negative and sum up to one and each µi is a feasible matching for the
Bounded Color Matching problem. Then, by selecting the most profitable among
all the matchings µi we get an α-approximate solution. The bulk of the work is
to show that it is always possible to select α = 1

2 giving the 1
2 -approximation

guarantee. The initial result was for uniform lengths and integral bounds, but
it can immediately be generalized to the more general setting with the same
approximation guarantee. The result has been further generalized on uniform
hypergraphs in [28]. This also matches the integrality gap of the natural relax-
ation of the problem and suggests that using this LP alone is not enough to
achieve something better than that.

A natural questions occurs: a negative result based on a bad integrality gap
instance, rules out the possibility of a good approximation ratio for the problem
we want to study. But this holds for that particular linear (or even semi-definite)
relaxation. What about other, more complicated, relaxations? For example, if we
take the normal (degree-constraint) relaxation for the classical matching problem
(which has integrality gap of 2/3) and enhance it with the blossom inequalities,



we get an exact formulation of the convex hull of all integer points for the
Matching problem. But more usually than not, this is not the case.

A large body of work has been dedicated on trying to find systematic tech-
niques to enhance the quality of a given linear (or semi-definite) program with
valid inequalities (inequalities that are satisfied by all integral points) with the
hope that the part of the polyhedron being responsible for the bad integrality
gap example will be eliminated. Many such “lift and project” methods have been
proposed so far for example by Sherali and Adams [29], by Lovász and Schrijver
[20], by Balas, Ceria and Cornuéjols [1], [2] and by Lasserre [18], [17] and the
effect of such methods has been extensively studied for a host of combinatorial
optimization problems, for example see [22], [16], [6] and the most recent arti-
cles [8], [9] and [10] (which is actually one of the few “positive” applications of
lift-and-project methods), and the references therein.

Our Contribution: The main contribution of this paper is to provide the fol-
lowing unconditional (not based on any complexity theoretic assumption) inap-
proximability result: even a logarithmic number of rounds of the Sherali-Adams
(SA) hierarchy applied to the natural linear programming relaxation for the
Bounded Color Matching problem, is not enough to increase the integrality
ratio above the 1

2 . This unconditionally rules out a large class of algorithms
(running even in quasi polynomial time) hoping to achieve an approximation
guarantee better than 1/2, and thus the results of [30] are in some strong sense
“optimal” (relative to linear programming techniques). We note that the effect
of the SA hierarchy on the usual matching polytope was fully studied in [22]. Our
result is using the “algebraic” (linear formulation) version of the SA hierarchy.
We note that similar bounds and instances (uniform lengths/sizes, fractional
bounds/capacities) have been used in the study of the Knapsack problem [16].
As in the Knapsack problem, the morality of this result is that it demonstrates a
severe limitation of this more general computational model, i.e., even large linear
programs cannot “realize” such relatively simple structured instances. Since SA
subsumes the Lovász-Schriver hierarchy [20],[19], the same claim holds for the
LS hierarchy (but not the LS+).

Moreover, we prove that for the BCC operator [1] a greater bound can be
easily shown: even a linear (with respect to the size instance) number of rounds
of the BCC operator is not enough to change the integrality gap of 1

2 even the
slightest. We believe that this, relatively easier, result is interesting for an extra
particular reason: that the SA hierarchy applied to those instances cannot be
“fooled” for more but a very small number of rounds, showing that SA is strictly
stronger than BCC at least for the BCM setting.

To prove these results we show the existence of particular graph families
(instances for the BCM problem) and demonstrate a feasible fractional solution
for such instances with fractional value twice as much as the optimal integral
one. The bulk of the work, at least for the SA hierarchy, is to show that such
proposed vectors constitutes in fact a feasible solution.

Related Work: Budgeted versions of the maximum matching problem have
been recently studied intensively. When G is bipartite there is a PTAS for the



case where ` = 1 [3] and the case where ` = O(1) [14]. For general graphs there
is a PTAS for the 2-budgeted maximum matching problem [15] and a bicriteria
PTAS for ` = O(1) [7] (where the returned solution might violate the budgets by
a factor of (1 + ε)). This approach works also for unbounded number of budgets
albeit a logarithmic overflow of the budgets. In [21, ?] the BCM was considered
from a bi-criteria point of view: given a parameter λ ∈ [0, 1] there is an ( 2

3+λ )
approximation algorithm for BCM which might violate the budgets wj by a
factor of at most ( 2

1+λ ).

Remark: We note that the BCM problem is a special case of the 3-hypergraph
β-matching problem [27] or 3-set packing. The integrality gap obtained by the
natural LP relaxation is 3

7 and this is tight [27]. So, additional arguments are
needed to provide the 1/2 approximation in [30]. For 3-set packing there exists
a combinatorial 1

2 − ε approximation algorithm for the weighted case [4] and a
recent 3

4 − ε for the non-weighted case [12] building on the work of [31]. We
also note that this problem can be recast as a problem of maximizing a linear
function subject to a matching constraint and a partition matroid constraint
which enforces that at most wj elements be chosen with color Cj . This constitutes
a 3-system and hence a greedy algorithm gives 1

3 -approximation and this is tight
by elementary examples. This is in contrast with the greedy approach on blue-red
matching which gives 1

2 -approximation.

2 Limitations of Linear Programming Techniques

If we formulate BCM as a linear program, the polyhedron Mc containing all
feasible matchings M for the BCM is

Mc =
{
y ∈ {0, 1}|E| : y ∈M

∧ ∑
e∈Ej

αeye ≤ wj , ∀j ∈ [k]
}

(1)

whereM is the usual matching polyhedron:M = {x ∈ {0, 1}|E| :
∑
e∈δ(v) xe ≤

1, ∀v ∈ V }. We would like to find y ∈ {0, 1}|E| such that

y = max
x∈Mc

{
pTx =

∑
e∈E

pexe

}
, p ∈ Q|E|≥0 .

As usual, we relax the integrality constraints y ∈ {0, 1}|E| to y ∈ [0, 1]|E|

and we solve the corresponding linear relaxation efficiently to obtain a fractional
|E|-dimensional vector y. It is not hard to show that the integrality gap of Mc

is essentially 1/2 (for example 4-cycle with alternating red-blue edges where we
want a maximum matching with at most one edge per color) and this is true
even if we add the blossom inequalities [21] i.e., if instead ofM as defined here,
we use the well known Edmond’s LP [11].

The Sherali-Adams Hierarchy: Sherali-Adams is one of the most widely
used “lift and project” methods. Such methods constitute a systematic way



to derive an integral formulation for binary optimization problems. The idea
behind these methods is to consider the binary optimization problem in a higher
dimensional space (this is the lifting phase), add there valid constraints for
the binary optimization problem at hand (i.e. constrains that are satisfied by
all integral points of the polyhedron) and them project back the new solution
found in this higher dimensional space to the initial variable space (and this is
the projection phase of the technique). By projection we mean the following:

Definition 1. Let a polyhedron P = {(x, y) : Ax + By ≤ Γ} for matrices
A,B, Γ of appropriate dimension. Then, the projection of P onto the set of the
x variables is simply the following polyhedron:

Px =
{
x : ∃y such that (x, y) ∈ P

}
We recall the definition of the Sherali-Adams hierarchy of progressively stronger

relaxations of an integer polyhedron in the n-th dimensional hypercube {0, 1}n.
We use the original definitions [29] (see also [19]).

Let F0 = {y ∈ [0, 1]n : αi
Tx =

∑
j∈[n] αijxj ≤ βi, ∀i ∈ [m]} with

αij , βj ∈ Q, ∀i ∈ [m], j ∈ [n] be an initial convex polyhedron in [0, 1]n . Let
I = conv(F0∩{0, 1}n) be the convex hull of all integer points of F0. The Sherali-
Adams hierarchy, starting from F0, constructs an hierarchy of progressively non-
weaker relaxations F1, F2, . . . of I in the sense that Fn ⊆ Fn−1 ⊆ · · · ⊆ F0. Let
Fψ be the polyhedron resulting after ψ iterations of the Sherali-Adams methods
applied initially to F0. After at most rounds n we will arrive at I i.e. Fn = I.
Sometimes n rounds are necessary in order to arrive at I. Also, we can efficiently
optimize any linear objective function over Fk, for any fixed k. At the ψ-th
iteration, S-A hierarchy obtains Fψ from Fψ−1 as follows:

Let Γ,∆ be disjoint subsets of [n] such that |Γ | + |∆| ≤ min{ψ + 1, n}.
Multiply each constraint αi

Tx by each product
∏
γ∈Γ xγ

∏
δ∈∆(1 − xδ) and

produce a set of polynomial inequalities, for each Γ,∆ as above. Replace each
square term x2i by xi (so that the constraints are multilinear) and linearize
each product of monomials

∏
ζ∈Z xζ by a new variable yZ . Add to this set of

inequalities all the constraints of the form∏
γ∈Γ

xγ
∏
δ∈∆

(1− xδ) ≡
∑
Λ⊆∆

(−1)|Λ|yΓ∪Λ ≥ 0

Finally, Project Fψ onto the original n-th dimensional space: F pψ = {x ∈
[0, 1]n : ∃y ∈ F pψ, y{i} = xi}.

Now we will show that the integrality gap ofMc resists any constant number
of rounds of the S-A operator by providing a particular family of graphs and a
feasible solution vector for the t-level of the SA hierarchy with high fractional
value with respect to the optimal integral one.

The integrality gap example: Consider the following graph G = (V,E): for
any ` ∈ N ≥ 3, G has 2` vertices. It would help to visualize the vertices to be
oriented clockwise on a circle. G has 2`−2 color classes C1, . . . , C2`−2 . For each



color class Cj we set the bound wj = 2(1− ε), for some ε > 0. Each color class
Cj has 2` edges (i.e. |Ej | = 2`). The total number of edges in G is ` · 2`−1 and
the degree of every vertex will be `.

Now we define the edge sets Ej for each color class Cj . For each j ∈ [2`−2],
the edges {α2`−2 + j, α2`−2 + j+ 1} are in Ej , for each α ∈ {0, 1, 2, 3}. Basically
we go around the circle and we consider the four chains of length 2`−2, and we
paint consecutive edges with one of the 2`−2 available colors, in the same order
for each chain. So, around the circle, each color appears in exactly four edges.
Now we define the rest of the edges. For each vertex vj with index α2`−2 + j
in each of the two first chains (i.e., the vertices from 1 till 2`−3 for the first
chain and from 2`−3 + 1 to 2`−2 for the second chain) add `− 2 edges as follows:
Connect α2`−2 + j with α2`−1 + 2`−1 + j − 1 + 2i, for the particular α and
i = 0, . . . , `− 3. So, each vertex has degree 2 + `− 3 + 1 = ` as desired.

Now we describe the color of the edges of the previously defined set of edges.
For α ∈ {0, 1}, i = 0, . . . , `−3 and j = 1, . . . , `, the edges {α2`−2 +j, α2`−1 +j−
1+2i} are in color class Cj+2i+1( mod `). For each vertex, each of the `−2 edges

have different color so, for each chain, we have 2`−2 (the number of vertices in
each chain) ×(` − 2) (the extra edges per vertex we add in this second step)
= (` − 2)2`−2 and since we have 2`−2 color classes, each appearing uniquely in
each vertex, we conclude that the number of extra edges of color j we add on the
second step is `−2, for a total of 2`−4 edges (because we repeat the process on
the two consecutive chains) plus 2 edges from the first step = 2` edges of color
Cj .

Observe that such graphs are actually bipartite.

Now define the vector y ∈ Fψ in [0, 1]η, η =
∑
q∈[ψ]

(
n
q

)
as follows:

y =


y{∅} = 1
y{e} = 1−ε

`+(ψ−1)(1−ε) , ∀e ∈ E(G)

yI = 0, ∀I ⊆ [n], |I| ≥ 2

Lemma 1. The vector y as defined above is feasible for the ψ-th level of the
Sherali-Adams hierarchy applied on Mc.

Proof. In order to prove the claim of the lemma, it suffices to prove that all
constraints defined by the ψ-th level of the Sherali-Adams hierarchy are satisfied
by such a y. We have the following sets of constraints:

Degree constraints: These corresponds to all the constraints(
1−

∑
e∈δ(v)

ye

) ∏
γ∈Γ

yγ
∏
δ∈∆

(1− yδ) ≡
(

1−
∑
e∈δ(v)

ye

) ∑
H⊆∆

(−1)|H|yΓ∪H ≥ 0

where Γ,∆ ⊆ [n]: Γ ∩ ∆ = ∅ and |Γ |, |∆| ≤ ψ. This is still not a linear
constraint. If we insist to fully linearize them, then they will take the form∑

H⊆∆

(−1)|H|yΓ∪H −
∑

H⊆∆,e∈δ(v)

(−1)|H|yΓ∪H∪{e} ≥ 0.
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Fig. 1. An example of the graph constructed for ` = 4. This graph
has 24 = 16 vertices, 24−2 = 4 color classes, and 2` = 8 edges
per color for a total of 32 edges. The edges are defined as follows:
Eblack = {{1, 2}, {5, 6}, {9, 10}{13, 14}, {3, 12}, {4, 11}, {7, 16}, {8, 15}}, Eblue =
{{2, 3}, {6, 7}, {10, 11}, {14, 15}, {4, 13}, {5, 12}, {8, 1}, {9, 16}}, Ered = {{3, 4}, {7, 8},
{11, 12}{15, 16}, {1, 10}, {2, 9}, {5, 14}, {6, 13}} and Egreen = {{4, 5}, {8, 9},
{12, 13}{16, 1}, {2, 11}, {3, 10}, {6, 15}, {7, 14}}. By setting wj = 2(1 − ε) for some
ε > 0, we see that the optimal integral solution will select one edge per color for a total
of 4. On the other hand, the LP can set the values on the variables (corresponding to
edge) to 1

`+ε
for a total LP value 2`−2(2`) 1

`+ε
≈ 2`−1 = 8− ε′ in our example.

Color bound constraints: Similarly, for all the color constraints we add all
the constraints of the form

wj ·
∑
H⊆∆

(−1)|H|yΓ∪H −
∑
e∈Cj

∑
H⊆∆

(−1)|H|yΓ∪H∪{e} ≥ 0

Non-negativity constraints: These are the constraints 1−ye ≥ 0 and ye ≥ 0,
∀e ∈ E. Identically with the previous cases, these constraints will become∑

H⊆∆∪{e}

(−1)|H|yΓ∪H ≥ 0 and
∑
H⊆∆

(−1)|H|yΓ∪H∪{e} ≥ 0

We will show that the vector y previously defined satisfies all the above
constraints. First of all, it is immediate from the definition that y satisfies all the
initial constraints. We will prove that it satisfies all the color bound constraints
raising after t rounds. The rest can be shown to be true using identical arguments.



So, we have to show that for the defined y we have that

2(1− ε)
∑
H⊆∆

(−1)|H|yΓ∪H −
∑

H⊆∆,e∈Cj

(−1)|H|yΓ∪H∪{e} ≥ 0.

We begin with the following technical but very helpful claim.

Claim. Given subsets Γ and ∆ as above, we have that∑
e∈Ej

∑
H⊆∆

(−1)|H|yΓ∪H∪{e} ≤
1− ε

`+ (t− 1)(1− ε) |Ej |
∑
H⊆∆

(−1)|H|yΓ∪H

Proof of Claim: Indeed, if |Γ | > 2 then, by definition, yΓ∪H∪{e} = 0 i.e., both
terms are equal to zero and the inequality holds.

If |Γ | = 1, we have to consider two cases:
(1) |Γ | = {e′}, for some e′ ∈ Ej . In this case |H| should be zero (otherwise

the term is zero) and so

∑
H⊆∆,e∈Cj

(−1)|H|yΓ∪H∪{e} = y{e′}∪{e′} = y{e′} =
1− ε

`+ (t− 1)(1− ε) .

But in that case, the sum in the second term,
∑
H⊆∆(−1)|H|yΓ∪H = y{e′}

and so the second term becomes
|Ej |(1−ε)2

(`+(t−1)(1−ε))2 which is greater than 1−ε
`+(t−1)(1−ε)

(the first term) when t ≤ `.
Now the second case: (2) Γ = {e′} /∈ Ej . In this case the first some equals to

zero, since we would have terms of the form ye′∪e for e′ 6= e and, by definition,
such terms are all zero. The right hand side of the above inequality will again

become
|Ej |(`−ε)2

(1+(t−1)(1−ε))2 ≥ 0, so again in this case the inequality is true.

Finally, if Γ = ∅ we have that Γ ∪H ∪ {e} = (Γ ∪ {e})∪H. So, {e} /∈ J and
again the first sum

∑
e∈Ej

∑
H⊆∆(−1)|H|yΓ∪H∪{e} equals to 1−ε

1+(t−1)(1−ε) . Since

Γ = ∅, the sum in the second term is equal to the sum of the terms corresponding
to H = ∅ and |H ∩∆| = 1. In the first case the term becomes (−1)0y∅ = 1 and
in the second case (−1)1yH , where H is a single element set {h} ∈ ∆ in this
case. Summing these terms we see that∑

H⊆∆

(−1)|H|yΓ∪H = 1− |∆| 1− ε
`+ (t− 1)(1− ε)︸ ︷︷ ︸

ρ

= 1− |∆|ρ

In order the inequality to be true, we require that ρ ≤ ρ|Ej |(1 − |∆|ρ) ⇒
|∆|ρ ≤ |Ej |−1|Ej | . Since |∆| ≤ t (because, by definition |Γ ∪∆| ≤ t and Γ = ∅), we

have that

|∆|ρ ≤ t(1− ε)
`+ (t− 1)(1− ε) =

t
`

1−ε + t− 1



and since |Ej | = 2`,∀Cj we require that

t
`

1−ε + t− 1
≤ 2`− 1

2`
⇒ t ≤ 2`

1− ε (2`− 1).

So, in any case, we see that the inequality is true for any ε > 0 and any t ≤ `. ut
Let A = wj

∑
H⊆∆(−1)|H|yΓ∪H −

∑
H⊆∆,e∈Cj (−1)|H|yΓ∪H∪{e} (the linear-

lized version of the initial color bound constraint for color class Cj after multi-
plying it with

∏
γ∈Γ xγ

∏
δ∈∆(1−xδ)). By using the previous claim we can very

easily verify that

A ≥ (wj − |Ej |ρ)
( ∑
H⊆∆

(−1)|H|yΓ∪H

)
Claim. We have that (wj − |Ej |ρ)

∑
H⊆∆(−1)|H|yΓ∪H ≥ 0.

This would immediately give us that also A ≥ 0 and so we will be done
showing that the defined y satisfied the corresponding constraint.

Proof of Claim: First, we immediately see that (wj − |Ej |ρ) ≥ 0,∀t ≥ 1. Indeed
we have that

(wj − |Ej |ρ) = 2(1− ε)− 2`
1− ε

`+ (t− 1)(1− ε) ≥ 0

since ` + (t − 1)(1 − ε) ≥ `, ∀t ≥ 1. In other words, y satisfies the initial
constraints corresponding to color bounds of the LP (trivially this is true for all
the other initial constraints).

So, everything boils down in proving that
∑
H⊆∆(−1)|H|yΓ∪H ≥ 0. To prove

that, we will again distinguish cases regarding the cardinality of Γ .

|Γ | ≥ 2: In this case we have that |Γ ∪H| > 2,∀H ⊆ ∆ and so, by the definition
of vector y, we have that yΓ∪H = 0 i.e., the entire sum is zero and we are
done.

|Γ | = 1: Then Γ = {e} for some edge e ∈ E(G). In that case, {e} /∈ ∆. Assume
not, then Γ ∩ ∆ 6= ∅, as required by the definition of the Sherali-Adams
hierarchy. The reason of the disjoint requirement is that if we let the two sets
to intersect, then simple calculations show that the whole sum is zero. Indeed,
let H ⊆ ∆ such that {e} /∈ H. Then, the corresponding term in the sum
becomes (−1)|H|yΓ∪H . Consider now the term H ∪ {e}. The corresponding
term in the sum is now

(−1)|H|+1yΓ∪H∪{e} = (−1)|H|+1yΓ∪H∪ = −yΓ∪H
(since {e} ∈ Γ , we have that yΓ∪H cup{e} = yΓ∪H).
So, the two terms cancel each other, and the whole sum is zero and we have
that {e} /∈ ∆, so in fact ∆ = ∅ (otherwise |Γ ∪∆| > 1 ⇒ yΓ∪∆=0). In that
case, all the terms in the sum are of the form (−1)0yΓ∪∅ ⇒ the sum is equal
to y{e} = ρ ≥ 0.



|Γ | = 0: In that case, the only terms of the sum that survive are those for which
H = ∅ and those for which H = {h}. In the first case, there is only one term
to consider, namely (−1)0yΓ∪H = y{∅} = 1. In the second case, the terms
are of the form (−1)1yΓ∪H = −yh = −ρ, and we have |∆| many such terms.
All in all, the sum becomes 1− |∆|ρ which means that∑

H⊆∆

(−1)|H|yΓ∪H ≥ 0⇔ 1− ρ|∆| ≥ 0

.
Indeed, as before, we have that

|∆|(1− ε)
`+ (t− 1)(1− ε) ≤

t(1− ε)
`+ (t− 1)(1− ε) =

t
`

(1−ε) + (t− 1)
≤ 1

so that 1− ρ|∆| ≥ 0,∀t, and so we are done.

We have proved that the the vector y defined previously, satisfies all the color
bound constraints arising after at most ` rounds of the Sherali-Adams hierarchy.
The rest of the constraints can be proved to be true for the same bounds of t in
identical manner and the calculations are omitted in the current reading.

Since we have a feasible vector for the t-th level of the Sherali-Adams Hier-
archy, the next task is to bound the value the objective function takes for this
y. We have that for t less than `

value(y) = sup
`→∞

lim
ε→0

( `2`−1(1− ε)
`+ (t− 1)(1− ε)

)
≥ 2`−1

1
1−ε + t−1

`

= 2`−1

On the other hand, any integer solution can select at most one edge per
color class and so the integer optimum is exactly 2`−2. So, we have that the
integrality gap of at least 2 remains even after t rounds of the Sherali-Adams
hierarchy applied on Mc, for any t ≤ `. Since there exists a 1

2 -approximation
algorithm, this value is tight.

Theorem 1. For any ε > 0, we have that the integrality gap of the t-th level of
the Sherali-Adams hierarchy for Mc is at least 2

1
1+β

, for t = βλ, for β = o(1).

3 The BCC Operator

Here we will show that the integrality gap of 2 of the natural LP formulation
for BCM resists even for a linear number of rounds for the BCC operator. This
is fact true even for the general LP with the blossom inequalities and even for
bipartite graphs with the normal (degree constraints only) LP. In particular,
we will show that the BCC [1] rank of the Mc polyhedron is large (linear).
Recall the BCC operator applied to a polyhedron P0 = {x ∈ [0, 1]n : Ax ≤ β},
A ∈ Rm×n, β ∈ Rm:



BCC-1 Fix an index i ∈ [n].
BCC-2 Multiply each constraint aj

Tx ≤ βj with xi and (1−xi) and obtain the
quadratic system xi(Ax− β) ≤ 0, (1− xi)(Ax− β) ≤ 0.

BCC-3 Linearize the quadratic system: replace x2i with xi and xixi′ with yi′ .
Let Pi(P0) ≡ Pi the resulting (lifted) polyhedron.

BCC-4 Project Pi back to the original n-dimensional space.

The polyhedron Pi that the above process returns, for some index i ∈ [n] has
a remarkable property:

Theorem 2 ([1]). Pi = conv{P0 ∩ {x ∈ [0, 1]n such that xi ∈ {0, 1}}}.
We can apply the previous procedure iteratively on indexes (i1, i2, . . . , ik) for

some k ≤ n thus defining a lifted polyhedron P(i1,...,ik) = Pik(· · · (Pi1(P0))) that
has the property, similarly as before, that

P(i1,...,ik) = conv(P0 ∩ x ∈ [0, 1]n : xi1 , . . . , xik ∈ {0, 1})
If B ⊂ [n] we define

PB = conv{x ∈ P0 ∧ xi ∈ {0, 1}, ∀i ∈ B}
This implies that if we apply the BCC operator iteratively to all the n vari-

ables then we obtain a tight linear characterization of the convex hull of the
integer solutions of P0. Observe that the resulting polyhedron does not depend
on the order of the indexes that we apply the operator. This allows us to write

P(i1,...,ik) = P{i1,...,ik} ⇒ P[n] = conv(P0 ∩ {0, 1}n)

The integrality gap example: Now, consider the following family of instances,
F , for Bounded Color Matching problem: let k copies of the C4 graph, k ∈ N,
where C4 is the usual 4-cycle. Let the i-th copy of C4, Ci4, 1 ≤ i ≤ k, have vertices
α1
i , α

2
i , α

3
i , α

4
i . Let Eri = {{α1

i , α
2
i }, {α3

i , α
4
i }} and Ebi = {{α1

i , α
4
i }, {α2

i , α
3
i }}.

Now, connect the i-th copy of C4, Ci4, 1 ≤ i ≤ k − 1 with the (i + 1)-th as
follows: add the edge {α2

i , α
4
i+1} and assign this edge with a new, color let’s say

cw1 and add the edge {α3
i , α

1
i+1} with color cw2. All in all our graph has 4k

vertices and 4k + 2(k − 1) edges such that E = Ew1 ∪ Ew2 ∪ (
⋃k
i=1(Eri ∪ Ebi ))

where |Ew1| = |Ew2| = k − 1 and |Eji | = 2, ∀i ∈ [k], j ∈ {r, b}. We put bounds
equal to 1 for every color class. Observe that the constructed graph is bipartite.

The optimal integral solution selects one edge per C4 plus one edge from
Ew1 and one from Ew2 for a total value of k + 2. We will show that even after
a large (linear) number of rounds, the BCC operator has a very high fractional

value. Indeed, define B =
⋃k
i=1(Eri ∪Ebi ) ⊂ E and consider the following solution

vector:

x =


xe = 1

k−1 , ∀e ∈ Ew1

xe = 0, ∀e ∈ Ew2

xe = k−3
2(k−1) (<

1
2 ), ∀e ∈ B



· · ·· · · Ci4 Ci+1
4

α1
i α2

i

α4
i

α1
i+1 α2

i+1

α3
i+1α4

i+1
α3
i

Fig. 2. A graph from F .

It is immediate, by definition, that this solution vector belongs in PE\(B∪Ew1) =
PEw2 = conv{x ∈Mc : xe ∈ {0, 1} ∀e ∈ E \ (B ∪Ew1)} and so it belongs in the
|E \B|-level of the BCC hierarchy. Moreover, its value is

k · 4 · k − 3

2(k − 1)
+ (k − 1)

1

k − 1
= 2k · k − 3

k − 1
+ 1 ≡ 2k for large k

and so we obtain the following:

Theorem 3. If G = (V,E) is a graph as constructed above, then the integrality
gap of 2 for the Mc polyhedron resists a linear (in fact at least m

5 − 1, m = |E|)
number of rounds of the BCC operator applied to it, even for bipartite graphs,

i.e. there are graphs where the integrality gap is at least
2k· k−3

k−1+1

k+2 ≈ 2 for large
enough k.

By experimenting slightly with the instance, we can construct graphs such
that the rank of the BCC operator on Mc is at least m − 3. (We remind that
the rank is the maximum number of rounds in order to fully close the integrality
gap).

4 The Effect of SA on F

In this section we will show that the bad integrality gap instances, as captured
by the family of graphs F , cannot “fool” the SA hierarchy for more but a very
small number of rounds.

For convenience, let us re-define F in an even simpler setting (instead of
Ew1 , Ew2 we have only Ew): we have k copies of the following graph of 4 vertices,
let’s call it Σ. The i-th copy of Σ is denoted as Σi and has four vertices V (Σi) =
{γ1i , γ2i , γ3i , γ4i } and the following set of edges: Eri = {{γ1i , γ4i }, {γ2i , γ3i }}, Ebi =
{{γ1i , γ3i }, {γ2i , γ4i }} and Egi = {{γ1i , γ2i }, {γ3i , γ4i }}. Connect Σi with Σi+1 for

1 ≤ i ≤ k−1, by connecting (for example) γ1i with γ1i+1. Let Ew =
⋃k−1
i=1 {γ1i , γ1i+1}.

Set each color bound equal to 1 for every edge class. The optimal integral value
is k + 1 and the optimal LP value for the stronger Mc is 2k.

Define Ξ = E \⋃k−1i=1 {γ1i , γ1i+1} and observe that |Ξ| = 6k. Let y ∈ Fψ be a
vector in [0, 1]η, η =

∑
q∈[ψ]

(
n
q

)
:



y =


y{∅} = 1
y{e} = 1

3+ε(ψ−1) , ∀e ∈ Ξ
y{e} = ε(ψ−1)

3+ε(ψ−1) , ∀e ∈ Ew
yI = 0, ∀I ⊆ [n], |I| ≥ 2

In order to calculate the value of the vector y, for appropriate values of ψ,
we see that

value(y) = sup
k

lim
ε→0

( 6k

3 + ε(ψ − 1)
+ (k − 1)

ε(ψ − 1)

3 + ε(ψ − 1)

)
= sup

k
lim
ε→0

(
k

6 + ε(ψ − 1)

3 + ε(ψ − 1)
− ε(ψ − 1)

3 + ε(ψ − 1)

)
= 2k

and as before the optimal integral solution is k + 1.

Lemma 2. The vector y as defined above is feasible for the ψ-th level of the
Sherali-Adams hierarchy applied on Mc.

Proof. As usual, we need to show that the proposed vector satisfies all the corre-
sponding constraints after their linearization. We begin with the non-negativity
constrains. We will show that

∑
H⊆∆(−1)|H|yΓ∪H ≥ 0 which is equivalent to

prove it for |Γ | ≤ 1 since otherwise by definition
∑
H⊆∆(−1)|H|yΓ∪H = 0 (the

case of the other non-negativity constraint, namely
∑
H⊆∆(−1)|H|yΓ∪H∪{e} ≥ 0

is much simpler because this constraint boils down to show that ye ≥ 0 which is
trivially true).

So we assume that |Γ | ≤ 1. If |Γ | = 1 and ∆ ⊇ Γ , it is not hard to show that∑
H⊆∆(−1)|H|yΓ∪H = 0. Indeed each term yΓ∪H′ will appear twice in the sum,

each time with inverse sign: one time for H ′ ⊆ ∆ \Γ (i.e. Γ /∈ H ′) and one time
for the term H ′ ∪Γ . Since in these two cases the cardinality of H ′ ∪Γ differs by
exactly 1, the two identical terms yH′∪Γ will appear with inverse sign and hence
will cancel each other forcing the total sum to be zero. This suggests that Γ /∈ ∆.
But in this case observe that for |H| > 0, the corresponding term yΓ∪H will be
zero by definition. So the only surviving term is the term that corresponds to

H = ∅ and in that case yΓ∪H = yΓ = 1
3+ε(ψ−1) ≥ 0 or yΓ = ε(ψ−1)

3+ε(ψ−1) which is

again ≥ 0. Similarly, if |Γ | = 0, then the only surviving terms in the sum are
those for which |H| ≤ 1. The interesting case is when |H| = 1, since otherwise
yΓ∪H = y∅ = 1 by definition and the coefficient is 1. For |H| = 1, the sum is
equal to



∑
H⊆∆

(−1)|H|yΓ∪H =
∑
H⊆∆

(−1)|H|yH = y∅ +
∑
δ∈∆

−yδ

= y∅ −
∑

δ∈∆∩Ξ

yδ −
∑

`∈∆∩Ew

y`

= 1− |Φ|
3 + ε(ψ − 1)

− (|∆ \ Φ|) (ψ − 1)ε

3 + ε(ψ − 1)

≥ 1− |∆|max{1, ε(ψ − 1)}
3 + ε(ψ − 1)

≥ 1− ψ · max{1, ε(ψ − 1)}
3 + ε(ψ − 1)

=
3 + ε(ψ − 1)− ψmax{1, ε(ψ − 1)}

3 + ε(ψ − 1)
= Θ1

Now, we move forward to the task of proving that the degree and color bound
constraints are satisfied by the proposed vector y and delivering a (weaker) bound
on the number of rounds that this is true. In fact we will prove only the degree
constrains, since the color bound constrains have identical structure (and they
are even easier and they will give us an even better bound on ψ). At the end
we will use the worst bound on ψ delivered by the degree constraints to give
a global bound on the number of rounds ψ that satisfies the given constraints.
Given the linearized versions of the degree constraints, and by following similar
arguments as before, we have that

∑
H⊆∆

(−1)|H|yΓ∪∆ −
∑

H⊆∆,e∈δ(v)

(−1)|H|yΓ∪∆∪{e} ≡

y∅ −
∑
t∈T

yt − y{e} ≥

1− ψ · max{1, ε(ψ − 1)}
3 + ε(ψ − 1)

− ε(y − 1)

3 + ε(y − 1)
= Θ2

Both expressions Θ1 and Θ2 involve the term max{1, ε(ψ−1)}. We will consider
the two cases for this term:

max{1, ε(ψ − 1)} = 1 : This implies that ψ ≤ ε+1
ε . Since we require Θ2 ≥ 0, we

have that Θ2 = 1−ψ 1
3+ε(ψ−1)−

ε(ψ−1)
3+ε(ψ−1) ≥ 0⇒ 3+ε(ψ−1)−ψ−ε(ψ−1) ≥

0 ⇒ ψ ≤ 3. This means that after 3 only rounds the SA hierarchy declares
the proposed vector (that fools the starting LP) as infeasible.

max{1, ε(ψ − 1)} = ε(ψ − 1) : This implies that ε(ψ−1) ≥ 1⇒ ψ ≥ ε+1
ε as lower

bound for the number of rounds ψ. On the other hand, since we require that
the quantity Θ1 is ≥ 0, we have that its numerator should be ≥ 0 (since the
denominator clearly is) and so

3 + ε(ψ − 1)− ψ(ε(ψ − 1)) ≥ 0⇒ −εψ2 + 2εψ + 3 ≥ 0⇒ ψ ≤ 2ε+
√

12ε

2ε
.



So we have both a lower and an upper bound on the number of rounds ψ as
function of ε:

ε+ 1

ε
≤ ψ ≤ 2ε+

√
12ε

2ε

The above is true only for ε ≥ 7− 4
√

3 ≈ 0.0718. Since the function f(ε) =
2ε+
√
12ε

2ε is decreasing with ε, it attains its maximum value for ε = 7 − 4
√

3
and has value ≈ 6.46. This means that again SA realizes after at most 7
rounds that the vector is not feasible for the integrality gap example, unlike
the standard LP.

ut
Given the symmetric properties of any graph G ∈ F , the above can be imme-

diately generalized for any possible fractional vector and any target integrality
gap: after a very short number of rounds (linear function of the target integrality
gap), the SA hierarchy applied to the family of graphs F would correctly output
that the proposed symmetric fractional vector (that fools the initial LP) is not
feasible and would output the correct integral solution, in extreme contrast to
the BCC operator that can be “fooled” even for a linear number of rounds.

5 Conclusions

In this paper we provided strong integrality gap results for the Bounded Color
Matching which is a case of the multi-budgeted matching problem. In particu-
lar, we proved that even a logarithmic (linear) number of rounds of the Sherali-
Adams (BCC) hierarchy is not enough to improve the integrality gap of the
natural LP relaxation of the problem to the slightest. The integrality gap in-
stances instances for the SA hierarchy have the property that have uniform
lengths and fractional bounds, similar to the Knapsack instances from [16]. Such
simply structured instances provide a great challenge even for SA hierarchy to
realize the core of their bad behaviour. Such intsances can be treated by simple
“cutting” operations but SA is unable to realize that even after a very large
number of rounds. On the other hand, it is a very interesting open question to
provide examples with integral bounds with same behaviour for the SA hierar-
chy. So far, we are able to come up with instances that can fool the SA hierarchy
for a constant number of rounds. The graph is the n-dimensional hypergraph
with careful assignments of colours to the edges. Following a very similar pat-

tern with the one employed, we have that SA can be fooled for 1 +
√

1 + 3+ε
ε

rounds, i.e., such many rounds are not enough to improve the integrality gap to
the slightest.
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