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Abstract

We strengthen existing evidence for the so-called “algebrization barrier”. Algebrization — short
for algebraic relativization — was introduced by Aaronson and Wigderson (AW) (STOC 2008) in order
to characterize proofs involving arithmetization, simulation, and other “current techniques”. However,
unlike relativization, eligible statements under this notion do not seem to have basic closure properties,
making it conceivable to take two proofs, both with algebrizing conclusions, and combine them to get a
proof without. Further, the notion is undefined for most types of statements, and does not seem to yield
a general criterion by which we can tell, given a proof, whether it algebrizes. In fact the very notion of
an algebrizing proof is never made explicit, and casual attempts to define it are problematic. All these
issues raise the question of what evidence, if any, is obtained by knowing whether some statement does
or does not algebrize.

We give a reformulation of algebrization without these shortcomings. First, we define what it means
for any statement / proof to hold relative to any language, with no need to refer to devices like a Turing
machine with an oracle tape. Our approach dispels the widespread misconception that the notion of
oracle access is inherently tied to a computational model. We also connect relativizing statements to
proofs, by showing that every proof that some statement relativizes is essentially a relativizing proof of
that statement.

We then define a statement / proof as relativizingaffinelyif it holds relative to everyaffine oracle—
here an affine oracle is the result of a particular error correcting code applied to the characteristic string
of a language. We show that every statement that AW declare as algebrizing does relativize affinely, in
fact has aproof that relativizes affinely, and that no such proof exists for any of the statements shown
not-algebrizing by AW in the classical computation model.

Our work complements, and goes beyond, the subsequent work by Impagliazzo, Kabanets, and
Kolokolova (STOC 2009), which also proposes a reformulation of algebrization, but falls short of recov-
ering some key results of AW, most notably regarding theNEXP versusP/poly question.

Using our definitions we obtain new streamlined proofs of several classic results in complexity,
includingPSPACE ⊂ IP andNEXP ⊂ MIP. This may be of separate interest.
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1 Introduction

Motivation. The algebrization notion — short for algebraic relativization — was put forth by Aaronson
and Wigderson [2] (AW henceforth) to give evidence that certain complexity-theoretic conjectures are be-
yond the reach of “current proof techniques”. Although the name suggests some type of relativization,
algebrization lacks two essential properties of relativization:

Closure under inference.What exactly constitutes a “current technique” may be inherently unclear, but
at a minimum it seems logical inference rules should be included. However, as pointed out in [2, 40, 30],
statements that algebrize in the AW formulation are not known to be closed under inference.

For example, AW show that the statementψ := NEXP 6⊂ P/poly does not algebrize,1 and interpret
this to mean that a certain class of proof techniques, say “algebrizing techniques”, cannot proveψ. Yet,
this does not rule out an approach where, say, one comes up with a classC and, showsC ⊂ NEXP via
algebrizing techniques, then showsC 6⊂ P/poly via algebrizing techniques, and thus derive the very
sameψ.

Lack of closure under inference thus significantly thins any evidence imparted by a negative al-
gebrization result — as AW obtained forNEXP versusP/poly and for other questions of structural
complexity — since the class of proofs ruled out by such a result might be much smaller than intended.

This precludes algebrization from having one of the two key virtues of relativization, namely delin-
eating those conjectures within possible reach of a robust family of techniques, from those that are not.
Indeed, some major results in complexity are suggested to have been found using relativization as such
a guide [9, 22].

Universality. A main appeal of relativization is being a universal notion, in the sense that it applies
to every statement in one generic way. Intuitively, a statement relativizes if its truth is insensitive to
broadening the definition of computer, from an ordinary Turing Machine, to one with oracle access to
an arbitrary languageO. (We provide an alternate intuition later in Section1.1.6.)

This intuition is so natural that it enables the second key virtue of relativization, namely being a
“litmus test” for weeding out futile endeavours. The idea is that ifψ is already known to not relativize,
then any strategy for provingψ, in order to be viable, must somehow be unable to handle arbitrary
extensions of the computer notion, or else it would be a strategy for proving not justψ, but thatψ
relativizes. Given the scarcity of such proof strategies in structural complexity — at least for thoseψ
involvingP, hence classes definable2 fromP — this idea makes relativization a practical tool for guiding
research. (Alas, we do not have a count on the number of fruitless research hours saved this way.)

For algebrization, however, we have no comparable intuition. This is mainly because algebrization
is a selective notion, in the sense that it is defined only for containmentsC ⊂ D and separationsC 6⊂ D,
and moreover, it is applied differently to each side of the containment / separation. Supposing we have
a strategy to proveψ — and assuming, to begin with,ψ is of compatible syntax — there is no universal
criterion we can apply, to check if our ideas can be extended to show thatψ algebrizes. This calls into
question how relevant it is to know thatψ is non-algebrizing in the first place.

Besides the above problems, algebrization brings back some longstanding ones that are as old as the rela-
tivization notion itself:

Controversial relativizations. A pair of theorems might be derived using seemingly the same techniques,
yet only one might be relativizing / algebrizing. For example,PSPACE ⊂ IP, as AW show, algebrizes,

1We use⊂ for containment and( for proper containment throughout the paper.
2Most complexity classes can be viewed as the result of applying various operators toP; see Section1.1.1.
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yet its cousin,NEXP ⊂ MIP, doesnot, as observed by Impagliazzo, Kabanets, and Kolokolova [30] —
except itdoes, as AW show, if we restrict oracle access forNEXP to be of polynomial-length.

It is not clear how to interpret such results without further work. Can we justify restricting oracle
access, say by showing that it yields a natural subclass not tied to the Turing machine model? If so,
then which “current technique” eliminates the difference between the two classes, the subclass and the
original, thereby overcoming the limits of algebrizing techniques (whatever they are)?

Relativizing statements vs. proofs.A generally accepted (though not uncontested [35]) convention is to
remark that some proof, say ofψ, relativizes or algebrizes, with no clear consensus on what that exactly
means.

The typical intent behind such remarks seems to be that the said proof can be transformed into a
proof that ψ relativizes(or algebrizes). However, as anything can be transformed into anything when
there is no constraint, it is not clear which proofs donot relativize under such a definition. And even
if some commonsense transformations are tacitly agreed upon — e.g., “give every Turing machine an
oracle forO,” or “bring each statement to its relativized form” — it is unclear whether the transformed
object would always be a valid proof, let alone a valid proof thatψ relativizes. (For example, does a
proof that reads “SupposeP = NP. . . . ” not relativize, sinceP = NP does not?)

Naturally thus the question arises, of whether precise definitions can be given for what constitutes a
relativizing / algebrizing statement / proof, ideally in a way that agrees with the everyday intuitions for
these notions.

Prior Work. An early draft by Arora, Impagliazzo, and Vazirani [5] (AIV) gives a precise definition
of a relativizing proof, and building on the AIV approach to relativization, Impagliazzo, Kabanets, and
Kolokolova [30] develop an analogous approach for algebrization. However, that approach falls short of
recovering some key results of AW, most notably regarding theNEXP versusP/poly question. See Section
1.2.

Our Results. In this paper, we reformulate relativization and algebrization, in a way that addresses all the
problems raised in the first section.

First, we give a definition of what it means for a statement / proof to hold relative to a language, with
no need to refer to devices like a Turing machine with an oracle tape. Our approach dispels the widespread
misconception that the notion of oracle access is inherently tied to a computational model. We also show an
interesting connection from relativizing statements to proofs, namely, that every proof thatψ relativizes is
essentially a relativizing proof ofψ (see Theorem8 for a precise statement).

Our main contribution is to the algebrization notion. We define a statement / proof as relativizingaffinely
if it holds relative to everyaffine oracle— here an affine oracle is the result of a particular error correcting
code applied to the characteristic string of a language. With this definition, we show that every statement
that AW declare as algebrizing does relativize affinely, in fact has aproof that relativizes affinely, and that
the opposite holds for statements declared non-algebrizing by AW in the classical model.3 (Both require
new ideas.) Our formulation in this sense gives rigorous support to the “algebrization barrier” idea of AW,
which can thus be viewed as a refinement of the classic “relativization barrier” of Baker, Gill, and Solovay
[13].

Affine relativization is a refinement of relativization so as to capture the known uses ofarithmetization,
a technique for interpolating Boolean formulas into polynomials. Famously used in early 90’s for obtaining
PSPACE ⊂ IP and related results, which are false relative to some choices of an oracleO [25, 24, 16],

3 AW state some non-algebrization results for quantum-based complexity classes as well; we do not pursue these.
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arithmetization is widely regarded as a counterexample — maybethe counterexample — to the rule-of-
thumb that “most known proof techniques relativize” in structural complexity theory. Affine relativization,
to the extent that it captures the known uses of arithmetization — and it does so fairly well, as we argue in
the rest of Section1 — can be viewed as a step towards reinstating that rule-of-thumb (albeit only a step, as
thePCP theorem is out of scope of this and related work; see open question in Section5).

Our formulations also tell something about those “known proof techniques” that do not seem to alge-
brize, in particular, aboutlocality of computation. It is a longstanding debate whether locality — that the
next step of a computation depends on only a “small” fragment of its current state — plays any role in cur-
rent results of complexity, particularly in interactive proofs [23, 5, 22, 30]. On one hand,NEXP ⊂ MIP can
be explained away as relativizing algebraically with a convenient, but questionable, alteration of the oracle
access mechanism as mentioned above; on the other hand, locality could provide an honest explanation of
this theorem, as argued by Arora, Impagliazzo, and Vazirani [5], but an incongruent one to its algebraic
nature, especially when its cousin,PSPACE ⊂ IP, needs no such explanation.

Our results shed some light onto this matter. As we explain in Section1.3, it is fruitful to put a particular
class betweenPSPACE andIP, and another one betweenNEXP andMIP, so that each theorem reads as
two containments. The second containment, we argue, captures the real content in each theorem, namely
“gap amplification”; affine relativization can derive every containment except the first one forNEXP versus
MIP. We conclude that whether or notNEXP ⊂ MIP algebrizes is just a matter of definition, because there
is no application of this theorem (as far as we know) that is sensitive to how it is viewed, gap amplification
versus the common view. Therefore affine relativization can be viewed as a robust proxy, or a candidate
thereof, for the current state of the art.

This is mere interpretation, however, and is not to be confused with the main message of the paper,
namely that the algebrization barrier idea of AW can be rigorously supported:

Summary of Results. Affinely relativizing proofs, as defined in Section1.1, derive each statement classi-
fied as algebrizing by AW, and provably cannot derive any statement classified as non-algebrizing by AW in
the classical model. In particular:

• Each of the following has an affinely relativizing proof

– PSPACE ⊂ IP, (Corollary 34)

– NEXP ⊂ MIP, viewed as gap amplification (Theorem40)

– MAEXP 6⊂ SIZE(2logd n), ∀d (Theorem44)

– prMA 6⊂ SIZE(nd), ∀d (Theorem44)

– NP ⊂ ZKIP if one-way-functions exist (Theorem49)

• None of the following has an affinely relativizing proof

– NP 6⊂ P, in factPSPACE 6⊂ P (Proposition50)

– NP ⊂ P, in factRP ⊂ SUBEXP (Corollary 57)

– NP ⊂ BPP, in factcoNP ⊂ MA (Corollary 56)

– PNP ⊂ PP (Corollary 56)

– NEXP 6⊂ P/poly, in factNEXP 6⊂ SIZE(nd), ∀d (Theorem53)

1.1 Relativization and Affine Relativization

We now explain our formulation of the relativization and affine relativization notion. We caution that our
results do not depend on any peculiarity of the definitions we give here. The reader who is already at ease

3



with some notion of relativization (vague though it may be) can choose to skip this section and still follow
the rest of the paper.

1.1.1 Relativization without oracle machines

One of the first things a student typically learns about relativization is thatCO, the classC relative to the
languageO, is not obtained fromC, but rather from thedefinitionof C. (This is true in general, otherwise
we cannot have bothIP = PSPACE and thatIPO 6= PSPACEO for someO, for example.) Unfortunately,
it is easy to misinterpret this fact, even for professionals, as though relativization is a notion inherently tied
to computational devices like Turing machines. To relativize a class, say to getPO from P, a common belief
is that we must take an enumeration of machines underlyingP, and endow each with a mechanism to access
the languageO. (See e.g, [33, 18, 22].) We cannot, as the belief goes, obtainPO by treatingP as a set; we
must modify the definition of that set.

As we show now, this is false — at least for the classical notion of relativization from Baker, Gill, and
Solovay [13], which is the one we formalize in this paper.

Take any definition ofFP equivalent to the typical definition that uses Turing machines, be it the typical
definition itself, or a machineless one such as [19] or [15]. Consider the “oracle operator”

(V,O, `) 7→ V O[`]

which, given functionsV,O : {0, 1}∗ → {0, 1}∗, and given the functioǹ : N → N, outputs the function
V O[`] defined as

V O[`] : x 7→ V (x, a), where

a1 = O(V (x, ε)),

a2 = O(V (x, a1)),
... (1.1)

ai = O(V (x, a1..ai−1)),

|a| = `(|x|),

and whereε is the empty string. Now, the classFP can be relativized simply as

FPO := { V O[nc+c] : V ∈ FP, c ∈ N }. (1.2)

Intuitively, FPO is obtained by taking everyFP-predicate and conferring upon it the power to interact
with a prover that can only computeO— the power to do a Cook-reduction toO, essentially. (We formalize
this intuition in§2.7.)

Proposition 1. FPO is exactly the set of all functions computable by a polynomial-time Turing machine
with oracle access toO.

Proof. UseFP(O) to denote the set which we want to showFPO equals to.
ThatFPO ⊂ FP(O) is easy. To compute a function of the form (1.1) with ` = nc + c andV ∈ FP, a

Turing machine with access toO can constructa1..a` bit by bit, and then outputV (x, a1..a`).
The converseFPO ⊃ FP(O) is easy as well. IfM is a Turing machine with access toO, running in time

at most|x|c + c on every inputx, then there is an equivalent machineM ′ that makes exactly|x|c + c queries
to O, by repeating if necessary the last query made byM , and that takes no more than|x|d + d steps for
somed. Also, there is a machineQ that on input(x, a1..ai) simulatesM ′(x), by interpretinga1..ai as the
answers to the firsti queries ofM ′, and that outputs the next query ofM ′. If M ′ halts during the simulation,
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thenQ outputs whateverM ′ outputs. In caseM ′ takes too long during simulation, longer than|x|d + d
steps, which could happen ifa1..ai incorrectly lists the oracle answers, thenQ outputs something arbitrary,
say0. NoticeQ doesnot need access toO. Therefore, ifV is the function computed byQ, thenV ∈ FP.
It follows by (1.1) thatV O[nc+c] is identical to the function computed byM ; by (1.2), this function is in
FPO.

SoFP can be relativizedextensionally, i.e., as a set, with no need to know the definition of that set.
What about other complexity classes? Most classes have straightforward definitions in terms ofFP; it

is for these classes that relativization is actually useful as a guide. For example,NP, BPP, P/poly, EXP
are all definable, extensionally, fromFP. EvenPSPACE is definable in that manner, asΣ∞P (§2.3). In fact
all these classes can be viewed as the result of applying various operators to the classP: NP asN ∙ P, BPP
asBP ∙ P, so on (e.g., [34, p.187], [20], §2.3), andP in turn can be obtained extensionally fromFP.

To relativize these classes, we simply relativizeFP. In other words, wedefineNPO asN ∙ (PO), or
more precisely (and bombastically) asN ∙ 1

F ∙ FPO, where 1
F denotes the process of obtainingP from FP

(say by taking eachV ∈ FP and composing it with the projection functionπ : x1..xn 7→ x1). Similarly, we
defineBPPO asBP ∙ (PO), and so on.

By centering everything onFP, we thus take a disciplined approach to relativization, with no dilemmas
about what oracle access means for different classes. Since we avoid such a dilemma forFP to begin with,
we thus have an oracle-free treatment of relativization.

While this approach omits some complexity classes, e.g.,Logspace, it is debatable whether that is a
limitation of the approach, or whether such classes are beyond the scope of relativization as originally
intended. Regardless, for all the results in this paper, the approach given here is sufficient.

Oracle machines without machines. By generalizing the above approach we can also dispense with the
notion of “a polynomial-time oracle Turing machine”. This notion is more general than “a polynomial-time
Turing machine with oracle access toO”, because it allows us to say things like

there exists an oracle machineM∗ such that for everyO, MO satisfies . . . (])

and things like

take an enumeration of oracle turing machines running in timet . . . ([)

(for an appropriatet), the point being in both cases that the quantification of the machine comesbeforethe
oracle.

ForV ∈ FP and` : N→ N, let V ∗[`] be the function

V ∗[`] : (O, x) 7→ V O[`](x)

that maps a given languageO and stringx to V O[`](x) as in (1.1) above. Now let

FP∗ := {V ∗[n
c+c] : V ∈ FP, c ∈ N}. (1.3)

Then a memberf∗ of FP∗ serves just like a polynomial-time oracle Turing machine; givenO, it yields some
fO ∈ FPO. (We make use of this construct in the sequel, to formalize statements similar to (]) and ([).)

1.1.2 ψ is true relative to O vs.ψ is provable relative toO

Perhapsthefirst thing a student typically learns about relativization is to call a statement, sayψ, relativizing
if it remains true when all Turing machines are given access to an arbitrary oracleO. Two vague spots exist
in this definition; we already started to address the second one, how to “give all Turing machines an oracle”,
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in the previous discussion. The first, and the more fundamental issue is, what is really meant for something
to be “true”.

Of course, the notion of truth was settled in the 1950s by Alfred Tarski and Robert Vaught who took a
model-theoretic perspective (e.g., [29]). However, model-theoretic truth does not seem to capture the intent
of “true” above in the casual definition of relativization.

Instead, we useprovablesandrefutablesto formalize relativization in this paper. Ifψ has a proof, then
it is provable; if it has a disproof, i.e., if its negation¬ψ has a proof, then it is refutable. Every statement is
either true or false, but some statements are neither provable nor refutable, by the Incompleteness theorem
— assuming, here and throughout, that everyday mathematics is consistent.

Let us be more precise. Take the axioms of everyday set theory,ZFC. The reader does not need to know
much aboutZFC, besides two things. First, one can express most of everyday mathematics, certainly all
the math in this paper, as proofs fromZFC. The reader can take this as a thesis, akin to the Church-Turing
thesis that every computer program can be implemented by a Turing machine.

The second thing to know aboutZFC is that it is expressed in the language of first order logic, with two
special symbols: the binary relation symbol∈, intended to represent membership, and the constant symbol
∅, intended to represent the empty set.

Of course, intentions are irrelevant;∈ and∅ can be interpreted in any way that respects the axioms. In
other words, the notions “set”, “is a member of”, “empty set” are left undefined; they are primitive notions.
ZFC stipulates how these primitive notions behave with each other, and the rest of mathematics is built
using these notions. (For example, the natural number1 is defined as the set containing, as its only element,
the empty set; the existence and uniqueness of1 is then proved fromZFC.) In yet other words, the symbols
∈ and∅ are devoid of meaning; they constitute the special symbol set — thesignature, in the terminology
of mathematical logic — of the language of first order logic in which we express mathematics.

Note that symbols such as0, 1, N are not a part of the signature like∈, ∅ are. They are introduced with
definitions, and are placeholders for those definitions, like macros in a programming language. In other
words they are not primitive notions.

Now, add a constant symbol,O, to the signature. Add an axiom toZFC that says

O is a language. (†)

We can formalize this axiom in a number of ways, e.g., asO ⊂ {0, 1}∗, or asO : {0, 1}∗ → {0, 1},
depending on how we want to formalize languages. (Here “language” is used in the complexity-theoretic
sense, not the linguistic sense as in “the language of first order logic”.) Without loss of generality, we pick
the latter, and thus view languages as functions from{0, 1}∗ to {0, 1}.

Now add another constant symbol,FP, to the signature. Also add another axiom toZFC, as follows.
Take any definition of the class of polynomial time computable functions, say, the standard one based on
Turing machines; don’t call this classFP yet — call itTheFP instead. Now add an axiom that says

FP equals(TheFP)O. (‡)

Here(TheFP)O is obtained by takingTheFP and applying the oracle operator, as in (1.1) and (1.2).
Just as we can express everyday mathematics usingZFC, we can use

ZFC + (†) + (‡)

to define relativized complexity classesP, NP, BPP, etc., fromFP, as explained in Section1.1.1, and then
try to derive results about these classes.

If we want to study unrelativized versions of these classes, then we can setO to be a trivial language,
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say the empty (i.e., constant-zero) language. That is, we can work under the axiom system

ZFC + (†) + (‡) + “O is empty”

where “O is empty” can be formalized as∀xO(x) = 0, for example.
Similarly, if we want to studyP, NP, BPP, etc., relative to a particular languageO0 (e.g., the language

SAT) then we can work under

ZFC + (†) + (‡) + “O is O0”

where “O is O0” might require possibly infinitely many axioms to formalize, but not more than countably
many, since we can always give a list of input-output pairs describingO.

To recap, we have:

Definition 2. Using the language of first order logic with signatureS := (∈, ∅,O, FP), let

• CT(∗) denoteZFC + “O is a language”+ “FP equals(TheFP)O”,
• CT(O0) denote, for every languageO0, CT(∗) + “O is O0”.

Our framework of mathematics isCT(0) — unrelativized complexity theory— where0 is the empty
language mapping every input to0. When we sayψ is provable, for example, we mean it is provable
from CT(0) unless we say otherwise. We refer toCT(∗) asrelativized complexity theory, andCT(O0) as
complexity theory relative toO0.

Definition 3. Let ψ be a statement in the language of first order logic with signatureS as in Definition2.
Call ψ:

• a fact if it is a theorem ofCT(0),
• a fact relative toO0 if it is a theorem ofCT(O0).

Here “ψ is a theorem ofT” means the same thing as “ψ is provable fromT”, namely: if we take everything
in T to be true, thenψ follows.

We caution that it is not required to abandon unrelativized complexity theory, just to be able to talk about
relativized classes. For example, thatNPSAT = Σ2P is a fact of unrelativized complexity theory. In fact
we never have to leave unrelativized complexity: Switching to the relativized worldCT(O0) amounts to
reinterpretingthe symbolFP, thus giving every class (built fromFP) an oracle forO0, and the same effect
can be achieved by syntactically replacing every occurrence ofFP with FPO0 . (This is in fact the approach
taken from Chapter2 (see§2.19) onwards; the reason we use relativized worlds here is that it makes the
metamathematical exposition much easier.)

We are ready to define relativizing and nonrelativizing statements.

Definition 4. Let ψ be a statement in the language of first order logic with signatureS as in Definition2.
Call ψ relativizing iff it is a fact relative to every language.

There are a couple of things to note about Definition4, which are illustrated in Figure1 as a sideways
tree. First, ifψ is a theorem of relativized complexity theory, then it is relativizing (i.e., row 1 in the figure
implies rows 1 & 2), because a single proof ofψ from CT(∗) yields, for everyO0, a proof ofψ from
CT(O0). However, the converse is not clear. (An analogous situation is having a single algorithm that runs
in timen1+o(1) versus having, for eachε, an algorithm running in timen1+ε.) We may say that theorems of
relativizing complexity theory areuniformlyprovable in every relativized world. (In the next subsection we
will say such facts have relativizingproofs.) Interestingly, all facts designated as relativizing in the everyday
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ψ provable

CT(0) ` ψ

ψ provable in every world
CT(O0) ` ψ, ∀O0

ψ uniformly provable in every world
CT(∗)`ψ

}

ψ relativizing
ψ not uniformly provable

CT(∗) 6`ψ

ψ provable, but not in every world
CT(O0) 6` ψ, ∃O0

ψ not refutable in any world
CT(O0) 6` ¬ψ, ∀O0

ψ refutable in some world
CT(O0)`¬ψ, ∃O0

ψ not provable
CT(0) 6` ψ

ψ neither provable nor refutable
CT(0) 6` ¬ψ

ψ refutable
CT(0) ` ¬ψ

Figure 1: Illustration for Definition4 (as a sideways tree)

sense, seem to be theorems of relativized complexity. (In the next subsection we will show that this is not a
coincidence.)

Second, ifψ is a fact that is refuted relative to someO0, then it is a nonrelativizing fact (i.e., row 4 in the
figure implies rows 3 & 4). But the converse does not always hold. We do not know of a natural example
for this, however; like in the first point above, all facts that are designated as nonrelativizing in the everyday
sense, as far as we know, are facts that are refuted in some relativized world.4

1.1.3 Affine relativization

Affine oracles are motivated in Section1.3 and precisely defined in Section2. Roughly, the languageA
is an affine oracle if there is a languagef , with fn denoting its restriction to length-n inputs, and withf̂n

denoting the uniquen-variate polynomial of individual degree-≤ 1 extendingfn, such thatA represents the
evaluation off̂n overGF(2k), for all k andn.

Definition 5 (Definition4 cont’d). Let ψ be a statement in the language of first order logic with signatureS
as in Definition2. Call ψ affinely relativizingiff it is a fact relative to every affine oracle.

The remarks made right after defining relativizing statements (Definition4) have analogues for affine
relativization. In particular, all facts we show in this paper as affinely relativizing are provable from the
following theory:

Definition 6 (Definition 2 cont’d). Using the language of first order logic with signatureS as in Definition
2, let:

• CT( ∗̃ ) denoteCT(∗) + “O is an affine oracle”.

We refer toCT( ∗̃ ) asaffinely relativized complexity theory. Notice thatCT( ∗̃ ) does not immediately
appear to be a subtheory ofCT(0), unrelativized complexity theory. It is:CT(0) by definition isCT(∗) +
“O is 0”, and the empty language0 : x 7→ 0 is an affine oracle; this follows from the precise definitions in
Section2 (and should be plausible given the rough definition in the beginning of this subsection).

4Here is an “unnatural” example: Let1 be the language that outputs1 on every inputx. ThenCT(1) = CT(∗) + “O is 1”,
where we may use∀xO(x) = 1 to formalize that last axiom. Now, letψ be “if O = 1 thenZFC is consistent”. Then for every
languageO0 6= 1, CT(O0) proves “O 6= 1”, hence provesψ. On the other hand,CT(1) proves “O = 1”, and hence, by the
Incompleteness theorem, cannot prove or refuteψ — assuming, as we agreed to do, thatZFC is consistent.
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Figure 2: (Affinely) relativizing statements

We use Figure2 to illustrate the relationship between relativization and affine relativization. The “rel-
ativization barrier” idea corresponds to the vertical line between the set of relativizing statements and its
complement. Similarly, the “algebrization barrier” idea can be pictured as the line between the set of affinely
relativizing statements and its complement; “ψ is affinely nonrelativizing” would then say thatψ is some-
where to the right of that line.

1.1.4 Relativizing statements vs. relativizing proofs

We call a proof relativizing if, intuitively, it goes through when we “give every polynomial-time Turing
machine an arbitrary oracleO”.

Definition 7. Call a proof fromCT(0) relativizing iff it is also a proof fromCT(∗).

SinceCT(∗) is a subtheory ofCT(0), relativizing proofs are exactly those proofs fromCT(∗). Proofs that
relativize make no assumptions about the primitive notionO other than that it is a language.

As remarked in Section1.1.2, it is not obvious if a theorem of the form “ψ relativizes” implies, by itself,
thatψ has a proof that relativizes. Nonetheless, in the process of deriving such a theorem, it seems invariably
one ends up giving such a proof. (Of course everyday proofs are not spelled out in the language of first order
logic, just as everyday algorithms algorithms are not specified as Turing machines or Boolean circuits.)

We now show this is not a coincidence.

Theorem 8. Let ψ be a statement in the language of first order logic with signatureS. Every proof thatψ
relativizes can be augmented to make it a relativizing proof ofψ. The augmentation does not depend on the
contents ofψ.

This theorem is consequential to the rest of the paper. It says that all statements that areknownto relativize
are theorems of relativized complexity theory, i.e., they have relativizing proofs. In fact, it says, to give a
relativizing proof ofψ, it suffices to give a proof thatψ relativizes; a desired proof can then be obtained by
adding a few additional lines, and those lines that do not even depend onψ. So it says, essentially:

Every proof thatψ relativizes is a relativizing proof ofψ.

The upshot is that we never have to worry about showing results of the form “ψ has a relativizing proof”; it
suffices to show “ψ relativizes” instead.

9



Proof of Theorem 8. Let ψ be a statement over the signature(∈, ∅,O, FP). Suppose we are given a
proof thatψ relativizes. Since our framework of mathematics is unrelativized complexity theoryCT(0),
this means we are given a proof that takes all the axiomsCT(0) as true and derives that:ψ relativizes, i.e.,
that:ψ is a fact relative to every languageO0, i.e., that:

for every languageO0, CT(O0) provesψ. ([)

First, notice there is nothing mysterious about mentioning one theoryCT(O0) while we are inside
another theoryCT(0); it is akin to one Turing machine simulating another.

Second, consider the following question. The proof of ([), which we know is in unrelativized complexity
theory — does it really use anything specific tounrelativized complexity theory? The statement ([) does
seem to involve the symbolO, but only superficially: we could talk about complexity theory by using
another symbol, sayO′, instead ofO. That is, lettingCT′(O0) be the same theory asCT(O0) except using
(∈′, ∅′,O′, FP′) as the signature instead of(∈, ∅,O, FP), we can restate ([):

for every languageO0, CT′(O0) provesψ′, ([′)

whereψ′ is obtained by replacing all occurrences of∈ (and respectively,∅, O, andFP) with ∈′ (and
respectively, with∅′, O′, andFP′). Now ([′) clearly does not require any assumption onO to be proven,
because we can replace in the proof of ([′) all occurrences ofO with whatO stands for in unrelativized
complexity theory, namely the empty language0. Therefore, ([′) is a theorem of relativized complexity
theoryCT(∗).

We now show that

if ([′) thenψ (])

is also a theorem of relativized complexity theory. This suffices to establish the claim, since we can put ([′)
and (]) together and concludeψ in relativized complexity theory.

Recall the thesis that everyday mathematics, in particular the mathematics in this paper, can be carried
out in the language of first order logic using theZFC axioms of set theory, which takes “set membership”
and “empty set” as primitive notions. (The reader who is at ease with the Church-Turing thesis should feel
the same about this one.) Under this thesis, whatever we can prove by starting out with “letO be a language”
is a theorem of relativized complexity theory.

So letO be a language. Suppose ([′). Then

CT′(O) provesψ′. (`)

Applying the soundness theorem of first order logic (e.g., [21, Thm 6.2]) to (̀ ) we get,

ψ′ is a consequence ofCT′(O), (|=)

which means that under every interpretation of the symbols(∈′, ∅′,O′, FP′) that satisfy the axiomsCT′(O),
the statementψ′ holds. In particular, if we interpret∈′ as set membership,∅′ as the empty set,O′ asO, and
FP′ asFP, thenψ′ holds.5 But ψ′ is exactlyψ under that interpretation.

So,ψ. We just proved (]) asdesired.

For the reader who wants to avoid the model-theoretic perspective taken during the transition from (`)
to (|=) in the above proof, here is the sketch of an alternative argument. A proof can be viewed as a table,
with each cell containing one statement. Each row is obtained by applying aninference ruleto zero, or one,

5The application of the soundness theorem is subtle here. If a theoryT provesϕ, thenϕ is true in every model ofT; this is the
soundness theorem. But by definition a model is aset, whereas here the model is the universe of everyday set theory, the “set” of
all sets, which is not a set. Nevertheless the soundness theorem still holds in this setting. Also see the remarks following the proof.
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or two previous rows, depending on the arity of the rule. The last cell in the last row of the table contains
the conclusion of the proof, and the rest of the cells in that row contain the assumptions of the proof.

So a proof ofϕ from the theoryT is a table whose last row readsΓ ϕ, whereΓ is a finite sequence of
statements fromT.

The following can be shown in relativized complexity theory:

for every proof, if the assumptions of the proof are true, then so is its conclusion. (�)

This can be shown by induction on the structure of the proof, i.e., on how the proof was obtained from infer-
ence rules. The specifics of the induction depends on what rules of inference are allowed; for concreteness
we take the exposition in [21, Ch IV] but in general any Hilbert-style inference system would do.

The base case of the induction corresponds to rules of arity zero. There are two such rules: (i) the row
Γ ϕ can be written anytime, for all sequences of statementsΓ that contain the statementϕ, and (ii) the row
consisting of the single statementt = t can be written anytime, for all termst. The claim (�) clearly holds
for these two rules.

We illustrate the inductive step with one rule of arity two, namely the contradiction rule: for any two
rowsΓ ¬ϕ σ andΓ ¬ϕ ¬σ, the rowΓ ϕ can be written anytime. HereΓ is a sequence of statements,ϕ
andσ are statements. Suppose we have a proof ending withΓ ϕ, derived by applying the contradiction rule.
Suppose the induction hypothesis holds for the subproofs ending with those two lines from which the last
line is derived. We want to show that if everything inΓ is true, then so isϕ. So suppose everything inΓ
is true. Suppose towards a contradiction thatϕ is false. Then¬ϕ is true, and by the induction hypothesis,
bothσ and¬σ is true, a contradiction. Therefore,ϕ is true. The inductive step for the other rules proceed
similarly.

Now let us go back to the proof of Theorem8, to right after (̀ ), and give an alternate way of concluding
ψ. LettingO be an arbitrary language, we know thatCT′(O) provesψ′. That is, there exists a proof (a
table) that concludes withΓ′ ψ′, whereΓ′ is a sequence formed from a finite subset ofCT′(O). Take any
such proof; replace all occurrences of∈′, ∅′,O′, FP′ with ∈, ∅,O, FP respectively. The resulting object is
a proof ending withΓ ψ, where every statement inΓ is either inCT(∗), or is a trivial statement such as
O(t) ≡ O(t) for some termt (becauseCT′(O) by definition isCT′(∗), plus axioms that implement “O′ is
O”, and replacingO′ withO turns “O′ isO” into the trivial “O isO”). Therefore,ψ, and we have Theorem
8 again.

1.1.5 Affinely relativizing statements vs. affinely relativizing proofs

Section1.1.4 carries over to affine relativization in a straightforward fashion. We call a proof affinely
relativizing if, intuitively, it goes through when we “give every polynomial-time Turing machine an arbitrary
affine oracleO”.

Definition 9 (Definition 7 cont’d). Call a proof fromCT(0) affinely relativizingiff it is also a proof from
CT( ∗̃ ).

SinceCT( ∗̃ ) is a subtheory ofCT(0) (see remarks after Definition6), affinely relativizing proofs are
exactly those proofs fromCT( ∗̃ ). Intuitively, proofs that affinely relativize make no assumptions about the
primitive notionO other than that it is an affine oracle.

Every proof thatψ affinely relativizes is essentially an affinely relativizing proof ofψ:

Theorem 10(Theorem8 cont’d). Letψ be a statement in the language of first order logic with signatureS.
Every proof thatψ affinely relativizes can be augmented to make it an affinely relativizing proof ofψ. The
augmentation does not depend on the contents ofψ.
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The upshot is that we never have to worry about showing results of the form “ψ has an affinely relativiz-
ing proof”; it suffices to show “ψ affinely relativizes” instead.

(The proof is a straightforward adaptation of the proof of Theorem8, so we omit it.)

1.1.6 Relativizing formulas

Our current definitions involveFP and classes definable fromFP (§1.1.1). It is desirable to extend the
definitions to formulas as well, so that statements such as “SAT is NP-hard” become relativizing. This
is for a couple of reasons. First, it is natural: for exampleSAT naturally extends to the languageSATO,
of satisfiable formulas over the Boolean basis extended withO, which is complete forNPO. Second,
complexity classes are typically used interchangeably with their complete languages, e.g.,PNP for PSAT,
but unless we find a way of relativizing formulas simultaneously with classes, such natural equivalences fail
in relativized settings.

There are several ways to do this extension; we give two. The first approach is straightforward and
corresponds to the everyday intuition, “‘SAT is NP-complete’ relativizesif we include oracle gates in
SAT”. The second approach is slightly more involved as it builds on the first, but it yields the rather clean
intuition that a statement / proof relativizes (affinely) iff it is insensitive to extending the standard Boolean
basis with any (affine) oracle.

First approach. Rewind to Section1.1.2. In addition toO, add another symbol,B, to the signature of the
language of first order logic in which we express mathematics (B for “basis”,O for “oracle”).

Let ∧ : {0, 1}∗ → {0, 1} : x 7→ ∧ixi be the language implementing anAND-gate of arbitrary fan-in.
Similarly, let⊕, 0, 1 implement, respectively, anXOR, a constant0, a constant1 gate of arbitrary fan-in.
DefineBstd to be the ordered set{0,1, ∧, ⊕}. (As is the case with symbols such as0, 1, N, the symbols
Bstd, 0, 1, etc. are not added to the signature; each is a placeholder for its definition.)

Now add the axiom “B = Bstd∪{O}” to relativized complexity theoryCT(∗) — hence to other flavors
of complexity theory as they are all built fromCT(∗). Just like we pledged to work with the relativized
classFP = (TheFP)O instead ofTheFP, we can pledge to define all Boolean circuits (hence formulas)
over the basisB. More precisely, define

CircEval(C, x)

as the function that, given the circuitC whose internal gates have labels of the form “ith basis element”, for
i ∈ {1, .., 5}, and given the inputx to C, evaluatesC(x) by interpreting “1st basis element” as0, “2nd basis
element” as1, . . . , and “5th basis element” asO.

This way, we can work with circuits / formulas without fear of making a nonrelativizing statement just
because we mention circuits / formulas. In particular “SAT is NP-complete” does become relativizing, as
does many others such as “�SAT is�P-complete”, sinceSAT, �SAT, etc., are all defined by building on
CircEval.

Second approach. Implement the first approach first. Now define a new class,FPcirc, as the set of
functions computable by polytime-uniform circuits of polynomial size, over the basisB. More precisely,
F ∈ FPcirc iff there is a functionDescF ∈ TheFP satisfying, for everyx ∈ {0, 1}∗,

F (x) = CircEval(DescF (1|x|), x),

whereCircEval is as defined in the first approach.
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By the Cook-Levin theorem,FPcirc equals(TheFP)O = FP. This suggests that we can drop the
symbolO and use the signatureS := (∈, ∅,B, FP) when expressing mathematics. In particular, we can
redefine relativized complexity theory and its variants by letting

• CT(∗) denoteZFC + “FP equalsFPcirc” + “B = Bstd ∪ {O0} for some languageO0”
• CT( ∗̃ ) denoteCT(∗) + “B = Bstd ∪ {O0} for some affine oracleO0”
• CT(O0) denote, for every languageO0, CT(∗) + “B = Bstd ∪ {O0}”.

As was the case in the original definition (Definition2), hereCT(O0) may require infinitely many
axioms to formalize. (Think of “B = Bstd ∪ {O0}” as “every languageO that is a member ofB \ Bstd is
O0”, and formalize “. . . is O0” as described right before Definition2.)

Notice that everything expressed in relativized complexity theory in sense of the original definition
(Definition2) can be equivalently expressed in the sense here, by mentioningB \Bstd instead ofO.

Furthermore, we can still work with circuits / formulas without fear of making a nonrelativizing state-
ment just because we mention circuits / formulas. For example, letSAT denote the satisfiability problem
for formulas over the basisB. Then “SAT is NP-complete” is a theorem ofCT(∗), almost by definition,
since the Cook-Levin theorem is essentially embedded in the definition ofFPcirc, hence ofFP.

With this approach, a statement (and respectively, a proof) is relativizing iff it remains a fact (respec-
tively, a proof) when the standard Boolean basis is extended with an arbitrary language. Similarly for affinely
relativizing statements and proofs. Notice that using this approach we dispense with the intuition of giving
“every Turing machine oracle access”, because extending the standard basis automatically does that.

In the sequel, either of the approaches above can be taken as the foundation for our results. For the sake of
readability, we pick the first approach.

1.2 Comparing With and Clarifying Prior Work

Four past works have a direct relation to ours — besides the paper that started it all, of course, by Baker-
Gill-Solovay. The main effort in these four works, and in ours, can be viewed as trying to: (i) formalize
the relativization notion, and / or (ii) refine the notion so as to capturePSPACE ⊂ IP and related results.
We do a quick survey of these works, first with respect to (i) and then (ii). Along the way we dispel some
common misconceptions as needed.

1.2.1 Efforts to formalize relativization

In mathematics, we can introduce a new object in two ways: constructive or axiomatic. The constructive
way is to introduce the object by defining it in terms of other objects already available. For example, if we
have sets available, then we can define natural numbers as

0 = ∅

1 = {0} = {∅}

2 = {0, 1} = {∅, {∅}}

3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}

and so on. (Of course, “and so on” is to be replaced with rigorous mathematics: inductive sets, the successor
operation — and so on.)

In the axiomatic approach, on the other hand, we introduce the object as a primitive notion, essentially
leaving it undefined; instead we add axioms that describe how instances of this new object behave in a
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universe consisting entirely of these objects. For example, we can treat “natural number” as a primitive
notion, along with a relation calledSuccessor, and add axioms saying that “for every natural numberx,
there is a unique natural numbery such that(y, x) are in theSuccessor relationship” and so on.

In other words: we can introduce an object either by saying what itis, or by saying what itdoes. The
former would be constructive, the latter axiomatic.

Since we cannot create something out of nothing, we have to begin by declaring some notions as prim-
itive. So the foundations of mathematics are axiomatic. Beyond that, however, the two approaches often
complement each other. For example, real numbers can be introduced as a complete ordered field, or as
infinite sequences of decimals, or as Dedekind cuts, or as equivalence classes of Cauchy sequences. The
first approach would be axiomatic, the rest constructive, each one informative in its own right.

Our treatment of relativization in Section1.1, in particular, our definition of relativized classes, at first
glance might appear to be axiomatic, since the very act of puttingFP in the signature is technically declaring
FP as a primitive notion. That is superficial, however;FP can be taken out of the signature and treated
instead as an ordinary symbol with no loss of generality — after all it is simply declared to equal the class
(TheFP)O, an object introduced constructively. (RecallTheFP stands for unrelativized polynomial time
computable functions.)

So our approach is constructive, and it is an interesting question whether relativized classes can be de-
fined axiomatically. This is whatArora, Impagliazzo, Vazirani [5] (AIV henceforth) partially answer.
Following Cobham [19], AIV introduceFP by an inductive definition: they first declare certain basic func-
tions to be inFP — the length functionx 7→ |x|, all constant functions, etc. Then they add new functions
to FP based on existing ones — e.g., iff andg are inFP then so is their composition. The resulting object
exactly characterizes relativized computation:(TheFP)O satisfies the definition ofFP for every language
O, and anything that satisfies the definition ofFP equals(TheFP)O for someO.

The AIV result is particularly interesting because it strengthens the message of Section1.1.1consider-
ably: not only relativization can be defined independently of machines, as we showed in Section1.1.1, but
also the very idea of oracle access can arise out of a natural definition that has nothing to do with oracles —
there is no mention of an oracleO in the AIV approach.

(On the flip side, lack of any reference to an oracleO makes it unclear whether a statement like “SAT
is NP-complete” is relativizing under the AIV definition.)

There is a big caveat that must be noted regarding the AIV approach as well as ours. In both works,
FP is definedafter introducing an entire collection of axioms formalizing everyday mathematics.6 (This is
why we consider AIV’s work as only partially answering the question of whether relativized classes can be
defined axiomatically.)

It is the lack of appreciation of this caveat that we believe underlies a widespread misconception, namely,
that these results prove some sort of logical independence for statements that do not relativize (e.g., [3], [38],
[1, Section 6.1.2]). To illustrate, consider the fact thatNEXP ⊂ P/poly is provable relative to someO and
refutable relative to some others. We could summarize this fact in the terminology of Section1.1as

NEXP ⊂ P/poly is independent ofCT(∗),

but we would be saying nothing about the axiomatic complexity of theNEXP
?
⊂ P/poly question: we

certainly believe thatZFC, asub-theory ofCT(∗), proves eitherNEXP ⊂ P/poly or its negation!
The confusion arises because there are two ways of expressing the same question inCT(∗): the first one,

NEXP
?

⊂ P/poly, follows the convention we took in Section1.1, of defining complexity classes based on
FP, which in turn is defined as the relativized class(TheFP)O. The second one ignores that convention and

6AIV take Peano arithmetic as a formalization for everyday mathematics, but their approach can be framed usingZFC as well.
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directly works with the classTheFP, thereby askingTheNEXP
?

⊂ TheP/poly (whereTheC is obtained
from TheFP in the same way asC is obtained fromFP). This is inevitable when we work with a theory that
is anextensionof everyday mathematics instead of arestriction, as one can always ignore any additional
axioms and stick to everyday mathematics. For a genuine independence result, we must work with asubset
of the axioms that govern the mathematical universe. But such a set of axioms for relativization is not known
to exist.

1.2.2 Efforts to Refine Relativization

Although relativization succeeds at explaining the failures of structural complexity until the 90s, it fails
at explaining the successes after, in particular those related to interactive proofs. We now discuss four
past proposals to refine relativization. The overarching goal in them is (or so will be our view here) to
provide some model for “known techniques”, which involves meeting two competing objectives: (a) derive
all relevant theorems in the model, and (b) provably fail to derive in the model all relevant conjectures that
are evidently beyond current reach.

We will use Figure3 to roughly illustrate how each proposal fares with respect to these two objectives (a)
and (b). The take-away message from this micro-survey is that although parts of (a), (b) have been attained
by prior work, ours is the first successful attempt that yields all the critical pieces under one framework.

Although the table is less precise than the discussion that follows, it does illustrate some key differences
among prior works. The vertical gap in the table is a caricature of the current state of the art; to the left of
the chasm are facts, and to the right are conjectures apparently out-of-reach. That gap would have been one
column to the left had this been the 80s; while the 80s resultΣ2EXP 6⊂ P/poly [31] relativizes, the 90s
resultMAEXP 6⊂ P/poly [16], proven usingPSPACE ⊂ IP, does not, thereby bridging that chasm or
breaking that barrier — pick your metaphor. (The reader should be able to visualize the title of this paper, if
not now then by the end of this section.)

We now survey each of the four proposals in turn.

1.2.2.1 AIV [5]: The first proposal is from the same paper discussed in Section1.2.1, by Arora, Impagli-
azzo, and Vazirani (AIV) [5]. There the authors propose what they call “local checkability” as the key
principle underlyingPSPACE ⊂ IP and related results such asMAEXP 6⊂ P/poly.

The starting point of AIV is the classical idea, used by Cook to prove theNP-completeness ofSAT, that
a computation running in timet can be represented as a transcript oft rows, with each row corresponding
to the state of the computation at one time step. Cook observed that given a table oft rows, we can verify
that it is a valid transcript by inspecting all bits of the table in parallel, where each bit depends on only

examples for goal (a) examples for goal(b)

(∃C:C⊂NEXP ∧ C6⊂P/poly)
=⇒ NEXP 6⊂P/poly

Σ2EXP 6⊂P/poly MAEXP 6⊂P/poly NEXP 6⊂P/poly
NP 6⊂P,

EXP 6⊂i.o.-P/poly,..

AIV X X X ? ?
For X X X ? Xrrr

AW ? X X X X
IKK X X X ? X

this work X X X X X

Figure 3: Attempts at refining relativization

15



O(log t) bits elsewhere. As AIV observe, however, this property will not hold for computations with access
to an arbitrary oracleO: just consider the program that takes its inputx1..xn and outputsO(x1..xn) — the
transcript of any execution of this program will have a bit that depends onn bits. This property is called
local checkabilityby AIV.

We can interpret AIV’s proposal as follows. Local checkability does not hold for an arbitary oracleO,
but it does ifO itself can be computed by a locally checkable process. So the AIV framework can be viewed
as this: take the Baker-Gill-Solovay framework of relativization, and then restrict the oracleO, from an
arbitrary function, to an arbitrary locally checkable function. (AIV present their approach using an oracle-
free framework as explained in§1.2.1, with no reference toO, but that presentation is not an integral part of
their approach and can be switched out like we do here.)

This framework derives many known nonrelativizing results — including those outside the scope of this
paper, such as thePCP theorem — but as AIV point out, whether it can settle questions such asP versus
NP or NEXP versusP/poly may be very hard to know. In fact, they observe that ifP versusNP were
shown beyond reach of their framework in the manner of Baker, Gill, Solovay — by giving contradictory
relativizations,NPO ⊂ PO andNPO 6⊂ PO, using oracles satisfying local checkability — thenP would
actually be separated fromNP. In this sense, the AIV framework is an unsatisfactory candidate for “known
techniques”. (Note that if all we want is a theory that can derive the current theorems, then we can just let
the oracleO be empty.)

1.2.2.2 Fortnow [22]: In a response to the AIV proposal dated around the same time, Fortnow [22] argues
that the nonrelativizing ingredient inPSPACE ⊂ IP and related results is not local checkability; rather, it
is something of an algebraic nature.

We can interpret Fortnow’s key insight as follows.PSPACE ⊂ IP does not relativize, but it does, if
every oracleO is constrained to have two properties:

(i). Algebraic redundancy. This means, roughly, that if we look at the truth table ofO on inputs of length
N , for anyN , then we must see a table whose information content is significantly less than2N , in much the
same way that if we look at the values of a functionf(x) = ax+ b over an interval inR, say, then we would
see a list that can be condensed to merely two entries.

More specifically,O must encode a family of polynomialsG = {Gn(x1, .., xn)}n that interpolate a
family of Boolean functionsg = {gn(z1, .., zn)}n such that

Gn(x) =
∑

z∈{0,1}n gn(z)Δz(x) (1.4)

whereΔz(x) denotes the monomial that is1 if x = z, and0 if x 6= z, for all Booleanx.

(ii). Closure. This roughly means thatO is closed under adding redundancy. Just asO is an algebraically
redundant version of a familyg by property (i) above, there is an algebraically redundant version ofO
itself (after allO is a family just likeg); the closure property dictates that the redundant version ofO must
essentially beO itself — more precisely, it must be efficiently computable given access toO.

We discuss the motivation behind these two properties later below, in conjunction with a related paper
(IKK).

The upshot is that Fortnow takes, like AIV essentially do, the Baker-Gill-Solovay framework of rela-
tivization, and then restricts the oracleO to satisfy some constraint; for lack of a better name we refer to this
constraint asclosed algebraic redundancy.

Like AIV, Fortnow does not show any formal limits of his framework. However, we can use the tools
we develop in this paper to show that several major conjectures of complexity can provably not be settled
within it (hence theXrrr symbol in the table) — alas, we do not know how to show this forNEXP vs.P/poly.
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In this sense, Fortnow’s framework is (in hindsight given by this thesis) a superior candidate for “known
techniques” compared to AIV’s, but still an unsatisfactory one in the context ofNEXP vs.P/poly.7

1.2.2.3 AW [2]: A decade-and-half after the above two papers, Aaronson and Wigderson (AW) [2] intro-
duce algebrization. Their paper is the first one that, after the nonrelativizing results of the 90s, sheds some
light on whether “known techniques” — a notion that evidently has expanded during the 90s — can settle
questions such asNEXP vs.P/poly.

We can interpret the key insight of AW as follows. In Fortnow’s refinement of relativization described
just above, recall that any oracleO must satisfy two properties that we collectively referred to as “closed
algebraic redundancy”. What AW found is that if we drop the closure requirement from this, then the
resulting framework fails to settle many questions of complexity. (Even theNEXP vs. P/poly question
cannot be settled, AW found, if we go a step further and broaden the definition of algebraic redundancy,
by admitting any low-degree polynomial that extends a Boolean function, and not just those of degree1;
cf. (1.4)).

This is a significant development because neither of the previous works, AIV & Fortnow, show any
such limitation of the framework they propose. However, this progress by itself is not enough to yield
a satisfactory framework for “known techniques”, because such a framework must, as explained in the
beginning of this survey, meet two objectives: (a) derive known theorems and (b) fail to settle conjectures.
But all that is shown by this insight is that Fortnow’s framework, which achieves goal (a), can be weakened
to achieve goal (b) — albeit losing goal (a) in the process. (Notice that if all we want is a theory that cannot
settle conjectures, then we can just take the empty theory.)

So what remains for AW is to figure out a way of doing what Fortnow did (attain goal (a) using two
properties) by using only one of his properties, namely algebraic redundancy.

However, AW fall short of this. As a compromise they finesse the question of how relativization should
be refined, by simply declaring that a statementA ⊂ B relativizes algebraically (algebrizes) ifAO ⊂ BÔ

for everyO, whereÔ is an algebraically redundant version ofO. Also they declare thatA 6⊂ B algebrizes
if AÔ 6⊂ BO. No definition is given for other types of statements (nor for proofs).

Since we ultimately care about containments and their negations, the AW approach might seem appeal-
ing. But it only partially meets goal (a) of deriving known theorems, as it takes a quite limited view of
“known theorems”. For example, the statement

(∃C : C ⊂ NEXP ∧ C 6⊂ P/poly) =⇒ NEXP 6⊂ P/poly (1.5)

is true no matter whatNEXP or P/poly means — it is even true no matter what “is an element of” means
— hence is relativizing, but it cannot be declared as algebraically relativizing in AW’s framework. Conse-
quently, showing thatNEXP 6⊂ P/poly is non-algebrizing, as AW did, does not rule out whether we can
prove∃C : C ⊂ NEXP ∧ C 6⊂ P/poly by using solely “algebrizing techniques”. (This is alluded to by AW
themselves in their paper [2, §10.1].)

On the positive side, the key ideas of AW — how to meet goal (b) of showing unprovability results,
using oracles with an algebraic property — influence all subsequent work, including ours.

1.2.2.4 IKK [30]: Motivated by the lack of basic closure properties in the AW framework — of which the
above pathology (1.5) is just an example — Impagliazzo, Kabanets, and Kolokolova (IKK) [30] propose an
alternative formulation soon after the AW paper.

7TheNEXP vs.P/poly problem is representative of a host of other open problems whose provability is unknown in Fortnow’s
framework; see “This work” later in this section.
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We can view the approach of IKK as being along the same line as Fortnow’s (hence also of AW’s) by
considering the following fact. Any Boolean formulaϕ can be extended to non-Boolean values, by viewing
each conjunction as multiplication and each negation as subtraction from1; the resulting expression —
called thearithmetizationof ϕ — is a low-degree polynomial that agrees withϕ on the Boolean values, and
that can be efficiently evaluated on all small values (here “low” and “small” means, as usual, polynomial in
the size ofϕ).

Arithmetization of Boolean formulas appears to be the key technique in derivingPSPACE ⊂ IP and
related results; it is the one ingredient that clearly stands out in all proofs of nonrelativizing results from
the 90s. Invariably, at some point in these proofs, some Boolean formula, used to model some efficient
computation, gets arithmetized; notice this step does not seem to go through in the Baker-Gill-Solovay
framework of relativization because such a formulaϕ would involve non-standard gates — oracle gates —
yielding subformulas of the formO(ϕ1, .., ϕm) for which there is no obvious way to proceed.

Now, in both Fortnow’s framework and in IKK’s, we can interpret the approach as being aimed at making
this arithmetization step go through, for as large a class of oraclesO as possible. In Fortnow’s case this is
achieved by constraining all oraclesO to have “closed algebraic redundancy”; to see how this constraint
helps, notice that in arithmetization, the act of replacing a conjunctionx ∧ y with a multiplicationx ∙ y is
nothing other than the act of extending the Boolean function(x, y) 7→ x ∧ y to non-Boolean values via
polynomial interpolation, in other words by adding algebraic redundancy (similarly for¬x versus1 − x).
Stated this way, arithmetization easily generalizes to Fortnow’s oracles: simply replace each occurrence
O in the formula with its algebraically redundant version, which does no harm because the class ofO’s
under consideration is closed under adding algebraic redundancy. (Without closure, however, the resulting
polynomial is not guaranteed to be efficiently computable, and this is where the AW framework runs into
trouble.)

In the framework of IKK, on the other hand, the strategy to enable arithmetization is more direct: they
allow O to be any oracle for which arithmetization, broadly construed, is possible. That is,O can be any
family such that every Boolean formula, possibly withO-gates besides the standard ones (∧, ¬, etc.), has
a corresponding low-degree polynomial that extends it to non-Boolean values, and that can be efficiently
evaluated given access toO. (IKK present their approach using the oracle-free framework of AIV explained
in §1.2.1, with no reference toO, but that presentation is not an integral part of their approach and can be
switched out like we do here.)

With this definition, IKK obtain a framework that, for the first time, meets both goal (a) of deriving
known theorems, and (b) of failing to resolve conjectures — albeit not forNEXP versusP/poly.8 In fact,
the extent to which IKK show their framework meets goal (b) is identical what we said we can show for
Fortnow’s framework using the tools we develop in this paper (theXrrr symbol in Figure3). Thus the IKK
framework is not satisfactory for our purposes either.

1.2.2.5 This work. Affine relativization can be roughly viewed as achieving what AW aimed at but fell
short of: take Fortnow’s framework — relativization with oracles having “closed algebraic redundancy” —
and relax it somehow, so that it still meets goal (a) of deriving known theorems, yet it also meets goal (b) of
failing to resolve conjectures.

Recall from earlier in this survey that AW did find a relaxation of Fortnow’s framework that achieved
goal (b), but lost goal (a) in the process — trading off one good thing with another, where both is needed.
(As a compromise they came up with an ad-hoc notion whose limitations are discussed earlier in the survey

8TheNEXP vs. P/poly problem is representative of a host of other open problems whose provability is unknown in IKK’s
framework; see “This work” below.
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and in the introduction.) In order to fix this situation, the natural thing to try is to aim at a model between
Fortnow’s and AW’s, in the hope of obtaining the best of both worlds.

This is what we essentially manage to do. Our model is simple to state given previous work: relativiza-
tion with respect to oracles satisfying algebraic redundancy (closed or not). With this basic definition we
succeed in (a) deriving all nonrelativizing theorems classified as algebrizing by AW, such asPSPACE ⊂ IP,
as well as all relativizing theorems, and (b) showing that it is impossible to derive any of the statements clas-
sified as non-algebrizing by AW in the classical model of computation, in particularNEXP versusP/poly.

Remark.From a cursory inspection of Figure3, it might seem as thoughNEXP 6⊂ P/poly is the only place
where our framework has an edge over Fortnow’s and IKK’s — a nitpick of sorts. That is only the tip of the
iceberg, however;NEXP 6⊂ P/poly is a representative of a host of other statements whose unprovability
can be shown in our framework but is not known for Fortnow’s or IKK’s — and in some cases even for
AW’s. To illustrate this, the first author in his PhD thesis [8] took a fairly well-known construction, due to
Beigel, Buhrman, and Fortnow [14], of an unrestricted oracle relative to whichP = �P ( NP = EXP,
and used it almost verbatim to give an affine oracle for the same statement. This construction does not seem
to carry through in any other framework surveyed here. See [8, Chapter 8] for details.

Remark. Whether our definitions imply IKK’s or Fortnow’s, or vice versa, is not clear; we do not know
if algebrizing in one sense can be shown to imply the other. What wecan say, however, is that every
statement that IKK show as algebrizing, relativizes affinely, and that the opposite holds for those shown
non-algebrizing by IKK — just as is the case for AW. In particular, IKK show various compound statements
to be non-algebrizing; these follow as consequences of results on simpler statements and can be shown in
our framework as well (via what we call the reduction approach in Section4.3).

1.3 Overview of Ideas and Techniques

Defining affine relativization, and proving that it works, involve a number of observations as well as some
technical ingredients. This section highlights the main ones.

1.3.1 Generalizing arithmetization using affine extensions.Our first observation concerns how the
arithmetization method should be generalized to handle formulas over a generic Boolean basis, say{∧,⊕,O}
whereO is an arbitrary language. In its typical description, the method states that the formula¬φ arithme-
tizes as1−Φ whereΦ is the arithmetization ofφ; similarly, φ ∧ ψ arithmetizes asΦ ∙Ψ. Other cases, such
as∨ and⊕, are handled by reducing to these two.

We observe thatx ∙ y is the unique polynomial overZ, of (individual) degree≤ 1, that extends the
Boolean function(x, y) 7→ x ∧ y; in other words, it extends an∧-gate of fan-in2. Similarly 1− x extends
a¬-gate. We thus make the following generalization: Arithmetization replaces a Boolean gateO, of fan-in
m, with the gateÔ denoting the unique degree-≤1 polynomial

Ô(x) :=
∑

b∈{0,1}m

O(b) ∙ (
∏m

i=1(1− xi) ∙ (1− bi) + xi ∙ bi ) (1.6)

that extendsO from the Boolean domain toZ. We callÔ the (multi-)affine extensionof O, and caution that
the notation has nothing to do with Fourier analysis.

For our results we view (1.6) in fields of the formGF(2k) only. There are several benefits to this, and we
point them out as we explain our approach in this section. To begin with, we note that extension toGF(2k)
is conceptually cleaner, as it turns a function onn bits into a function onn vectors ofk bits each. Also, in
GF(2k), the arithmetization ofφ ⊕ ψ becomes the naturalΦ + Ψ, whereas in other fields, neither⊕, nor
any other Boolean operator, gets arithmetized to+.
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1.3.2 Affine relativization — capturing known uses of arithmetization. Consider a functional view of
an Ô-gate, as returningk bits when each of its inputs come fromGF(2k). In this view, arithmetizing a
formulaφ creates a family of formulas{Φk}, with eachΦk redundantly describing the behavior ofφ on the
Boolean domain — the largerk, the higher the redundancy (withk = 1 corresponding toφ itself).

Now if φ is over a basis that includesO-gates for an arbitraryO, then unlike the case for the standard
basis, its arithmetizationΦ does not seem to allow efficient evaluation; for example ifφ is of sizen, then it
seemsΦk is not efficiently computable fork ∈ Θ(n) — even if we have oracle access toO. Interpreting this
to be the nonrelativizing ingredient in proofs ofPSPACE ⊂ IP and related results, we take the following
approach to refine relativization.

The arithmetic formulaΦ is a redundant encoding of the Boolean formulaφ; it is obtained via a transfor-
mation that acts “locally” onφ, by taking each of its gates and adding redundancy to it —∧-gates become
×-gates,¬-gates become(1− .)-gates, and in general,f -gates becomêf -gates. Based on this, our idea is to
have the oracle gates ofφ compute not some arbitraryO, but something that contains redundancy already,
namelyÔ for an arbitraryO. The plan being then to show that arithmetization — rather, current uses of it
— need not introduce redundancy at those gates.

We arrive at our formulation thus: whereas a statement relativizes if it holds relative to every language
O, a statement relativizesaffinely, if it holds relative to every languageA of the formÔ for someO. More
precisely,A encodes the family of polynomials{Ôm} evaluated overGF(2k) for all k, whereO is an
arbitrary language andOm is its restriction to{0, 1}m. We callA anaffine oracle.

1.3.3 Why was this notion not invented in 1994?Natural though it may seem, affine relativization poses
the following difficulty: the very theorems that it is intended for, e.g.PSPACE ⊂ IP, do not appear to
relativize affinely, at least not via a superficial examination of their proofs.

To see the issue, consider a propertyπ of Boolean formulas — unsatisfiability, say. In provingπ ∈ IP
arithmetization is used as areduction, from π to some propertyΠ of arithmetic formulas — e.g., unsatis-
fiability of φ reduces, via arithmetization, to deciding if the product of(1 + Φ(α)), over all binary input
vectorsα, equals1 in GF(2k) for anyk.

So each theorem of the formπ ∈ IP is, in fact, a corollary of a more generic result of the formΠ ∈ IP,
that gives an interactive protocol for an arithmetic property. It turns out those generic results can be further
generalized, if we enlarge the arithmetic basis, from the standard×-gates and+-gates — which are really
∧̂- and⊕̂-gates, respectively, per the first discussion above — by allowingÔ-gates for an arbitraryO. Then
the same protocols that yieldΠ ∈ IP work just as well over this extended basis, given oracle access to the

evaluation ofÔ. We may writeΠÔ ∈ IPÔ, whereΠÔ extendsΠ to formulas over the extended basis.
Now supposing we have a theoremπ ∈ IP, let us make a superficial attempt to extend its proof so that

it yields πA ∈ IPA for some languageA; hereπ is a property of formulas, say over the basis{∧,⊕}, and
πA is its extension to the basis{∧,⊕,A}. As just explained, the proof ofπ ∈ IP starts with a reduction, of
the Boolean propertyπ to an arithmetic propertyΠ. Now here is the problem: what property do we reduce
πA to? By definition of arithmetization, it would beΠÂ, the extension ofΠ to formulas over the basis

{×, +, Â}. But then as just explained, we would be placingπA in IPÂ — not in IPA.

This seeming circularity —πO ∈ IPÔ, πÔ ∈ IP
̂̂O, ... — can be interpreted as the main distraction from

arriving at a natural notion such as ours. Indeed, all previous attempts to capture arithmetization [22, 2, 30],
dating back to the 1994 article of Fortnow [22], can be interpreted as having to make compromises so as to
break out of this circularity. For example, the AW notion of algebrization does this by declaringC ⊂ D to
algebrize ifCO ⊂ DÔ holds for everyO (for a notion ofÔ related to ours; there is a similar definition for
C 6⊂ D). We surveyed their approach and others in Section1.2.
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In contrast, our approach tackles the circularity problem without compromising the natural notion we
arrived at the previous discussion. Recall our plan from the previous discussion: show that arithmetization,
in its current uses, need not introduce redundancy at gates that contain redundancy already. In the nota-
tion from above, we want to show that the Boolean propertyπA, whenA contains redundancy already —
i.e. whenA is of the formÔ for someO— can be reduced to the arithmetic propertyΠA, rather than to the
propertyΠÂ as all past works seem to have passively accepted.

1.3.4 Relativizing�P ⊂ IP. The plan of the previous discussion can be realized whenπ is the sum
π(φ) := �xφ(x), also known as the language�SAT. This is because whenφ is a formula over the Boolean
basis containingA-gates (whereA is of the formÔ for someO) each occurrence ofA evaluates the sum
(1.6) over GF(2k) for somek, and then returns, say, theith bit of the result giveni. Therefore, if we
step fromGF(2k) to GF(2)k, we can rewrite each occurrence ofA as�yγ(y), for some formulaγ over the
Boolean basis containingO-gates — notA-gates. After some basic manipulation, we can bring the resulting
expression into prenex form, i.e. such that all the sums appear up front.

So given a formulaφ(x) with A gates, we can write it as a sum�zψ(x, z) whereψ is a formula with
O-gates. Thus, in the notation of the previous discussion,πA reduces toπO whenπ is �SAT. Now, we
know from the previous discussion thatπO ∈ IPA. Therefore,πA ∈ IPA, and we fulfil the plan of the
previous discussion. In other words,�SAT ∈ IP — or equivalently,�P ⊂ IP — relativizes affinely.

This approach can be adapted to showPSPACE ⊂ IP andNEXP ⊂ MIP can be affinely relativizes as
well. We describe an alternative approach later in this section.

1.3.5 Showing certain statements are affinely nonrelativizing.One of the technical contributions of
this paper is in showing that certain statementsψ do not relativize affinely. As usual (though not always),
this entails constructing an eligible language — an affine oracleA in our case — relative to whichψ is false.

For someψ, this task turns out to be not too hard given prior work. Suchψ are of the formC ⊂ D, for
which AW invented an approach based on communication complexity. A technical observation we make
regarding how affine extensions respect disjoint unions (Proposition11) enables us to import their approach.

For otherψ, however, in particular forNEXP 6⊂ P/poly, we need more significant ideas. If we wanted
to showNEXP ⊂ P/poly relative tosomeoracleO, affine or not, or more generally, to showCO ⊂ DO for
classesC andD, then there is a simple approach to this, due to Heller [28]: at iterationn ∈ N, take the first
n algorithms underlyingCO, and partially fixO so as toforce the behavior of these algorithms on{0, 1}n.
AssumingC is not too powerful, this forcing can be done without having to fixO on all of{0, 1}kn, for some
constantk, even considering prior iterations. The free inputs of{0, 1}kn on whichO is yet undefined can
then be used to store information on how the forced algorithms behave, in such a way that some algorithm
in DO can retrieve that information.

When it comes theaffineoracles, however, we face a difficulty in making this strategy work. An arbitrary
affine oracleÕ, being the algebraically redundant version (§1.3.1, line (1.6)) of an arbitrary oracleO, is less
“dense” in its information content then an arbitrary oracle. So how do we guarantee that partially fixingÕ,
as done in the previous paragraph, still leaves sufficiently many free inputs on which we can do encoding?

We derive a coding-theoretic ingredient (Lemma51and Theorem52) to provide this guarantee. Roughly,
our result says that knowingt bits of a binary codeword exposes at mostt bits of its information word in the
following sense: there are stilln − t bits of the information word that can be set completely independently
of each other, if the information word hadn bits originally.

Our result can be viewed as improving an earlier, implicit attempt by AW [2] at the same question, who
did construct aQ such thatNEXPQ ⊂ PQ/poly, albeit only for a multi-quadraticextension, i.e., forQ
encoding a family of polynomials where each member has (individual) degree-≤2, instead of degree-≤1. It
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seemed “crucial” [2], in fact, to increase the degree for this purpose. While quadratic extensions suffice for
the AW notion of algebrization, they do not for our notion of affine relativization.

Given a codeword whoset bits are revealed, the AW approach is to show the existence ofn − t other
codewords such that: (i) each encodes some information word of Hamming weight1, and (ii) each vanishes
on thet positions revealed. Taken together, (i) and (ii) form too many points to interpolate with a degree-≤1
polynomial, thus forcing the AW approach to go quadratic.

In contrast, we take a linear algebraic approach and show that givent bits of a codeword, that the set of
all codewords agreeing on theset bits form an affine space, of dimension at mostt less than the maximum
possible. See Section4.1for details.

1.3.6 Scaling�P ⊂ IP to PSPACE ⊂ IP — a proof sans degree reduction.Our approach for�P
can be adapted to show thatPSPACE ⊂ IP affinely relativizes as well. However, we find a more natural
approach which yields another proof of this theorem; this may be of separate interest because current proofs,
as far as we know, employ syntactic tricks in order to control the degree of polynomials that arise from
arithmetizing instances of aPSPACE-complete problem (e.g., [41, 10, 42, 4]).

In contrast we show, directly, that every downward-self-reducible language has an interactive protocol,
by essentially bootstrapping the very fact that�P ⊂ IP relativizes affinely. In particular, we make no use
of a specificPSPACE-complete problem; we do not even use any additional arithmetization beyond what
is needed for�SAT. (We emphasize that the new proof is sketched here because it might be of separate
interest. The standard proofs of this theorem can also be adapted to our framework.)

The new proof goes as follows. IfL is downward-self-reducible, then on inputsx of lengthn, it can
be expressed as apoly(n)-size circuit over theL-extended Boolean basis, of fan-in at mostn − 1. This
circuit in turn can be expressed as the sum�yφ(x, y), whereφ is a formula verifying thaty represents the
computation of the circuit on inputx. In notation we may summarize this reduction as

Ln → �SATLn−1 (∗)

where�SATfm is the extension of�SAT to formulas over thef -extended Boolean basis, of fan-in at most
m. Repeating (∗) for Ln−1 instead ofLn, we get

�SATLn−1 → �SAT�SATLn−2
→ �SATLn−2 (∗∗)

where the first reduction is because extending the basis is functorial in the sense thatf → g implies
�SATf → �SATg, and the second reduction follows by bringing sums to prenex form as mentioned
in the previous discussion on�P ⊂ IP (§1.3.4). Note that the reduced formula is now of size aboutn2d, if
the one in (∗) is of sizend.

The idea is to tame the growth in the size of the reduced formulas, by using interaction. Building on the
ideas of the previous discussion on�SAT, it is easy to show a protocol yielding theinteractivereduction

(�SATfm)nd → (�SATfm)nc

that compresses instances to�SATfm of sizend down to sizenc, for an arbitrarily larged and afixedc, for
every languagef , in particular forf = L, wheneverm ∈ O(n). We sketch this protocol at the end of this
section (§1.3.8).

Thus we can keep repeating (∗∗) to get

Ln → �SATLn−1 → �SATLn−2 → ∙ ∙ ∙ → �SATLO(1)

provided we interleave a compression phase whenever the formula size exceedsnc. Since anL-gate of
constant fan-in can be expressed as a constant-size formula,�SATLO(1) reduces to�SAT. SoL ∈ IP as
desired.
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That this proof affinely relativizes becomes obvious, once we carry over the results on�SAT to the
A-extended Boolean basis, for an arbitrary affine extensionA.

(Interestingly, just as this proof builds on the relativization of�P ⊂ IP, we use the relativization of
PSPACE ⊂ IP in turn to give a streamlined proof of theNEXP ⊂ MIP theorem, that uses no specific
NEXP-complete problem nor any additional arithmetization; see Section3.3.)

1.3.7 NEXP vs.MIP — the gap amplification perspective.As mentioned in the introduction, AW show
thatNEXP ⊂ MIP algebrizes only under a restriction, and a questionable one at that, of the oracle access
mechanism forNEXP.9 Since we define complexity classes usingP, it would be even more artificial to try
to express this restriction in our framework. Instead, we find a natural approach that also sheds some light
into the issues surrounding oracle access.

Consider generalizing the classIP, by replacing in its definition the popular constant1/3 with 1− γ, so
that if the inputx is supposed to be rejected, then the verifier erroneously acceptsx with probability< 1−γ.
(If x should be accepted, then, as before, it is.) Call this classγ-gap-IP.

It is easy to see, by the classicalPSPACE-completeness result of Stockmeyer and Meyer [44], that
0-gap-IP is identical toPSPACE. ThereforePSPACE ⊂ IP can be broken into the containments

PSPACE ⊂ 0-gap-IP ⊂ Ω(1)-gap-IP

with the second containment, “gap amplification”, being the actual content of the theorem.
The corresponding case forNEXP ⊂ MIP becomes

NEXP ⊂ 0-gap-MIP ⊂ Ω(1)-gap-MIP

and as our proofs in Section3.3suggest, the second containment is the actual content of the theorem.
To put the first containment,NEXP ⊂ 0-gap-MIP, into perspective, consider the following variant

of the Cook-Levin theorem: every languageL in P has circuits that are polylog-time uniform, i.e.,L is
computable by a family{Cn} of circuits, such that given(n, i), the task to produce the type of theith gate
of Cn, as well as the indices of all gates connected to it, can be performed inpoly log n time. Intuitively,
this theorem does not relativize, even affinely, simply because it restricts the circuits to have polylogarithmic
fan-in — in other words, it restricts computations to have polylogarithmiclocality.

LetO be an arbitrary language. Relative toO, let Plocal be the subclass ofP satisfying this variant of
the Cook-Levin theorem. Now, usingPlocal, defineNPlocal andNEXPlocal, just like NP andNEXP are
defined fromP (e.g.,§2.3 and§2.6). It is not hard to see that0-gap-MIP is identical toNEXPlocal (if it
is, then see proof of Proposition39). It is also not hard to see thatNEXPlocal is equivalent to the dubious
version ofNEXP with polynomial-length oracle queriesO, making it not so dubious after all.

We do not know of any result usingNEXP ⊂ MIP, that would break down ifNEXPlocal ⊂ MIP is
used instead — in fact we do not know of any result usingNEXP ⊂ MIP, period. We conclude that locality
arises inNEXP ⊂ MIP only definitionally; it is an ingredient that has not been exploited beyond making
definitions. (It would be interesting to know if the same reasoning could apply to thePCP theorem; see
open problem in Section5.)

1.3.8 Compressing�SAT. For the sake of completing the sketch of the alternate proof ofPSPACE ⊂ IP
explained earlier, we now outline the compression protocol mentioned.

The protocol is based on the fact alluded to earlier, that�SATf ∈ IPf̂ for any languagef . This fact
follows from standard considerations: Givenφ over thef -extended basis, in order to compute�zφ(z),

9We caution that neither AW, nor we, advocate or assume thatNEXP bealwaysrelativized in this restricted way. It is only for
the purpose of deriving this theorem that this restriction seems inevitable — and this discussion investigates why.
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the verifier: (i) arithmetizesφ to getΦ, a formula over thêf -extended arithmetic basis, (ii) engages in a
sumcheck protocol, thus reducing the original task to that of evaluatingΦ overGF(2k), with k ∈ O(log n)
being sufficient forφ of sizen, and (iii) evaluatesΦ, by using thef̂ -oracle for thef̂ -gates.

The compression protocol also starts out as above. The difference begins in step (iii): instead of calling
thef̂ -oracle, the verifier engages the prover. By using standard interpolation techniques, the verifier reduces
the task of computing the values of̂f on up ton points, to doing the same on justm points or fewer, where
m is the largest fan-in of anyf -gate in the formulaφ.

Thus the output of step (iii) is a list of at mostm claims of the form “̂fm′(x) = v” with m′ ≤ m and
v, xi ∈ GF(2k). Now becausêfm′ is merely the sum (1.6) in §1.3.1, which can be viewed inGF(2)k rather
than inGF(2k), it follows that these claims can be expressed as a conjunction of�SATfm-instances, of
combined sizepoly(mk). This yields the compressed instance, since�SAT is closed under conjunction.

2 Definitions, Notation and Conventions

2.1 We useA ⊂ B to meanA is a subset ofB; we never use ‘⊆’. By poly(n) we mean the set of
polynomials{nd + d : d ∈ N}. By dom f we mean the domain off .

2.2 Languages and partial languages.A languageis a function from{0, 1}∗ to {0, 1}. A partial lan-
guageis a function that is or can be extended to a language. We confuse{0, 1} with {False, True}.

Given a languageL and an integerm, we useL≤m to denote the partial language obtained by restricting
L to {0, 1}≤m.

2.3 Basic complexity classes fromFP. FP is the set of allf : {0, 1}∗ → {0, 1}∗ that are efficiently
computable. We do not rely on a particular implementation of efficient computability; for concreteness the
reader can take the standard definition based on random access Turing machines. We rely onFP being
enumerable.

P is obtained by taking each function inFP and projecting its output to its first coordinate.
NP is the set of all languages in∃ ∙ P, where∃ ∙ C denotes, for a setC of partial languages, the set of all

partial languagesL such that

L(x) = 1 =⇒ ∃y ∈ {0, 1}`(|x|) : (x, y) ∈ dom V andV (x, y)

L(x) = 0 =⇒ ∀y ∈ {0, 1}`(|x|) : (x, y) ∈ dom V and¬V (x, y)

for somè ∈ poly(n) andV ∈ C.
co ∙C denotes, for a setC of partial languages, the set of all partial languages of the formL(x) = ¬M(x)

for someM ∈ C. It is customary to writecoC for co ∙ C.
∀ ∙ C denotesco ∙ ∃ ∙ C. In particular,coNP = ∀ ∙ P.
DefineΣ0P = Π0P = P, and inductively defineΣkP as the set of all languages in∃ ∙ Πk−1P, andΠkP

as the set of all languages in∀ ∙ Σk−1P. The set
⋃

k∈NΣkP is called thepolynomial-time hierarchy. Note
thatNP = Σ1P andcoNP = Π1P.

PSPACE, or Σ∞P, is the set of languages of the form

L(x) = ∀y1∃z1 ∙ ∙ ∙ ∀yt(|x|)∃zt(|x|)V (x, y, z)

for someV ∈ P andt(n) ∈ poly(n), whereyi, zi are quantified over{0, 1}. (We could quantifyyi, zi over
{0, 1}`(|x|) for some` ∈ poly(n); the definition would be equivalent to the one given.) The justification
for this definition ofPSPACE comes from the well-known result of Stockmeyer and Meyer [44, Theorem
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4.3] that functions computable by a polynomial-space Turing machine are contained inΣ∞P (the reverse
containment is clear).

BPP is the set of all languages inR∙P, where R∙ C denotes, for a setC of partial languages, the set of
all partial languagesL such that

L(x) = 1 =⇒ Pry∈{0,1}`(|x|) [(x, y) ∈ dom V andV (x, y)] > 2/3

L(x) = 0 =⇒ Pry∈{0,1}`(|x|) [(x, y) ∈ dom V and¬V (x, y)] > 2/3

for somè ∈ poly(n) andV ∈ C.

2.4 Interactive proofs from FP. Let Axϕ(x) denoteEx[ϕ(x)], and letMxϕ(x) denotemaxx ϕ(x).
AM is the set of all languagesL such that

L(x) = 1 =⇒ Ay Mz V (x, y, z) > 2/3

L(x) = 0 =⇒ Ay Mz V (x, y, z) < 1/3

andMA is the set of all languagesL such that

L(x) = 1 =⇒ Mz Ay V (x, y, z) > 2/3

L(x) = 0 =⇒ Mz Ay V (x, y, z) < 1/3

for someV ∈ P and` ∈ poly(n), wherey, z are quantified over{0, 1}`(|x|).
Notice thatAM is the set of languages inR∙ ∃ ∙P, andMA is the set of languages in∃ ∙ R∙P. The class

R∙ ∃ ∙ P is calledprAM, and the class∃ ∙ R∙P is calledprMA.
IP is the set of languagesL such that

L(x) = 1 =⇒ Ay1 Mz1 ∙ ∙ ∙Ayt(|x|) Mzt(|x|)V (x, y, z) > 2/3

L(x) = 0 =⇒ Ay1 Mz1 ∙ ∙ ∙Ayt(|x|) Mzt(|x|)V (x, y, z) < 1/3

for someV ∈ P andt ∈ poly(n), whereyi, zi are quantified over{0, 1}. (We could quantifyyi, zi over
{0, 1}`(|x|) for somè ∈ poly(n); the definition would be equivalent to the one given.)

The A-quantifier in these definitions can be thought of as providing the coin tosses of a probabilistic
verifierArthur, who interacts with an all-powerful proverMerlin corresponding to theM-quantifier. Merlin’s
goal is to make Arthur accept, which Arthur does iff the “verdict” predicateV , given the inputx and
transcript(y, z) of the interaction, returns1. The criteria by whichV returns0 or 1 is typically described as
a protocolbetween Merlin and Arthur. The quantityt(|x|) is referred to as thenumber of roundstaken by
— or theround complexityof — the protocol in computing inputs of length|x|.

Power of the Honest Prover.Consider the following subclass ofIP. It contains languagesL such that
wheneverL(x) = 1, Merlin can just compute a languageΠ ∈ C instead of using theM-quantifier. That is,
there is a languageΠ ∈ C such that for allx, if L(x) = 1, then

Prz[V (x, y, z)] = Ay1 Ay2 ∙ ∙ ∙Ayt(|x|)V (x, y, z) > 2/3, where (¶)

z1 = Π(x, y1)

z2 = Π(x, y1y2)
...

zt = Π(x, y1..yt(|x|)),

and the case forL(x) = 0 remains as before. AnyL in this class is said to have interactive proofs wherethe
power of the honest proveris in C.
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Checkable.We call a languageL checkableif it has an interactive protocol where the power of the honest
prover reduces toL itself. I.e., in (¶), Π reduces toL via a Karp reduction (as defined below in§2.5).

Same-length checkable.We callL same-length checkableif it is checkable, and if the reduction fromΠ to
L satisfies the following property: each input of the form(x, y) gets mapped to some string of length|x|.

Perfect completeness.Replacing the condition “> 2/3” in the above definitions with the condition “= 1”
yields equivalent definitions [26].

2.5 Defining reductions fromFP. As in the previous section (§2.4), let Axϕ(x) denoteEx[ϕ(x)], and
let Mxϕ(x) denotemaxx ϕ(x).

Let F andG be functions into{0, 1}∗ such thatdom F, dom G ⊂ {0, 1}∗. We write

F → G

and say thatF reduces toG via an interactive protocol, iff there existsR ∈ FP, t ∈ poly(n), andε ∈
1/nω(1), such that for everyx ∈ dom F :

Ay1 Mz1 ∙ ∙ ∙Ayt(n) Mzt(n)[ F (x) = G(R(x, y, z)) ∨ F (x) = R(x, y, z) ] ≥ 1− ε(n)

Ay1 Mz1 ∙ ∙ ∙Ayt(n) Mzt(n)[ F (x) 6= G(R(x, y, z)) ∧ R(x, y, z) 6= ‘fail’ ] ≤ ε(n)

wheren = |x|, andyi, zi are quantified over{0, 1}. (Notice thatv = G(u) impliesu ∈ dom G.)
We callR an interactive reductionfrom F to G with round complexityt(n). We caution that the word

“reduction” refers to a function inFP, not to the notion that someF reduces to someG.
Intuitively, as in§2.4, theA-quantifiers in this definition can thought of as Arthur and theM-quantifiers

as Merlin. Givenx, after sending random coin tossesyi to Merlin and receiving responseszi, Arthur uses
the predicateR to obtain a stringr. Arthur wants eitherr or G(r) to equalF (x). Merlin can, with high
probability over Arthur’s coin tosses, ensure that Arthur obtains a desiredr. If Merlin is devious, then he
has negligible chance in making Arthur obtain a stringr 6= ‘fail’ that is not desired.

We believe this definition to be new. There are three special cases ofR being an interactive reduction
that capture some classical definitions:

• in a randomized reduction, we haveR(x, y, z) = R(x, y). Intuitively, Arthur (§2.4) does not need to
interact with Merlin (§2.4) to do the reduction.
• in aKarp reduction, we haveR(x, y, z) = R(x). Notice thatε(n) = 0 in this case. Intuitively, Arthur

does not need Merlin’s help to do the reduction, nor does he need to flip any coins.
• in aCook reduction, we haveR(x, y, z) = R(x, z). Further, for every extension ofG to a functionG′

on{0, 1}∗, for everyx ∈ dom F , and forz satisfying

zi = G′(R(x, z1..zi−1))

we haveF (x) = R(x, z).
Notice thatε(n) = 0 in this case. Intuitively, Arthur does not need to flip any coins to do the reduction,
and the power of the honest prover isG itself.

We callR astrong Cook reductionfrom F to G, if R is a Cook reduction fromF to G, and ifR(x, z) ∈
dom G for everyx ∈ dom F and everyz satisfyingzi = G(R(x, z1..zi−1)). (This would be the case, for
example, whenG is a language.) Intuitively, while interacting with Arthur to convince him of the value of
F (x), the honest prover never gets asked a question outsidedom G.

By default, all Cook reductions are strong. By default, all reductions are Karp.
The “reduces to via an interactive reduction” relation is transitive:F → G together withG→ H imply

F → H. Further, “reduces to via a Karp reduction”, “reduces to via a randomized reduction”, “reduces to
via astrongCook reduction”, are all transitive relations.
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2.6 General time classes fromFP. Let T ⊂ nω(1) be a class of functions each of which is computable in
FP. Suppose thatT is closed under taking polynomials in the following sense: for everyt ∈ T andd ∈ N,
there is somet′ ∈ T such thattd(n) < t′(n) for everyn.

Define DTIME(T ) as the set of languagesL for which there existsK ∈ P and t ∈ T such that
L(x) = K(x, 1t(|x|)) for everyx.

DefineNTIME(T ), Σ2TIME(T ), MATIME(T ), etc., in the same way, except by pickingK respec-
tively from NP, Σ2P, MA, etc.

UseE, NE, Σ2E, MAE, etc., to denote respectivelyDTIME(linexp(n)), NTIME(linexp(n)), Σ2TIME(linexp(n)),
MATIME(linexp(n)), etc., wherelinexp(n) is the set{2cn : c ∈ N}.

UseEXP, NEXP, Σ2EXP, MAEXP, etc., to denote respectivelyDTIME(exp(n)), NTIME(exp(n)),
Σ2TIME(exp(n)), MATIME(exp(n)), etc., whereexp(n) is the set{2cnd

: c, d ∈ N}.

2.7 Relativized classes.For every languageO, we define the classFPO — “FP relative toO,” or “ FP
with oracle access toO” — as the set of all functions from{0, 1}∗ to {0, 1}∗ that Cook-reduce toO.

All definitions built onFP (§2.3-§2.6) naturally generalize to theirrelativizedversions:NP to NPO, IP
to IPO, MAEXP to MAEXPO, etc. When we say “L is checkable with oracle access toO”, for example,
we mean to replaceFP with FPO in the definition for a language to be checkable (§2.4), and then declare
L as checkable.

2.8 Oracle access capability.Givenr ∈ poly(n) andf ∈ FP, consider the function

f∗ : (O, x) 7→ fO(x)

that takes as input any languageO and stringx, and outputsg(x), wheref is a Cook reduction of round
complexityr (§2.5) from the languageg to O. We call the set of all suchf∗, over all f ∈ FP and all
r ∈ poly(n), the classFP∗ — “FP with oracle access capability”.

For readability, we always use the notation in the previous paragraph: a starred symbol such asf∗

denotes a member ofFP∗, and its un-starred versionf denotes the member ofFP on whichf∗ is based.
For eachf∗ ∈ FP∗, we sayf∗ has oracle access capability. We usefO to denotef∗(O, ∙), the

restriction off∗ obtained by setting its first argument toO, and refer tofO asf∗ when given access toO.
All definitions built onFP (§2.3-§2.6) naturally generalize to theiroracle-access-capableversions. For

example,

NP := {L : ∃V ∈ P, ∃` ∈ poly(n), ∀x string

L(x) = 1 ⇐⇒ ∃y ∈ {0, 1}`(|x|) V (x, y) }

generalizes to

NP∗ := {L∗ : ∃V ∗ ∈ P∗, ∃` ∈ poly(n), ∀x string, ∀O language,

L∗(O, x) = 1 ⇐⇒ ∃y ∈ {0, 1}`(|x|) V ∗(O, x, y) }.
(2.1)

Similarly IP generalizes toIP∗, etc. When we say “there is an interactive protocol where the verifier has
oracle access capability”, for example, we are merely referring to a function inIP∗.

2.9 Enumeration. We take it as a fact thatFP is enumerable. It follows that every class defined above
(§2.3-§2.8) is enumerable. For example, to find an enumeration ofNP∗, by (2.1) it suffices to find an
enumeration ofP∗ and cross withN. To find an enumeration ofP∗, it suffices to find an enumeration ofFP∗

sinceP∗ is obtained by taking every function inFP∗ and projecting its output to the first coordinate (§2.8,
§2.3). Finally, to find an enumeration ofFP∗, it suffices to take an enumeration forFP and cross it withN,
because by definition (§2.8), underlying everyf∗ ∈ FP are somef ∈ FP and somer ∈ poly(n).
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2.10 Query complexity. Let f∗ ∈ FP∗. By definition (§2.8), underlyingf∗ are somer ∈ poly(n) and
f ∈ FP, wheref is a Cook reduction of round complexityr (§2.5). We refer tor as thequery complexity
of f∗.

Let g∗ ∈ P∗. By definition (§2.3), underlyingg∗ is somef∗ ∈ FP∗. By the query complexity ofg∗ we
mean that off∗.

2.11 Boolean bases.By default, all circuits (hence all formulas) are over thestandard Boolean basis
Bstd := {0,1,∧,�}, where0 is the all-zeroes language and1 is the all-ones,∧mapsx to∧ixi and� maps
x to�ixi.

More generally, by a Boolean basis we mean any finite setB containingBstd, comprising languages
and partial languages of the formL≤m (§2.2) for somem ∈ N and languageL. We refer toB ∪ {f} as the
basisB extended withf , and whenB = Bstd, as thef -extended basis. We callf eligible if the f -extended
basis is defined (i.e., iff is a language, or a partial language of the formL≤m).

When representing circuits (hence formulas) over extended basesB ) Bstd, we assume a generic
labeling of gates — using labels such as ‘theith nonstandard element’ — so that a given circuit can be
interpreted over different bases.

2.12 Well-behaved resource bound.Call a functions : N → N a well-behaved resource boundif it
is increasing, satisfiesO(s(n)) ⊂ s(O(n)) ⊂ s(n)O(1) ⊂ s(nO(1)) and n ≤ s(n), and if the func-
tion that maps the binary encoding ofn to the binary encoding ofs(n) is in FP. Functions of the form
nd, (nd log n)d′ , 2(log n)d

, 2dn are well-behaved resource bounds.
This generalizes tos : N2 → N if fixing either of the inputs yields a well-behaved resource bound.

2.13 Languages as families.We sometimes specify a languageL : {0, 1}∗ → {0, 1} as a family of
Boolean functions{Ln : {0, 1}n → {0, 1}}n∈N, and sometimes as

{
fm : {0, 1}s(m) → {0, 1}

}
n∈N, or as

{
fm,k : {0, 1}s(m,k) → {0, 1}

}
m,k∈N for some well-behaved resource bounds that is bounded by a poly-

nomial (respectively, inm or in mk).
It is an elementary fact that a family of the form{fm} or {fm,k} as above can be efficiently viewed as a

language of the form{Ln} as above, and vice versa. For concreteness, here is one way to do this: letm � k
denote the Cantor pairing ofm andk. Then given{fm,k}, define{Ln} asLn(x) := fm,k(x1..s(m,k)) for the
largestm�k such thats(m�k,m�k) ≤ n. Conversely, given{Ln}, define{fm,k} asfm,k(x) := Ln(x0p),
wherep is set so that the input toL is of length exactlyn = s(m � k,m � k).)

2.14 The (partial) language�SATf . For every Boolean basisB and eligible (§2.11) f , define�SATf

as the map

φ(x) 7→ �α∈{0,1}n φ(α)

whereφ is a formula over the basisB ∪ {f}, with n inputsx1..xn. By defaultB is the standard basis andf
is the all-zeroes language.

�SATf is undefined on thoseφ(x) that are undefined for some settingα of its inputsx (due to some
gate ofφ receiving inputs out of its domain). So�SATf is a language when the basisB comprises entirely
of languages andf is also a language, which is the case by default.

We index�SAT by n, any upper bound on the number of nodes of the formulaφ. That is, we view
�SAT as{�SATn}

n∈N
, where�SATn is defined on length-s(n) strings for some fixeds ∈ poly(n), with

each such string representing a formulaφ of at mostn nodes.
Since(�SATf )g is equivalent to(�SATg)f under Karp reductions, we write�SATf,g to mean either.
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2.15 The (partial) languageΣkSATf . For every Boolean basisB and eligible (§2.11) f , and for every
k ∈ N ∪ {∞}, defineΣkSATf as the map

φ(X1, .., Xk) 7→ ∃α1 ∈ {0, 1}n1∀α2 ∈ {0, 1}n2 . . . Qαk ∈ {0, 1}nk φ(α1..αk)

whereQ is ∃ or ∀ depending respectively onk being odd or even, and whereφ is a formula over the basis
B ∪ {f} with k setsof inputs: theX1 inputsX1,1..X1,n1 , theX2 inputsX2,1..X2,n2 , and so on.

Whenk =∞, there is no bound onk — other than the size of the formulaφ, that is — and without loss
of generality,n1 = ∙ ∙ ∙ = nk = 1. By defaultB is the standard basis andf is the all-zeroes language.

ΣkSATf is undefined on thoseφ that are undefined for some setting of its inputs (due to some gate of
φ receiving inputs out of its domain). SoΣkSATf is a language when the basisB comprises entirely of
languages andf is also a langauge, which is the case by default.

2.16 RepresentingF2k . We represent each element ofF2k by ak-bit Boolean string, forming the coeffi-
cients of a polynomial in the ringF2[x] mod some irreduciblepk(x) of degreek. We fix a uniform collection
{pk}k∈N of such irreducibles, i.e., we use a function inFP that outputspk givenk in unary [43].

TheBoolean versionof a functionq : Fm
2k → F2k is, for concreteness, the functionbool(q) mapping

(x, y) to theyth bit of q(x). (Our results do not depend on this definition; any other equivalent function
under Cook reductions would work.)

2.17 Affine extensions and affine oracles.Givenfm : {0, 1}m → {0, 1}, we define itsaffine extension
polynomialf̂m as the uniquem-variate polynomial overF2, with individual degree≤1, that agrees withfm

overF2k for all k, i.e., as

f̂m(x) :=
∑

b∈{0,1}m fm(b) ∙
∏m

i=1(1 + xi + bi)

By theaffine extensionof fm : {0, 1}m → {0, 1}, we mean the family

f̃m :=
{

f̃
k

m

}

k∈N

wheref̂
k

m denotes the function that evaluatesf̂m overF2k , andf̃
k

m denotes the Boolean version (§2.16) of
f̂

k

m .
Given a familyf := {fm} we define its affine extensioñf (or its affine extension polynomial̂f ) as the

family obtained by applying the above definitions to each member. In particular, for the language

O = {Om : {0, 1}m → {0, 1}}m∈N

its affine extensioñO, which we denote here byA, is

A :=
{
Am,k : {0, 1}mk+dlog ke → {0, 1}

}

k,m∈N

Am,k : (y1..ymz) 7→ zth bit of Ôm(y1, .., ym)

where eachyi is interpreted as a member ofF2k . By §2.13, A can be efficiently viewed as a family of the
form {An : {0, 1}n → {0, 1}}n∈N, and vice versa.

By anaffine oracle, we mean the affine extension of a language.

2.18 Affine extensions respect disjoint unions.The disjoint union of languagesO0 andO1 is the lan-
guageO0

∐O1 : (b, x) 7→ Ob(x). Affine extensions are compatible with disjoint unions in the following
sense:
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Proposition 11. For every pair of languagesO0,O1.

FPÕ0
∐
Õ1 = FP

˜O0
∐
O1 .

In words, the disjoint union of the affine extension ofO0 and the affine extension ofO1 is equivalent, under
Cook reductions, to the affine extension of the disjoint union ofO0 andO1.

Proof. Let O := O0
∐
O1. By definition (§2.17), Õ is the Boolean version (§2.16) of the function that

evaluates, givenB,X1, .., Xn ∈ F2k for anyk, the polynomial

Ô(BX) =
∑

b,x1,..,xn∈{0,1}

O(bx) ∙
∏

i(1 + (BX)i + (bx)i)

=
∑

x1,..,xn∈{0,1}

O0(x) ∙
∏

i(1 + (BX)i + (0x)i)

+
∑

x1,..,xn∈{0,1}

O1(x) ∙
∏

i(1 + (BX)i + (1x)i)

= (1 + B) ∙ Ô0(X) + B ∙ Ô1(X).

It follows thatÕ ∈ PÕ0
∐
Õ1 andÕ0 ∈ PÕ andÕ1 ∈ PÕ, implying theclaim.

2.19 Relativization. We say that a statementholds relative tothe languageO, if the statement can be
proven whenFP is redefined to beFPO and the standard Boolean basis is redefined to be theO-extended
basis. (See Section1.1for a metamathematical exposition.)

2.20 P and the Cook-Levin theorem. For a family of circuitsC := {Cn}n, define

(a) DescC : (1n, 1i) 7→ the type of theith gate inCn and the indices of all gates connected to theith gate.

(b) StrongDescC : (n, i) 7→ DescC(1n, 1i)

Of the two statements

(i) everyL ∈ P is computable by a polynomial-size circuit familyCL for whichDescCL
is in FP.

(ii) everyL ∈ P is computable by a polynomial-size circuit familyCL for whichStrongDescCL
is in FP.

we call (i) the Cook-Levin theorem, and (ii) the strong Cook-Levin theorem. We take for granted that (i)
holds relative to every language. (It is a consequence of Proposition43 that (ii) does not, even relative to
every affine oracle.)

3 Positive Relativization Results

This section shows that the famous results on interactive proofs affinely relativize, as do the circuit lower
bounds that build on them. (By§1.1.4, it follows that these results do not haveproofsthat affinely relativize.)
These are theIP theorem of Shamir (PSPACE ⊂ IP, Section3.2), theMIP theorem of Babai, Fortnow, and
Lund (NEXP ⊂ MIP, Section3.3), theZKIP theorem of Goldreich, Micali, and Wigderson (NP ⊂ ZKIP
if one-way functions exist, Section3.5), and the strongest lower bounds known to date against general
Boolean circuits, by Buhrman, Fortnow, Thierauf, and by Santhanam (Section3.4). All of these build on
several properties of�SAT developed in Section3.1.

30



3.1 Checking and Compressing�SAT

This section develops three results on�SAT that enable most of the positive relativization results in the
paper. The reader is referred to Section2 for all undefined terms and notation used in this section.

The first main result in this section shows the existence of a�P-complete language that is same-length
checkable (§2.4), and that this affinely relativizes.

Theorem 12(Checking�SAT). �SAT is checkable (§2.4). In fact, there a languageK that issame-length
checkable such that�SAT→ K andK → �SAT.

This holds relative to every affine oracle.

Theorem12 is used, from different aspects, in deriving Shamir’sIP theorem (§3.2) and the circuit lower
bounds of Buhrman et al. and of Santhanam (§3.4).

The second result gives an interactive compression scheme for�SATL, which cuts the size of a formula
from nd to nc, for an arbitrarily larged and a fixedc, as long as theL-gates have fan-inO(n) in the original
formula. (The round complexity of the interaction depends ond.) The verifier in the interaction need not
have oracle access toL; in factL may even be undecidable as far as the verifier is concerned.

Theorem 13(Compressing�SAT). There is a functions(m,n) ∈ poly(m log n) such that the following
holds. There is an interactive reduction (§2.5) that for every languageL, maps instances of�SATL≤m of
sizen, to instances of�SATL≤m of sizes(m,n), for everym,n.

This holds relative to every affine oracle.

Theorem13 is used in deriving Shamir’sIP theorem (Section3.2) with a new streamlined proof of that
result.

We also derive two auxiliary facts that will be useful in the sequel:

Proposition 14. A → �SATO for every languageO and its affine extensionA.

Proposition 15. For every functionR ∈ FP there is a functionR′ ∈ FP such that the following holds. If
R is a Cook reduction (§2.5) from some eligiblef to some eligibleg (§2.11), thenR′ is a reduction (§2.5)
from�SATf to�SATg that works over any Boolean basis (§2.11).

This holds relative to every language.

In the rest of Section3.1we prove the four claims above.

3.1.1 Organization of the Proofs

We prove the above four claims, Theorems12-13and Propositions14-15, in four steps:

- In §3.1.2we define an arithmetic analogue of�SAT called+ASAT, and state several lemmas relating
the two (Lemmas18-21).

- In §3.1.3we derive Theorems12-13assuming Propositions14-15and the lemmas of the first step.

- In §3.1.4we extend�SAT and+ASAT to expressions involving summationswithin the formula, not
just in front. We call these extensions�∗SAT and+∗ASAT, respectively, and derive several facts
relating�∗SAT, �SAT, +∗ASAT, and+ASAT.

- In §3.1.5we use the facts derived in step 3 to give the remaining proofs.
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3.1.2 +ASAT, an Arithmetic Analogue of�SAT

We now define an arithmetic analogue of�SAT.

Definition 16 (Arithmetic basis). For every Boolean basis (§2.11) B, define thearithmetic basisB̂ as the
set comprising all constants inF2k for eachk, andf̂ for eachf ∈ B. By the standard arithmetic basis we
meanB̂std whereBstd is the standard Boolean basis.

As is the case with Boolean bases (§2.11), when representing circuits (hence formulas) over extended
basesB̂ ) B̂std, we assume a generic labeling of gates — using labels such as ‘theith nonstandard element’
— so that a given circuit can be interpreted over different bases.

Definition 17 (+ASATf ). For every Boolean basisB and eligiblef (§2.11), define+ASATf as the
Boolean version (§2.16) of the mapΦ(~x) 7→

∑
~αΦ(~α), whereΦ denotes a formula over the arithmetic

basis corresponding toB ∪ {f}, that has all its constants inF2k for somek. By defaultB is the standard
basis andf is the all-zeroes language.

We index (§2.13) +ASAT by n andk, and write the corresponding member as+kASATn; heren upper
bounds the number of nodes in formulaΦ, andk denotes the fieldF2k where the constants ofΦ reside.

For our purposes (to become clear in the proof of Lemma21) we requirek ≥ log2 n, i.e., if k < log2 n
then+kASATn behaves trivially, say by returning0. We also require that each instance of+kASATn, say
involving the formulaΦ, is represented such that each input node ofΦ takes up≥ k bits.

Four lemmas regarding�SAT and+ASAT are used in proving Theorems12-13:

Lemma 18. �SATf̃ → �SATf . The reduction works over any Boolean basis and any eligiblef (§2.11).

Lemma 19. �SAT → +ASAT. The reduction works over any Boolean basis and its corresponding
arithmetic basis. In addition, the same reduction yields�SATn → +k(n)ASAT for somek ∈ poly log n.

Lemma 20. +ASAT → �SAT. The reduction works over any Boolean basis and its corresponding
arithmetic basis.

Lemma 21. There is a functionp ∈ poly(n) and an interactive protocol that yields the following:

i. +ASAT is same-length checkable.

ii. +kASATL≤m reduces to�SAT
L≤m

p(km) for every languageL and for everyk,m ∈ N.

More generally, there is an interactive protocol where the verifier has oracle access capability (§2.8),
such that for every languageO, when the verifier is given access (§2.8) to Õ, the protocol yields (i) and (ii)
for +ASATO instead of+ASAT.

We defer the proof of these four lemmas to§3.1.5.

3.1.3 Proofs of Theorems12-13

We now derive Theorems12-13, assuming Propositions14-15and Lemmas18-21.

Proof of Theorem12. Let O be a language andA its affine extension. We show that�SATA reduces, to
and from, some languageK that is same-length checkable (§2.4) with oracle access (§2.7) to A. We also
show how this implies that�SATA is itself checkable with oracle access toA.

PutK := +ASATO. We claim that

�SATA → +ASATO (3.1)
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and that

+ASATO → �SATA. (3.2)

To see the first claim, use Lemma18 to get�SATA → �SATO, and then use Lemma19 with the
O-extended Boolean basis (§2.11) to get�SATO → +ASATO.

For the second claim, use Lemma20 with theO-extended Boolean basis to get+ASATO → �SATO,
and then use Proposition15, together with the fact thatO Karp-reduces, hence Cook-reduces, toA, to get
�SATO → �SATA.

Now, by Lemma21, we know that+ASATO is same-length checkable with oracle access toA. But
then�SATA is also checkable: On inputx, use the reduction (3.1) to get an inputx′ for +ASATO, and
then simulate the checking protocol for+ASATO, by using the reduction (3.2) to translate each query for
+ASATO to one for�SATA.

(Theorem12, mod Proposition15and Lemmas18-21)

Proof of Theorem13. LetO, L be two languages. LetA be the affine extension ofO. We are to show that
there is somes(m,n) ∈ poly(m log n), and an interactive protocol with oracle access (§2.7) toA, that yield
the reduction

�SAT
L≤m
n → �SAT

L≤m

s(m,n),

over theA-extended Boolean basis (§2.11) for everyn,m. Equivalently, recalling from§2.14that we use
�SATf,g to refer to either of(�SATf )g and(�SATg)f depending on context, we are to show

�SAT
A,L≤m
n → �SAT

A,L≤m

s(m,n)

over the standard basis, which is what we do now.
We have, over the standard basis,

�SATA,L≤m → �SATO,L≤m → +ASATO,L≤m ,

where the first reduction is by Lemma18(with theL≤m-extended basis) and the second by Lemma19(with
the basis extended byO andL≤m). In fact, the same sequence yields

�SAT
A,L≤m
n → +k(n)ASATO,L≤m ,

for somek ∈ poly(log n). Now by Lemma21(with theO-extended Boolean basis), there is a polynomially
bounded functionp, and an interactive protocol with oracle access toA, that yield

+k(n)ASATO,L≤m → �SAT
L≤m

p(mk(n)) ,

completing the proof when we puts(m,n) := p(mk(n)).

(Theorem13, mod Lemmas18-21)

3.1.4 Extending�SAT to �∗SAT and +ASAT to +∗ASAT

We now extend�SAT and+ASAT to expressions involving summationswithin the formula, not just in
front. We give four definitions, two for extending�SAT and two for+ASAT.

Definition 22 (bbs). For every Boolean basisB, consider the set of expressions obtained inductively, by
letting in: (i) every variable; (ii)f(ψ1..ψm) for everyψ1, ..,ψm already let in, for every elementf in the
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basisB defined onm inputs, for everym ∈ N; (iii) �yψ for everyψ already let in, for every free variabley
of ψ. Call this the set ofBoolean expressions involving binary sums(bbs) over the basisB.

Definition 23 (�∗SATf ). For every Boolean basisB and eligiblef (§2.11), define�∗SATf over the basis
B as the mapψ(~x) 7→ �~αψ(~α) whereψ is a bbs overB ∪ {f}, with input variables~x. By default,B is the
standard basis andf is the all-zeroes language.

Definition 24 (abs). For every arithmetic basisA, consider the set of expressions obtained inductively, by
letting in: (i) every variable; (ii)f(Ψ1..Ψm) for everyΨ1, ..,Ψm already let in, for every element inA
defined onm inputs, for everym ∈ N; (iii)

∑
y∈{0,1}Ψ for everyΨ already let in, for every free variabley

of Ψ. Call this the set ofarithmetic expressions involving binary sums(abs) over the basisA.

Definition 25 (+∗ASATf ). For every arithmetic basisA and eligiblef (§2.11), Define+∗ASATf over the
basisA as the Boolean version (§2.16) of the mapΨ(~x) 7→

∑
~αΨ(~α), whereΨ is an abs overA ∪ {f̂} with

input variables~x, and eachαi ranges over{0, 1}. By default,A is the standard arithmetic basis andf is the
all-zeroes language.

We derive six facts relating�SAT, �∗SAT, +ASAT and+∗ASAT:

Lemma 26. For every functionR ∈ FP there is a functionR′ ∈ FP such that the following holds. IfR is a
Cook reduction (§2.5) from some eligiblef to some eligibleg (§2.11), thenR′ is a reduction from�SATf

to�∗SATg that works over any Boolean basis.
This holds relative to every language.

Lemma 27. �SAT�SAT → �∗SAT. The reduction works over any Boolean basis.

Lemma 28. �∗SAT → +∗ASAT. The reduction works over any Boolean basis and its corresponding
arithmetic basis.

Lemma 29. +∗ASAT→ +ASAT. The reduction works over any arithmetic basis.

Lemma 30. +ASAT → �SAT. The reduction works over any Boolean basis and its corresponding
arithmetic basis.

Corollary 31. �∗SAT→ �SAT. The reduction works over any Boolean basis.

We now proceed to prove each of these facts in turn. Before we begin, we derive an auxiliary fact that
will be useful in proving the first two facts, Lemmas26and27.

Lemma 32. For every functionR ∈ FP there is a functionR′ ∈ FP such that the following holds. IfR is
a Cook reduction (§2.5) from some eligiblef to some eligibleg (§2.11), then for everyn, R′(1n) gives a
formulaξ(x, y) over theg-extended Boolean basis such that

f(x) = �yξ(x, y)

for everyx ∈ {0, 1}n ∩ dom f .
This holds relative to every language.

Proof. LetO be an arbitrary language, and letR ∈ FPO be a Cook reduction from the partial languagef to
the partial languageg. By definition, this means there is some` ∈ poly(n) such that for everyx ∈ dom f ,

f(x) = R(x, z), wherezi = g(R(x, z1..zi−1)) and|z| = `(|x|). (3.3)
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(For a general Cook reduction, we would use in (3.3) an arbitrary languageg′ extendingg, instead ofg,
but recall from§2.5that Cook reductions arestrongby default.)

By the Cook-Levin theorem (§2.20) applied toR, it follows that there is̀ ∈ poly(n) such that for
everyn ∈ N, there are circuitsC0, .., C`(n), each over theO-extended Boolean basis, such that for every
x ∈ {0, 1}n ∩ dom f ,

f(x) = C`(n)(x, z), wherezi = g(C ′i−1(x, z1..zi−1)) and|z| = `(|x|),

and where

C ′i(y) := (Ci(y))1..|R(y)|,

the idea being to calculate the output length ofR(y) and trim the excess from the output ofCi(y) before
making any use of it. Notice that the function that calculates the output length ofR is in FPO, becauseR
is. Hence by the Cook-Levin theorem again, eachC ′i can be implemented by a circuit; moreover, each such
circuit can be produced by a function inFPO given1n.

It follows that for everyx ∈ {0, 1}n ∩ dom f ,

f(x) =
⊕

z∈{0,1}`

C`(x, z) ∧
∧

i=1..`(zi ≡ g(C ′i−1(x, z1..i−1))

where` denotes̀ (n); further, the righthand side is produced by some function inFPO given input1n.
The expression inside the sum is a circuitE(x, z) over theg- andO-extended basis, and can be equiv-

alently written as the sum�vξ(x, z, v) whereξ(a, v) checks thatv describes the computation ofE(a), and
v ranges over{0, 1}s for somes ∈ poly(size ofE) ⊂ poly(n).

It follows that there is a function inR′ ∈ FPO that, given input1n, outputs a formulaξ over theg- and
O-extended basis satisfying

f(x) =
⊕

z,v ξ(x, z, v)

for everyx ∈ {0, 1}n ∩ dom f . This was to be shown.

Proof of Lemma26. Supposef Cook-reduces tog. By Lemma32, there is a function inFP that, given
a formulaφ over the basisB ∪ {f}, whereB is any Boolean basis, takes each subformula of the form
f(φ1..φn) and performs the replacement

f(φ1..φn) 7→
⊕

y ξ(φ1..φn, y)

whereξ is a formula over the basisB∪{g}. This shows�SATf → �∗SATg overB, for every basisB.

Proof of Lemma27. Let B be a Boolean basis for formulas. Given a formulaφ(x) over the basisB ∪
{�SATB}, we want a reduction from the task of computing�xφ(x) to that of computing�zψ(z), for
some bbsψ(z) overB. We want the reduction to work for every choice ofB.

Intuitively, replacing each occurrence of�SATB in φ(x) with the actual sum to be computed, would
constitute a reduction as desired. More precisely, letFormulaEvalB be the partial language that, on input
(t, u), interpretst as a formulaτ over the basisB, and outputsτ(u), the evaluation ofτ on u. (In caseτ
has fewer inputs than|u|, let FormulaEvalB outputτ(u) only if the extra bits inu are set to zero, else let it
output zero. Also, in caseτ(u) is undefined — which may happen if some nonstandard gate inτ receives
inputs out of its domain — then letFormulaEvalB be undefined on(t, u).)

Each subformula inφ(x) of the form

�SATB(φ1..φm) (3.4)
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can be viewed as the sum

�u∈{0,1}mFormulaEvalB(φ1..φm, u) (3.5)

for each setting ofx, since the subformulasφ1(x), .., φm(x) collectively describe a Boolean formulaτx with
≤m input variables.

Now, FormulaEvalB Cook-reduces to the basisB, more precisely, to the partial language
∐

B : (i, x) 7→ Bi(x)

whereBi is theith element of the basisB. Notice that this reduction does not depend on what the basisB
is, provided we have a reasonable representation of formulas that uses generic labels for gates — ‘theith

nonstandard element’ etc. — which is the case by the way we set things up in§2.11.
It follows by Lemma32 that there is a function inFP that, given input1m, outputs a formulaξ

∐
B over

the basis
∐

B satisfying

FormulaEvalB(a) =
⊕

y ξ
∐

B(a, y) (3.6)

for every inputa ∈ {0, 1}m on which the left hand side is defined. In case the left hand side is undefined,
then so is the right hand side.

If the basisB containsd elements, then
∐

B can be written as
∐

B(i, x) = ((i ≡ 1) ∧B1(x))⊕ ∙ ∙ ∙ ⊕ ((i ≡ d) ∧Bd(x)) (3.7)

where ‘i ≡ j’ is shorthand for the formula checks thati is the binary encoding of the numberj. The
righthand side of (3.7) is a formula over the basisB. Combining with (3.6), we get a function inFP that,
given input1m, outputs a formulaξB over the basisB satisfying

FormulaEvalB(a) =
⊕

y ξB(a, y) (3.8)

for every inputa ∈ {0, 1}m.
It follows, from (3.5) and (3.8), that there is a function inFP that takes each subformula of the form

(3.4), and performs the replacement

�SATB(φ1..φm) 7→
⊕

u,y ξB(φ1..φm, u, y)

proving�SAT�SAT → �∗SAT. The reduction works over any choice of the basisB.

Proof of Lemma28. Given a bbsφ over any Boolean basisB, let Φ be its “arithmetization”, obtained by
replacing each non-input gatef in φ with its affine extension polynomial̂f , and by replacing each mod-2
sum with a generic sum so that a subexpression ofφ of the form�y∈{0,1}φ

′ becomes
∑

y∈{0,1}Φ
′.

Becausêf agrees withf on Boolean settings of its inputs by definition (§2.17), it follows thatφ agrees
with Φ on every Boolean input. And because we representF2k ask-bit vectors (§2.16), computing⊕~αφ(~α)
reduces to computing the least significant bit of

∑
~αΦ(~α) overF2k for any k, where eachαi ranges over

{0, 1} in both sums. The transformationφ 7→ Φ works over any choice of a basis, provided we have a
reasonable representation of formulas, which is the case by§2.11and Definition16.

Proof of Lemma29. Given an absΨ over any arithmetic basisA, we give a reduction that produces a
(summation-free) formulaΦ overA satisfying

Ψ(x) =
∑

yΦ(x, y)

for every setting of inputsx of Ψ overF2k , for everyk. Herey will be over{0, 1}m for somem that depends
onΨ, and that is bounded by a polynomial on the size ofΨ.

There is nothing to do ifΨ is just a variable or constant, so suppose not.
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If Ψ(x) is of the formΨ1 ∙Ψ2, and if by recursionΨ1 is already brought to the desired form
∑

yΦ1(x, y),
andΨ2 to

∑
zΦ2(x, z), then the rest is easy: just make surey andz refer to disjoint sets of variables by

renaming as needed, and writeΨ(x) =
∑

y,zΦ1(x, y) ∙ Φ2(x, z).
In caseΨ = Ψ1 + Ψ2, after recursing and renaming as before, write

Ψ(x) =
∑

b,y,z

(
Φ1(x, y) ∙ b ∙

∏
izi + Φ2(x, z) ∙ (1− b) ∙

∏
iyi

)
,

whereb is a single variable.
In caseΨ is of the formf̂(Ψ1,.., Ψm), wheref is a nonstandard basis element, use the definition off̂m

(§2.17) to rewriteΨ as

Ψ(x) =
∑

b1..bm
f̂(b1,.., bm) ∙

∏
i=1..m(1 + Ψi(x) + bi), (3.9)

then recurse into the product on the right side, and then finish by going to the first case,Ψ = Ψ1 ∙Ψ2.
The reduction works over any choice of the basisA, provided we have a reasonable representation of

formulas, which is the case by§2.11and Definition16.

Proof of Lemma30. Given a formulaΦ(x) over any arithmetic basisA, and giveǹ , we show a reduction
from finding the`th bit of

∑
xΦ(x), to evaluating the mod-2 sum�zφ(z) for some formulaφ over the

Boolean basis corresponding toA.
To begin with, let us assume thatA is the standard arithmetic basis so that there are no nonstandard

f̂ -gates inΦ, in other words, thatΦ is aF2k -polynomial for somek. By the way we representF2k (§2.16),
there is a Boolean circuitC(X) that takes as input ak-bit vectorXj corresponding to each inputxj of Φ(x),
and outputsk bits representing the valueΦ(x). C can be produced by some function inFP givenΦ.

Because the original task is to find the`th bit of the sum
∑

xΦ(x), and because addition inF2k corre-
sponds to componentwise addition inFk

2, we can ignore all output bits ofC except thè th one. Further,
because the summation variablesxi range over binary values, we can fix in eachXi all the bits to0 except
the least significant bit, which we can callxi. So we now have a circuitC(x) returning thè th bit of Φ(x)
for everyx from the Boolean domain.

It follows that the`th bit
∑

xΦ(x) equals�x,yφ(x, y), whereφ is the formula verifying thaty describes
the computation of the circuitC on inputx. This proves the lemma whenA is the standard arithmetic basis.

Now suppose thatΦ containsf̂ -gates for an arbitraryf . Mimicking the above reasoning for the standard
basis, we want to express the evaluation ofΦ as a Boolean circuitC over thef -extended Boolean basis.
Once this is done, the rest follows as in the earlier case with nof̂ -gates.

Perform the process, explained in the proof of Lemma29 just above, of bringingΦ to prenex form —
a seemingly useless thing to do asΦ does not involve sums. But notice from (3.9) that as a side effect, the
process transforms the summation-freeΦ(x) into the sum

∑
B Φ′(x,B), where eacĥf -gate inΦ′, say theith

one, is isolated in the sense that its inputs now come from someBi1, .., Bimi among the variablesB, which
all range over Boolean values. Sincêf agrees withf on Boolean inputs, now thêf -gates can be replaced
with f -gates.

It thus follows, with the same reasoning as earlier, that the`th bit of
∑

xΦ(x) — which is the same
as thè th bit of

∑
x,B Φ′(x,B) — equals�x,B,yφ

′(x,B, y), whereφ′ is a formula over the Boolean basis
corresponding to the basis ofΦ.

The reduction works over any choice of the basisA, provided we have a reasonable representation of
formulas, which is the case by§2.11and Definition16.

Proof of Corollary31. Immediate by chaining together Lemmas28, 29, and30.

37



3.1.5 Finishing up — Proofs of Propositions14-15and Lemmas18-21

We finish up Section3.1by proving Propositions14-15and Lemmas18-21.

Proof of Proposition15. Immediate from Lemma26and Corollary31.

Proof of Lemma18. Being the affine extension off , by definition (§2.17), on inputx, f̃ gives thezth bit of
the valuef̂ takes aty, wherey andz are computable inFP givenx. In other words,̃f gives the+ASATf

instance(Φ, z) whereΦ is the formula ‘̂f(y)’. Thus f̃ → +ASATf . Combining with Lemma20 gives
f̃ → �SATf . Therefore,

�SATf̃ → �SAT�SATf
→ �∗SATf → �SATf

by Proposition15, Lemma27, and Corollary31, respectively. The composite reduction�SATf̃ → �SATf

works over any choice of a Boolean basis since each constituent reductiondoes.

Proof of Proposition14. LetO be a language. The evaluation ofÕ on a given inputx can be expressed as

the formula ‘Õ(x)’, which is a�SATÕ instance (with no free variables). By Lemma18, there is a reduction

from�SATÕ to�SATO. Putting together,̃O → �SATO.

Proof of Lemma19. Immediate from Lemma28and Lemma29.

Proof of Lemma20. Lemma20 is identical to Lemma30.

Proof of Lemma21. LetO be a language, and letB be theO-extended Boolean basis. Given (Φ, `), consider
the task of computing+ASATO(Φ, `), i.e., computing thèth bit of

∑
xΦ(x), where eachxi ∈ {0, 1}, and

Φ is a formula over the arithmetic basis corresponding toB, that has all its constants inF2k for somek.
We show an interactive protocol (§2.4) where the verifier has oracle access capability (§2.8), such that

when given access (§2.8) to Õ, the protocol performs this task. Further, the protocol we give will show that
+ASATO is same-length checkable (§2.4), proving part (i) of the Lemma. Later we will amend the protocol
to derive part (ii) as well.

Here is the protocol (to be later amended for part (ii)):

1. The verifier asks from the prover allk bits of the sum
∑

xΦ(x). By responding to this request, the
prover implicitly makes the claim ‘

∑
xΦ(x) = u’ for someu ∈ F2k . If the `th bit of u is 0, then there

is nothing to be done; the verifier outputs0 at this point.

2. The verifier and the prover perform the sumcheck protocol [11, §3.2] overF2k , and replace the claim
with a new one, of the form ‘Φ(y) = v’ for somey, v over thesamefield as that ofx, u.

3. The verifier asks from the prover the value of each gate in the evaluation ofΦ(y) — i.e., the value of
each subformula ofΦ, when evaluatingΦ ony — and checks all of them to see if they are consistent
and if indeedΦ(y) = v. If all checks pass then the verifier outputs1.

Notice that all of the responses of an honest prover can be obtained by using+ASATO on formulas of
size exactly the size ofΦ. (Formulas smaller thanΦ can always be appropriately padded; the point is that
no larger formula needs to be used.)

The analysis of the protocol is standard: if the original claim, that the`th bit of
∑

xΦ(x) equalsb, is
false, whereΦ has≤n nodes, then the sumcheck erroneously yields a true claim with probability at most

# of rounds∙ deg Φ / size of the field

which grows slower than1/nd for anyd, due to the requirementk ≥ log2 n in the definition of+ASAT
(Definition17). This proves part (i) of the lemma.
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For part (ii), letL be a language, and letm ∈ N. Consider extending the basisB from part (i) withL≤m

(§2.2). (SoB is now the standard basis extended withO andL≤m.) Given (Φ, `), consider the same task as
in part (i), of computing thèth bit of

∑
xΦ(x) whereΦ is over the arithmetic basis corresponding toB.

Modify and amend the protocol from part (i) as follows. For convenience, lettingM denoteL≤m:
3′. The verifier asks from the prover the value of each gate in the evaluation ofΦ(y), and checks all of

themexceptthose forM̂ . If any of the checks fail, then the verifier outputs0. If there is noM̂ -gate,
then there is nothing left to do; the verifier outputs1.

4. The verifier and the prover perform the interpolation technique from the LFKN protocol [36], to
combine multiple claims of the form ‘̂M(z) = w’ into a single one, for each distinct input length|z|,
as follows.
For every pair of claims ‘̂M(~α) = v’ and ‘M̂(~β) = w’ where~α, ~β ∈ Fi

2k for somei ≤ m:

a. Lett ∈ Fi
2k [x] be the line that passes through~α and~β, i.e., let

t(x) := ~α + (~β − ~α)x.

Then the pair of claims can be rewritten as ‘M̂ ◦t(0) = v’ and ‘M̂ ◦t(1) = w’.
b. The verifier asks from the prover the univariate polynomialM̂ ◦t, and receives some polynomial

M̂ ◦t as response. The verifier checks thatM̂ ◦t(0) = v andM̂ ◦t(1) = w, and outputs0 if either
check fails.

c. The verifier picks a randomρ ∈ F2k and replaces the pair of claims with the single claim ‘M̂(t(ρ)) =
M̂ ◦t(ρ)’.

5. Reverting back to usingL≤m instead ofM , at this point the verifier has at mostm claims of the form
‘ L̂

k

i (~γ) = y’, where i ≤ m, regarding the value of̂L overF2k . These claims can be expressed as
the conjunction of at mostmk claims regarding the value of̃L, of the form ‘̃L

k

i (~γ, j) = yj ’, where
i ≤ m andj ≤ k. This conjunction is a formula over the standard Boolean basis extended byL̃≤m,

hence is a�SATL̃≤m instance, of size polynomial inmk. By Lemma18, it can be transformed to a
�SATL≤m instance of size polynomial inmk. The verifier performs this transformation and outputs
the result.

Notice that as in part (i), all of the responses of an honest prover can be obtained by using+ASATO on
formulas of size exactly the size ofΦ. (Formulas smaller thanΦ can always be appropriately padded; the
point is that no larger formula needs to be used.)

The analysis of the protocol is again standard: ifΦ has≤n nodes, then Step 4 takes≤n claims of the
form ‘L̂i(z) = w’, wherei ≤ m, and merges them into fewer claims; the probability that there is an error
in this merging process, i.e., the probability that all of the merged claims are true, assuming some original
claim is false, is at most

# of merges∙ deg(L̂m ◦ t) / size of the field

which again grows slower than1/nd for anyd, becausem ≤ n and becausek ≥ log2 n by the definition of
+ASAT (Definition17). This finishes theproof.

3.2 TheIP Theorem

In this section we show that Shamir’sIP theorem,PSPACE ⊂ IP, affinely relativizes. (By§1.1.5, it
follows that theIP theorem does not have aproof that affinely relativizes.) As a byproduct we obtain a new
streamlined proof of this result; see Section1.3for an overview and comparison with previous proofs.
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The proof is a straightforward consequence of the results in Section3.1on�SAT. We show:

Theorem 33. Every downward-self-reducible language is inIP. This holds relative to every affine oracle.

Proof. LetA be an affine oracle. Suppose that the languageL := {Ln}n∈N is downward-self-reducible with
oracle access toA (§2.7), i.e., that there is a Cook-reduction (§2.5) R ∈ FPA that yields

L≤n → L≤n−1

for everyn > 0. By Proposition15, there is a reductionR′ ∈ FPA that yields

�SATL≤n → �SATL≤n−1 (3.10)

for everyn ∈ N. Here and throughout the rest of the proof, we take theA-extended Boolean basis for
�SAT, and use�SATL≤−1 to denote�SAT.

Repeating (3.10) and combining with Theorem13, we get a two-step reduction

(�SATL≤n−1)nd → (�SATL≤n−2)nd′ → (�SATL≤n−2)nd , (3.11)

for everyn, for some large enough constantsd, d′ whereni denotesni + i (in particulard must exceed the
exponent hidden in thepoly(∙) notation of Theorem13). We also have the trivial reduction

L≤n → �SATL≤n (3.12)

since the task of computingL(α) reduces to the task of evaluating the formula ‘L(α)’.
Now consider the reduction that on inputx to Ln, first applies the reduction in (3.12), and then forn

iterations, applies the reduction sequence in (3.11). This composite reduction yields

L≤n → �SAT

for everyn ∈ N, hence it yieldsL→ �SAT.
By Theorem12 on checking�SAT, it follows that L is computable by an interactive protocol with

oracle access toA.

By its very definition (§2.3), PSPACE has a complete language that is downward-self-reducible —Σ∞SAT
(§2.15), a.k.a.TQBF — and this holds relative to every language. Hence we have:

Corollary 34. PSPACE ⊂ IP. This holds relative to every affine oracle.

3.2.1 Aside: strong relativization

Corollary34allows, for example, to have a different interactive protocol forΣ∞SATA for each affine oracle
A. But if we unwind the proof of that result, we can see that there is essentially one interactive protocol,
more precisely, there is one interactive protocol where the verifier has oracle access capability (§2.8) such
that when given access (§2.8) toA, the protocol computesΣ∞SATA.

Capturing this sort of phenomenon can be useful. In fact in Section3.3 below, we give a streamlined
proof ofNEXP ⊂ MIP that uses exactly this.

So let us make a definition. Recall that we useFP∗ to capture the notion of a polynomial-time oracle
Turing machine (§1.1.1, §2.8). Here we want to capture a variant notion: we still have a polynomial-time
oracle Turing machine, but now the oracle access mechanism is altered so that instead of what is on the
oracle tape, say the languageO, it givesÕ, the affine extension of what is on the tape.
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Definition 35. (FP∗̃) Define the classFP∗̃ — FP with affineoracle access capability — as the set of all
functions of the form

f ∗̃ : (O, x) 7→ f∗(Õ, x)

wheref∗ ∈ FP∗.

All definitions built onFP (§2.3-§2.6) naturally generalize to their affine-oracle-access-capable versions:
NP to NP∗̃, IP to IP∗̃, and so on. Corollary34can be strengthened thus:

Theorem 36. PSPACE∗̃ ⊂ IP∗̃.

We do not state Theorem36as a corollary because it requires an examination of the proofs leading to it.
To rephrase this result in terms ofΣ∞SAT, define the function

ΣkSAT∗ : (O, ϕ) 7→ ΣkSATO(ϕ)

as the natural generalization ofΣkSAT (§2.15) that takes as input a languageO and a formulaϕ, and
computesΣkSAT(ϕ) by interpretingϕ over theO-extended basis. Notice thatΣ∞SAT∗ ∈ PSPACE∗. In
fact, for everyL∗ ∈ PSPACE∗, there is someR ∈ FP such that

L∗(O, x) = Σ∞SAT∗(O, R(x))

for everyO, x. ThusΣ∞SAT∗ is PSPACE∗-complete.
Now define

ΣkSAT∗̃ : (O, ϕ) 7→ ΣkSAT∗(Õ, ϕ)

as the variant ofΣkSAT∗ that, given the formulaϕ and the languageO, interpretsϕ over theÕ-extended
basis, and computesΣkSAT(ϕ). Then Theorem36says

Σ∞SAT∗̃ ∈ IP∗̃.

3.3 TheMIP Theorem

In this section we show that theNEXP ⊂ MIP theorem of Babai, Fortnow, and Lund [11] affinely rela-
tivizes, if it is viewed as a gap amplification result as mentioned in§1.3(and explained below in§3.3.2).

To begin with, how do we even defineMIP? Typically, this would be done via Turing machines equipped
with communication tapes. Since our approach (§2.3-2.6) builds exclusively onFP, we must find another,
more robust definition forMIP.

Fortunately, such a definition already exists; we recall it in the next section (§3.3.1). After that, we
introduce theMIP theorem from the gap amplification perspective (§3.3.2), and then prove it (§3.3.3). Then
we prove why theMIP theorem affinely relativizes when viewed as a gap amplification result (§3.3.4), and
then contrast the ordinary view of theMIP theorem to the gap amplification view (§3.3.5). We finish by
giving some deferred proofs (§3.3.6).

3.3.1 DefiningMIP

Recall thatIP is defined (§2.4and the remark on perfect completeness therein) as the set of all languagesL
such that

L(x) = 1 =⇒ Ay1 Mz1 ∙ ∙ ∙Ayt(|x|) Mzt(|x|)V (x, y, z) = 1

L(x) = 0 =⇒ Ay1 Mz1 ∙ ∙ ∙Ayt(|x|) Mzt(|x|)V (x, y, z) < 1/3
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for someV ∈ P andt ∈ poly(n), whereAxϕ(x) denotesEx[ϕ(x)] andMxϕ(x) denotesmaxx ϕ(x).
Fortnow, Rompel, and Sipser gave [24] a similar definition forMIP. We paraphrase:

Definition 37 (MIP). MIP is the class of all languagesL for which there existsV ∗ ∈ P∗, t ∈ poly(n), a
languageπ, such that for every stringx and languageπ′

L(x) = 1 =⇒ Ay1 Mz1 ∙ ∙ ∙Ayt(|x|) Mzt(|x|)V
π(x, y, z) = 1

L(x) = 0 =⇒ Ay1 Mz1 ∙ ∙ ∙Ayt(|x|) Mzt(|x|)V
π′

(x, y, z) < 1/3

whereyi, zi are quantified over{0, 1}.
In words,L is computable by an interactive protocol where the verifierV ∗ has oracle access capability

(§2.8) such that:

i. whenV ∗ is given access (§2.8) to π, the protocol computesL, or in short,L ∈ γ-gap-IPπ,
ii. V ∗ is robust to its oracle, in the sense that even if some other oracleπ′ is used instead ofπ, V ∗ accepts

with probability less than1/3 wheneverL(x) = 0.

Intuitively, L ∈ MIP iff L has an “interactively checkable proof system”: ifL(x) = 1, then there is an
exponentially long proof stringπx that a verifier can check by interacting with a prover. (In the definition
above we assemble all such proofs into one languageπ : (x, i) 7→ πx(i).)

3.3.2 The gap amplification perspective

Consider generalizingIP andMIP as follows.

Definition 38 (γ-gap-IP, γ-gap-MIP). Let γ(n) = 1/κ(n) for someκ : N→ N. Define:

- γ-gap-IP as inIP (§3.3.1), except by replacing the constant1/3 with 1− γ(|x|)

- γ-gap-MIP as inMIP (§3.3.1), except by replacing the constant1/3 with 1− γ(|x|).

By definition,2/3-gap-IP = IP, and0-gap-IP = PSPACE (§2.6). So Shamir’sIP theorem (Corollary
34) can be restated as0-gap-IP ⊂ 2/3-gap-IP.

Similarly, 2/3-gap-MIP = MIP, and:

Proposition 39. 0-gap-MIP = NEXP.

So, similar to Shamir’s theorem, the Babai-Fortnow-Lund resultNEXP ⊂ MIP can be restated as:

Theorem 40(MIP theorem). 0-gap-MIP ⊂ 2/3-gap-MIP.

We defer the proof of Proposition39 to §3.3.6, and proceed to prove Theorem40 in the next section.

3.3.3 Proof of theMIP theorem using theIP theorem

The proof becomes a straightforward consequence of Section3.2, that theIP theorem affinely relativizes,
once a key ingredient is introduced. Namely, it is the seminal “multi-linearity test” of Babai, Fortnow, Lund
[11, Thm 5.13]. Here we combine it with a “Booleanness test” from the same paper [11, §7.1] and a standard
decoding procedure for low-degree polynomials (e.g., [6, §7.2.2]):
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Proposition 41. There isW ∗ ∈ P∗, r ∈ poly(n), such that the following holds.
(In words, there is an interactive protocol with round complexityr (§2.4) and with a verifierW ∗ that

has oracle access capability (§2.8) such that the following holds.)
For every languageF , and for everyN ∈ N, there is some affine oracleG such that for everyx ∈

{0, 1}n≤N :

i. Ay1 Mz1 ∙ ∙ ∙Ayt Mzt [WF
(
(x, 1N ), y, z

)
= F (x)] = 1, if F is an affine oracle

ii. Ay1 Mz1 ∙ ∙ ∙Ayt Mzt [WF
(
(x, 1N ), y, z

)
/∈ {F (x), ‘fail’ }] = 0, if F is an affine oracle

iii. Ay1 Mz1 ∙ ∙ ∙Ayt Mzt [WF
(
(x, 1N ), y, z

)
/∈ {G(x), ‘fail’ }] ≤ 1/N , otherwise

wheret := r(n + N).
(In words, on input(x, 1N ), when the verifier is given access (§2.8) to F : the protocol computesF (x)

if F is an affine oracle, otherwise it computesG(x) with probability1− 1/N .)

We defer the proof to the end of this section (§3.3.6) and proceed to derive Theorem40.

Proof of Theorem40. Let L ∈ 0-gap-MIP. By definition (§3.3.2), there is a languageπ andV ∗0 ∈ P∗ such
that for every languageπ′,

L(x) = 1 =⇒ [V π
0 (x)] = 1

L(x) = 0 =⇒ [V π′

0 (x)] < 1,
(3.13)

where we use[U(x)] as a shorthand forAy1 Mz1 ∙ ∙ ∙Ayt(|x|) Mzt(|x|)U(x, y, z) and suppresst(x), the num-
ber of rounds taken by the protocol.

(In words, there is a0-gap interactive protocol where the verifier, sayV ∗0 , has oracle access capability
(§2.8) such that whenV ∗0 is given access (§2.8) to π, the protocol computesL; in short,L ∈ 0-gap-IPπ.
Moreover,V ∗0 is robust to its oracle in the sense of Definition37.)

Take anyπ satisfying (3.13). We may assume thatπ is an affine oracle since every language Karp-
reduces to its affine extension.

By Theorem36, there isV ∗2/3 ∈ P∗ such that

L(x) = 1 =⇒ [V π
2/3(x)] = 1

L(x) = 0 =⇒ [V π
2/3(x)] < 1/3.

(3.14)

(In words, there is a2/3-gap interactive protocol where the verifier, sayV ∗2/3, has oracle access capability
such that when given access toπ, the protocol computesL; in short,L ∈ IPπ.)

So all that remains to show, by Definition37, is that out of allV ∗2/3 satisfying (3.14), there is a robust
one. I.e.,

L(x) = 0 =⇒ [V π′

2/3(x)] < 1/3 (3.15)

for every languageπ′, for someV ∗2/3 satisfying (3.14).
So take anyV ∗2/3 satisfying (3.14). By amplification, there isV ∗5/6 ∈ P∗ such that

L(x) = 1 =⇒ [V π
5/6(x)] = 1

L(x) = 0 =⇒ [V π
5/6(x)] < 1/6.

Now consider the protocol where the verifier behaves just likeV ∗5/6 except when issuing oracle queries;
at those times, instead of queryingπ directly, say to retrieveπ(X), it engages the prover to execute the
protocol of Proposition41 on the input(X, 1m), and rejects (outputs0) immediately if that protocol results
in ‘fail’. The value of m will be worked out later. Since the verifier of the protocol in Proposition41 is
denoted asW ∗, let us use(V5/6 ◦W )∗ to denote this new verifier.
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By Proposition41-(i), and becauseπ is an affine extension, we have

[W π(X, 1m) = π(X)] = 1

hence

L(x) = 1 =⇒ [(V5/6 ◦W )π(x)] = 1.

Further, by Proposition41-(ii), and again becauseπ is an affine extension, we have

[W π(X, 1m) 6= π(X)/‘fail’ ] = 0

hence

L(x) = 0 =⇒ [(V5/6 ◦W )π(x)] < 1/6.

(In words, if we modifyV ∗5/6 so that it uses the protocol of Proposition41 to perform its oracle queries,
then this modification does not change anything when the oracle isπ.)

All that is left to show is that

L(x) = 0 =⇒ [(V5/6 ◦W )π′
(x)] < 1/3 (3.16)

for every languageπ′.
So let L(x) = 0 and letπ′ be any language. Depending on whether or notπ′ is an affine oracle,

respectively, letH denote eitherπ′, or the languageG obtained from Proposition41by puttingF := π′.
Starting from the very first protocol we mentioned forL, i.e. the one with the verifierV ∗0 , and going

toward the last one with the verifier(V5/6 ◦W )∗, we will now argue the validity of four implications

L(x) = 0 =⇒ [V H
0 (x)] < 1 =⇒ [V H

5/6(x)] < 1/6 =⇒ [(V5/6 ◦W )H(x)] < 1/6 =⇒ (3.16)

which will prove the theorem.
The first implication is immediate from (3.13).
The second implication follows by Theorem36and byH being an affine oracle.
The third implication follows by Proposition41-(i)-(ii) and byH being an affine oracle.
The last implication is trivial ifH = π′, so supposeH 6= π′. Then, by Proposition41-(iii),

[W π′
(X, 1m) 6= H(X)/‘fail’ ] < 1/m.

Hence, ifq := q(|x|) upper bounds the length and the number of oracle queries issued by the verifierV ∗5/6

during the execution of its protocol on any inputx′ ∈ {0, 1}|x|, then

[(V5/6 ◦W )π′
(x)] ≤ [(V5/6 ◦W )H(x)] + q/m,

because except with probability≤ q/m, (V5/6 ◦ W )π′
either works the same as(V5/6 ◦ W )H , or rejects

(outputs0) becauseW π′
outputs ‘fail’ at some point. Therefore, puttingm := 6q yields (3.16) as desired.

(If r ∈ poly(n) denotes the query complexity (§2.10) of V ∗5/6, andt ∈ poly(n) the round complexity
(§2.4) of the protocol ofV ∗5/6, thenq := r(|x|+ 2t(|x|)) works.)

3.3.4 Relativizing theMIP theorem

With theMIP theorem (Theorem40) just proven, we now turn to showing that it affinely relativizes.

Theorem 42. Theorem40holds relative to every affine oracle.

It is tempting to try to prove Theorem42by merely taking the proof of Theorem40, and then putting an
affine oracleA in the superscript everywhere we see a complexity class or a function in a complexity class.
This does in fact work, but we need to argue that the transformed proof goes through at every step.

44



In particular, there are two points in the proof of Theorem40where Theorem36is invoked. If we replace
FP with FPA throughout the proof, then at those points we would be no longer be invoking Theorem36,
which is a statement about classes built fromFP∗̃. Rather, we would be asserting the truth of a statement
about classes built from(FPA)∗̃, namely

(PSPACEA)∗̃ ⊂ (IPA)∗̃, (3.17)

which does not seem a trivial consequence of Theorem36. The rest of the proof of Theorem40, however,
does clearly go through after the transformation. So all that is left to prove Theorem42 is to show (3.17).

We now show how (3.17) follows Theorem36. The lefthand and righthand sides of (3.17), respectively,
are the class of0-gap and2/3-gap interactive protocols (Definition38) where the verifier/verdict predicate
(§2.4) is a function in(FPA)∗̃. To parse what the latter class means, first notice that(FPp)q = FPp

∐
q for

every pair of languagesp, q and their disjoint unionp
∐

q (§2.18). Second, recall Proposition11 (§2.18),

thatFPp̃
∐

q̃ = FPp̃
∐

q. Putting together, it follows that(FPA)∗̃ comprises functions of the form

f Õ
∐

∗
: (R, x) 7→ f Õ

∐
R(x) (3.18)

whereO is the language thatA is the affine extension of, and the righthand side is the evaluation of the

function that Cook-reduces tõO
∐
R via f in ` rounds (§2.5), for somef ∈ FP and` ∈ poly(n).

So what (3.17) says is, for every functionf Õ
∐

∗
of the form (3.18), there is another functiongÕ

∐
∗

of
the form (3.18), such that for every languageR and stringx,

[f Õ
∐
R(x)] = 1 =⇒ [gÕ

∐
R(x)] = 1

[f Õ
∐
R(x)] < 1 =⇒ [gÕ

∐
R(x)] < 1/3,

(3.19)

where we use[U(x)] as a shorthand forAy1 Mz1 ∙ ∙ ∙Ayt(|x|) Mzt(|x|)U(x, y, z) for an appropriatet(x) rep-
resenting the number of rounds taken by the protocol.

So, to show (3.17), take any functionf Õ
∐

∗
of the form (3.18). This function is based on a function

f ∈ FP and some round complexitỳ ∈ poly(n). Corresponding tof and `, there is also a function
f ∗̃ ∈ FP∗̃. Corresponding tof ∗̃, there is, by Theorem36, someg∗̃ ∈ FP∗̃ such that

[f R̃(x)] = 1 =⇒ [gR̃(x)] = 1

[f R̃(x)] < 1 =⇒ [gR̃(x)] < 1/3.
(3.20)

for every languageR and stringx.

Now, if we takeg∗̃, and go in the opposite direction of the path we took fromf Õ
∐

∗
to f ∗̃, then we get a

functiongÕ
∐

∗
of the form (3.18). We claim that this function satisfies (3.19). To see this, rewrite (3.18) as

f Õ
∐

∗
: (R, x) 7→ (O

∐
R, x) 7→ f Õ

∐
R(x)

and notice that this is the composition of a simple injection withf ∗̃. Similarly

gÕ
∐

∗
: (R, x) 7→ (O

∐
R, x) 7→ gÕ

∐
R(x)

is the composition of the same injection withg∗̃. The claim now follows by (3.20).
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3.3.5 Gap amplification versus the standard view

The gap amplification perspective introduced in§3.3.2 broke theMIP theorem into two containments,
NEXP ⊂ 0-gap-MIP and0-gap-MIP ⊂ MIP. The second containment was shown in§3.3.4 to hold
relative to every affine oracle. We now show that the first one does not.

Proposition 43. NEXP ⊂ 0-gap-MIP doesnothold relative to every affine oracle.

Proof of Proposition43. First, let us show an unrestricted languageO (affine or not) such that

NEXPO 6⊂ 0-gap-MIPO. (3.21)

InitializeO to the all-zeroes language. LetV ∗1 , V ∗2 , V ∗3 .. be an enumeration ofP∗ (§2.9). For (i, j) :=
(1, 1) . . . (∞,∞), updateO as follows.

Consider the0-gap-MIP protocol with verifierV Oi and round complexitynj + j. Let Li,j be the
language computed by this protocol. For all large enoughn, say for alln > ni,j , on every inputx ∈ {0, 1}n,
the value ofLi,j(x) would be unchanged if we modifyO at length2n. Hence we may set

O(12N
) := Li,j(1

N )

whereN = 1+max(ni,j , N
′) andN ′ is the value ofN in the previous iteration (in case there is no previous

iteration letN ′ be−1).
It follows that under this construction forO, the language

L(x) := O(12|x|),

which clearly is inNEXPO, is not in0-gap-MIPO, satisfying (3.21) as desired.
Now letA be the affine extension ofO just constructed. We claim

NEXPO 6⊂ 0-gap-MIPA (3.22)

which, if true, would finish the proof sinceO reduces toA by definition (§2.17), implying NEXPO ⊂
NEXPA.

By Proposition14,A reduces to�SATO. Further, being downward self-reducible,�SATO ∈ PSPACEO

(see Proposition50 for a proof), and by Definition38, PSPACEO ⊂ 0-gap-MIPO. Putting together, we
get0-gap-MIPA ⊂ 0-gap-MIPO, proving (3.22) asdesired.

3.3.6 Deferred Proofs

We complete Section3.3by proving Propositions39and41.

Proof of Proposition39. Part (⊂). Let L ∈ 0-gap-MIP. By Definition37, there isV ∗ ∈ P∗, t ∈ poly(n),
a languageπ, such that for every languageπ′

L(x) = 1 ⇐⇒ ∀y1∃z1 ∙ ∙ ∙ ∀yt(|x|)∃zt(|x|)V
π(x, y, z) (3.23)

L(x) = 0 =⇒ ¬
(
∀y1∃z1 ∙ ∙ ∙ ∀yt(|x|)∃zt(|x|)V

π′
(x, y, z)

)
(3.24)

whereyi, zi are quantified over{0, 1}.
On inputx ∈ {0, 1}n, view the righthand side of (3.23) as a tree. The root level of the tree corresponds

to the variabley1, the next level toz1, then toy2, z2, and so on for2t(n) levels until the leaf level, where
each leaf node has a binary valueV π(x, y, z) obtained by usingy andz to represent the root-to-leaf path
for that node. The value at a non-leaf node is obtained by recursively evaluating the children and then
aggregating, via either: (a) the maximum of the values, in case the node corresponds to somezi variable, or
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(b) the minimum of the values, in case it corresponds to someyi variable. The value of the tree is the value
of the root node, which equals1 if L(x) = 1; otherwise, it is0.

This tree hasS(n) nodes, whereS = 22t(n). The value at each leaf node depends on the values ofπ at
inputs of lengthp(n + 2t(n)) or less, wherep ∈ poly(n) is the query complexity (§2.10) of V ∗. Therefore,
the entire tree depends only on the firstT (n) values ofπ, whereT = 2p(n+2t(n)). Combining with (3.23)
and (3.24), we get

L(x) = 1 ⇐⇒ ∃γ : ∀y1∃z1 ∙ ∙ ∙ ∀yt(|x|)∃zt(|x|)V
Γ(x, y, z) (3.25)

whereγ ∈ {0, 1}T (n) andΓ is the language whose characteristic string is formed by extendingγ to an
infinite string in some trivial fashion, say with all zeroes.

Notice that the function

(γ, x, y, z) 7→ V Γ(x, y, z)

is in P. (Hereγ, x, y, z are, as before, of lengthT (n), n, t(n), t(n) respectively.)
In fact, even the function

(γ, x) 7→ ∀y1∃z1 ∙ ∙ ∙ ∀yt(n)∃zt(n)V
Γ(x, y, z)

is in P because the righthand side corresponds to a tree withS(n) < T (n) nodes as described earlier.
It follows that (3.25) can be rewritten as

L(x) = 1 ⇐⇒ ∃γ ∈ {0, 1}T (|x|)W (x, γ)

for someW ∈ P. This implies thatL ∈ NEXP.

Part (⊃). LetL ∈ NEXP. By the strong Cook-Levin theorem (§2.20), there is a circuit family{Cn(x, y)}n
such thatCn is of sizes(n) ∈ 2poly(n) and can be described by a function of the form

(n, i) 7→ the type of theith gate inCn and the indices of all gates connected to theith gate (3.26)

that is inFP.
Givenx ∈ {0, 1}n andi ∈ {0, 1}log s(n), let π(x, i) be the value of theith gate inCn(x, y+) for some

fixedy+ maximizing the output ofCn(x, y) over all eligibley.
Consider the following zero-gap interactive protocol to computeL(x). The verifier has oracle access

capability (§2.8), and when given access (§2.8) to π, behaves as follows:

(i) pick at randomi ∈ {0, 1}log s(n),

(ii) using the descriptor function (3.26) for Cn, find out that theith gate is, say, of typef and is connected,
say, to gatesi1..im in that order,

(iii) check thatz = f(z1..zm), wherez stands forπ(x, i) in general, with the special case being when gate
i is the output gate (thenz = 1), andzk stands forπ(x, ik) in general, with the special case being
when gateik is an input gate (thenzk = xj for an appropriatej).

This protocol is guaranteed to accept ifL(x) = 1. It will reject with nonzero probability ifL(x) = 0,
because the check at step (iii) has a nonzero chance of being for the output gate ofCn. Moreover, when
L(x) = 0, even if some other languageπ′ 6= π is accessed by the verifier, the protocol has a nonzero chance
of rejecting, because there is noy for whichC(x, y) = 1, hence there is noπ′ that can describe an accepting
computation forCn(x, ∙).

By Definition37, it follows thatL ∈ 0-gap-MIP. This finishes theproof.
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Proof of Proposition41. Descriptionof the protocol. LetL be a language. The affine oracleL̃, by definition
(§2.17), on inputx ∈ {0, 1}n gives thezth bit of the valueL̂ takes aty ∈ Fm

2k , i.e.,

L̃(x) =
(
L̂

k

m(y)
)

z
(3.27)

wherey, z,m, k are all computable inFP out ofx, and are all≤ n. Conversely, given(y, z,m, k), an input
x for which this holds is also computable inFP.

The verifierWF interprets the inputx as in (3.27), and extractsy, z,m, k. Sincek denotes the field
size, i.e. the logarithm thereof, and sinceF2k can be efficiently identified inF2≥k , and moreover, since
k ≤ n ≤ N , the righthand side of (3.27) can be viewed as

(
L̂

N

m(Y )
)

Z
(3.28)

whereY denotesy ∈ Fm
2k identified inFm

2N , andZ denotes the accordingly updatedz.
Owing to this,WF overrides(y, z,m, k) with (Y,Z,m,N ), andx with someX corresponding to the

latter tuple. For notational convenience, we will not capitalizeY andZ because they represent the same
information asy andz. Also, we will assume thatN ≥ 10 log 2m; this is without loss of generality as we
can always haveWF increaseN before overriding(y, z,m, k).

After this initial adjustment phase,WF proceeds into the main phase where the objective is to check if
F = L̃ for someL. Let Fm,N denote the interpretation ofF on appropriate input lengths as a function of
the formL̂

N

m . The main phase consists of three steps:

Step 1. Test ifFm,N is (multi-)affine:

- Pick at random an axis-parallel line, and three points on this line.
- Check if the valuesFm,N takes on the three points are collinear.

Step 2. Test ifFm,N is Boolean on Boolean inputs:

- Pick at random up tom Boolean vectorsv1, .., vi ∈ Fm
2N .

- Do a sumcheck protocol on the claim0 =
∑

b∈{0,1}m Q(b) where

Q(y) := Fm,N (y)(1 + Fm,N (y))
∏

j=1..i(1 + 〈y, vj〉) (3.29)

with 〈y, w〉 denoting the inner product
∑

` y`w`.
- Save the pointy′ at whichQ is evaluated at the last round of sumcheck.

Step 3. Test for consistency:

- Pick at random a linè originating aty, i.e., let`(t) := y + th for a randomh ∈ Fm
2N \ {0}.

- Letting (1), .., (m+1) be a canonical choice ofm+1 distinct nonzero elements ofF2N ,
interpolate into a polynomialq(t) the values ofFm,N at `((1)), .., `((m + 1))

- Check ifFm,N (y) = q(0). Also checkFm,N (y∗) = q(t∗) for a randomt∗ andy∗ := `(t∗).
- Repeat Step 3 also for the pointy′ saved in Step 2, in place ofy.

We refer to [11, §3.2 and§5] for explanations of the terms ‘axis parallel line’, ‘sumcheck protocol’, etc.
If any of the checks fails, thenWF outputs ‘fail’; otherwise, it repeats Step 1 - 3. This goes on for

T times, after which pointWF outputsF (X), i.e., thezth bit of Fm,N (y). With foresight, we setT :=
cm9 ln N , wherec = 8100. This completes the description of theprotocol.

Analysisof the protocol. To begin with, note thatWF never outputs something besidesF (X) or ‘fail’.
Thus, lettingoutput denote the output ofWF ,

for every prover,Pr[output /∈ {F (X), ‘fail’ }] = 0. (3.30)
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Parts (i) and (ii) of the claim are fairly immediate. Indeed, supposeF = L̃ for some languageL. Then
all steps succeed with certainty, provided the prover acts honestly in Step 2. Thus

for some prover,Pr[output = F (X)] = 1.

Also, F (x) = F (X) in this case, because

F (x) = L̃(x) = L̃
k

m(yz) = L̃
N

m (yz) = L̃(X) = F (X).

Putting together with (3.30), we get claims (i)-(ii).
To proceed with part (iii), let us introduce a piece of notation. For functionsf , g with the same finite

domain, sayf is nearbyg, and writef ≈ g, to mean

Pry[f(y) 6= g(y)] ≤ γ

over the uniform choice ofy from dom f = dom g. With foresight, we setγ := 1
100m2 .

Also, let us call a functionP : Fm
2N → F2N affine, orm-affine, if it is the evaluation inF2N of an

m-variate polynomial overF2N with individual degree≤ 1.
For all functionsf : Fm

2N → F2N and allm, there can be at most one affine function nearbyf , due to
the Schwartz-Zippel Lemma (see, e.g., [6, Lemma 4.2]) and the fact thatm ≤ N .

We now define the languageG claimed to satisfy part (iii). For everym ∈ N, consider whether there
exists a Boolean functionLm : {0, 1}m → {0, 1} such that̂L

N

m is nearbyFm,N . If yes, thenLm is unique
by the previous paragraph; if no, then letLm be arbitrary, say the all-zeroes mapx ∈ {0, 1}m 7→ 0. Then
setG := L̃.

Now consider three cases:

(A). Fm,N is not nearby any affine functionP : Fm
2N → F2N .

In this case, by [11, Thm 5.13 and§7.1],10

Pr[Step 1 passes] ≤ 1− 1/(8100m9). (a)

(B). Fm,N is nearbyL̂
N

m .

SupposeFm,N disagrees witĥL
N

m ony. Then by [6, Proposition 7.2.2.1],11

Pr[Step 3 passes]

≤ Pr[the interpolated value ofFm,N agrees withFm,N aty∗,

but disagrees witĥL
N

m aty]

≤ 2
√

γ + m/(2N − 1)

≤ 2/(9m). (b)

Now supposeFm,N does agree witĥL
N

m ony. ThenF (X) = G(X) by the way we definedG. Further,
G(X) = G(x) since

G(x) = L̃(x) = L̃
k

m(yz) = L̃
N

m (yz) = L̃(X) = G(X).

10To invoke [11, Theorem 5.13] we setε = 1/(900m4), δ = 1/(900m4), and use|F2N | ≥ 900m4. In return we get an axis
i ∈ {1..m} along which≥ ε-fraction of lines would fail the test in Step 1 with≥δ-chance, provided thatFm,N differs from every
affine function on≥ ε′-fraction of inputs, whereε′ ≤ 1/(100m2).

11To invoke [6, Proposition 7.2.2.1], we letA := Fm,N , andB be the function that given(y, h), outputs the polynomialq(t)
as described in the protocol. In return, we get that if there is a polynomialP of degreed such thatPry[f(y) 6= P (y)] = ε, then
Prh,t∗ [A(y) 6= q(0) yetA(`(t∗)) = q(t∗) ] ≤ 2

√
ε + d

|F|−1
.
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Putting together with (3.30) we get, for every prover,

Pr[output /∈ {G(x), ‘fail’ }] = 0. (b’)

(C). Fm,N is not nearbŷL
N

m , but is nearby some affine functionP : Fm
2k → F2k .

In this case, by the way we definedLm, we know thatP is not Boolean on all Boolean inputs, i.e.,
P (Fm

2 ) 6⊂ F2.

Consider Step 2, in particular, the randomly picked pointy′ ∈ Fm
2N on which the expressionQ in (3.29)

is evaluated at the end of the sumcheck protocol. LetE be the event thatFm,N agrees withP on this
pointy′. Then just as in case (B), by [6, Proposition 7.2.2.1],

Pr[Step 3 passes| ¬E ]

≤ Pr[the interpolated value ofFm,N agrees withFm,N aty′∗,

but disagrees withP aty′]

≤ 2/(9m).

On the other hand, supposeE . Then at the end of sumcheck, the final claim, of the form

‘v = Q(y′)’ where Q(y) := Fm,N (y)(1 + Fm,N (y))
∏

j=1..i(1 + 〈y, vj〉)

for somev ∈ F2N , can be alternately written as

‘v = QP (y′)’ where QP (y) := P (y)(1 + P (y))
∏

j=1..i(1 + 〈y, vj〉).

Therefore, for every prover,

Pr[Step 2 passes| E ] ≤ Pr[‘v = Q(y′)’ is a correct claim| E ]

= Pr[‘v = QP (y′)’ is a correct claim| E ] = (∗)

where we just switched from a sumcheck involving the initial claim ‘0 =
∑

b Q(b)’ to one involving
the initial claim ‘0 =

∑
b QP (b)’. We are justified in this transition becausev is a function purely of

y′ and the prover, with “the prover” being just a function fromF≤m to the univariate polynomials over
F of degreedeg Q, that has nothing to do with the particulars ofQ. Therefore

(∗) ≤ Pr[penultimate claim in the sumcheck for ‘0 =
∑

b QP (b)’ is correct]

+ Pr[last sumcheck round errs]

≤ Pr[the first claim ‘0 =
∑

b QP (b)’ is correct] + mρ

where we droppedE by independence, and where an erroneous round is one that takes an incorrect
claim and produces a correct one, withρ denoting the probability of such a round taking place andm
being the number of rounds. Because each round involves evaluating a given univariate polynomial of
degree≤ deg Q at a random point inF2N ,

ρ ≤ deg Q/2N ≤ m(m + 2)/210 log 2m ≤ 1/(500m9).

Now, applying Rabin’s Isolation Lemma [46, Theorem 2.4] to the setB ⊂ Fm
2 : P (B) 6⊂ F2, we get

Pr[the first claim ‘0 =
∑

b QP (b)’ is correct] ≤ 1− 1/(4m),

and putting together we get, for every prover,

Pr[all steps pass] = Pr[E ] Pr[all steps pass| E ] + (1− Pr[E ]) Pr[all steps pass| ¬E ]

≤ max (Pr[Step 2 passes| E ] , Pr[Step 3 passes| ¬E ] )

≤ max ( 1− 1/(4m) + 1/(500m8) , 2/(9m) )
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≤ 1− 1/(10m). (c)

This concludes the case analysis. Step 1 through Step 3 are repeatedT times, which for our choice ofT
makes all of (a), (b), and (c) at most1/N , thus

Pr[output /∈ {G(x), ‘fail’ }] ≤ (max{(a), (b), (b’), (c)})T ≤ 1/N

asclaimed.

3.4 Lower Bounds against General Boolean Circuits

Using theIP theorem and its variants, Buhrman, Fortnow, Thierauf [16] and Santhanam [39] succeeded
in obtaining the strongest lower bounds known-to-date against general Boolean circuits. In both results,
the lower bound is shown for a class of functions computable by Merlin-Arthur protocols; in the case of
Buhrman et al. it is for the classMAEXP (§2.6), and in Santhanam it is forprMA, the extension of the
classMA (§2.4) to partial languages.

In this section we give a proof that unifies both results. We prove:

Theorem 44. For every constantd,

(i) MAEXP contains a language that does not have circuits of sizeO(2logd n).

(ii) prMA contains a partial language that does not have circuits of sizeO(nd).

This relative to every affine oracle.

The proof consists of three main ingredients. The first one shows that if the lower bound fails to hold,
then this failure scales to�SAT.

Lemma 45(Scaling).

(i) If part (i) of Theorem44 is false, then�SAT has circuits of sizeO(2logd n) for somed.

(ii) If part (ii) of Theorem44 is false, then�SAT has circuits of sizeO(nd) for somed.

This holds relative to every affine oracle.

We defer the proof of Lemma45 to the end of this section.
To proceed with the rest of the proof it will be convenient to introduce a piece of notation.

Definition 46 (Σ3SATf (t)). Let t be a well-behaved resource bound (§2.12), and letf be a language. Define
Σ3SATf (t) as the set of all languagesL for which there is a Karp reduction toΣ3SATf (§2.15) from the
language mapping(x, 1t(|x|)) 7→ L(x) and(x, 6= 1t(|x|)) 7→ 0.

The second ingredient in proving Theorem44 is a collapse result: if the conclusion of the Scaling
lemma (Lemma45) holds, then the polynomial-time hierarchy collapses. We defer its proof to the end of
this section.

Lemma 47(Collapse). Lets be a well-behaved resource bound (§2.12).
If �SAT has circuits of sizeO(s(n)), thenΣ3SAT is in MA(s(poly n)).
This holds relative to every affine oracle.

The last ingredient of the proof is a classical result of Kannan [31], showing circuit lower bounds for
Σ3SAT, and more generally forΣ3SAT(t).
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Fact 48(Kannan’s bound). Lets be a well-behaved resource bound (§2.12).
Σ3SAT(poly s(n)) contains a language that does not have circuits of sizeO(s(n)).
This holds relative to every oracle.

With the three ingredients in hand — Scaling and Collapse lemmas, and Kannan’s bound — we can
prove Theorem44. LetA be an affine oracle. For notational convenience, so as to avoid puttingA in the
superscripts throughout, extend the standard Boolean basis withA, and letFP stand forFPA — hence let
P denotePA, NP denoteNPA, and so on for all classes built onFP (§2.3-§2.6).

For part (i), letC be the setMAEXP and puts(n) := 2logd n; for part (ii), letC be the setprMA and put
s(n) := nd.

The proof goes by contradiction. We give the argument using notation.

C ⊂ SIZE(O(s(n)))

=⇒ �SAT ∈ SIZE(O(s(n))) (by Scaling lemma)

=⇒ Σ3SAT ∈ MA(s(poly n)) (by Collapse lemma)

=⇒ Σ3SAT(poly s(n)) ∈ C (*)

=⇒ contradiction (by Kannan’s bound)

where step (*) follows from Definition46 and the fact thats(poly s(n)) ⊂ poly s(n) for the particular
choices ofs(n).

What remains is the proof of the Scaling and Collapse lemmas.

Proof of Scaling Lemma.LetA be an affine oracle. For notational convenience, so as to avoid puttingA in
the superscripts throughout, extend the standard Boolean basis withA, and letFP stand forFPA — hence
let P denotePA, NP denoteNPA, and so on for all classes built onFP (§2.3-§2.6).

There is nothing to prove in part (i), because a�SAT instance of sizen is computable by brute force in
deterministic timeexp n ∙ poly n, implying�SAT ∈ EXP ⊂ MAEXP.

For part (ii), suppose that every partial language inprMA has circuits of sizeO(nd) for some fixedd. We
want to show that�SAT has circuits of sizepoly n. By Theorem12, �SAT reduces to some same-length
checkable languageK, so it suffices to show this forK instead of�SAT.

So letK beanysame-length checkable language, and suppose towards a contradiction thatK does not
have polynomial-size circuits. Lets : N → N be such thats(n) is the size of the smallest circuit deciding
K on inputs of lengthn, for everyn. By assumption,s(n) is super-polynomial, i.e.,s(n) >i.o. nk for every
constantk. Note thats(n) might not be well-behaved (§2.12).

Consider the partial languageK ′(xy) := K(x) that is defined only on inputs of the formxy where
y ∈ 01∗ serves as a pad of length|y| = bs(|x|)ε c, for some constantε > 0 to be later determined.

Now consider the following protocol for computingK ′: givenxy, the prover sends the smallest circuit
for K on inputs of length|x|, i.e. a circuit of sizes(|x|), and the verifier uses the same-length checkability
of K to computeK(x), henceK ′(xy). This takes, on an input of length|x| + |y|, time poly s(|x|) ⊂
poly s(|x|)ε ⊂ poly(|x|+ |y|). SoK ′ is in prMA, and hence has circuits of sizeO(nd) by assumption. But
thenK has circuits of sizeO(n + s(n)ε)d, which is less thans(n) for infinitely manyn wheneverε < 1/d
becauses(n) is superpolynomial. But this contradictss(n) being the smallest circuit size forK.

Proof of Collapse Lemma.Toda famously showed [45] that

Σ3SAT→ �SAT

via a randomized reduction (§2.5). His result holds relative to every oracle. (The same holds in general for
ΣkSAT for all constantk.)
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For notational convenience, so as to avoid puttingA in the superscripts throughout, extend the standard
Boolean basis withA, and letFP stand forFPA — hence letP denotePA, NP denoteNPA, and so on for
all classes built onFP (§2.3-§2.6).

If �SAT has circuits of sizeO(s(n)) for formulas of sizen, then the protocol for computingΣ3SAT, on
a formula of sizen, proceeds by the verifier doing Toda’s reduction to obtain a formula of sizem ∈ poly n,
then the prover sending a circuit for�SAT at a large enough input lengthpoly m, hence a circuit of size
O(s(poly n)), and finally, the verifier running the checker for�SATm (Theorem12) on the circuit, in time
poly(s(poly n)), i.e. in times(poly n) sinces is well-behaved.

3.5 TheZKIP Theorem

AW made the surprising observation that the famous theorem of Goldreich, Micali, and Wigderson,NP ⊂
ZKIP if one-way-functions exist [27], can be proven via the same techniques underlying theIP theorem
[2]. This is in contrast to the standard proof of this result involving a graph-based construction, which seems
incompatible with the oracle concept.

IKK turned this idea into a complete proof by devising an indirect commitment scheme for this purpose
[30]. In this section we adapt this AW-IKK proof to our framework, to show that theZKIP theorem affinely
relativizes.

Theorem 49(ZKIP theorem). NP ⊂ ZKIP if there is a one-way function inP secure againstBPP.
This holds relative to every affine oracle.

Similarly to previous work (AW, IKK), we take for granted that under the assumption of Theorem49,
there are bit commitment schemes as in [37], and that this holds relative to every oracle. Also as in previous
work, we take an informal approach to zero knowledge, declaring some protocol as leaking no information
if, assuming a physical implementation of a perfectly secure bit commitment scheme (such as locked boxes
containing the commitments), the verifier’s view of each decommitted bit, when dealing with an honest
prover, is either uniformly distributed, or deterministically computable by the verifier itself.

Idea. We can interpret the combined AW-IKK insight as follows. Fix a vector space over any fieldF.
We want a protocol where given a publicly known vectoru, the prover can commit to any vectorv that is
orthogonal tou, and the verifier checks thatv ⊥ u, but learns nothing additional aboutv.

This can be realized by the honest prover committing to three things: (i) a random vectorr, (ii) the
vectorr + v, and (iii) the inner product〈r, u〉. Since a cheating prover may deviate, let us user, r + v, and
〈r, u〉 to denote what is actually committed for (i),(ii), and (iii) respectively.

Sincev ⊥ u iff 〈v + r, u〉 = 〈r, u〉, the verifier picks at random one of the following two tests.

Test a. prover decommitsr and〈r, u〉, and verifier checks that〈r, u〉 = 〈r, u〉.

Test b. prover decommitsr + v and〈r, u〉, and verifier checks that〈r + v, u〉 = 〈r, u〉.

Any prover not committing to a vectorv orthogonal tou is caught by a1/2-chance in this protocol,
because then at least one equality in〈r + v, u〉 = 〈r, u〉 = 〈r, u〉 fails. On the other hand, an honest prover
reveals no information aboutv since the verifier’s view of each decommited bit is uniformly distributed.

Following IKK, let us refer to the prover’s commitment to (i) and (ii) above, asan indirect commitment
to v, and refer to the rest of the protocol from commitment to (iii) and onwards, as anorthogonality test for
v with respect tou.

This protocol suggests that given a circuitC, and given a satisfying assignmentx of inputs toC, in
order to show thatC is satisfiable without leakingx, all that an efficient prover needs to do is to commit,
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indirectly, to the transcript of the computationC(x), to which the verifier then applies various orthogonality
tests.

Protocol. Initially let us not extend the standard basis; we will visit the case of an extended basis later.
The prover is given a circuitC and a satisfying assignmentx to C. Say the gates inC are indexed from

1..s, with s being for the output gate and1..N being for input gates.
Let F denoteF2k for a large enoughk, sayk = s. Let (1), .., (n+1) denote the firstn + 1 nonzero

elements under some canonical ordering ofF .
The protocol proceeds in two phases: In the first phase, for each fragment inC, of the form

i = f(g1..gn), (3.31)

meaning the gate indexedi > N is of typef and receives its inputs from gates indexedg1..gn in that order
(wherei > N because there is nothing to check for input gates), the honest prover commits,directly, to:

• a randomly picked nonzero vector~h ∈ Fn,

• lettingz1..zn be the values of gatesg1..gn in computingC(x), and` be the linè (t) := ~z + t~h in Fn,

the vectors̀ ((1)), .., `((n+1)),

andindirectly, to:

• the coefficientsc1, .., cn of the polynomialf̂◦`(t) = cntn + .. + c0,

• the evaluationŝf◦`((1)), .., f̂◦`((n+1)) of the polynomialf̂◦`(t).

Also in the first phase, the honest prover commits,indirectly, to:

• the valuevi of each gatei in the computationC(x).

This ends the first phase. Notice that there is no need to commit to the coefficientc0 of the polynomialf̂◦`(t)
for any fragment, becausec0 is supposed to equal the valuevi of gatei for the fragment (3.31).

Because a cheating prover may commit to other values than what he is supposed to, let us use

~h, `((1)), .., `((n+1)), c1, .., cn, f̂◦`((1)), .., f̂◦`((n+1)) (3.32)

to denote the commitments for each fragment, and let us use

y1, .., ys (3.33)

to denote the commitments for the purported valuesv1, .., vs of the gates in the computationC(x).
In the second phase, the verifierV picks at random a fragment inC, say the fragment (3.31) — call it

theith fragment — and then picks at random one of the following tests:

1. letting`(t) be the linè (t) := ~z + t~h where~z = yg1 ..ygn ,

check`(j) = `(j) for a randomly pickedj ∈ {(1), .., (n+1)}

2. checkf̂◦`(j) = f̂(`(j)) for a randomly pickedj ∈ {(1), .., (n+1)}

3. lettingf̂◦`(t) be the polynomialcntn + .. + c1t + c0, wherec0 = yi,

checkf̂◦`(j) = f̂◦`(j) for a randomly pickedj ∈ {(1), .., (n+1)}

4. check~h is nonzero

In case gatei is the output gate, thenV in addition does:

5. checkyi = 1.
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In tests 1, 2, 4, and 5, the prover completely reveals the relevant information; notice this means decommitting
to two bits for each bit committed indirectly. Test 3 is an orthogonality test forw with respect tou, where

w = f̂◦`(j) cn . . . c0 and u = 1 jn . . . j0

so if this test is selected, then the honest prover in addition commits to〈r, u〉, wherer is the vector formed
by putting together the random values sent during indirect commitments tof̂◦`(j), cn, . . . , c0 respectively.

Analysis. The completeness of the test is clear. As for soundness, suppose thatC is not a satisfiable
circuit. Then the committed values in (3.33) satisfy either of the following:

(a) There is a fragment of the form (3.31), for which the equality

yi = f(yg1 ..ygn)

fails, or

(b) the reported value of the output gate is wrong, i.e.,ys 6= 1.

Since there are at mosts fragments, with probability≥ 1/s, the verifier picks an erroneous fragment
for which either (a) or (b) holds. Once picked, case (b) is detected with certainty in Test 5. As for case (a),
consider the values among those in (3.32) committed for this fragment. Adopting the notation of the second
phase of the protocol, either of the following subcases must hold:

(i) the vector~h is zero, or

(ii) there is somej ∈ {(1)..(n+1)} for which one of the equalities

f̂◦`(j) = f̂(`(j)) = f̂◦`(j) = f̂◦`(j) (3.34)

fails,

because otherwisêf◦`(t) would be the polynomial̂f◦`(t) and we would have

yi = f̂◦`(0) = f̂◦`(0) = f̂(yg1 ..ygn) = f(yg1 ..ygn).

contradicting that we are in case (a).
The verifier detects case (i) with probability≥ 1/4 (conditioned on having picked an erroneous fragment

in the first place). As for case (ii), with probability≥ 1/(n + 1), the verifier picks an offendingj, and
depending on which of the first/second/third equality in (3.34) is violated forj, Test 1/2/3 fails respectively,
with (conditional) probability≥ 1

2 for Test 3 and probability1 for Tests 1 and 2.
It follows that if the circuitC is not satisfiable, then the verifier rejects with probability≥ 1/s2, where

s is the number of nodes ofC. Repeating the protocol from scratch2s2 times brings down the soundness
error to1/3.

Finally, the protocol is zero-knowledge, because each test that passes reveals a value that is either uni-
formly distributed, or is deterministically computable by the verifier itself.

Extended basis. We now generalize the protocol to handle anA-extended Boolean basis for an arbitrary
affine oracleA. The idea is that the above protocol, over the standard Boolean basis, generalizes to a
protocol over the standardarithmeticbasis (Definition16), where each gate in the given circuit is a function
of the formFm → F rather than{0, 1}m → {0, 1}. This is because all the values committed by the prover
are already inF, or over{0, 1} which can be taken as a subset ofF with no change to the protocol.

Therefore, given a circuitC over theA-extended Boolean basis, all we need to do is to transformC to
an appropriate arithmetic circuitD. We now explain how to do this transformation.
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LetO be the language thatA is the affine extension of. By definition (§2.17), on inputx ∈ {0, 1}n, A
gives thezth bit of the valueÔ takes aty ∈ Fm

2k , i.e.,

A(x) =
(
Ô

k

m(y)
)

z
(3.35)

wherey, z,m, k are all computable inFP givenx. Conversely, given(y, z,m, k), an inputx for which this
equality holds is also computable inFP.

Sincek denotes the field size, or the logarithm thereof, and sinceF2k can be efficiently identified in
F2≥k , (3.35) can be viewed as

A(x) =
(
Ô

K

m (Y )
)

Z
(3.36)

for anyK ≥ k, whereY denotesy identified inFm
2K , andZ denotes the accordingly updatedz.

It follows that given a circuitC over theA-extended Boolean basis, a function inFP can take each
A-gate inC, say

A(g1..gn), (3.37)

wheregi denotes the index of the gate that is connected to theith input ofA, and replace it with
(
Ô

s

m(Y (g1..gn)
)

Z(g1..gn)
(3.38)

whereY andZ are now overloaded to denote the circuit that parses its inputx as(y, z,m, k) of (3.35), and
then outputs the valuesY andZ of (3.36) respectively, for anyK ≥ k, in particular forK = s, the size of
C. Notice that writingZ as a subscript in (3.38) is really a shorthand for the idea thatab is implemented as
π(a, b) whereπ(i, j) is the circuit that gives thejth bit of i.

So the transformation ofC is as follows.

• Perform (3.37) 7→ (3.38).

• For everym and every standard gatefm with m inputs, replace that gate witĥf
s

m.

The point of the second step here is to unify the treatment of the standard gates with nonstandard ones. In
the modified circuit, each gate becomes a functionFm → F for somem, whereF = F2s .

After the transformation, the original protocol carries through, provided the inputs and the output of
each gate are treated as overF instead of{0, 1}, and the prover is given oracle access (§2.7) to A. (The
verifier does not need oracle access toA.) This completes the proof of Theorem49.

4 Negative Relativization Results

This section shows that several major conjectures in structural complexity do not relativize affinely, mirror-
ing corresponding results of AW. (By Section1.1, it follows that these results are impossible to settle via
affinely relativizing proofs.)

There are two main approaches to deriving such results: an interpolation approach, used for separations
of the formC 6⊂ D, and an approach based on communication complexity, used for containmentsC ⊂ D.
Both of these approaches are constructive; they construct an eligible language relative to which the statement
in question is false.

The main novelty in this section, as mentioned in Section1.3.5, is in the development of the interpolation
approach, which is then used to show thatNEXP 6⊂ P/poly is affinely nonrelativizing. This is carried out
in Section4.1. The communication complexity approach is taken in Section4.2.
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Besides these two approaches there is a third, reductionist method that is quite convenient to use when
the situation allows. To show thatψ does not affinely relativize, we find a statementψ′ for which this is
already known, and then show that the implicationψ =⇒ ψ′ affinely relativizes. We thus show thatψ′

is “no harder” to prove thanψ, in similar spirit to the use of reductions in structural complexity. It should
be noted that in general, this approach cannot be used for the AW notion of algebrizing statements, as it
critically relies on the closure of such statements under inference. (However, the results we obtain using
the reduction method here can be obtained by AW via direct construction; the point of this method is not to
obtain oracles that cannot be found otherwise, but to considerably simplify the job — to recycle oracles, so
to speak.) Section4.3employs this approach.

4.1 Interpolation Approach

The classical approach to show thatC 6⊂ D does not relativize is to construct a languageO relative to which
C ⊂ D holds. The strategy, vaguely, is to haveO give more power toD than it does toC, so as to makeD
containC relative toO. This is easy to do sometimes, as can be seen by takingC = PSPACE,D = P, andO
to be anyPSPACE-complete language (we spell this out in Proposition50 below). Typically, however, the
construction is more involved, and it was one of the main contributions of AW to develop an approach — the
interpolation approach — that enables such constructions in the algebrization framework. Their techniques
do not work for our setting, however.

In this section we develop the interpolation approach within our framework, using quite different tech-
niques from AW’s (see Section1.3.5 for a comparison). Our key result here is Theorem52, that affine
extensions enable interpolation. With that result in hand, we are able to import the ideas of AW to our
setting, and apply it to theNEXP versusP/poly question; this we do in Section4.1.1.

Before we proceed let us note, like AW did, that the easy fact regardingPSPACE andP mentioned
above carries over to our setting easily:

Proposition 50. PSPACE 6⊂ P does not hold relative to every affine oracle.

Proof. Every downward self-reducible (d-s-r) language is inPSPACE. To see this, viewPSPACE as
0-gap-IP (§3.3.2), of languagesL computable by an interactive protocol where the error probability can be
arbitrarily close to1 (but never equal to it) whenL(x) = 0. Now if L := {Ln} is d-s-r, then all that a prover
needs to give as proof thatLn(x) equalsb ∈ {0, 1} is the transcript of a computation involving queries for
L≤n−1; the verifier then picks one of the claimed queries, sayLn−1(y) and thus reduces the task to one
involving L≤n−1, and so on.

Therefore, being d-s-r, both�SAT andΣ∞SAT (§2.15) are inPSPACE, as are their negation¬�SAT
and¬Σ∞SAT. Moreover,Σ∞SAT is complete forPSPACE by the very definition ofPSPACE (§2.3). All
these hold relative to every language.

Now putO := Σ∞SAT and letA be the affine extension ofO. By Proposition14, A → �SATO. By
the fact that�SAT ∈ PSPACE holds relative to every language,A ∈ PSPACEO. By the fact thatΣ∞SAT
is PSPACE-complete,PSPACEO ⊂ PSPACE henceA ∈ PSPACE. Therefore,

PSPACEA ⊂ PSPACE ⊂ PO ⊂ PA

where the second containment is becauseΣ∞SAT is PSPACE-complete, and the last containment is be-
cause every language reduces to its affine extension.
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We now move to the interpolation approach. The crux of our development is two coding-theoretic
ingredients. The first one states that knowingt bits of a binary codeword exposes at mostt bits of its
information word, and the second scales this result to affine extensions.

Lemma 51(Interpolation). LetE : FK
2 → FN

2 be linear and injective. Given a “dataword”u ∈ FK
2 and a

set of indicesA ⊆ [N ], consider the collectionU of all datawordsu′ ∈ FK
2 such thatE(u) andE(u′) agree

onA.
There is a set of indicesB ⊆ [K], no larger thanA, such that projectingU ontoG := [K] \B gives all

of FG
2 .

Proof. The claim of the lemma onU is true iff it is true onU+ := U + u. So it suffices to show thatU+ is
a subspace ofFK

2 with dimension at leastK − |A|.
Now, y ∈ U+ iff y + u ∈ U , which is iff E(y + u) andE(u) agree onA, which is iff E(y) vanishes on

A. ThereforeU+ is identical to the space of all datawords whose encodings vanish onA.
All that is left is to bounddim U+, or equivalently, to bounddim E(U+) sinceE is injective. The latter

quantity is the dimension of the spaceC ∩ Z , whereC is the image ofE , andZ is the space of allN -bit
vectors that vanish onA. But then by the theorem on the dimension of a sum of subspaces (e.g. [7, Thm 1.4])

dim(U+) = dim(Z) + dim(C)− dim(Z + C)

= (N − |A|) + K − dim(Z + C)

which is at leastK − |A| becauseZ + C ⊆ FN
2 . This finishes theproof.

Theorem 52(Interpolation). Given a languagef and a finite setA of inputs, consider the collectionF of
all languagesg such thatf̃ and g̃ agree onA.

There is a setB of inputs, no larger thanA, such that every partial Boolean functiong′ defined outside
B can be extended to someg ∈ F .

Further, in extendingg′ to g, the values ofg at length-n inputs depend only on those ofg′ at lengthn.

Proof. To begin with, consider the special case whereA ⊆ dom(f̃
k

m) for some fixedk andm. For the
purpose of invoking Lemma51, letE be the map that takes as input the truth table of a Boolean functiongm

on m bits, and outputs the truth table ofg̃ k

m. SoE : FK
2 → FN

2 , whereK = 2m andN = k2km (to see the
value ofN , recall that̃g k

m(y, z) gives thezth bit of ĝ k
m(y), whereĝ k

m is the extension ofgm to Fm
2k ).

Clearly E is injective; it is also linear becausêg k
m is additive, and because we representF2k with Fk

2

where addition is componentwise (Section2). So E fulfils the conditions of Lemma51, which yields a
setB ⊆ {0, 1}m that is no larger thanA, such that every partial Boolean function on{0, 1}m \ B can be
extended to a language inF . This proves the theorem in the special case.

To handle the general case, partitionA into Am,k := A ∩ dom(f̃
k

m), and use the above special case as
a building block to create a bigger code. In detail, for everym involved in the partition, defineEm as the
map sending the truth table ofgm to the list comprising the truth tables ofg̃

k1

m , g̃
k2

m , . . . for everyAm,kj
in

the partition. Now, take eachEm thus obtained, and letE be their product. In other words, letE take as
input a listTm1 , Tm2 , .. whereTmi is the truth table of some Boolean functiongmi on mi bits, and outputs
Em1(Tm1), Em2(Tm2), .. . The theorem now follows from Lemma51.

4.1.1 Application —NEXP vs.P/poly

With the Interpolation theorem (Theorem52) in hand, we are ready to derive the main result of this section:

Theorem 53. NEXP 6⊂ P/poly does not hold relative to every affine oracle.
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Proof. It is a basic fact thatNEXP has polynomial-size circuits iffNE (§2.6), the linear-exponential version
of NEXP, has circuits of size afixedpolynomial, and that this holds relative to every language. In notation,
for all languagesO,

NEXPO ⊂ SIZEO(poly n) ⇐⇒ NEO ⊂ SIZEO(nd) for somed ∈ N.

Therefore, to prove Theorem53, it suffices to show a languageO satisfying

NEÕ ⊂ SIZEO(nd), (4.1)

for some constantd becauseO reduces toÕ.
Take an enumerationN∗0 , N∗1 ,.. of the classNE∗. Such an enumeration can be obtained from one for

NP∗ (§2.9), since by definition (§2.8, §2.6),

NE∗ = {L∗ : (∃c ∈ N,K∗ ∈ NP∗)(∀x,O) L∗(O, x) = K∗(O, x, 12c|x|
)}.

We will want to talk about the query complexity of eachN∗i in the enumeration. Underlying eachN∗i
is a constantc ∈ N and a functionK∗ ∈ NP∗. UnderlyingK∗ is somè ∈ poly(n), and somef∗ ∈ P∗ of
query complexity (§2.10) qf , say. Define the query complexityqK of K∗ asqf (n + `(n)). Define the query
complexityqi of Ni asqK(n + 2cn).

The point of query complexity here is this: ifN∗i (O, x) = 1, then this equality can be maintained by
fixing only qi(|x|) bits ofO and changing the rest arbitrarily.

Now, modify the listN0, N1,.. into a list M0,M1,.. (repetitions allowed) such that ifMi has query
complexityqi, thenqi(n) ≤ 2n log n for all n > i.

InitializeO to the all-zeroes language. The plan is to modifyO in such a way that for everyn > 1, a
size-nd circuit with access toO, sayCOn , can compute the function

Ln : {0, 1}blog nc × {0, 1}n → {0, 1}

Ln : (i, x) 7→M Õ
i (x). (4.2)

This yields (4.1), hence the theorem, because each languageK ∈ NEÕ corresponds to someM Õ
i (§2.8),

and in order to computeK(x) on all but finitely many inputsx (in particular forx ∈ {0, 1}>2i) we can just
provide(i, x) to the circuitCO|x|, implying K ∈ SIZEO(nd).

We modifyO iteratively; in iterationn > 1 we finalizeO on all inputs in{0, 1}≤nd
, plus some additional

24n log n inputs at most. Letfn denote the finalized portion ofO at the end of iterationn, i.e., fn is the
restriction ofO to those inputs on which it is finalized by the end of iterationn.

In iteration1 we do nothing, sof1 : {λ, 0, 1} → {0} whereλ is the empty string. At iterationn > 1,
consider all possible ways of extendingfn−1 to a languagef . Out of all suchf , pick one such that when
O = f , the collection

Sf := {(i, x) : Ln(i, x) = 1} (4.3)

is maximal. SetO = f .
Now we want to “open up space” inf by un-defining it at some inputs, the idea being then to encode the

functionLn in the freed space so that a small circuit can look it up. In doing so, of course, we do not want
to disturb (4.3), which, by the way we pickedf , is equivalent to wanting thatSf does not shrink — i.e., as
we restrictf to somef ′, no matter how we extendf ′ back to some languageg, we wantSg = Sf .

Consider a pair(i, x) in Sf . BecauseMi has query complexity less than2n log n on inputx ∈ {0, 1}n,
the membership of(i, x) in Sf can be preserved by fixing̃f on at most2n log n inputs only. There are at most
n2n pairs inSf . Thus if we wantSf not to shrink, it suffices to fix̃f at23n log n inputs. By the Interpolation
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theorem, this means we only need to reserve a small set of “bad” inputsB, of size≤ 23n log n, beyond those
already reserved in previous iterations, i.e., beyonddom fn−1, such that onB we have no control as to how
f behaves, but on the “good” inputs{0, 1}∗ \ (B ∪ dom fn−1), we can changef arbitrarily. So letfn be the
restriction off to B ∪ dom fn−1.

Now that we opened up space inf , we are ready to store the information in (4.2) so that a small circuit
can look it up. That information is the truth table of a function onn + log n bits, so it suffices to have22n log n

bits available indom fn for this purpose. Since there are at most23n log n bad inputs infn by the previous
paragraph, and since there are at most24(n−1) log(n−1) inputs indom fn−1 that are outside{0, 1}≤(n−1)d

by
induction, we know there are at most24n log n inputs currently indom fn that are outside{0, 1}≤(n−1)d

. So
there is sufficient space in{0, 1}n

d
for storage whend is large enough.

As for how to actually store the information, initially consider each input(i, x) to Ln as prepended with
zeroes until it becomes a stringY(i,x) of lengthnd, and then setfn(Y(i,x)) := Ln(i, x). Of course this may
not work as some bad inputs may coincide with someY(i,x), but this can be handled simply by changing

the encoding of(i, x) to Y(i,x) ⊕ Z for a suitably pickedZ ∈ {0, 1}n
d
; suchZ exists because it can be

picked at random with non-zero probability (by a union bound on the event that some bad input coincides
with Y(i,x) ⊕ Z for some(i, x)). ThisZ can then be hardwired to a circuit of sizend, as we wanted to do.

To finish, letfn behave arbitrarily on the rest of the good inputs in{0, 1}≤nd
, and then accordingly

adjustfn on the bad inputs in{0, 1}≤nd
— recall from the Interpolation theorem that on a bad input,fn is a

function of how it behaves on non-bad inputs of same length. We have thus constructedfn asdesired.

4.2 Communication Complexity Approach

AW show that one can take a lower bound from communication complexity, and use it to construct an
eligible language — an algebraic oracle in their case — relative to whichC 6⊂ D holds, for an appropriateC
andD depending on the lower bound picked. Therefore, AW conclude,C ⊂ D does not algebrize.

In this section we develop this approach of AW for our framework. The key observation that enables
this is Proposition11 (§2.18), that the affine extension respects disjoint unions. With this in hand, we are
able to import the ideas of AW (and of IKK) to our setting, which we do in Section4.2.1.

Remark.In order to avoid lengthy technicalities, in the rest of this section we will embrace the Turing
machine based jargon — running time, algorithm,etc.

Definition 54 (Pcc vs. Pticc). DefinePticc as the class of familiesf := {fn} satisfying the following. (i)
Eachfn is a Boolean function on pairs of2n-bit strings, (ii) There is a protocol involving two algorithms
M0,M1 such that for alln and all(X,Y ) ∈ dom(fn), the two partiesMX

0 (1n),MY
1 (1n) computefn(X,Y )

in timepoly n.
Let Pcc denote the relaxation ofPticc whereM0,M1 are allowed to be non-uniform, and where only the

communication betweenM0,M1 is counted towards time elapsed.
UsePticc to defineNPticc, BPPticc, etc., similar to how we defineNP, BPP, etc., fromP.12 Similarly

for NPcc, BPPcc, etc., versusPcc.

The notationCticc is meant to indicate that time is measured on equal grounds with communication. A
function inDcc according to the classical definition [12] is defined on strings of every even length, while
Definition54requires length a power of two; our convention causes nothing but convenience in this section.

12Recall that definitions ofBPP, NP, etc. involve some counting of the witnessesw of a P-predicateL(x, w). Here, that
predicate would be of the formf( (X, w) , (Y, w) ) where|w| is polynomially bounded inn for fn, i.e., polylogarithmic in|X|.
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We formalize the high-level idea of AW with the following generic theorem in our framework:

Theorem 55. If Cticc 6⊂ Dcc, thenC ⊂ D does not hold relative to every affine oracle. HereC,D can be any
class in the polynomial-time hierarchy (§2.3) containingP.

Proof. Supposing there is somef := {fn} in Cticc \ Dcc, we want to show an affine oracleA relative to
whichC 6⊂ D. For concreteness, the reader may takeC to beNP, say, andD to beBPP.

By Proposition11, instead of an affine oracle, it suffices forA to be the disjoint union of two affine
oraclesA0 := Õ0 andA1 := Õ1. In fact, since every language reduces to its affine extension, it suffices to
showO0,O1 such that

CO0
∐
O1 6⊂ DÕ0

∐
Õ1 .

For everyn ∈ N, pick an arbitrary pair(Xn, Yn) ∈ dom fn ⊂ {0, 1}2
n
×{0, 1}2

n
. InitializeO0 to have

the same truth table asXn for everyn, and similarly forO1 versusYn. Becausef ∈ Cticc, the language
L := {Ln} defined as

L(1n) := f(O0,n,O1,n), L( 6= 1n) := 0

is in CO0
∐
O1 ; to see this just consider usingO0

∐
O1 to simulate aCticc-protocol forf . Our objective is to

modifyO0,O1 so thatL remains inCO0
∐
O1 and becomes out ofDÕ0

∐
Õ1 .

To that end, for any pair of strings(X,Y ) ∈ {0, 1}2
n
× {0, 1}2

n
, let O0 ← X denote the result of

updatingO0 so that at length-n inputs, it has the same truth table asX; similarly useO1 ← Y to denote the
result of updatingO1 with Y .

Now let N1, N2, ... be an enumeration ofD-algorithms endowed with an oracle access mechanism.
(To be precise, we need to consider the classD∗, defined using the classFP∗ (§2.8) in the same way that
D would be defined fromFP. As stated earlier, however, for convenience in this section we embrace the
Turing Machine based jargon.) For each algorithm in the enumeration, say forNi, definegi := {gi

n} as

gi
n(X,Y ) := N

˜(O0←X)
∐ ˜(O1←Y )

i (1n) (4.4)

where(X,Y ) ranges overdom fn. In caseNi’s output is not well-defined on1n — due toNi computing a
partial language which1n is outside the domain of — just letgi

n take the value ‘⊥’.
We claim thatgi differs fromf on infinitely many inputs. Indeed, the right-hand-side of (4.4) can be

computed by a protocol where one party is given access toX and knowsO0 (up to a finite length, beyond
which Ni is guaranteed not to access when run on1n), the other party is givenY and knowsO1 (again
finitely bounded), and the two parties simulateNi by using each other as an oracle for the missing side of
the disjoint union. Sogi ∈ Dcc. Sincef /∈ Dcc, the claim follows.

Now, for i = 1..∞, find a pair(Xni , Yni) in dom fni = dom gi
ni

on which f and gi differ, for
someni arbitrarily large. UpdateO0 to O0 ← Xni andO1 to O1 ← Yni , so thatL(1ni) differs from

N
˜(O0←X)

∐ ˜(O1←Y )
i (1ni). Sinceni is arbitrarily large, this update does not disturb the previous iterations

— e.g.,ni > 22ni−1 suffices sinceD ⊂ EXP.

4.2.1 Applications

Theorem55allows us to replicate two negative algebrization results of AW:

Corollary 56. Neither of the following statements hold relative to every affine oracle: (i)coNP ⊂ MA, (ii)
PNP ⊂ PP.

61



Proof. Let Disj(X,Y ) := ∀i ¬(X(i)∧Y (i)) be the disjointness predicate. It is clear thatDisj ∈ coNPticc.
On the other hand, it takes at leastΩ(2n/2) bits of communication to computeDisj by a Merlin-Arthur
protocol [32, Corollary 1], implyingDisj /∈ MAcc. Part (i) now follows from Theorem55.

For part (ii), letRCYB(X,Y ) := arg maxi∈{0,1}n(X(i) ∧ Y (i)), and letf(X,Y ) := RCYB(X,Y )
mod 2 be the predicate deciding whether the Rightmost-Common-Yes-Bit position ofX and Y is odd
(in the uninteresting case that there is no Common-Yes-Bit position,f outputs0). It is easy to see that
f ∈ (PNP)ticc. On the other hand, it takes at leastΩ(2n/3) bits of communication to computef by a
probabilistic protocol [17, Section 3.2],13 implying f /∈ PPcc. Part (ii) now follows from Theorem55.

We can use Theorem55 to replicate a result of IKK as well:

Theorem 57. RP ⊂ SUBEXP does not hold relative to every affine oracle. HereSUBEXP denotes
∩d∈NDTIME({2cn1/D

}c∈N,D>d).14

Proof of Theorem57. Consider the set of all pairs of strings(X,Y ) such thatX,Y respectively equal the
truth table (suitably encoded) of̃f

k

m , g̃
k

m for somem and somef, g : {0, 1}m → {0, 1}, wherek is a large
enough constant, sayk = 10. Consider restricting the equality predicateEqual(X,Y ) := ∀i(X(i) ≡ Y (i))
to this set, and call the resulting functionF (X,Y ).

Yao’s classical result, thatEqual requiresΩ(2n) bits of communication, implies that there is noG ∈
SUBEXPcc thatF can be extended to. In short, and with a slight abuse of notation,F /∈ SUBEXPcc. To
see this, suppose the contrary. ThenEqualn(X,Y ) can be computed by the following protocol: givenX ∈
{0, 1}2

n
Alice computesX̃

k
, and givenY Bob computes̃Y

k
; then Alice and Bob computeF (X̃

k
, Ỹ

k
),

henceEqual(X,Y ), using onlysubexp(|X̃
k
|) bits of communication. This contradicts Yao’s result since

X̃
k

is a function onO(nk) bits when suitably encoded, and sincek ∈ O(1).
On the other hand,F can be computed by the following randomized protocol: On inputX the truth table

of somef̃
k

m , Alice picks a randomα ∈ dom(f̃
k

m) and sends to Bob the pair(α, f̃
k

m(α)). On inputY the
truth table of somẽg

k

m, Bob receives Alice’s message and accepts iff̃
k

m(α) = g̃
k

m(α) and rejects otherwise.
To bound the error probability of this protocol, supposeX 6= Y , as there is no chance of error otherwise.
The random choice of Alice,α, corresponds to a pointa in the spaceFm

2k ; let ` be any line in this space that
passes througha, and that is parallel to any one of them axes. SinceX,Y are promised to be of the form
f̃

k

m , g̃
k

m, if they are not equal, then they agree on only one of the2k points oǹ , making the error probability
less than1/1000 by our choice ofk.

So if we take the classRPticc, and relax its definition to include families{fn} wheredom fn is no
longer required to be the set of every pairX,Y of length2n strings, but rather some of them, then we may
call the resulting classprRPticc, and then the previous paragraph shows thatF ∈ prRPticc. (We can ensure
thatdom Fn is never empty for anyn by simple padding.)

Now the proof of Theorem55 in Section4.2 is written exactly with this more general situation in mind.
Namely, ifprCticc 6⊂ Dcc, thenC ⊂ D does not hold for every extension of the standard Boolean basis with
someA; hereC, D can be any class definable through the mechanisms given in Chapter2 (§2.3-§2.6) and
contained inEXP. The claim follows.

13The authors of [17] show a stronger result where the protocol allows both parties to use private randomness as well, with a
suitable generalization of the acceptance condition for the protocol.

14In fact, Theorem57 holds forRP ⊂ SUBLINEXP, whereSUBLINEXP denotes∩d∈NDTIME({c2n/D}c∈N,D>d). We
state it in the weaker form because we’d need to slightly refine our approach in§2.6 to be able to officially defineSUBLINEXP.
(Notice that the classC = {c2n/D}c∈N,D>d is not closed under taking polynomials in the sense of§2.6, but that it is closed under
taking quasi-linear functions: ift ∈ C, then for everyd ∈ N, there is somet′ ∈ C such thatt(n) logd t(n) < t′(n) for everyn.)
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4.3 Reduction Approach

As mentioned in the beginning of Section4, sometimes we can get away without constructing oracles, and
still show thatψ does not affinely relativize. To do so, we find someψ′ which we already know has that
status, and then show that the implicationψ =⇒ ψ′ affinely relativizes. We thus reduce the task of creating
an oracle relative to whichψ is false, to doing the same forψ′, with the implicationψ =⇒ ψ′ serving as
the reduction.

Using the results of Section4.1-4.2we can readily show:

Theorem 58. None of the following statements hold relative to every affine oracle:
(i) NP ⊂ P, (ii) NP 6⊂ P, and (iii) NP ⊂ BPP.

Proof. Part (i): Theorem53showed thatNEXP 6⊂ P/poly does not hold relative to every affine oracle, and
Theorem44showed thatMAEXP 6⊂ P/poly does. The claim follows because

NP ⊂ P =⇒ MA ⊂ P =⇒ MAEXP ⊂ NEXP,

where both implications hold relative to every language, hence relative to every affine oracle.
Part (ii): Proposition50 showed thatPSPACE 6⊂ P does not hold relative to every affine oracle. The

claim follows sinceNP ⊂ PSPACE holds relative to every language, hence relative to every affine oracle.
Part (iii): Corollary56 states thatcoNP ⊂ MA does not have hold relative to every affine oracle. The

claim follows sinceNP ⊂ BPP =⇒ coNP ⊂ MA holds relative to everylanguage.

5 Suggestions for Further Research

We finish by listing some suggestions for further research.

ThePCP theorem. Section1.3.7explained that bothPSPACE ⊂ IP andNEXP ⊂ MIP can be naturally
viewed as gap-amplification results, and from that point of view both theorems affinely relativize. Can we
extend this reasoning to thePCP theorem? If so, this would bolster the candidacy of affine relativization as
a proxy for arithmetization-based techniques.

A genuine independence result. As pointed out in Section1.2.1, a common feature — or flaw, if the
reader is logically inclined — of both our framework and related works, AIV and IKK, is that the relativiza-
tion barriers are formalized through axioms that go on top of an existing collection of axioms governing
everyday mathematics.

On one hand, this is a feature because relativization is meant to be a guide for the everyday researcher,
who has everyday mathematics at disposal. On the other hand, this is a flaw because statements such as “P
versusNP does not relativize”, when formalized in these frameworks, on the surface look like they give
some sort of logical independence result — but they do not. (See Section1.2.1.)

For an independence result, one must formalize the relativization barriers with asubsetof axioms gov-
erning everyday mathematics, the idea being to find the “weakest” version of everyday math that can derive
each relativizing statement, and then to show that no nonrelativizing statement can be derived by that much
of mathematics.
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A quantitative theory of relativization. Both relativization and affine/algebraic relativization are rigid
notions, in the sense that something either relativizes or does not. This calls for a theory of relativization
that is gradual, based on the information content — or density, so to speak — in an oracle.

Can we associate to each statement a “relativization rank”, so that the algebrization barrier arises as a
quantitative gap, between a lower bound on one hand for the rank of algebrizing statements, and an upper
bound on the other, for the rank of non-algebrizing statements? If so, then we could view the reciprocal of
the rank as a useful complexity measure on theorems and conjectures, just as we have complexity measures
on algorithmic tasks: the larger the reciprocal of the rank, the higher the “relativization sensitivity” of the
statement in hand, indicating more resources — stronger axioms — required to prove it.
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