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Abstract

We study interactive oracle proofs (IOPs) [BCS16, RRR16], which combine aspects of probabilistically checkable
proofs (PCPs) and interactive proofs (IPs). We present IOP constructions and techniques that let us achieve tradeoffs in
proof length versus query complexity that are not known to be achievable via PCPs or IPs alone. Our main results are:

1. Circuit satisfiability has 3-round IOPs with linear proof length (counted in bits) and constant query complexity.

2. Reed–Solomon codes have 2-round IOPs of proximity with linear proof length and constant query complexity.

3. Tensor product codes have 1-round IOPs of proximity with sublinear proof length and constant query complexity.
(A familiar example of a tensor product code is the Reed–Muller code with a bound on individual degrees.)

For all the above, known PCP constructions give quasilinear proof length and constant query complexity [BS08, Din07].
Also, for circuit satisfiability, [BKK+13] obtain PCPs with linear proof length but sublinear (and super-constant) query
complexity. As in [BKK+13], we rely on algebraic-geometry codes to obtain our first result; but, unlike that work, our
use of such codes is much “lighter” because we do not rely on any automorphisms of the code.

We obtain our results by proving and combining “IOP-analogues” of tools underlying numerous IPs and PCPs:

• Interactive proof composition. Proof composition [AS98] is used to reduce the query complexity of PCP verifiers,
at the cost of increasing proof length by an additive factor that is exponential in the verifier’s randomness complexity.
We prove a composition theorem for IOPs where this additive factor is linear.

• Sublinear sumcheck. The sumcheck protocol [LFKN92, Sha92] is an IP that enables the verifier to check the sum
of values of a low-degree multi-variate polynomial on an exponentially-large hypercube, but the verifier’s running
time depends linearly on the bound on individual degrees. We prove a sumcheck protocol for IOPs where this
dependence is sublinear (e.g., polylogarithmic).

Our work demonstrates that even constant-round IOPs are more efficient than known PCPs and IPs.
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1 Introduction
We study Interactive Oracle Proofs (also known as Probabilistically Checkable Interactive Proofs) [BCS16, RRR16],
which combine aspects of probabilistically checkable proofs (PCPs) and interactive proofs (IPs). We present IOP
constructions and general techniques that enable us to obtain tradeoffs in proof length versus query complexity that are
not known to be achievable by either PCPs or IPs alone.

1.1 Motivation
Probabilistically checkable proofs (PCPs) were introduced by [FRS88, BFLS91, AS98, ALM+98]: in a PCP, a
probabilistic polynomial-time verifier has oracle access to the proof string. The complexity class PCP[r, q] denotes
those languages for which the verifier uses at most r random bits and queries at most q proof locations; the proof length
is then at most 2r. The PCP Theorem [AS98, ALM+98] states that NP = PCP[O(log n), O(1)]: every NP statement
has a proof of polynomial length that can be verified via a constant number of queries (say, with soundness error 1/2).

A fundamental question is how long a PCP needs to be, compared to the corresponding “standard” NP proof. Given
T : N → N, the PCP Theorem states that every language L in NTIME(T ) has a proof of length poly(T (n)) that
can be verified with O(1) queries. A sequence of works [PS94, HS00, GS06, BSVW03, BGH+06, BS08, Din07]
gradually reduced the proof length to quasilinear, i.e., T (n) · polylog(T (n)); much of this progress was accompanied
by progress on efficient reductions from NTIME to “PCP-friendly” problems, as well as efficient constructions of
PCPs of proximity (PCPPs) for key classes of linear codes. Despite much progress, the following question remains
open: are there PCPs with linear proof length and constant query complexity?

Ben-Sasson et al. [BKK+13] make progress in this direction by proving that there is a > 0 such that for every
ε > 0 there is a PCP for circuit satisfiability with proof length 2a/εn and query complexity nε. Beyond the sublinear
query complexity, [BKK+13]’s result comes with other caveats not affecting most prior constructions: the verifier is
non-uniform, namely it requires a polynomial-size advice string for every circuit size; and the verifier is not succinct,
namely it cannot run in time that is sublinear in the circuit size even if the circuit comes from a uniform circuit family.
(Recent constructions of high-rate locally testable codes with sub-polynomial query complexity [KMRS16] are not yet
known to be convertible to PCPs with similar parameters.)

In this paper, we continue the study of the tradeoff between proof length and query complexity, but we do so for a
natural extension of the PCP model that can be thought of as a “multi-round PCP”, described below. Also, from this
point onwards, we switch to using relations instead of languages. We denote by R a relation consisting of pairs (x,w),
where x is the instance and w is the witness; we think of R naturally induced by a non-deterministic language L . We
denote by R|x the (possibly empty) set of witnesses for a given instance x, and by n the size of x.

1.2 A more general model: interactive oracle proofs
Interactive Oracle Proofs (IOPs) are a type of proof system introduced in [BCS16, RRR16] that combines aspects of
IPs [Bab85, GMR89] and PCPs [BFLS91, AS98, ALM+98], and generalizes interactive PCPs [KR08]. IOPs naturally
extend the notion of a PCP to multiple rounds or, viewed from an another angle, they naturally extend the notion of an
IP by allowing probabilistic checking. Prior work shows that IOPs can be used to construct non-interactive proofs in the
random oracle model [BCS16], that IOPs efficiently achieve unconditional zero knowledge [BCGV16], and that IOPs
can be used to obtain doubly-efficient constant-round IPs for polynomial-time bounded-space computations [RRR16].

Informally, an IOP extends an IP as follows: whenever the prover sends to the verifier a message, the verifier does
not have to read the message in full but may probabilistically query it. In more detail, a k-round IOP comprises k rounds
of interaction. In the i-th round of interaction: the verifier sends a message mi to the prover; then the prover replies
with a message fi to the verifier, which the verifier can query in this and all later rounds (by having oracle access to it).
After the k rounds of interaction, the verifier either accepts or rejects.

An IOP system for a relation R with round complexity k and soundness ε is a pair (P, V ), where P, V are
probabilistic algorithms, that satisfies natural notions of completeness and soundness: for every instance-witness pair
(x,w) in R, V (x) always accepts after k(n) rounds of interaction with P (x,w); and, for every instance x with R|x = ∅
and unbounded prover P̃ , V (x) accepts with probability at most ε(n) after k(n) rounds of interaction with P̃ .

3



Like the IP model, one efficiency measure is the round complexity k. Like the PCP model, two additional efficiency
measures are the proof length l, which is the total number of alphabet symbols in all of the prover’s messages, and the
query complexity q, which is the total number of locations queried by the verifier across all of the prover’s messages.
Considering all of these parameters, we say that a relation R belongs to the complexity class IOP[k, a, l, r, q, ε] if there
is an IOP system for R in which on instances of size n: (1) the number of rounds is k(n); (2) the prover messages are
over the alphabet a(n); (3) the proof length over this alphabet is l(n); (4) the verifier uses r(n) random bits; (5) the
verifier queries the prover messages in q(n) locations; (6) the soundness error is ε(n).

Many other definitions for IPs and PCPs carry over naturally. An IOP is public coin if mi is a random string and the
verifier postpones any oracle queries until after receiving all the oracles from the prover (i.e., after the k-th round of
interaction). An IOP is non-adaptive if the query locations do not depend on answers to any previous queries.
Prior work on IOPs. In prior work, [BCS16] prove that public-coin IOPs can be compiled into non-interactive proofs
in the random oracle model; their compiler is as a generalization of the Fiat–Shamir paradigm for public-coin IPs
[FS86, PS96], and of the “CS proof” constructions of Micali [Mic00] and Valiant [Val08] for PCPs. Also, [BCGV16]
construct 2-round IOPs (called “duplex PCPs” there) with unconditional zero knowledge and quasilinear proof length;
in comparison, short PCPs with unconditional zero knowledge are not known. Also, [RRR16] use IOPs to obtain
doubly-efficient constant-round IPs for polynomial-time bounded-space computations. In this paper, we do not study
compilers for cryptographic proofs, nor zero knowledge, nor applications to interactive proofs; instead, we focus on
tradeoffs of proof length versus query complexity for IOPs.
Prior work on interactive PCPs. An interactive PCP [KR08] is a PCP followed by a standard IP; in particular, it is
an IOP where the verifier sends an empty first message and may query only the first prover message (but must read any
other prover messages in full). Prior work on interactive PCPs obtains proof length that depends on the witness size
rather than computation size [KR08, GKR08], as well as unconditional zero knowledge [GIMS10]. In this paper we
also study proof length but our results to not seem to extend to the more restricted setting of interactive PCPs.

1.3 Proximity and robustness
To facilitate upcoming technical discussions we briefly introduce two notions that strengthen a PCP.

• PCPs of proximity (PCPPs) [DR04, BGH+06]. On the one hand, a PCP verifier has oracle access to a candidate
proof π and only decides if R|x 6= ∅ (x ∈ L ) or R|x = ∅ (x 6∈ L ). On the other hand, a PCPP verifier has oracle
access to a candidate witness w and proof π and decides if w ∈ R|x or w is far from R|x (in particular, if R|x = ∅,
then w is far from R|x). A quantity δ known as the proximity parameter specifies what “far” means: if w is δ-far
from R|x then the PCPP verifier accepts with probability at most ε, where ε is the soundness error.

• Robust PCPs [BGH+06]. When R|x = ∅, the answers to the verifier’s queries are, with high probability, far from any
answers that make the verifier accept. A quantity ρ known as the robustness parameter specifies what “far” means: if
R|x = ∅ then, with probability at least 1− ε, the answers are ρ-far from accepting ones.

The two above notions can also be combined, yielding the definition of a robust PCP of proximity.
Extension to IOPs. The notions of proximity and robustness naturally extend to IOPs; see Section 2.3 for details. For
example, we say that an IOP has proximity parameter δ if the analogous property for PCPs of proximity holds; we can
then correspondingly define the complexity class IOPP[k, a, l, r, q, ε, δ].

1.4 Results
We obtain several IOP constructions with proof length and query complexity that are not known to be achievable either
via PCPs or IPs alone (or even via interactive PCPs [KR08]). First, we show that for circuit satisfiability we can obtain
IOPs with linear proof length and constant query complexity; constant round complexity and public coins suffice.

Theorem 1.1 (informal). Let R be the relation consisting of instance-witness pairs (φ,w) where φ is a boolean circuit
(of two-input NAND gates) and w is a binary input that satisfies φ; we use n to denote the number of gates in φ. There
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exists a > 0 and a public-coin IOP system that puts R in the complexity class

IOP


rounds k(n) = 3
answer alphabet a(n) = F2

proof length l(n) = a · n
query complexity q(n) = a
soundness error ε(n) = 1/2

 .

In particular, via [PF79]’s reduction from Turing machines to circuits, we deduce that

NTIME(T ) ⊆ IOP


rounds k(T ) = 3
answer alphabet a(T ) = F2

proof length l(T ) = a · T log T
query complexity q(T ) = a
soundness error ε(T ) = 1/2

 .

The main points of comparison of the above theorem with prior work are the following.

• For PCPs with constant query complexity, prior work achieved only quasilinear proof length [BS08, Din07], with the
“quasilinear” hiding several logarithmic factors. In comparison, we achieve linear proof length for circuit satisfiability,
and O(T log T ) proof length for nondeterministic T -time relations.

• Ben-Sasson et al. [BKK+13] show that there is a > 0 such that for every ε > 0 there is a non-uniform PCP for
circuit satisfiability with proof length 2a/εn and query complexity nε; the non-uniformity comes from the use of
algebraic-geometry (AG) codes with transitive automorphism groups, for which uniform families are not known.
In comparison, we simultaneously achieve linear proof length and constant query complexity; moreover, we make
a much “lighter” use of AG codes, which also allows us to avoid non-uniformity. Namely, we rely only on the
multiplication properties of AG codes, and do not rely on any code automorphisms. Looking ahead, this is because
we do not route circuits on Cayley graphs induced by the automorphisms of the underlying code, unlike [BKK+13].

Second, we show that Reed–Solomon codes over binary fields (fields of characteristic 2) have 2-round IOPs of
proximity with linear proof length and constant query complexity. Such codes are a key ingredient for constructing
PCPs with quasilinear proof length [BS08]. Recall that a word w : D → F is represented via |w| = |D| · log |F| bits.

Theorem 1.2 (informal). Given a “fractional degree” % ∈ (0, 1), define R to be the relation consisting of instance-
witness pairs ((F2λ , d), w) where d ≤ %2λ and w : F2λ → F2λ is the evaluation of a polynomial of degree less than d;
we define the instance size to be λ, and note that w has |w| = 2λ · λ bits. For every δ ∈ (0, 1

2 (1− %)) there exist a > 0
and a public-coin IOP of proximity (P, V ) that puts R in the complexity class

IOPP


rounds k(λ) = 2
answer alphabet a(λ) = F2

proof length l(λ) = a · 2λ · λ
query complexity q(λ) = a
soundness error ε(λ) = 1/2
proximity parameter δ(λ) = δ

 .

More generally, our result concerns additive Reed–Solomon codes, where the domain of a codeword is a λ-
dimensional affine subspace S of a potentially larger binary field F; in such cases the above statement involves more
parameters but achieves the same asymptotics.1 The main point of comparison of the above theorem with prior work is
[BS08, Din07], who achieve PCPs of proximity with the same parameters but superlinear proof length: a·2λ ·λ·poly(λ).

Third, we show that tensor product codes have 1-round IOPs of proximity with sublinear proof length and constant
query complexity. Given a positive integer m and linear code C with domain D and alphabet F, the tensor product code
C⊗m is the linear code that comprises all functions w : Dm → F whose restriction to any axis-parallel line is in C; the
message length, block length, and distance of C⊗m are each the m-th power of the corresponding parameters of C.
Tensor product codes are a large family, and they include Reed–Muller codes (at least when considering the definition
that bounds the variables’ individual degrees, which we do, as opposed to the one that bounds their sum).

1In fact, using the same proof technique, an analogous result holds also for Reed–Solomon codes evaluated over any multiplicative subgroup
whose size is O(1)-smooth, as described in [BS08, Section 7]. Details omitted.
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Theorem 1.3 (informal). Let m ≥ 3 and C be a linear code with domain D, alphabet F, and relative distance τ ; let
` := |D| be the block length. Define R to be the relation of instance-witness pairs

(
(C,m), w

)
such that w ∈ C⊗m;

note that w has |w| = `m · log |F| bits. For every δ ∈ (0, 1
2τ

m) there exist a > 0 and a public-coin IOPP system (P, V )
that puts R in the complexity class

IOPP


rounds k(`m) = 1
answer alphabet a(`m) = F2

proof length l(`m) = o(`m · log |F|)
query complexity q(`m) = a
soundness error ε(`m) = 1/2
proximity parameter δ(`m) = δ

 .

The main points of comparison of the above theorem with prior work are the following.

• Ben-Sasson and Sudan [BS06] and Viderman [Vid15] give local testers for all tensor product codes with query
complexity q(`m) = `2; Dinur et al. [DSW06] give local testers with q(`m) = ` for certain tensor product codes.
In contrast, we achieve constant query complexity, with only sublinear proof length, for all tensor product codes.
Moreover, given additional mild conditions, we obtain constant soundness error even for non-constant m.

• The work of [BS08, Din07] implies PCPs of proximity for tensor product codes with superlinear proof length and
constant query complexity. In contrast, we obtain sublinear proof length, with a single round of interaction.

Analogously to [Vid15], we can invoke Theorem 1.3 on different choices of linear codes so to derive different code
families that have good properties and an IOP tester (instead of a local tester as in [Vid15]). For example, we can
choose a family of linear codes with arbitrarily high rate, constant relative distance, linear-time encoding, and linear-
time decoding from a constant fraction of errors [Spi96, GI05, RS06]; our theorem implies a code with the same
properties that also has a 1-round IOP of proximity with sublinear proof length and constant query complexity (cf.
[Vid15, Section 3.1]). Similar statements hold for list-decodable codes with good parameters [GGR11] (cf. [Vid15,
Section 3.2]); and also for locally correctable and, more generally, locally decodable codes with good parameters
[Yek08, Vid10, Efr12, KSY14, KMRS16] (cf. [Vid15, Section 3.3]). In each of these cases, the tensor product operation
preserves the “key” properties of the choice of underlying code C, while endowing the resulting code with an IOP of
proximity.

We obtain the above results via techniques of independent interest: we prove that, in the IOP model, there are more
efficient analogues of tools that are fundamental to constructing PCPs and IPs. We now discuss these techniques.

1.5 Techniques
Recall that IOPs generalize both IPs, by treating the prover’s messages as oracle strings, and PCPs, by allowing for
multiple rounds of interaction; they also generalize interactive PCPs [KR08]. We prove that IOPs can express two
fundamental techniques in a more efficient way than in these prior models: (i) in interactive proof composition, the
prover is more efficient than in PCP proof composition; and (ii) in sublinear sumchecks, the verifier is more efficient
than in IP sumcheck protocols. We now discuss both of our new tools, and then how we use them.
Interactive proof composition. Proof composition [AS98] is used to reduce PCP query complexity, cf. [ALM+98,
HS00, BGH+06]; it involves two PCPs: an outer one and an inner one. One should think of the outer proof system as
having short proofs but large query complexity, while the inner proof system has long proofs but small query complexity.

The composed prover uses the outer prover to send a PCP to the composed verifier, who does not run the outer
verifier but, instead, uses the inner verifier to check that the outer verifier would have accepted had it made its queries to
the PCP. The composed verifier also needs an auxiliary sub-PCP for the claim that the outer verifier would have accepted;
in fact, he needs one sub-PCP for each possible random string of the outer verifier. Hence, the composed prover also
sends all of these sub-PCPs along with the first PCP. The benefit is that the query complexity of the composed verifier
equals that of the inner verifier, which is typically verifying a much smaller statement than the outer verifier.

Beyond query complexity, most other parameters of the composed proof system are simply the sum of corresponding
parameters of the outer and inner proof systems. An exception is the proof length l: it does not simply equal the sum
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lout + lin, but instead equals lout + 2rout · lin, because the composed prover uses the inner proof system to generate a
proof for each choice of randomness of the outer proof system. (The same is true for prover running time.)

We prove an Interactive Proof Composition Theorem that avoids the above limitations. The outer proof system
is a robust PCP (Pout, Vout) for a relation R, while the inner one is a k-round IOP (Pin, Vin) for Vout’s relation; the
composed proof system is a (k+ 1)-round IOP (P, V ) for R. The parameters of the composed proof system are exactly
as before, except that now the new proof length is much smaller: lout + lin. (Ditto for the prover running time.) The
crucial observation is that, after the prover sends the outer proof to the verifier, soundness is not harmed if the verifier
tells the prover his choice of outer randomness; hence, the prover does not have to invest work for all randomness
choices but can simply invest work only for the outer randomness that was chosen, which he now knows.

Theorem 1.4 (Interactive Proof Composition — informal). Suppose that the relation R satisfies the following:

(1) there exists a robust PCPP system (Pout, Vout)
that puts R in the complexity class

PCPP


proof length lout
randomness rout
query complexity qout
soundness error εout
proximity parameter δout
robustness parameter ρout


and

(2) for every x there exists an IOPP system (Pin,
Vin) that puts Vout’s relation in the complexity class

IOPP


rounds kin
proof length lin
randomness rin
query complexity qin
soundness error εin
proximity parameter δin


If δin ≤ ρout then there exists an IOPP system (P, V ) that puts R in the complexity class

IOPP


rounds k = 1 + kin
proof length l = lout + lin
randomness r = rout + rin
query complexity q = qin
soundness error ε = εout + εin
proximity parameter δ = δout

 .

The above discussion and informal theorem statement omit many technical details that already arise in non-
interactive proof composition (e.g., see lengthy discussions in [BGH+06, BGH+05]), and we also need to deal with.
For instance, one has to clarify the size of the sub-claim on which the the inner proof system is invoked; also, one has to
carefully define the notion of a verifier to allow for the composed verifier’s running time to be smaller than the outer
verifier’s query complexity. For more details, see Section 3.
Sublinear sumcheck. The sumcheck protocol [LFKN92, Sha92] is an interactive proof for the claim “

∑
~α∈Hm w(~α) =

0”, where w is the evaluation on Fm of an m-variate polynomial of individual degree d and H is a subset of F. More
generally, w may be a codeword in the tensor product code C⊗m, for a given linear code C with domain D and alphabet
F, and H is a subset of D [Mei13]. The prover receives H and w as input, while the verifier receives H as input and w
as an oracle. The protocol has m rounds and, if C has relative distance τ , the protocol has soundness error 1− τm;
also, the prover runs in time poly(`m), and the verifier in time poly(`+m), where ` := |D| is C’s block length.

In each round, the verifier receives a codeword wi in C and checks that
∑
α∈H wi(α) equals a certain value γi−1

determined in the previous round; in particular, the verifier reads Ω(`) bits. We show that the verifier complexity
can be sublinear in `, if the prover and verifier engage in an IOP instead of an IP. The intuition to “go sublinear” is
simple: instead of doing these checks explicitly, the verifier uses proximity testers for doing so. Thus, in each round,
the prover sends to the verifier two oracles: the codeword in wi, and a proximity proof attesting that wi ∈ C and that∑
α∈H wi(α) = γi−1. The use of proximity proofs complicates the soundness analysis because the verifier only sees

noisy codewords, but the backbone of the proof follows that of the standard sumcheck protocol. Overall, we obtain a
sumcheck IOP protocol that enables a verifier to efficiently check sumchecks for codes of much larger blocklength than
what he can afford in the standard sumcheck protocol.

We state our Sublinear Sumcheck Theorem below as a reduction: given a PCP of proximity (PSC, VSC) for
subcodes of the form C|H,γ := {w ∈ C s.t.

∑
α∈H w(α) = γ}, we construct an IOP of proximity (P, V ) for

sumchecks over Hm for C⊗m. The complexity of the PCPP verifier VSC determines the complexity of the resulting
IOPP verifier V ; e.g., if the former is sublinear in C’s block length `, so is the latter.
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Theorem 1.5 (Sublinear Sumcheck — informal). Let m be a positive integer, and C a linear code with relative
distance τ and block length `. Suppose that there is a PCP of proximity for subcodes of the form C|H,γ := {w ∈
C s.t.

∑
α∈H w(α) = γ} with proof length lSC, query complexity qSC, soundness error εSC, proximity parameter δSC,

prover running time tpSC, and verifier running time tvSC. Then there is a public-coin IOP for sumchecks over Hm for
C⊗m with the following parameters:

IOP


rounds k = m
proof length l = m · lSC +m · `
query complexity q = m · qSC +m+ 1
soundness error ε = 1− τm +

(
εSC +m · δSC

)
prover time tp = m · tpSC +m · `m
verifier time tv = m · tvSC +O(m)

 .

In later sections, it is more natural to state the theorem without assuming that w is a codeword in C⊗m, so the
reduction also takes as input a PCP of proximity (P⊗, V⊗) for C⊗m that is invoked on w; this introduces additional
terms in the parameters. More generally, both of the PCPs of proximity (PSC, VSC) and (P⊗, V⊗) can in fact be IOPs
of proximity, and we state our theorem for this more general case, which we need. For more details, see Section 4.
Applying the new tools. We now sketch how we use the above new tools to derive the results of Section 1.4. We
begin by discussing our results on proximity testing to codes (stated later); we then turn to circuit satisfiability (stated
earlier) because its proof requires one of these results on proximity testing.

Intuition behind Theorem 1.2. The construction of linear-size IOPs of proximity for Reed–Solomon codes over
binary fields follows from one invocation of our Interactive Proof Composition Theorem with [BS08]’s robust PCPs of
proximity for Reed–Solomon codes as the outer proof system, and [Mie09]’s PCPs of proximity for nondeterministic
languages as the inner proof system. Informally, in the first round, the prover sends to the verifier a [BS08] PCP
of proximity, which reduces proximity testing of codewords over F2λ to proximity testing of sub-codewords over
F2λ/2+O(1) with only constant overheads; in the second round, the verifier sends his choice of outer randomness, and
the prover replies with a [Mie09] PCP of proximity for the sub-codeword. The proof length of this latter component is
quasilinear, but is applied to a claim of “square-root size” only, so we obtain linear proof length.

Intuition behind Theorem 1.3. The construction of sublinear-size IOPs of proximity for tensor product codes follows
from one invocation of our Interactive Proof Composition Theorem with [BS06, Vid15]’s robust local tester for tensor
product codes as the outer proof system, and [Mie09]’s PCPs of proximity for nondeterministic languages as the inner
proof system. Unlike before, we now use one round, because the outer proof system only relies on a local tester rather
than a PCP of proximity. The verifier thus simply sends his choice of outer randomness, and the prover replies with a
[Mie09] PCP of proximity for a suitable sublinear-size sub-codeword. Since the proof length of this latter component is
quasilinear but is applied to a sublinear-size claim, we obtain sublinear proof length.

A summary: overall, we can summarize the above sketches via the following diagram of implications.

Theorem 1.2
linear-size IOPP

for Reed–Solomon codes

←− Theorem 1.4
interactive

proof composition

+ [BS08]
robust PCPs of proximity
for Reed–Solomon codes

+ [Mie09]
PCP of proximity

for NTIME

Theorem 1.3
sublinear-size IOPP

for tensor product codes

←− Theorem 1.4
interactive

proof composition

+ [BS06, Vid15]
robust local testing

for tensor product codes

+ [Mie09]
PCP of proximity

for NTIME

Intuition behind Theorem 1.1. We now turn to how to construct 3-round IOPs for circuit satisfiability with linear
proof length and constant query complexity.

The first step of many PCP constructions is to arithmetize the NP statement at hand (in our case, the satisfiability
of a boolean circuit) by reducing it to a “PCP-friendly” problem that looks like a constraint satisfaction problem over
a well-chosen graph and whose assignments involve codewords in a well-chosen linear code C. Meir observes in
[Mei12, Mei13] that key features of C are good relative distance and, moreover, a multiplication property: coordinate-
wise multiplication of codewords yields codewords in a code whose relative distance is still good. Moreover, to obtain
short PCPs, the aforementioned graph is typically chosen so to behave like a routing network [PS94]; for example,
[BS08] use De Bruijn graphs, while [BKK+13] use hypercubes. To support such graphs, the automorphism group
of C has to be rich enough. This typically holds for Reed–Solomon codes [BS08] which have a doubly-transitive
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automorphism group, but is a significantly harder condition to fulfill for AG codes [BKK+13], for which obtaining a
transitive automorphism group is quite involved and, currently, can only be achieved non-uniformly.

The aforementioned first step would be problematic in our setting, because known routing techniques introduce
either logarithmic overheads (as in [BS08]) or large query complexity (as in [BKK+13]), so it is not clear how we could
use them. Departing from these prior works, we do not rely on any routing, and instead immediately leverage one round
of interaction to directly reduce circuit satisfiability to a sumcheck instance over a given linear code C. Also, we only
assume that C has good relative distance and a multiplication property, but we do not rely on any automorphisms.

Informally, the prover first sends three codewords w1, w2, w3 over a field F; the first codeword encodes values of
the left wires of all gates, the second encodes values for the right wires of all gates, and the third encodes values for the
output wires of all gates. (When a gate has fan-out greater than 1 we still consider 1 output wire.) The verifier now
must check several things. First, that wire values are boolean and the output gate wire equals 0. Second, that the wire
values are “locally consistent” with each gate: for every i ∈ [n], w3(i) is the NAND of w1(i) and w2(i). Third, that the
three encodings of wire values are consistent with the circuit topology: namely, if `(i) represents the left wire used
to compute i, and r(i) represents the right wire used to compute i, the topology requires that w3(`(i)) = w1(i) and
w3(r(i)) = w2(i) for every i. The verifier cannot directly conduct these checks (as doing so would incur linear query
complexity); instead, the verifier sends some randomness to the prover so to “bundle” the checks into one sumcheck.

But how should the verifier sample randomness to achieve this bundling? One option is to sample a random element
in F per check so to construct a random subset sum, which can be viewed as an n-variate polynomial of total degree
1, whose coefficients are the checks, evaluated at a random point. If not all checks are satisfied, the polynomial is
non-zero, and its random evaluation cannot attain any value with too large probability. However, constructing a random
subset sum is inefficient because the verifier samples and sends to the prover Ω(n) random bits, in order to describe
the random point. Nevertheless, the verifier may hope to do better by using a different low-degree polynomial for the
bundling. In general, if the polynomial has m variables each of degree at most d, the verifier must sample and send
m field elements; this preserves soundness provided that |F| = Ω(md) (for a constant probability of avoiding any
particular output value by the Schwartz–Zippel Lemma [Sch80, Zip79, DL78]) and dm = Ω(n) (to bundle all checks).
For example, the univariate case of m = 1 was considered in [BFLS91] when reducing to a sumcheck problem; the
multivariate case of m = log n or m = logn

log logn was considered in later works. Unfortunately, either setting does not
work for constant-size fields, which we ultimately use to obtain linear proof length.

Taking a step back from polynomials, we see that all we need is an evading set S for Fn, which is a small set such
that for any non-zero v ∈ Fn the inner product 〈r, v〉, for random r ∈ S, does not attain any particular value a ∈ F with
too high probability. Good constructions of evading sets are known: they relax a well-studied notion called ε-biased
sets [NN90]. In particular, results of [AGHP92] imply that, for any ε, Fn has an evading set S of size poly(nε ) and the
aforementioned probability is γ := ε+ 1

|F| ; in particular, such a construction is suitable for constant-size fields.
Below we informally state the reduction (see Section 6 for details), using the following notion: we say that a linear

code C ′ is a degree d-closure of C if, for every w1, . . . , wm ∈ C and m-variate polynomial P of total degree at most d,
it holds that w′ ∈ C ′ where the i-th entry of w′ is the evaluation of P on the i-th coordinates of w1, . . . , wm.

Lemma 1.6 (Circuit SAT to Sumcheck — informal). Let n be a positive integer, C ⊆ FD an n-systematic linear code,
φ an n-gate boolean circuit (of two-input NAND gates), and S an evading set for Fn. There is a 1-round IOP that
reduces satisfiability of φ to proximity testing to C and a sumcheck over any degree-3 closure of C. Moreover, the IOP
introduces only constant overheads in all relevant parameters, including proof length and query complexity.

After reducing circuit satisfiability to sumcheck over the given code C, we are left to choose C so to ensure that the
sumcheck can be carried out with 2 additional rounds, linear proof length, and constant query complexity.

For this, our starting point is [GS96, SAK+01]’s efficient construction of a code family with constant rate, relative
distance, and alphabet size. Note that since these codes are AG codes, they have a naturally-defined degree-3 closure.
Also, their construction is uniform, and thus represents a much “lighter” use of AG codes as compared to in [BKK+13].

If we simply choose C to be a code from this AG code family, then it is not clear how to efficiently conduct the
sumcheck. However, what does work is to take C to be the tensor product of O(1) copies of this AG code. Informally,
in this way, we can invoke our Sublinear Sumcheck Theorem (Theorem 1.5) on the tensor product code C and we can
test proximity to it by Theorem 1.3. See Section 7 for details.
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Overall, we can summarize the above sketch via the following diagram of implications.

Theorem 1.1
linear-size IOP
for circuit SAT

←− Lemma 1.6
from circuit SAT

to sumcheck

+ Theorem 1.5
sublinear
sumcheck

+ Theorem 1.3
sublinear-size IOP

for tensor product codes

+ [GS96, SAK+01]
efficient construction

of AG codes

1.6 Open questions
The question of whether there exist PCPs with linear proof length and constant query complexity remains open.
Nevertheless, our work suggests additional questions that may be stepping stones in this and other intriguing directions:
(1) Is there a one-round IOP for circuit satisfiability with linear proof length and query complexity? (Our IOP for circuit
satisfiability requires 3 rounds.) (2) Is there an IOP for NTIME(T ) with linear proof length and query complexity,
for some number of rounds? (Our results, like [BKK+13], only imply proof length O(T log T ).) (3) Is there an IOP
for succinct circuit satisfiability with linear proof length and query complexity? (Our results, like [BKK+13], “stop”
at NP but do not extend to NEXP.) Finally, while “positive” applications of IOPs are known (e.g., non-interactive
proofs in the random oracle model [BCS16]), “negative” ones are not: do IOP constructions with good parameters
imply inapproximability results that are not known to be implied by known PCP constructions?

1.7 Roadmap
The rest of this paper is organized as follows. In Section 2, we provide basic notations and definitions, including for
PCPs and IOPs, and state prior results that we rely on. In Section 3, we state and prove the interactive composition
theorem. In Section 4, we state and prove the sublinear sumcheck theorem. In Section 5, we state and prove our results
for additive Reed–Solomon codes and tensor product codes. In Section 6, we state and prove the reduction from circuit
satisfiability to sumcheck. In Section 7, we state and prove our result for circuit satisfiability.
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2 Preliminaries

2.1 Basic notations

Functions, distributions, fields. We use f : D → R to denote a function with domain D and range R; given a subset
D̃ of D, we use f |D̃ to denote the restriction of f to D̃. Given a distribution D, we write x← D to denote that x is
sampled according to D. We denote by F a finite field and by Fq the field of size q; we say F is a binary field if its
characteristic is 2. We typically use fields of polynomial size, and take field operations to have constant cost each (and
inspection shows that accounting for their actual polylogarithmic cost does not change any of the stated results).
Distances. A distance measure is a function ∆: Σn × Σn → [0, 1] such that for all x, y, z ∈ Σn: (i) ∆(x, x) = 0,
(ii) ∆(x, y) = ∆(y, x), and (iii) ∆(x, y) ≤ ∆(x, z) + ∆(z, y). We extend ∆ to distances to sets: given x ∈ Σn and
S ⊆ Σn, we define ∆(x, S) := miny∈S ∆(x, y) (or 1 if S is empty). We say that a string x is ε-close to another string
y if ∆(x, y) ≤ ε, and ε-far from y if ∆(x, y) > ε; similar terminology applies for a string x and a set S. Unless noted
otherwise, we use the relative Hamming distance over alphabet Σ (typically implicit): ∆(x, y) := |{i |xi 6= yi}|/n.
Languages and relations. We denote by R a (binary ordered) relation consisting of pairs (x,w), where x is the
instance and w is the witness. We denote by Lan(R) the language corresponding to R, and by R|x the set of witnesses
in R for x. As always, we assume that |w| is bounded by some computable function of n := |x|; in fact, we are mainly
interested in relations arising from nondeterministic languages: R ∈ NTIME(T ) if there exists a T (n)-time machine
M such that M(x,w) outputs 1 if and only if (x,w) ∈ R. Throughout, we assume that T (n) ≥ n. We say that R has
relative distance δR : N→ [0, 1] if δR(n) is the minimum relative distance among witnesses in R|x for all x of size n.
Throughout, we assume that δR is a constant.
Polynomials. We denote by F[X1, . . . , Xm] the ring of polynomials in m variables over F. Given a polynomial
P in F[X1, . . . , Xm], degXi(P ) is the degree of P in the variable Xi. We denote by F<d[X1, . . . , Xm] the subring
consisting of P ∈ F[X1, . . . , Xm] with degXi(P ) < d for every i ∈ {1, . . . ,m}.

2.2 Probabilistically checkable proofs
We define non-adaptive PCPs [BFLS91, AS98, ALM+98], PCPs of proximity [DR04, BGH+06], and robust PCPs of
proximity [BGH+06]; each notion strengthens the former. We follow [BGH+06], where more details can be found.

Informally, given a relation R and an instance x: a PCP verifier is given oracle access to a candidate proof π and
decides whether R|x 6= ∅ (x is in R’s language) or R|x = ∅ (x is not in R’s language); in contrast, a PCPP verifier
is given oracle access to a candidate witness w and proof π and decides whether w ∈ R|x or w is far from R|x (in
particular, if R|x = ∅, then w is far from R|x). A robust PCPP strengthens a (standard) PCPP when R|x = ∅: in such a
case, the answers to the verifier’s queries are, with high probability, far from any answers that make the verifier accept.

More formally, in each of the above cases, the proof system is specified by a pair (P, V ) that works as follows.

• The prover P is a probabilistic algorithm that, given as input an instance-witness pair (x,w) with n := |x|, outputs a
proof π : D(n)→ Σ(n), where the domain D(n) and alphabet Σ(n) are finite sets.

• The verifier V is a pair (V Q, V D), where V Q is the query algorithm and V D is the decision algorithm, where:

– V Q is probabilistic and, given as input an instance x, outputs a state string σ and a query set I; and
– V D is deterministic and, given as input the state string σ and the |I| query answers, outputs a bit.

The verifier V induces the relation Rel(V ) comprising pairs (σ, ω) such that, for some choice of x and I , (σ, I) is in
the support of V Q(x) and V D(σ, ω) = 1.

We sometimes treat I as an algorithm that implicitly defines the query set (e.g., I(i) is the i-th query) to allow for
verifier-efficient interactive proof composition (see Section 3); this follows [BGH+05]’s notion of verifier specification.
Below, we explicitly denote the prover’s and verifier’s randomness as rP and rV .

The proof system (P, V ) is for a relation R if it satisfies certain completeness and soundness properties. The
completeness property is essentially the same in all three types of proof system; the only difference is that in a PCP the
verifier only queries the proof π while in a (standard or robust) PCPP the verifier also queries the candidate witness.
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Completeness

• for PCPs: (P, V ) has perfect completeness if for every instance-witness pair (x,w) in the relation R,

Pr
rP ,rV

[
V D(σ, π|I) = 1

∣∣∣∣ π ← P (x,w; rP )
(σ, I)← V Q(x; rV )

]
= 1 .

• for PCPPs: (P, V ) has perfect completeness if for every instance-witness pair (x,w) in the relation R,

Pr
rP ,rV

[
V D(σ, (w‖π)|I) = 1

∣∣∣∣ π ← P (x,w; rP )
(σ, I)← V Q(x; rV )

]
= 1 .

The soundness property differs across the three types, with each condition strengthening the previous one:

Soundness

• for PCPs: (P, V ) has soundness error ε if for every instance x with R|x = ∅ and proof π : D(n)→ Σ(n),

Pr
rV

[
V D(σ, π|I) = 1

∣∣∣ (σ, I)← V Q(x; rV )
]
≤ ε(n) .

• for (standard) PCPPs: (P, V ) has soundness error ε with proximity parameter δ if for every instance-witness pair
(x,w) with ∆(w,R|x) ≥ δ(n) and proof π : D(n)→ Σ(n),

Pr
rV

[
V D(σ, (w‖π)|I) = 1

∣∣∣ (σ, I)← V Q(x; rV )
]
≤ ε(n) .

• for robust PCPPs: (P, V ) has soundness error ε with proximity parameter δ and robustness parameter ρ if for every
instance-witness pair (x,w) with ∆(w,R|x) ≥ δ(n) and proof π : D(n)→ Σ(n),

Pr
rV

[
(w‖π)|I is ρ(n)-close to Rel(V )|σ

∣∣∣ (σ, I)← V Q(x; rV )
]
≤ ε(n) .

(We use the familiar “Markov-type” definition for robust soundness, but researchers have also used a definition that
imposes a lower bound on the expected distance from (w‖π)|I to Rel(V )|σ . The two notions are related [BGH+06].)

We now introduce complexity classes for each of the three types of proof systems. A relation R belongs to the
complexity class PCP[a, l, r, q, s, ε, tp, tvq, tvd] if there is a PCP system for R in which: (1) the proof alphabet is a(n)
(i.e., Σ(n) = a(n)); (2) the proof length over that alphabet is at most l(n) (i.e., |D(n)| ≤ l(n)); (3) the verifier uses at
most r(n) random bits (i.e., |rV | ≤ r(n)); (4) the verifier queries the witness and proof in at most q(n) locations (i.e.,
|I| ≤ q(n)); (5) the verifier state size is at most s(n) (i.e., |σ| ≤ s(n)); (6) the soundness error is ε(n); (7) the prover
algorithm runs in time tp(n); (8) the verifier query algorithm runs in time tvq(n); (9) the verifier decision algorithm
runs in time tvd(n). Similarly, we say that R belongs to the complexity class PCPP[a, l, r, q, s, ε, δ, tp, tvq, tvd] if
there is a PCPP system for R with the above parameters and having proximity parameter δ; also, we say that R belongs
to the complexity class PCPP[a, l, r, q, s, ε, δ, ρ, tp, tvq, tvd] if there is a robust PCPP system for R with the above
parameters and having proximity parameter δ and robustness parameter ρ. Sometimes we write tv to denote the sum of
tvq and tvd, i.e., the total running time of the verifier.

Throughout, we assume that the proximity parameter is less than the “unique-decoding radius” of the relation R,
i.e., that δ < 1

2δR where δR is the relative distance of R (see Section 2.1).

2.3 Interactive oracle proofs
We define interactive oracle proofs (IOPs) [BCS16, RRR16], which combine aspects of IPs [Bab85, GMR89] and PCPs
[BFLS91, AS98, ALM+98]; also, they generalize interactive PCPs [KR08].

Informally, an IOP extends an interactive proof as follows: whenever the prover sends to the verifier a message,
the verifier does not have to read the message in full but may probabilistically query it. In more detail, a k-round IOP
comprises k rounds of interaction. In the i-th round of interaction: the verifier sends a message mi to the prover; then
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the prover replies with a message fi to the verifier, which the verifier can query in this and all later rounds (by having
oracle access to it). After the k rounds of interaction, the verifier either accepts or rejects.

An IOP system for a relation R with round complexity k and soundness error ε is a pair (P, V ), where P, V are
probabilistic algorithms, that satisfies the following properties. (See [BCS16, RRR16] for more details.)

Completeness: For every instance-witness pair (x,w) in the relation R, 〈P (x,w), V (x)〉 is a k(n)-round interactive
oracle protocol with accepting probability 1.

Soundness: For every instance x not in R’s language and unbounded malicious prover P̃ , 〈P̃ , V (x)〉 is a k(n)-round
interactive oracle protocol with accepting probability at most ε(n).

Like the IP model, a fundamental measure of efficiency is the round complexity k. Like the PCP model, two
additional fundamental measures of efficiency are the proof length l, which is the total number of alphabet symbols
in all of the prover’s messages, and the query complexity q, which is the total number of locations queried by the
verifier across all of the prover’s messages. Considering all of these parameters, we say that a relation R belongs to the
complexity class IOP[k, a, l, r, q, ε, tp, tv] if there is an IOP system for R in which: (1) the number of rounds is at
most k(n); (2) the prover messages are over the alphabet a(n); (3) the proof length over this alphabet is at most l(n);
(4) the verifier uses at most r(n) random bits; (5) the verifier queries the prover messages in at most q(n) locations;
(6) the soundness error is ε(n); (7) the prover algorithm runs in time tp(n); (8) the verifier algorithm runs in time tv(n).

Finally, we say that an IOP system is non-adaptive if the verifier queries are non-adaptive (i.e., the queried locations
depend only on the verifier’s inputs); also, we say that an IOP system is public coin if mi is a random string and queries
to f1, . . . , fi−1 before the i-th round depend only on m1, . . . ,mi−1.
Proximity. We also study IOPs of proximity, which extend IOPs the same way that PCPs of proximity extend PCPs.
An IOPP system for a relation R with round complexity k, soundness error ε, and proximity parameter δ is a pair (P,
V ) that satisfies the following properties.

Completeness: For every instance-witness pair (x,w) in the relation R, 〈P (x,w), V w(x)〉 is a k(n)-round interactive
oracle protocol with accepting probability 1.

Soundness: For every instance-witness pair (x,w) with ∆(w,R|x) ≥ δ(n) and unbounded malicious prover P̃ ,
〈P̃ , V w(x)〉 is a k(n)-round interactive oracle protocol with accepting probability at most ε(n).

Similarly to above, a relation R belongs to the complexity class IOPP[k, a, l, r, q, ε, δ, tp, tv] if there is an IOPP
system for R with the corresponding parameters. As in Section 2.2, we always assume that δ is less than 1

2δR.
Robustness. Analogously to non-adaptive PCPs, a robustness parameter ρ can be defined for non-adaptive IOPs. For
such IOPs, we can think of the verifier algorithm as two algorithms: a query algorithm that, given as input an instance x,
interacts with the prover and then outputs a state string σ and a query set I; then, a decision algorithm takes as input the
state string σ and the |I| query answers (across all prover messages), and outputs a bit. Then one requires that, with
probability at most ε(n), the answers to the verifier’s queries are ρ(n)-close to any answers that make the verifier accept.
We do not spell out all the details of this definition because robustness of IOPs will arise in informal discussions only.

Remark 2.1 (comparison with PCPs and IPCPs). An IOP can be viewed as a “multi-round PCP”: a PCP is the special
case of an IOP where k = 1 (and the first verifier message is empty). Similarly, a PCP of proximity is the special case
of an IOP of proximity where k = 1 (and the first verifier message is empty). Also, IOPs generalize interactive PCPs
[KR08], which are IOPs where the verifier sends an empty first message and may query only the first prover message
(but must read any other prover messages in full).

2.4 Codes
An error correcting code C is a set of functions w : D → Σ, where D,Σ are finite sets known as the domain and
alphabet; we write C ⊆ ΣD. The message length of C is k := log|Σ| |C|, its block length is ` := |D|, its rate is
ρ := k/`, its (minimum) distance is d := min{∆(w, z) |w, z ∈ C , w 6= z} when ∆ is the (absolute) Hamming
distance, and its (minimum) relative distance is τ := d/`. At times we write k(C), `(C), ρ(C), d(C), τ(C) to make
the code under consideration explicit. All the codes we consider are linear codes, discussed next.
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Linearity. A code C is linear if Σ is a finite field and C is a Σ-linear space in ΣD. The dual code of C is the set
C⊥ of functions z : D → Σ such that, for all w : D → Σ, 〈z, w〉 :=

∑
i∈D z(i)w(i) = 0. We denote by dim(C) the

dimension of C (as a linear space); it holds that dim(C) + dim(C⊥) = ` and dim(C) = k (dimension equals message
length). The support of C, denoted supp(C), is the union of the support (non-zero entries) of functions in C.
Systematicity. Given s ∈ N, a code C ⊆ ΣD is s-systematic if there exists a size-s subset ofD, which for convenience
we identify with [s], such that for every x ∈ Σ[s] there exists w ∈ C such that x = w|[s].
Tensor products. Given a positive integer m, the tensor product code C⊗m is the linear code with domain Dm,
alphabet Σ, message length km, block length `m, and distance dm that comprises all functions w : Dm → Σ whose
restriction to any axis-parallel line is in C. Namely, for every j ∈ {1, . . . ,m} and a1, . . . , aj−1, aj+1, . . . , a` ∈ D, the
function w′ : D → Σ defined by w′(i) := w(a1, . . . , aj−1, i, aj+1, . . . , a`) is in C.
Polynomial closures. Given C,C ′ ⊆ FD and positive integer t, we say that C ′ is a degree-t closure of C if, for
every w1, . . . , wm ∈ C and P ∈ F[X1, . . . , Xm] of total degree at most t, it holds that w′ := P (w1, . . . , wm) is in
C ′, where w′ : D → Σ is defined coordinate-wise by the equation w′(i) := P (w1(i), . . . , wm(i)) (i.e., P is applied
coordinate-wise to (w1, . . . , wm)). We now state a simple lemma about polynomial closures.

Claim 2.2. Let C,C ′ ⊆ FD, t,m ∈ N, and P ∈ F[X1, . . . , Xm]. Suppose that C ′ is a degree-t closure of C, P has
total degree at most t, and f1, . . . , fm ∈ FD have relative distance less than τ(C′)

2m to C ′. Let w′ be the codeword in C ′

closest to P (f1, . . . , fm), and, for i = 1, . . . ,m, let wj be the codeword in C closest to fj . Then w′ = P (w1, . . . , wm).

Proof. Let T be the set of i ∈ D for which there exist j ∈ [m] for which fj(i) 6= wj(i). By assumption, |T | is less than
1
2τ(C ′)|D|. The codeword P (w1, . . . , wm) is in C ′ and disagrees with P (f1, . . . , fm) in less than 1

2τ(C ′)|D| places,
and so must be the unique codeword in C ′ closest to P (f1, . . . , fm). Thus, w′ = P (w1, . . . , wm), as desired.

Code families. We also consider families of codes, and the notation above typically extends in the natural way.

• Parameters: A code family C = {Cn}n∈N has domain D(·) and alphabet F(·) if each code Cn has domain D(n)
and alphabet F(n). Similarly, C has message length k(·), block length `(·), rate ρ(·), distance d(·), and relative
distance τ(·) if each code Cn has message length k(n), block length `(n), rate ρ(n), distance d(n), and relative
distance τ(n). We also define ρ(C ) := infn∈N ρ(n) and τ(C ) := infn∈N τ(n); note that C has constant rate iff
ρ(C ) > 0 and has constant relative distance iff τ(C ) > 0.

• Systematicity: A code family C = {Cn}n∈N is systematic if each code Cn is n-systematic. In such a case, the
message length k(n) is at least n (but may be larger than it). With this in mind, we find it convenient to also define
ρ̂(C ) := infn∈N

n
`(n) , which is a lower bound on ρ(C ).

• Tensor products: Given a code family C = {Cn}n∈N and a positive integer m, C⊗m is the family {C⊗mn }n∈N. Note
that if C is systematic then each C⊗mn is nm-systematic.

• Polynomial closures: Given two code families C = {Cn}n∈N and D = {Dn}n∈N over the same domain D(n) and
alphabet F(n) and a positive integer t, D is a degree-t closure of C if each Dn is a degree-t closure of Cn.

• Efficiency: We say that a systematic code family C = {Cn}n∈N is T (·)-efficient if computing a codeword as well as
checking that a codeword lies in the code can be done in time T (·). More precisely, there exist two deterministic
algorithms Enc and Chk such that, for every n ∈ N:

– on input x ∈ F(n)[n], Enc outputs w ∈ Cn such that w|[n] = x;
– on input w ∈ F(n)`(n), Chk outputs 1 if and only if w ∈ Cn.

If a code family is not systematic, we still talk about its efficiency, but in such a case we only require the second
condition (about checking if a codeword is in the code) and ignore the first one (about computing codewords).

If C is T (·)-efficient then C⊗m is T ′(·)-efficient with T ′(n) := m · `(n)m−1 · T (n); see [Vid15, Appendix C.2].
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2.4.1 Reed–Solomon codes

The Reed–Solomon (RS) code is the code consisting of evaluations of univariate low-degree polynomials: given a field
F, subset S of F, and positive integer d with d ≤ |S|, we denote by RS[F, S, d] the linear code consisting of evaluations
w : S → F over S of polynomials in F<d[X]. The code’s message length is k = d, block length is ` = |S|, rate is
ρ = d

|S| , and relative distance is τ = 1− d−1
|S| .

2.4.2 Reed–Muller codes

The Reed–Muller (RM) code is the code consisting of evaluations of multivariate low-degree polynomials: given a field
F, subset S of F, and positive integers m, d with d ≤ |S|, we denote by RM[F, S,m, d] the linear code consisting of
evaluations w : Sm → F over Sm of polynomials in F<d[X1, . . . , Xm] (i.e., we bound individual degrees rather than
their sum). The code’s message length is k = dm, block length is ` = |S|m, rate is ρ = ( d

|S| )
m, and relative distance

is τ = (1− d−1
|S| )m. Also, one can verify that (i) RS[F, S, d] = RM[F, S, 1, d] and (ii) RM[F, S,m, d] is the m-wise

tensor product of RS[F, S, d].

2.4.3 Algebraic-geometry codes

Codewords in an algebraic-geometry (AG) code [Gop81] consist of functions evaluated over domains that arise as
the solutions of certain systems of rational equations. AG codes generalize RS codes and “behave” similarly but,
unlike RS codes, can “work” over constant-size fields: AG codes can achieve constant rate and relative distance over a
constant-size field and, moreover, they can be closed under coordinate-wise multiplication. A formal definition of AG
codes is not necessary to understand this paper, so we refer the reader to the excellent reference of Stichtenoth [Sti08].
Instead, below we provide a self-contained statement of the result we rely on; it follows from [SAK+01, Theorem 7],
which gives an efficient construction of AG codes based on [GS96]’s explicit towers of function fields.

Theorem 2.3. For every τ0 ∈ (0, 1) and t0 ∈ N, there exist ρ̂0 ∈ (0, 1), a prime power q0, and two code families
A = {An}n∈N and B = {Bn}n∈N that satisfy the following properties:
1. A and B are systematic codes with alphabet Fq0 ;
2. A and B have ρ̂(A ), ρ̂(B) ≥ ρ̂0;
3. A and B have τ(A ), τ(B) ≥ τ0;
4. A is a degree-t0 closure of B;
5. A and B are T (n)-efficient with T (n) = O(n3 · log n).

2.5 Evading sets
Given a field F and positive integer n, an evading set for Fn is a small set S such that for any non-zero v ∈ Fn the inner
product 〈r, v〉, for a uniformly random r ∈ S, does not attain any particular value a ∈ F with too high probability. The
notion is captured by the following definition.

Definition 2.4. Let n ∈ N, γ ∈ (0, 1), and F be a field. A subset S of Fn is γ-evading for Fn if Prr←S [〈r, v〉 = a] ≤ γ
for every v ∈ Fn and a ∈ F with v 6= 0n. We say that a family S = {Sn}n∈N is T (·)-efficient γ(·)-evading for F(·) if,
for every n ∈ N: (i) Sn is γ(n)-evading for F(n)n, and (ii) one can sample a random vector in Sn in time T (n).

We state a construction of a small evading set, for any finite field. The construction is a straightforward generalization
of the one for F2 in [AGHP92], where it is shown to have the stronger property of being an ε-biased set [NN90]; for
completeness we also provide a proof sketch.

Lemma 2.5 (based on [AGHP92]). Let ε ∈ (0, 1), n ∈ N, and m := dlogq(n/ε)e. Let q be a prime power and
φ : Fqm → Fmq an isomorphism of Fq-vector spaces. Define S := {sx,y}x∈Fqm ,y∈Fmq where sx,y ∈ Fnq is the vector(
〈φ(1), y〉, 〈φ(x), y〉, . . . , 〈φ(xn−1), y〉

)
. Then S is (ε+ 1/q)-evading for Fnq .

In particular, there is algorithm that, on input n ∈ N and i ∈ [q2m], runs in time n · polylog(nq) and outputs the
i-th element of a set S of size q2m that is (ε+ 1/q)-evading for Fnq .
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Proof. We only sketch the proof, because it is very similar to [AGHP92, Proposition 3]. Fix v ∈ Fn and a ∈ F
with v 6= 0n. The inner product 〈sx,y, v〉 equals the inner product of y with φ(Pv(x)), where Pv is the polynomial
Pv(X) ,

∑n−1
i=0 vi ·Xi. Hence, Pv(x) = 0 with probability at most ε. Given that φ(Pv(x)) 6= 0, the probability its

inner product with a uniform y equals a is at most 1/q.

2.6 Constructions of proximity testers
We state results about constructions of proximity testers that we use in this paper.

2.6.1 Robust PCPs of proximity for additive Reed–Solomon codes

Ben-Sasson and Sudan [BS08] show that Reed–Solomon codes over binary fields have quasilinear-size PCPs of
proximity with constant query complexity. A central ingredient of their construction is a robust PCP of proximity for
these codes that reduces proximity testing for dimension λ to proximity testing for dimension λ/2 +O(1); this also
reduces the query complexity from 2λ to O(2λ/2).

Below, we state [BS08]’s robust PCP of proximity for these codes. The general statement involves the notion of an
additive Reed–Solomon code RS+[F, S, d], which is a Reed–Solomon code RS[F, S, d] where char(F) = 2 and S is an
F2-linear affine subspace. In this case there exist α0 ∈ F and F2-linearly-independent α1, . . . , αλ ∈ F such that S equals
the F2-linear span of (α1, . . . , αλ) shifted by α0; S can then be succinctly represented via the list (α0, α1, . . . , αλ).
If char(F) = 2, we then denote by Rel(F, %) the relation of instance-witness pairs (x,w) =

(
(S, d), w

)
such that

w ∈ RS+[F, S, d], S is λ-dimensional, and d ≤ %|S|; we define the size of x to be λ.

Theorem 2.6. For every % > 0 there exist α ∈ (0, 1) and a > 0 such that for every binary field F and δ ∈ (0, 1
2 (1− %))

there exists a robust PCPP system (P, V ) that puts Rel(F, %) in the complexity class

PCPP



answer alphabet a(λ) = F
proof length l(λ) = a · 2λ
randomness r(λ) = λ+ a
query complexity q(λ) = a · 2λ/2
state size s(λ) = λ/2 + a
soundness error ε(λ) = 1− α · δ
proximity parameter δ(λ) = δ
robustness parameter ρ(λ) = α · δ
prover time tp(λ) = λa2λ

verifier query time tvq(λ) = λ/2 + a
verifier decision time tvd(λ) = λa · 2λ/2


.

Moreover, Rel(V ) is a subset of Rel(F, %).

Remark 2.7. All of the existential quantifiers in the theorem statement are “efficient” in the sense that there is a
(uniform) polynomial-time procedure to construct the relevant objects. For example, (P, V ) efficiently depends on the
field F and proximity parameter δ.

Also, the running time of the verifier query algorithm in the above statement is λ/2 + a while the number of queries
is a · 2λ/2. This is possible because the verifier query algorithm outputs an algorithm that implicitly represents the query
set rather than the query set itself; see Section 2.2.

2.6.2 Robust local testers for tensor product codes

Viderman [Vid15] shows that tensor product codes have robust local testers; his work builds on [BS06], who showed a
similar result but only for codes with large enough distance; both of these can be viewed as extending [RS97]’s tester
for low-degree polynomials to general linear codes. Suitable settings of parameters yield a generic construction of
codes with rate 1/ poly(n) that are testable with query complexity polylog(n).
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Given an integer m > 1 and a linear code C ⊆ FD with relative distance τ , there is a natural |D|m−1-query test
for checking that a function w : Dm → F is close to C⊗m: sample random i ∈ D and j ∈ {1, . . . ,m} and check that
w with the j-th coordinate restricted to i is in C⊗m−1. Remarkably, this test is robust [BS06, Vid15]: if m ≥ 3 then
the tester is τm

2m2 -robust. Query complexity can then be reduced via a composition theorem for Tanner product codes
[Tan81], of which tensor product codes are a special case [BS06, Lemma 4.1].

For example, [Vid15, Theorem 3.1] states that: the |D|2-query test “pick a random axis-parallel 2-dimensional
plane H in Dm and check that w|H ∈ C⊗2” is τ2m

m8 -robust. (Recall that an n-dimensional axis-parallel plane H is a set
of points in Dm obtained by restricting all but n coordinates to constants.)

Below, we state the aforementioned result in a more general form (which we need): for a given divisor µ of m
with 3µ ≤ m, the test picks a random axis-parallel 2µ-dimensional plane H and checks that w|H ∈ C⊗2µ. This more
general form follows by invoking the original result on the tensor product code C⊗m/µ0 with C0 := C⊗µ.

Lemma 2.8. Let C be a linear code with alphabet F and relative distance τ , m a positive integer, and µ a divisor of m.
If m ≥ 3µ then the following two conditions hold:
1. (completeness) For every w : Dm → F in the tensor product code C⊗m, it holds that PrH [w|H ∈ C⊗2µ] = 1.
2. (robust soundness) For every w : Dm → F, it holds that EH [∆(w|H , C⊗2µ)] ≥ τ2(m/µ)

(m/µ)8 ·∆(w,C⊗m).

2.6.3 PCPs of proximity for nondeterministic languages

Mie [Mie09] constructs PCPs of proximity for nondeterministic languages, where the prover runs in quasilinear time
and the verifier in polylogarithmic time, with constant proximity parameter, soundness error, and query complexity.

Theorem 2.9. For every relation R ∈ NTIME(T (n)) with distance δR, every δ0 ∈ (0, 1
2δR), and every ε0 > 0,

there exist q0 > 0 and a PCPP system (P, V ) that puts R in the complexity class

PCPP



answer alphabet a(n) = F2

proof length l(n) = Õ(T (n))
randomness r(n) = log T (n) +O(log log T (n))
query complexity q(n) = q0

state size s(n) = polylog T (n)
soundness error ε(n) = ε0

proximity parameter δ(n) = δ0
prover time tp(n) = poly(n) + Õ(T (n))
verifier query time tvq(n) = poly(n+ log T (n))
verifier decision time tvd(n) = poly(n+ log T (n))


.

Remark 2.10. The statement in [Mie09] only shows that the prover runs in poly(T (n)) time. However, that prover is
composed of first running the “outer prover” of [BS08], which was shown to run in poly(n)+ Õ(T (n)) time [BCGT13],
and then applying the “inner prover” of [Din07] (which runs in polynomial time) on instances of size polylog T (n).
Combined, the resulting prover runs in poly(n) + Õ(T (n)) time, as stated above.

17



3 Interactive proof composition
We prove an interactive proof composition theorem that, when compared to its non-interactive counterpart [AS98],
provides significant savings in proof length, as well as prover running time, for the composed proof system. Later on,
we leverage this result to obtain short interactive oracle proofs (see Section 5).
Proof composition. Proof composition is a fundamental technique for reducing the query complexity of PCP verifiers;
it was introduced in [AS98] and later used and refined in numerous PCP constructions [ALM+98, HS00, BGH+06].
Proof composition involves two probabilistically-checkable proof systems: an outer one and an inner one. One should
think of the outer proof system as having short proofs but large query complexity, while the inner proof system has
long proofs but small query complexity. Proof composition combines these two so as to obtain a new proof system that
inherits the good properties of each; one can think of this as a “proof analogue” of code concatenation [For65].

Informally, the composed prover uses the outer prover to send a PCP to the composed verifier; the composed verifier
does not run the outer verifier but, instead, uses the inner verifier to check that the outer verifier would have accepted
had it made its queries to the PCP. In order to do so, the composed verifier also needs an auxiliary sub-PCP for the
claim that the outer verifier would have accepted; in fact, he needs one such sub-PCP for each possible random string
of the outer verifier because each randomness choice induces a corresponding claim. Hence, the composed prover
also sends all of these sub-PCPs along with the first PCP. The benefit is that the query complexity of the composed
verifier equals that of the inner verifier, which is typically verifying a much smaller statement than the outer verifier
(this statement’s size is roughly the outer query complexity).

Turning the above sketch into a proof requires distinct properties from the outer PCP and inner PCP. A useful choice
is from [BGH+06]: the outer PCP should be a robust PCP while the inner PCP should be a PCP of proximity.2

Limitations of proof composition. Beyond query complexity, most other parameters of the composed proof system
are simply the sum of the corresponding parameters of the outer and inner proof systems: roughly, the randomness
complexity is r = rout + rin, the soundness error is ε = εout + εin, and the verifier running time is tv = tvout + tvin.
There are two exceptions: the proof length l and prover running time tp are at least lout + 2rout · lin and tpout + 2rout · tpin,
because the composed prover uses the inner proof system to generate a proof of proximity for each choice of randomness
of the outer proof system. Thus, the outer randomness complexity puts a significant efficiency limitation on proof
composition.
Avoiding the limitations by interacting. We prove an interactive analogue of proof composition that avoids the
above limitations. Our theorem involves two proof systems: the outer proof system is a robust PCP (Pout, Vout) for
a relation R (as before), while the inner proof system is a k-round IOP (Pin, Vin) for Vout’s relation;3 the composed
proof system is a (k + 1)-round IOP (P, V ) for R. The parameters of the composed proof system are exactly as in the
non-interactive case, except that now the new proof length and prover running time are much smaller: lout + lin and
tpout + tpin, i.e., there is no multiplicative factor of 2rout in front of lin and tpin.

The crucial observation is that, after the prover sends the outer proof to the verifier, soundness is not harmed if the
verifier tells the prover his choice of outer randomness; in this way, the prover does not have to invest work for all
randomness choices but can simply invest work for the outer randomness that was actually chosen because he now
knows this choice. Thus, after receiving the outer randomness, the prover and verifier use the inner proof system for
proving proximity, to a satisfying assignment, of the oracle locations chosen by this outer randomness.
From sketch to proof. The above sketch glosses over many technical details that, in a proof, need to be addressed.

First, we treated the outer verifier as a unit, while instead it consists of two algorithms: a query algorithm that, given
the instance x, outputs a state σ and the query set I; and a decision algorithm that, given the state σ and answers to these
queries, outputs a bit. The composed prover and verifier explicitly invoke only the query algorithm; the dependence
on the decision algorithm is only implicit, via the invocation of the inner proof system on its induced relation. This
requires additional bookkeeping in parameters, e.g., the instance size for the inner proof system is not |x| but |σ|, which
is denoted sout(|x|). These details also arise in the non-interactive case [BGH+06].

Second, most treatments of proof composition obtain a composed verifier that, despite obtaining savings in query
complexity, still runs in time that is at least the outer query complexity, because the outer query algorithm outputs the

2Alternative useful choices, which we do not explore, are described in [MR08, DH13, DHK15].
3We could also make the outer proof system interactive by considering a robust IOP but we do not make use of this additional degree of freedom.
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query set I; such uses of proof composition offer no savings in verifier running time [PS94, HS00, GS06, BSVW03,
BGH+06, BS08]. In contrast, [BGH+05] introduce the notion of verifier specification, which allows the query
algorithm to implicitly specify I (e.g., via an algorithm), potentially running in time that is polylogarithmic in the query
complexity; then, they prove a (non-interactive) composition theorem that leverages this notion to obtain a composed
verifier whose running time may be much smaller than the outer verifier’s. We have adopted [BGH+05]’s definitions
(see Section 2.2), and our interactive proof composition theorem takes [BGH+05] as a starting point so that we too may
benefit from savings in verifier running time. (The main difference of our theorem from [BGH+05]’s is that we do not
consider verifier specifications for the composed proof system.)

Finally, analogously to the non-interactive case [BGH+06], if the outer PCP has proximity parameter δout, then the
composed proof system is an IOP with proximity parameter δ(n) = δout(n); moreover, if the inner IOP has robustness
parameter ρin then the composed proof system is an IOP with robustness parameter ρ(n) = ρin(sout(n)). Our theorem
below considers only the first case, ignoring any robustness of the inner proof system since we do not make use of it.

We are now ready to state and prove our interactive composition theorem; we have highlighted in blue the parameters
for proof length and prover running time, since these are the main differences from the parameters of a non-interactive
composition theorem (such as that in [BGH+05]).

Theorem 3.1 (Interactive Proof Composition — formal statement of Theorem 1.4). Suppose that the relation R
satisfies the following two conditions with δin(sout(n)) ≤ ρout(n):

(1) there exists a robust PCPP system (Pout, Vout)
that puts R in the complexity class

PCPP



answer alphabet a
proof length lout
randomness rout
query complexity qout
state size sout
soundness error εout
proximity parameter δout
robustness parameter ρout
prover time tpout
verifier query time tvqout
verifier decision time tvdout



and

(2) there exists an IOPP system (Pin, Vin) that puts
Rel(Vout) in the complexity class

IOPP



rounds kin
answer alphabet a
proof length lin
randomness rin
query complexity qin
soundness error εin
proximity parameter δin
prover time tpin
verifier time tvin



Then there exists an IOPP system (P, V ) that puts R in the complexity class

IOPP



rounds k(n) = 1 + kin(sout(n))
answer alphabet a(n)
proof length l(n) = lout(n) + lin(sout(n))
randomness r(n) = rout(n) + rin(sout(n))
query complexity q(n) = qin(sout(n))
soundness error ε(n) = εout(n) + (1− εout(n)) · εin(sout(n))
proximity parameter δ(n) = δout(n)
prover time tp(n) = tpout(n) + tvqout(n) + tpin(sout(n))
verifier time tv(n) = tvqout(n) + tvin(sout(n))


.

Moreover, if Vin’s queries are non-adaptive so are V ’s queries; also, if Vin is public coin so is V .

Proof. We construct the IOPP system (P, V ), then analyze its completeness, its soundness, and efficiency parameters.
Construction. Construct the IOPP system (P, V ) as follows. Let (x,w) be an instance-witness pair in the relation R
with n := |x|; the prover P receives (x,w) as input, while the verifier V receives x as input and w as oracle. In the first
round: V sends an empty message to P ; then P computes the proximity proof πout ← Pout(x,w) and sends πout to
V . Next, V samples randomness rout for V Q

out(x) and sends rout to P ; both P and V compute (σ, I)← V Q
out(x; rout);

in parallel, P and V engage in an interactive oracle protocol attesting to the proximity of (w‖πout)|I to Rel(V )|σ, by
invoking Pin(σ, (w‖πout)|I) and V (w‖πout)|I

in (σ), respectively. The verifier V accepts if and only if Vin does.
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Completeness. Completeness of (P, V ) follows from that of (Pout, Vout) and (Pin, Vin). Namely, for every instance-
witness pair (x,w) in the relation R, (σ, (w‖πout)|I) ∈ Rel(Vout) with probability 1, where πout ← Pout(x,w) and
(σ, I)← V Q

out(x). Hence, when interacting with Pin(σ, (w‖πout)|I), V (w‖πout)|I
in (σ) accepts with probability 1.

Soundness. Soundness of (P, V ) follows from that of (Pout, Vout) and (Pin, Vin), as we now explain. Consider any
instance-witness pair (x,w) and with ∆(w,R|x) ≥ δout(n), and an unbounded malicious prover P̃ . Letting π̃out be P̃ ’s
first message, we know that ∆((w‖π̃out)|I ,Rel(Vout)|σ) ≤ ρout(n) with probability at most εout(n) over rout, where
(σ, I)← V Q(x; rout). Call rout ‘bad’ if the distance in the previous sentence is at most ρout(n); else call rout ‘good’.
For any bad rout, we know only that V (w‖π̃out)|I

in (σ) accepts with probability at most 1; for any good rout, we know
that V (w‖π̃out)|I

in (σ) accepts with probability at most εin(sout(n)), because of the hypothesis that δin(sout(n)) ≤ ρout(n).
Overall, we deduce that V accepts with probability at most εout(n) · 1 + (1− εout(n)) · εin(sout(n)).
Efficiency parameters. The constructed IOPP system has k(n) := 1 + kin(sout(n)) rounds, because in the first
round the verifier sends an empty message and the prover replies with a proximity proof; in the remaining kin(sout(n))
rounds, the prover and verifier run (Pin, Vin) on σ (and note that the random string rout can be sent in parallel to the
first verifier message of (Pin, Vin)). The proof length is l(n) := lout(n) + lin(sout(n)) because the first term accounts
for the proximity proof and the second for the prover messages in the subsequent interactive oracle protocol. The
randomness complexity is r(n) := rout(n) + rin(sout(n)) because the first term accounts for running V Q

out and the second
term for running Vin. The query complexity is q(n) := qin(sout(n)) because verifier queries are due only to Vin. The
prover running time is tp(n) := tpout(n) + tvqout(n) + tpin(sout(n)) because the prover runs Pout and V Q

out on x and
Pin on σ. The verifier running time is tv(n) := tvqout(n) + tvin(sout(n)). Finally, the construction clearly preserves
non-adaptivity of queries and public coins, if present.

Remark 3.2. The statement of Theorem 3.1 asserts that the outer and inner proof systems use the same alphabet for
the prover messages. This is not essential: if the two alphabets differ, the same argument as above goes through, and the
composed proof system will have some messages over one alphabet and other messages over the other alphabet.
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4 Sublinear sumcheck
We show how to use IOPs to obtain a sumcheck protocol in which the verifier complexity is sublinear in the individual
degree of the polynomial being verified. More generally, we phrase our result for tensor product codes [Wol65, WE63,
Tan81], and the verifier complexity is then sublinear in the block length of one copy of the code. Later on, we leverage
this result to obtain interactive oracle proofs for circuit satisfiability (see Section 7). We now review the sumcheck
protocol, discuss intuition behind our result, and then formally state and prove it.
The sumcheck protocol. The sumcheck protocol [LFKN92, Sha92] is a fundamental building block of numer-
ous results in complexity theory and cryptography. The protocol consists of an interactive proof for the claim
“
∑

~α∈Hm w(~α) = 0”, where w is the evaluation on Fm of an m-variate polynomial of individual degree d and H is
a subset of F. The prover receives H and w as input, while the verifier receives H as input and w as an oracle. The
sumcheck protocol has soundness error 1− (1− d

|F| )
m, the prover runs in time poly(|F|m), the verifier runs in time

poly(|F|+m), the communication complexity is poly(|F|+m), and the number of rounds ism; moreover, the protocol
is public coin and the verifier queries w only at one random index.4

Limitations, and how to avoid them. In each of the m rounds, the prover sends to the verifier the evaluation on F
of a univariate polynomial of degree d or, alternatively, the prover sends the coefficients of this polynomial; then the
verifier checks that the sum of this polynomial over H equals a certain value determined in the previous round. In
particular, the verifier reads Ω(md) bits and its running time is also Ω(md). We show that the verifier complexity can
be sublinear in d, if the prover and verifier engage in an interactive oracle proof (rather than an interactive proof).

Recall that, in an IOP, the verifier has oracle access to the prover’s messages, so the verifier may read as many
locations of these as are sufficient to perform the necessary checks. The intuition to “go sublinear” is simple: instead
of performing these checks explicitly, the verifier relies on proximity testers for doing them. Thus, in each of the m
rounds, the prover sends to the verifier two oracles: the evaluation on F of a univariate polynomial of degree d, and a
proximity proof attesting that this evaluation has degree d and has the appropriate sum over H . The use of proximity
proofs somewhat complicates the soundness analysis (e.g., the verifier only sees noisy codewords) but the backbone of
the proof follows that of the standard sumcheck protocol; overall, this high level intuition can be turned into a proof.

More generally, instead of sending (non-interactive) proximity proofs, the prover may interact with the verifier in an
interactive oracle sub-proof of proximity for the appropriate codewords.
Beyond Reed–Muller. The sumcheck protocol can be phrased in a more general setting [Mei13]: an interactive proof
for the claim “

∑
~α∈Hm w(~α) = 0” where w is a codeword in the tensor product code C⊗m, for a given linear code C

with domain D and alphabet F, and H is a subset of D. Low-degree polynomials are a special case: the Reed–Muller
code is a tensor of the Reed–Solomon code. Conveniently, the parameters in the more general case are analogous
to those in the special case: the soundness error becomes 1 − τm where τ is C’s relative distance (τ = 1 − d

|F| for
the Reed–Solomon code), and C’s block length ` replaces the field size |F| in the running times and communication
complexity. In particular, the verifier reads Ω(m`) bits and its running time is also Ω(m`). Below, we phrase our
sublinear sumcheck result in the language of tensor product codes not only because of the greater generality but also
because we invoke this result on tensors of algebraic-geometry codes (see Section 7), which are not Reed–Muller codes.

We state our theorem as a reduction: given a PCP of proximity (PSC, VSC) for subcodes of the form C|H,γ :=
{w ∈ C s.t.

∑
α∈H w(α) = γ}, we construct an IOP of proximity (P, V ) for sumchecks over Hm for C⊗m. The

complexity of the PCPP verifier VSC determines the complexity of the resulting IOPP verifier V ; e.g., if the former is
sublinear in C’s block length `, so is the latter. In fact, we find it more natural to state the theorem without assuming
that w is promised to be a codeword in C⊗m, so the reduction also takes as input a PCP of proximity (P⊗, V⊗) for
C⊗m that is invoked on w.5 More generally, both PCPPs can in fact be IOPPs, and we state our theorem for this more
general case.

As an example of an instantiation, in the case of low-degree polynomials, one can invoke the theorem with a
low-degree test [BFL90, BFLS91, ALM+98, AS03] for the tensor product, and proximity proofs of [BS08] for the
subcodes of the Reed–Solomon code; this yields sumcheck for low-degree polynomials where the verifier complexity is

4The sumcheck protocol’s standard analysis yields a soundness error of md|F| , but a more careful analysis yields the smaller error of 1−(1− d
|F| )

m.
5Indeed, since we think of ` as large, the setting in which the verifier knows all of w (as in [LFKN92, Sha92]) does not apply in general; that said,

one can easily specialize the theorem’s statement and proof to the cases where the promise “w ∈ C⊗m” holds.
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polylogarithmic in the individual degree. At the other extreme, one can invoke the theorem with the “trivial” proximity
testers that read a codeword in full; this collapses our construction to the standard non-sublinear sumcheck protocol.

Below, we use the following notation. Let C = {Cn}n∈N be a code family, H = {Hn}n∈N a family where each
Hn is a subset of Cn’s domain, and m : N→ N. We denote by:
• Rel(C ,m) the relation of instance-witness pairs (n,w) s.t. n ∈ N and w ∈ C⊗m(n)

n ;
• Rel(C ,m,H ) the relation of instance-witness pairs ((n, γ), w) s.t. n ∈ N, w ∈ C⊗m(n)

n , and
∑

~α∈Hm(n)
n

w(~α) = γ.
With this notation, our theorem can be viewed as a reduction from proximity testing to Rel(C ,m,H ) to proximity
testing to Rel(C ,m) and Rel(C , 1,H ). (Note that both a particular code Cn and subset Hn need not be represented
explicitly, via a generator matrix and a set of indices; they may be represented in a more succinct way, when possible.)
When reading the theorem statement, it is helpful to keep in mind that the constructed IOP relies on a single invocation
of proximity testing to Rel(C ,m), and m invocations of proximity testing to Rel(C , 1,H ); it is also helpful to keep in
mind that the term 1− τm in the soundness error (highlighted in blue) is inherited from the standard sumcheck protocol
while the other terms are due to proximity testing.

Theorem 4.1 (Sublinear Sumcheck — formal statement of Theorem 1.5). Suppose that:
• C = {Cn}n∈N is a linear code family with relative distance τ(·) and block length `(·);
• H = {Hn}n∈N is a family where each Hn is a subset of Cn’s domain;
• m : N→ N is a (polynomial-time computable) function.
Suppose further that the following two conditions hold:

(1) there exists an IOPP system (P⊗, V⊗) that puts
Rel(C ,m) in the complexity class

IOPP



rounds k⊗
answer alphabet a
proof length l⊗
randomness r⊗
query complexity q⊗
soundness error ε⊗
proximity parameter δ⊗
prover time tp⊗
verifier time tv⊗


and

(2) there exists an IOPP system (PSC, VSC) that
puts Rel(C , 1,H ) in the complexity class

IOPP



rounds kSC
answer alphabet a
proof length lSC
randomness rSC
query complexity qSC
soundness error εSC
proximity parameter δSC
prover time tpSC
verifier time tvSC


Then there exists a public-coin IOPP system (P, V ) that puts Rel(C ,m,H ) in the complexity class

IOPP



rounds k(n) = max{k⊗(n),m(n) · kSC(n)}
answer alphabet a
proof length l(n) = l⊗(n) +m(n) · lSC(n) +m(n) · `(n)
randomness r(n) = r⊗(n) +m(n) · rSC(n) +m(n) · log `(n)
query complexity q(n) = q⊗(n) +m(n) · qSC(n) +m(n) + 1
soundness error ε(n)
proximity parameter δ(n) = δ⊗(n)
prover time tp(n) = tp⊗(n) +m(n) · tpSC(n) +m(n) · `(n)m(n)

verifier time tv(n) = tv⊗(n) +m(n) · tvSC(n) +O(m(n))


where the soundness error ε(n) is

ε(n) = max
{
ε⊗(n) , εSC(n) , 1− τ(n)m(n) +

(
1− (1− δ⊗(n)) · (1− δSC(n))m(n)

)}
Moreover, if V⊗’s and VSC’s queries are non-adaptive, then so are V ’s.

Proof. We first prove the theorem in the case where both of the given IOPPs are in fact PCPPs (in particular, k⊗ =
kSC = 1); at the end of the proof we explain the straightforward extension to the general case. So now, for the case of
PCPPs, we construct the IOPP system (P, V ), then analyze its completeness, its soundness, and efficiency parameters.
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Construction. Construct the IOPP system (P, V ) as follows. Let (x,w) =
(
(n, γ0), w

)
be an instance-witness pair

in the relation Rel(C ,m,H ); the prover P receives the instance and witness as input, while the verifier V receives the
instance as input and the witness as an oracle.

• In the first round, the verifier V sends an empty message to P ; next, the prover P proceeds as follows:

– compute the proximity proof π0 ← P⊗(n,w), which attests that w is in the tensor product code C⊗m(n)
n ;

– compute the codeword w1 : D(n)→ F(n) defined by w1(x) :=
∑
a2,...,am(n)∈Hn w(x, a2, . . . , am(n));

– compute the proximity proof π1 ← PSC

(
(n, γ0), w1

)
, which attests that w1 is in the subcode Cn|Hn,γ0 ;

– send the proof string (π0, w1, π1) to the verifier V .

• For i = 2, . . . ,m(n), in the i-th round, the verifier V draws ri−1 ∈ D(n) uniformly and independently at random,
and sends ri−1 to P ; next, the prover P proceeds as follows:

– compute the codewordwi : D(n)→ F(n) defined bywi(x) :=
∑
ai+1,...,am(n)∈Hn w(r1, . . . , ri−1, x, ai+1, . . . , am(n));

– set γi−1 := wi−1(ri−1);
– compute the proximity proof πi ← PSC

(
(n, γi−1), wi

)
, which attests that wi is in the subcode Cn|Hn,γi−1

;
– send (wi, πi) to V .

• After the m(n)-th round, the verifier V proceeds as follows:

– set γi := wi(ri) for every i ∈ {1, . . . ,m(n)};
– check that V w,π0

⊗ (n) accepts;
– check that V wi,πiSC

(
(n, γi−1)

)
accepts for every i ∈ {1, . . . ,m(n)};

– check that w(r1, . . . , rm(n)) = γm(n).

Completeness. Completeness of (P, V ) follows from that of (P⊗, V⊗) and (PSC, VSC), and the fact that the partial
sums belong to the appropriate subcodes. Namely, for every instance-witness pair (x,w) =

(
(n, γ0), w

)
in the relation

Rel(C ,m,H ) it holds that:
• w is in the tensor product code C⊗m(n)

n , so that V w,π0

⊗ (n) accepts with probability 1, and its sum over Hm(n)
n is γ0;

• for every i ∈ {1, . . . ,m(n)} and r1, . . . , ri−1 ∈ D(n), the codeword wi, which depends on r1, . . . , ri−1, is in the
code Cn and its sum over Hn is γi−1 = wi−1(ri−1) so that V wi,πiSC

(
(n, γi−1)

)
accepts with probability 1;

• w(r1, . . . , rm(n)) = γm(n) = wm(n)(rm(n)).
We conclude that P makes V accept with probability 1.
Soundness. Consider any instance-witness pair (x,w) =

(
(n, γ0), w

)
and unbounded malicious prover P̃ . Suppose

for now that w does not sum to γ0 on Hm(n)
n but is in the tensor product code C⊗m(n)

n and, moreover, each wi sent by
P̃ is in the subcode Cn|Hn,γi−1

. In this case, the standard soundness analysis of the sumcheck protocol (when extended
to tensor product codes) shows that the probability that the verifier accepts is at most 1 − τ(n)m(n), where τ(n) is
the relative distance of Cn. However, the verifier does not explicitly check if each wi is in Cn|Hn,γi−1

but, instead,
relies on the PCPP verifier VSC to test proximity to this code; also, the verifier is not guaranteed that w is in C⊗m(n)

n

but, instead, relies on the PCPP verifier V⊗ to test proximity to this code. Overall, this means that the verifier incurs
additional soundness errors due to the proximity testing and, hence, accessing noisy codewords. We now describe how
to account for these.

Suppose that w is δ⊗(n)-far from any codeword in C⊗m(n)
n that sums to γ0 on Hm(n)

n . We distinguish among the
following cases.

• Case 1: w is δ⊗(n)-far from the tensor product code C⊗m. In this case, the PCPP verifier V w,π0

⊗ (n) accepts with
probability at most ε⊗(n).

• Case 2: there exists i such that wi is δSC(n)-far from the subcode Cn|Hn,γi−1
. In this case, the PCPP verifier

V wi,πiSC

(
(n, γi−1)

)
accepts with probability at most εSC(n).

• Case 3: the above two cases do not happen. In this case, let ŵ be the unique codeword in C⊗m(n)
n closest to w

and, for each i, let ŵi be the unique codeword in Cn|Hn,γi−1 that is closest to wi; recall that proximity parameters
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are less than the unique-decoding radius (see Section 2.2) so these unique codewords exist. Note that ŵ cannot
sum to γ0 on Hm(n)

n (because we have assumed that w is δ⊗(n)-far from any codeword in C⊗m(n)
n that sums to

γ0 on Hm(n)
n ). At this point we apply the standard analysis of the sumcheck, but relative to the codewords ŵ and

ŵ1, . . . , ŵm(n): if the verifier has access to these codewords, then the verifier accepts with probability at most
1− τ(n)m(n). However the verifier only has access to functions that are close to these, which incurs an additional
soundness error of 1− (1− δ⊗(n)) · (1− δSC(n))m(n) because the verifier queries w and w1, . . . , wm(n) each at at
a uniformly and independently random location.

We deduce that the verifier accepts with probability that is at most the maximum of the acceptance probability across
the three cases, namely,

max
{
ε⊗(n) , εSC(n) , 1− τ(n)m(n) +

(
1− (1− δ⊗(n)) · (1− δSC(n))m(n)

)}
.

For any particular choice of code C and explicit bounds on the soundness errors and proximity parameters, the final
soundness error can be further improved by “balancing” the above three cases; we do not do so for the general case.
Efficiency parameters. The constructed IOPP system has k(n) := m(n) rounds. (Recall that for now we are
assuming that both of the given IOPPs are in fact PCPPs; see below for the general case.) The proof length is
l(n) := l⊗(n) + m(n) · lSC(n) + m(n) · `(n) because the prover sends the proximity proof π0 output by P⊗,
m(n) proximity proofs output by PSC, and m(n) codewords with block length `(n). The randomness complexity is
r(n) := r⊗(n) +m(n) · rSC(n) +m(n) · log `(n) because the verifier runs V⊗, runs VSC for m(n) times, and samples
m(n) elements in D(n). The query complexity is q(n) := q⊗(n) + m(n) · q⊗(n) + m(n) + 1 because the verifier
runs V⊗, runs VSC for m(n) times, and makes m(n) + 1 additional queries (one to each of w1, . . . , wm(n), w). The
prover running time is tp(n) := tp⊗(n) +m(n) · tpSC(n) +m(n) · `(n)m(n) because the prover runs P⊗, runs PSC

for m(n) times, and computes m(n) partial sums over domains of size at most `(n)m(n). The verifier running time is
tv(n) := tv⊗(n) +m(n) · tvSC(n) +O(m(n)) because the verifier runs V⊗, runs VSC for m(n) times, and performs
O(m(n)) additional work. Finally, the protocol is clearly public coins.
From PCPPs to IOPPs. The extension from PCPPs to IOPPs is straightforward: whenever the prover would have
sent to the verifier a (non-interactive) proof of proximity, the prover now interacts with the verifier in an interactive
oracle proof of proximity. Thus, testing proximity of w to C⊗m(n)

n takes k⊗(n) rounds, while testing proximity of
each of wi to Cn|Hn,γi−1

takes kSC(n) rounds. The first can be done in parallel to the second, so the overall number of
rounds is now max{k⊗(n),m(n) · kSC(n)}. The rest of the proof, mutatis mutandis, is unaffected.
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5 Short IOPs of proximity with constant query complexity
We use interactive proof composition (see Section 3) to obtain results on proximity testing for notable classes of linear
codes: we obtain IOPs of proximity with proof length and query complexity that are not known to be achievable by any
PCP of proximity. We consider the following two classes of codes.

• Additive Reed–Solomon codes (Section 5.1)

We show that additive Reed–Solomon codes over binary fields have IOPs of proximity with linear proof length and
constant query complexity; moreover, 2 rounds of interaction and public coins suffice. In contrast, for these codes,
we only know how to construct PCPs of proximity with quasilinear proof length and constant query complexity
[BS08, Din07, Mie09].

• Tensor product codes (Section 5.2)

We show that tensor product codes have IOPs of proximity with sublinear proof length and constant query complexity;
moreover, 1 round of interaction and public coins suffice. In contrast, for these codes, we only know how to construct
local testers with sublinear query complexity [BS06, Vid15], or PCPs of proximity with superlinear proof length and
constant query complexity [Mie09].

Above, all statements are relative to a constant soundness error (with a necessary linear dependence on the proximity
parameter), and involve a polylogarithmic-time verifier. We now describe, state, and prove the above results.

5.1 For additive Reed–Solomon codes
We show that additive Reed–Solomon codes over binary fields have linear-size IOPs of proximity with constant query
complexity; moreover, 2 rounds of interaction and public coins suffice. The construction follows from one invocation
of our interactive composition theorem with [BS08]’s robust PCPs of proximity for additive Reed–Solomon codes as
the outer proof system, and [Mie09]’s PCPs of proximity for nondeterministic languages as the inner proof system.
See Section 2.6.1 and Section 2.6.3 for these two components; also, see Section 2.6.1 for the definition of the relation
Rel(F, %), corresponding to the class of additive Reed–Solomon codes, over a binary field F, with fractional degree %.

Informally, [BS08]’s robust PCPs of proximity reduce proximity testing for Rel(F, %) from dimension λ to dimension
λ/2 +O(1); this also reduces the query complexity from 2λ to O(2λ/2). Thus, in our 2-round IOP, in the first round
the prover sends a [BS08]-type PCP of proximity for the function over a domain of dimension λ and, after receiving the
randomness from the verifier, in the second round the prover sends a [Mie09]-type PCP of proximity for the statement
that [BS08]’s verifier accepts. Since this statement lies in NTIME(Õ(2λ/2)) and this latter PCP of proximity is
quasilinear in the decider running time, we obtain the desired result.

Below, we state the theorem. After the theorem, we also give a weaker theorem that forgoes the use of a “heavy”
tool such as [Mie09], incurring a larger round complexity and soundness error but with better concrete constants.

Theorem 5.1 (formal statement of Theorem 1.2). For every % > 0 there exists c > 0 such that the following holds
for every binary field F. Define R := Rel(F, %) and note that δR = 1 − %. For every δ ∈ (0, 1

2δR) there exists a
public-coin IOPP system (P, V ) that puts R in the complexity class

IOPP



rounds k(λ) = 2
answer alphabet a(λ) = F2

proof length l(λ) = c · 2λ · log |F|
randomness r(λ) = c · λ
query complexity q(λ) = c
soundness error ε(λ) = 1/2
proximity parameter δ(λ) = δ
prover time tp(λ) = λc · 2λ
verifier time tv(λ) = λc


.

Proof. We invoke the interactive proof composition theorem (Theorem 3.1) as follows.
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• The PCPP system for R = Rel(F, %) of Theorem 2.6 as the “outer” proof system.

We invoke the theorem with the same fractional degree % as in this proof, which gives us α ∈ (0, 1) and a > 0 such
that for every binary field Fout and δout ∈ (0, 1

2δR) there exists a robust PCPP system (Pout, Vout) for Rel(F, %) with
the parameters described in the theorem statement. In this proof, we choose Fout := F and δout := δ.

• The PCPP system for nondeterministic languages of Theorem 2.9 as the “inner” one.

The relation that we choose is Rin := Rel(Vout); hence, δRin = δR. Because the state size of the outer proof system
is sout(λ) = λ/2 + a, we deduce that we can decide if (σ, ω) ∈ Rin in T := Õ(2λ/2+a) time. We thus get that for
every δin ∈ (0, 1

2δRin) and εin > 0 there exist qin > 0 and a PCPP system (Pin, Vin) for Rin with the parameters
described in the theorem statement. In this proof, we choose δin := ρout(λ) = α · δout and εin := 1

100 .

This composition gives us an IOPP system (P, V ) that puts R as a subset of the complexity class

IOPP



rounds k(λ) = 1 + kin(sout(λ))
= 1 + kin(λ/2 + a)
= 1 + 1

answer alphabet a(λ) = F2

proof length l(λ) = lout(λ) + lin(sout(λ))

= a2λ · log |F|+ lin(λ/2 + a)

= a2λ · log |F|+ Õ(2(λ/2+a) · log |F|)

randomness r(λ) = rout(λ) + rin(sout(λ))
= (λ+ a) + rin(λ/2 + a)
= (λ+ a) + (λ/2 + a) +O(log(λ/2 + a))

query complexity q(λ) = qin(sout(λ)) = qin(λ/2 + a) = qin

soundness error ε(λ) = εout(λ) + (1− εout(λ)) · εin(sout(λ))
= 1− α · δout + α · δout · εin(λ/2 + a)
= 1− α · δout · (1− εin)

proximity parameter δ(λ) = δout(λ) = δout

prover time tp(λ) = tpout(λ) + tvqout(λ) + tpin(sout(λ))

= λa2λ + (λ/2 + a) + tpin(λ/2 + a)

= λa2λ+a + (λ/2 + a) + Õ(2λ/2+a)

verifier time tv(λ) = tvqout(λ) + tvin(sout(λ))
= (λ/2 + a) + tvin(λ/2 + a)
= (λ/2 + a) + poly(λ/2 + a)



,

which implies the theorem statement, after a constant number of parallel repetitions, and for a large enough choice of a
positive constant c that depends on the positive constant a and other constants hidden in Theorem 2.9.

The alternative construction is an IOP of proximity with O(log λ) rounds, and follows from recursively invoking
our interactive proof composition theorem O(log λ) times on [BS08]’s PCPs of proximity for additive Reed–Solomon
codes. Here we exploit the fact that the relation of [BS08]’s verifier is itself a subrelation of Rel(F, %), so that we can
again use the same PCP of proximity without going through a generic reduction. While this alternative construction
has O(log λ) rounds rather than 2 and a weaker soundness guarantee, the construction is simpler and the underlying
constants (other than soundness) are smaller because the “inner” proof system is much less complex.

Theorem 5.2. For every % > 0 there exists c > 0 such that the following holds for every binary field F. Define
R := Rel(F, %) and note that δR = 1− %. For every δ ∈ (0, 1

2δR) there exists a public-coin IOPP system (P, V ) that
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puts R in the complexity class

IOPP



rounds k(λ) = c · log λ
answer alphabet a(λ) = F2

proof length l(λ) = c · 2λ · log |F|
randomness r(λ) = c · λ
query complexity q(λ) = c
soundness error ε(λ) = 1− λc · δ
proximity parameter δ(λ) = δ
prover time tp(λ) = λc · 2λ
verifier time tv(λ) = λc


.

5.2 For tensor product codes
We show that tensor product codes have sublinear-size IOPs of proximity with constant query complexity; moreover,
1 round of interaction and public coins suffice. The construction follows from one invocation of our interactive
composition theorem with [BS06, Vid15]’s robust local testers as the outer proof system, and [Mie09]’s PCPs of
proximity for nondeterministic languages as the inner proof system. (See Section 2.6.2 and Section 2.6.3 for these.)

Let C = {Cn}n∈N be a T (·)-efficient linear code family with block length `(·), m a positive integer, and µ a
divisor of m. (See Section 2.4 for the definition of code families and their efficiency.) Informally, the robust local tester
reduces proximity testing of C⊗mn to C⊗2µ

n by restricting a function w : D(n)m → F(n) to a random axis-parallel 2µ-
dimensional planeH , provided a mild condition holds (m ≥ 3µ). In our 1-round IOP of proximity, the verifier sends the
random plane H to the prover, who replies with a PCP of proximity of [Mie09] for the claim “w|H ∈ C⊗2µ

n ”. We then
obtain the desired result, provided that the claim “w|H ∈ C⊗2µ

n ” lies in NTIME(T ′(n)) with Õ(T ′(n)) = o(`(n)m),
because [Mie09]’s proof length is quasilinear in the time complexity of the nondeterministic language. This latter
condition is also mild, as we now explain. The code family C⊗2µ is T ′(·)-efficient with T ′(n) := 2µ · `(n)2µ−1 · T (n)
(see discussion about efficiency of code families in Section 2.4), and the condition we need is Õ(T ′(n)) = o(`(n)m).
For typical linear codes, T (n) = `(n)2+o(1), because the generator and parity-check matrices have at most `(n)2

entries, so that T ′(n) := 2µ · `(n)2µ+1+o(1); this gives what we need if m > 2µ+ 2 and `(n) ≥ µ.
We do not prove the theorem via a black box invocation of the interactive composition theorem because we would

obtain sub-optimal parameters: the outer proof system is a robust local tester rather than a robust PCPP, so that we
would obtain a 2-round IOP of proximity with one empty round. Thus, in the proof below, we perform interactive
composition directly for [BS06, Vid15]’s robust local tester and [Mie09]’s PCPP, obtaining a 1-round IOP of proximity.

Below, we denote by Rel(C ,m) the relation of instance-witness pairs (n,w) such that w ∈ C⊗mn . So far we have
treated the positive integer m as a constant, so that choosing the trivial divisor µ = 1 yields constant soundness error in
the statement below. We can also think of m as non-constant, implicitly depending on n, in which case we can still
obtain constant soundness by choosing a divisor µ = Ω(m) while maintaining the condition that Õ(T ′(n)) = o(`(n)m).

Theorem 5.3 (formal statement of Theorem 1.3). There exists c > 0 such that the following holds. Let C = {Cn}n∈N
be a T (·)-efficient linear code family with alphabet F(·), block length `(·), and relative distance τ(·); let m be a
positive integer and µ a divisor of m. Suppose that m ≥ 3µ and T ′(n) · (log T ′(n))c = o(`(n)m) with T ′(n) :=
2µ · `(n)2µ−1 · T (n). Define R := Rel(C ,m) and note that δR = τm. For every δ ∈ (0, 1

2δR) there exist q0 > 0 and
a public-coin IOPP system (P, V ) that puts R in the complexity class

IOPP



rounds k(n) = 1
answer alphabet a(n) = F2

proof length l(n) = o(`(n)m · log |F|)
randomness r(n) = O(m · log `(n))
query complexity q(n) = q0

soundness error ε(n) = 1− τ2(m/µ)

4(m/µ)8 · δ
proximity parameter δ(n) = δ
prover time tp(n) = o(`(n)m)
verifier time tv(n) = poly(m+ log `(n))


.
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Proof. We construct the IOPP system (P, V ), then analyze its completeness, its soundness, and efficiency parameters.
Construction. Construct the IOPP system (P, V ) as follows. Let (x,w) = (n,w) be an instance-witness pair in the
relation Rel(C ,m); the prover P receives the instance and witness as input, while the verifier V receives the instance as
input and the witness as oracle. In the first round, the verifier V samples a random 2µ-dimensional plane H in D(n)m

and then sends (the description of) H to P ; the prover P then computes a proximity proof π attesting to the statement
“w|H ∈ C⊗2µ

n ”, and sends the proof string π to V . The verifier V checks π and accepts if the check passes.
We are left to specify which PCPP system to use for this task: we rely on the PCPP system for nondeterministic

languages of Theorem 2.9. We apply the theorem to the relation Rin of instance-witness pairs (n, f) such that
f ∈ C⊗2µ

n ; the relation Rin can be decided in time T ′(n) with Õ(T ′(n)) = o(`(n)m). By Theorem 2.9, we obtain that
for every δin ∈ (0, 1

2δRin) and εin > 0 there exist qin > 0 and a PCPP system (Pin, Vin) for Rin with the parameters
described in the theorem statement. In this proof, we choose δin < min{ 1

2δRin , ρ − ε′} and εin := 1
100 , where the

constants ρ, ε′ ∈ (0, 1) are chosen in the soundness analysis below.
Completeness. Consider any instance-witness pair (x,w) = (n,w) in the relation Rel(C ,m). By Theorem 2.8,
w|H ∈ C⊗2µ for every 2µ-dimensional plane H ∈ D(n)m; hence, V w|H ,πin (n) always accepts. We conclude that
P (x,w) makes V w(x) accept with probability 1.
Soundness. Consider any instance-witness pair (x,w) = (n,w) and unbounded malicious prover P̃ . Suppose
that w is δ(n)-far from any codeword in C⊗mn . By Theorem 2.8, the expected distance of w|H to C⊗2µ

n is at
least ρ := τ2(m/µ)

(m/µ)8 · δ(n). By [BGH+06, Proposition 2.10], for any ε′ ≤ ρ, the distance is at most ρ − ε′ with
probability at most 1 − ε′. Call H bad if its distance to C⊗2µ

n is at most ρ − ε′; else call H good. For any bad
H , we only know that V w|H ,πin (n) accepts with probability at most 1; for any good H , we know that V w|H ,πin (n)
accepts with probability at most εin because δin ≤ ρ− ε′. Overall, we deduce that V accepts with probability at most
(1− ε′) · 1 + ε′ · εin = 1− ε′ · (1− εin). Now we pick ε′ := ρ/2, and we conclude that V accepts with probability at
most 1− ρ/2 · (1− εin) = 1− 1

2 ·
τ2(m/µ)

(m/µ)8 · δ(n) · (1− 1
100 ), and the claimed soundness follows.

Efficiency parameters. The constructed IOPP system has k(n) := 1 rounds. The proof length is l(n) := Õ(T ′(n)) =
o(`(n)m) because the prover sends the proximity proof π output by Pin. The randomness complexity is r(n) := O(m ·
log `(n)) because the verifier samples a random axis-parallel 2µ-dimensional plane in D(n)m and then runs Vin. The
query complexity is q(n) := qin because the verifier runs Vin. The prover running time is tp(n) := Õ(T ′(n)) = o(`m)
because the prover runs Pin. The verifier running time is tv(n) := poly(m+ log `(n)) because the verifier samples a
random axis-parallel 2µ-dimensional plane inD(n)m and then runs Vin. Finally, the protocol is clearly public coins.
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6 From circuit satisfiability to sumcheck
We prove that, with 1 round of IOP interaction, we can reduce circuit satisfiability to proximity testing to a linear code
and a sumcheck over any degree-3 closure of it; moreover, the IOP introduces only constant overheads. We use this
reduction in Section 7, along with other ingredients, to construct 3-round IOPs for circuit satisfiability with linear proof
length and constant query complexity. We begin by recalling the notion of boolean circuits and their satisfiability.

Definition 6.1. A boolean circuit φ with n gates and s inputs is a directed acyclic graph with n vertices of which s are
sources and 1 is a sink; vertices represent gates while directed edges represent wires among them. We define φ’s size to
be n, and label the gates as g1, . . . , gn so that g1, . . . , gs are the input gates and gn is the output gate. We assume that
all gates (except input gates) are two-input NAND gates. Denote by ` : [n]→ [n] and r : [n]→ [n] the functions such
that g`(i) and gr(i) are the gates whose outputs are the left and right inputs of gi; for i ∈ [s], the value of `(i) and r(i)
is arbitrary, e.g., 1. We say that w ∈ {0, 1}n is a satisfying assignment for φ if wn = 0 and, for every i = s+ 1, . . . , n,
wi is the output of gi when the input to the circuit is w1 · · ·ws.

The relation RCSAT comprises all instance-witness pairs (φ,w) such that w is a satisfying assignment to φ.

In the statement and proof below we use the notion of a systematic code family, described in Section 2.4, and the
notion of an evading set, described in Section 2.5. Also, given a systematic code family C = {Cn}n∈N, we denote by:
• Rel(C ) the relation of instance-witness pairs (n,w) such that n ∈ N and w ∈ Cn; and
• Rel(SC,C ) the relation of instance-witness pairs (n,w) such that n ∈ N, w ∈ Cn, and

∑
i∈[n] w(i) = 0.

Theorem 6.2 (From CSAT to Sumcheck — formal statement of Lemma 1.6). Suppose that
• C = {Cn}n∈N is a TC (·)-efficient systematic code family with alphabet F(·),
• D = {Dn}n∈N is a TD(·)-efficient systematic code family with relative distance τD(·) and is a degree-3 closure of C ,
• S = {Sn}n∈N is a TS (·)-efficient γ(·)-evading set family for F(·) with 1

|F(n)| ≤ γ(n).
Suppose further that the following two conditions hold with δC (n) < τD(n)/16:

(1) there exists an IOPP system (PC , VC ) that puts
Rel(C ) in the complexity class

IOPP



rounds kC

answer alphabet a
proof length lC
randomness rC
query complexity qC

soundness error εC

proximity parameter δC
prover time tpC
verifier time tvC


and

(2) there exists an IOPP system (PD , VD) that puts
Rel(SC,D) in the complexity class

IOPP



rounds kD

answer alphabet a
proof length lD
randomness rD
query complexity qD

soundness error εD

proximity parameter δD
prover time tpD
verifier time tvD


Then there exists an IOP system (P, V ) that puts the relation RCSAT in the complexity class

IOP



rounds k(n) = 1 + max {kC (n), kD(n)}
answer alphabet a(n)
proof length l(n) = 3 · lC (n) + lD(n) + 3 · `C (n) · log |F(n)|
randomness r(n) = 3 · rC (n) + rD(n) + 4 · log |Sn|+ log |F(n)|
query complexity q(n) = 3 · qC (n) + qD(n)
soundness error ε(n) = max{εC (n), εD(n) + γ(n)}
prover time tp(n) = 3 · tpC (n) + tpD(n) + 8 · TC (n) + 4 · TS (n) + TD(n) +O(n · log |F(n)|)
verifier time tv(n) = 3 · tvC (n) + tvD(n) + 5 · TC (n) + 4 · TS (n)


Moreover, if VC ’s and VD ’s queries are non-adaptive so are V ’s queries; also, if VC and VD are public coin so is V .

We first give a simple lemma that says that a circuit’s satisfiability can be represented as a set of low-degree
constraints on three codewords; these codewords represent encodings of all gates’ outputs, left inputs, and right inputs.
Similar statements appear in several prior works that encode computation via, e.g., low-degree polynomials.
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Lemma 6.3. Let φ be a boolean circuit with n gates and s inputs, C an n-systematic code with alphabet F,
and PNAND : F3 → F the polynomial of total degree 2 that describes a NAND gate (for every x, y, z ∈ {0, 1},
PNAND(x, y, z) = 0 if and only if the NAND of x and y equals z). There exists a satisfying assignment for φ if and only
if there exist codewords W,WL,WR ∈ C that satisfy the following:
• (booleanity constraints) for every i ∈ [n], W (i)2 = W (i);
• (wiring constraints) for every i ∈ [n], WL(i) = W (`(i)) and WR(i) = W (r(i));
• (gate constraints) for every i ∈ [n] \ [s], PNAND(WL(i),WR(i),W (i)) = 0;
• (satisfiability constraint) W (n) = 0.

Proof. For everyw ∈ {0, 1}n ⊆ Fn,w is a satisfying assignment for φ if and only ifwn = 0 andPNAND(w`(i), wr(i), wi) =
0 for every i ∈ [n] \ [s]. With this in mind, we can argue the two sides.

Let w ∈ {0, 1}n be a satisfying assignment for φ. Let W,WL,WR be the codewords in C such that, for every i ∈ [n],
W (i) = wi, WL(i) = w`(i), and WR(i) = wr(i); such codes exist because C is n-systematic. One can verify that this
choice of codewords fulfills the constraints in the statement.

Conversely, let W,WL,WR be codewords in C that satisfy the constraints in the statement. Let w be the assignment
that equals the codeword W restricted to [n]. One can verify that this choice of assignment is satisfying for φ.

We now return to the proof of the theorem.

Proof of Theorem 6.2. We construct the IOPP system (P, V ), then analyze its completeness, its soundness, and
efficiency parameters.
Construction. Construct the IOPP system (P, V ) as follows. Let (φ,w) be an instance-witness pair in the circuit-
satisfiability relation RCSAT; the prover P receives the instance and witness as input, while the verifier V receives the
instance as input and the witness as an oracle.

• In the first round, the verifier V sends an empty message to P ; next, the prover P proceeds as follows: (i) compute
W,WL,WR ∈ Cn from the assignment w ∈ {0, 1}n so that, for every i ∈ [n], W (i) = wi, WL(i) = w`(i), and
WR(i) = wr(i) (as in the proof of Lemma 6.3); (ii) send the proof string (W,WL,WR) to the verifier V .

• In the second round, the verifier chooses uniformly (and independently) at random r, r′, r′′, r′′′ ∈ Sn and α ∈ F(n),
and sends these to P ; here Sn is the γ(n)-evading set for F(n)n in the family S . We use this randomness to define
the codewords RW, RL, RR, RN, RB ∈ Cn as specified below:

∀ i ∈ [n− 1] , RW(i) = −

 ∑
j∈`−1(i)

rj +
∑

j∈r−1(i)

r′j

 and RW(n) = α

∀ i ∈ [n] , RL(i) = ri

∀ i ∈ [n] , RR(i) = r′i

∀ i ∈ [n] \ [s] , RN(i) = r′′i and ∀ i ∈ [s] RN(i) = 0

∀ i ∈ [n] , RB(i) = r′′′i

The prover P and verifier V may compute these codewords, which in turn induce the codeword H in Dn defined as

H := RW ·W +RL ·WL +RR ·WR +RN · PNAND(WL,WR,W ) +RB · (W 2 +W )

Indeed, note that H equals Q(RW, RL, RR, RN, RB,W,WL,WR) for a polynomial Q of total degree 3.

In parallel, the prover P and verifier V engage in several interactive oracle proofs:

– an IOPP (PC , VC ) to prove proximity of (n,W ) to Rel(C );
– an IOPP (PC , VC ) to prove proximity of (n,WL) to Rel(C );
– an IOPP (PC , VC ) to prove proximity of (n,WR) to Rel(C );
– an IOPP (PD , VD) to prove proximity of (n,H) to Rel(SC,D).
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Completeness. Completeness of (P, V ) follows from that of (PC , VC ) and (PD , VD), and the fact that the sum of H
over [n] equals 0. Namely, for every instance-witness pair (φ,w) in the relation RCSAT it holds that:
• In the first round, the prover P sends three codewords W,WL,WR that are in the code Cn; by construction, and since
w is a satisfying assignment for φ, we know that W,WL,WR satisfy the conditions in Lemma 6.3.

• In the second round, for any choice of verifier randomness, the codewords RW, RL, RR, RN, RB are in the code Cn.
• The codeword H is derived from the above codewords via a polynomial Q of total degree 3 so that H is in the code
Dn, because Dn is a degree-3 closure of Cn. Moreover, recalling that RW|[n] is related to RL|[n] and RR|[n] by the
wiring constraints, H sums to 0 on [n] because:∑

i∈[n]

H(i) =
∑
i∈[n]

RL(i) ·
(
WL(i)−W (`(i))

)
+
∑
i∈[n]

RR(i) ·
(
WR(i)−W (r(i))

)
+

∑
i∈[n]\[s]

RN(i) · PNAND

(
WL(i),WR(i),W (i)

)
+
∑
i∈[n]

RB(i) ·
(
W (i)2 −W (i)

)
+ α ·W (n)

=
∑
i∈[n]

ri ·
(
WL(i)−W (`(i))

)
+
∑
i∈[n]

r′i ·
(
WR(i)−W (r(i))

)
+

∑
i∈[n]\[s]

r′′i · PNAND

(
WL(i),WR(i),W (i)

)
+
∑
i∈[n]

r′′′i ·
(
W (i)2 −W (i)

)
+ α ·W (n)

=
∑
i∈[n]

ri · 0 +
∑
i∈[n]

r′i · 0 +
∑

i∈[n]\[s]

r′′i · 0 +
∑
i∈[n]

r′′′i · 0 + α · 0 = 0 .

• Hence, also in the second round (and any later rounds): the use of the IOPP system (PC , VC ) to separately prove
proximity of W,WL,WR to Cn and the use of the IOPP system (PD , VD) to prove proximity of H to the subcode of
Dn of codewords that sum to 0 on [n] results in the verifier V accepting with probability 1.

Soundness. Consider any unsatisfiable boolean circuit φ, and unbounded malicious prover P̃ . We distinguish among
the following cases:

• Case 1: one of W,WL,WR sent by P̃ in the first round is δC (n)-far from Cn.

In this case, the IOPP verifier VC accepts with probability at most εC (n).

• Case 2: the above case does not hold.

Observe that H is a random variable that depends on the verifier randomness χ := (r, r′, r′′, r′′′, α). Let A be the set
of χ for which H is δD(n)-far from Dn.

For any χ ∈ A, the IOPP verifier VD accepts with probability at most εD(n).

For any χ 6∈ A, let Ŵ , ŴL, ŴR be the unique codewords in Cn that are closest to W,WL,WR (respectively); also,
let Ĥ be the unique codeword in Dn that is closest to H . (Recall that proximity parameters are less than the
unique-decoding radius, so such codewords exist; see Section 2.2.) By hypothesis, δC (n) < τ(Dn)/16; hence, by
Claim 2.2 (invoked for Cn, Dn, and m = 8), we deduce that Ĥ = Q(RW, RL, RR, RN, RB, Ŵ , ŴL, ŴR). Denote by
εĤ the probability over χ, conditioned on χ 6∈ A, that Ĥ sums to 0 on [n].

If ε is the probability that the verifier accepts in this case, we can write

ε = Pr[χ ∈ A] · εD(n) + Pr[χ 6∈ A] ·
(
εĤ · 1 + (1− εĤ) · εD(n)

)
≤max

{
εD(n), εĤ · 1 + (1− εĤ) · εD(n)

}
≤max

{
εD(n), εD(n) + εĤ

}
= εD(n) + εĤ

so we are left to upper bound εĤ .
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Since φ is unsatisfiable, Ŵ , ŴL, ŴR do not satisfy the conditions in Lemma 6.3. Therefore∑
i∈[n]

Ĥ(i) =
∑
i∈[n]

ri ·
(
ŴL(i)− Ŵ (`(i))

)
+
∑
i∈[n]

r′i ·
(
ŴR(i)− Ŵ (r(i))

)
+

∑
i∈[n]\[s]

r′′i · PNAND

(
ŴL(i), ŴR(i), Ŵ (i)

)
+
∑
i∈[n]

r′′′i ·
(
Ŵ (i)2 − Ŵ (i)

)
+ α · Ŵ (n)

is zero with probability at most γ(n), as we now explain. Consider two sub-cases:

– Case 2.a: Ŵ (n) 6= 0. In this case εĤ ≤
1

|F(n)| because α is uniformly random in F(n).

– Case 2.b: Ŵ (n) = 0. One of the four sums is an inner product of a non-zero vector with a uniformly random
element in the γ(n)-evading set Sn; hence, εĤ ≤ γ(n).

Recalling that 1
|F(n)| ≤ γ(n) by hypothesis, we deduce that εĤ ≤ γ(n).

We deduce that the verifier accepts with probability that is at most the maximum of the acceptance probability across
the two cases, namely, max{εC (n), εD(n) + γ(n)}.
Efficiency parameters. The constructed IOP system has k(n) := 1 + max {kC (n), kD(n)} rounds. The proof length
is l(n) := 3 · lC (n) + lD(n) + 3 · `C (n) because the prover sends the three codewords W,WL,WR in Cn, and also
runs three invocations of PC and one invocation of PD . The randomness complexity is r(n) := 3 · rC (n) + rD(n) +
4 · log |Sn| + log |F(n)| because the verifier runs three invocations of VC and one invocation of VD , samples four
elements from the evading set Sn, and also one element from F(n). The query complexity is q(n) := 3 ·qC (n)+qD(n)
because the verifier runs three invocations of VC and one invocation of VD , and makes no other queries otherwise.
The prover running time is tp(n) := 3 · tpC (n) + tpD(n) + 8 · TC (n) + TD(n) + O(n · log |F(n)|) because the
prover encodes the circuit assignment to obtain the three codewords W,WL,WR in Cn, computes the four vectors
sampled by the verifier from the evading set, encodes these four vectors, along with a fifth derived from them, to
obtain the five codewords RW, RL, RR, RN, RB in Cn, coordinate-wise computes a message and encodes it to obtain
the codeword H in Dn, and then runs three invocations of PC and one invocation of PD . The verifier running time is
tv(n) := 3 · tvC (n) + tvD(n) + 5 · TC (n) + 4 · TS (n) because the verifier samples four vectors from the evading set,
also computes the codewords RW, RL, RR, RN, RB, and then runs three invocations of VC and one invocation of VD .
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7 IOP for circuit satisfiability
We show that for circuit satisfiability we can obtain IOPs with linear proof length and constant query complexity;
moreover, 3 rounds of interaction and public coins suffice.

Theorem 7.1 (formal statement of Theorem 1.1). Let RCSAT be the relation consisting of instance-witness pairs (φ,w)
where φ is a boolean circuit (of two-input NAND gates) and w is a binary input that satisfies φ; we use n to denote the
number of gates in φ. For every η ∈ (0, 1) there exists a public-coin IOP system that puts RCSAT is in the complexity
class

IOP



rounds k(n) = 3
answer alphabet a(n) = F2

proof length l(n) = O(n)
randomness r(n) = polylog(n)
query complexity q(n) = O(1)
soundness error ε(n) = 1/2
prover time tp(n) = O(n1+η)
verifier time tv(n) = O(n1+η)


.

By now we have proved all the key ingredients for the above theorem. We now explain how to combine them. First,
we introduce the notion of an efficient IOPP, that will simplify dealing with the various parameters. Efficient IOPPs:
The idea of the definition of an efficient IOPP is that only the number of rounds and the proof length need to be stated
explicitly, while all other parameters are assumed to attain the “desirable value”. Specifically, in an efficient IOPP we
assume (i) the soundness error, and proximity error can be any constant of our choosing; (ii) the query complexity and
alphabet size are constant (depending on our choice of the later); (iii) the verifier runtime and randomness complexity
are polylogarithmic in the instance size and proof length (iv) the prover runtime is quasilinear in the proof length. A
technicality is that to enable any constant soundness error and proximity parameter, we allow the proof length to differ
by a multiplicative constant from the explicitly stated value.

We proceed with the definition. Fix a relation R, integer k, and function l : N → N. We say R has a k-round
l-efficient IOPP if for every ε ∈ (0, 1) and δ ∈ (0, 1

2δR) there exists c > 0 such that R is in the complexity class :

IOPP



rounds k
answer alphabet a(n) = F2

proof length c · l(n)
randomness r(n) = polylog(n+ l(n))
query complexity Θ(1)
soundness error ε
proximity parameter δ

prover time Õ(l(n))
verifier time c · polylog(n+ l(n))


.

One convenient use of the efficient IOPP notion that will be used in this section is the following: Theorem 2.9 implies
that any relation in R ∈ NTIME(T ) has a 1-round Õ(T )-efficient IOPP .

We now state a corollary of the main theorem of Section 6, using the terminology of efficient IOPPs. Informally,
the corollary states that if we have an efficient IOPP for a systematic code and for the sumcheck relation of its closure,
we can obtain an IOP system for RCSAT where most parameters will essentially equal the sum of corresponding
parameters in the IOPPs. However, we will have the following notable exceptions:

1. The proof length will contain a factor corresponding to the encoding length of the code - for which reason, we will
want codes of constant rate and constant alphabet size.

2. The verifier and prover runtime will contain a factor corresponding to the encoding time of the code.

For simplicity, rather than taking the evading set as a parameter as done in Theorem 6.2, the corollary uses the evading
set of Lemma 2.5 with parameter γ = 2/5. We state the corollary.

Corollary 7.2. Let F be a finite field with |F| ≥ 3.
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1. Let C be a systematic ensemble of codes over F with τ(C ) > 0.

2. Let D be a degree 3-closure of C with τ(D) > 0.

3. Assume we have a k1-round l1-efficient IOPP for RC ; and a k2-round l2-efficient IOPP for Rel(SC,D).

Then we have an IOP system putting RCSAT in the complexity class

IOP



rounds k = max {k1, k2}+ 1
answer alphabet a = F2

proof length l(n) = O(l1(n) + l2(n) + `C (n))
randomness r(n) = polylog(n+ l1(n) + l2(n))
query complexity q = O(1)
soundness error ε = 1/2

prover time tp(n) = Õ(l1(n) + l2(n) + n · log |F|) +O(TC (n) + TD(n))
verifier time tv(n) = polylog(n+ l1(n) + l2(n)) +O(TC (n))


Let us focus on the proof length parameter in Corollary 7.2. It depends linearly on 1. the proof length for the

code relation RC ; 2. the proof length for the sumcheck relation of the closure Rel(SC,D); and 3. the block length
`C (n). It follows that if we had an efficient IOPP for both relations with linear proof length, where the code family
C has constant rate over a constant alphabet size, we would attain our goal: An IOP for RCSAT with constant query
complexity and linear proof length. The algebraic-geometry codes of Theorem 2.3 indeed have constant rate and
constant alphabet size. However, we do not have an efficient IOPP for the corresponding relations of these codes. Thus,
we will use high enough (constant) tensors of these codes instead. We can do this, as a constant degree tensor of a
constant rate code, still has constant rate. Moreover, taking a tensor product “preserves closures”. That is, if D is a
degree d-closure of C, then for any integer m > 1, D⊗m is a degree d-closure of C⊗m.

We first need a statement about efficient sumchecks for tensor product codes in the terminology of efficient IOPPs.
This is done in Corollary 7.3 and Theorem 7.4. Corollary 7.3 simply restates the result of Theorem 4.1, for the special
case of a degree two tensor, with the simplified parameter list of an efficient IOPP. Theorem 7.4 will then tell us
roughly the following. Starting with any code family C with polynomial time encoding, and taking an appropriate
(constant) tensor C⊗m, we get a code whose sumcheck relation has efficient IOPPs with sublinear proof length. We
first note two techincalities.

• In the relations used in Theorem 4.1 the instance lengths corresponded to blocklengths of codes; while in relations of
the form Rel(SC,C ) and RC , as defined in Section 6 for systematic code families, we take the index n, measuring
“how systematic” Cn is, as the instance. We note that for a family C with ρ̂(C ) > 0 (see Section 2.4 for a definition)
the blocklength `C (n) = O(n) for all n ∈ N. Thus, in the context of efficient IOPPs, it does not matter if we use n
as instance length rather than the block length.

• In the rest of the section, for a systematic code family C = {Cn}n∈N, and a fixed integer m, we will want to view
C⊗m a systematic code family (containing an n-systematic code for all n ∈ N). We do this by overloading the
notation C⊗m from Section 2.4 for a systematic family C , and defining C⊗m = {C ′n}n∈N, where C ′sm , C⊗ms for
s ∈ N; and C ′n , C ′n′ for the first n′ > n that is an m’th power, in case n is not an m’th power itself.

Corollary 7.3. Let m ∈ N and C be a family of systematic linear codes with ρ̂(C ) > 0. Suppose that
1. there is a k1-round l1-efficient IOPP for Rel(SC,C );
2. there is a k2-round l2-efficient IOPP for Rel(C⊗2).
Then Rel(SC,C⊗2) has a max {2 · k1, k2}-round l-efficient IOPP where
1. l(s2) = l1(s2) + 2 · l2(s) + 2 · s
2. tp(s2) = Õ(l1(s2) + l2(s)) + 2 · s2

The corollary above now allows us to derive the following theorem:

Theorem 7.4. Let C be a family of systematic linear codes with ρ̂(C ), τ(C ) > 0 and TC (s) = O(sc) for constant c.
Fix an integer m > c. Then, Rel(SC,C⊗2m) has a 2-round o(n)-efficient IOPP (where n = s2m denotes the instance
size of Rel(SC,C⊗2m)).
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Proof. Let D , C⊗m. So C⊗2m = D⊗2. Let us denote by n = s2m the instance size of Rel(C⊗2m) and thus by
√
n

the instance size of Rel(SC,D). We know
1. from Theorem 2.9 that Rel(SC,D) has a 1-round Õ(

√
n)-efficient IOPP ,

2. from Theorem 5.3 that Rel(C⊗2m) has a 1-round o(n)-efficient IOPP .
The theorem follows now from Corollary 7.3, using Õ(

√
n) = o(n).

We now “plug in” AG codes (see Section 2.4.3) to the above theorem to get the following final corollary:

Corollary 7.5. For every η ∈ (0, 1) there exist a prime power q and two families C and D of systematic linear codes
with alphabet Fq and τ(C ), τ(D), ρ̂(C ), ρ̂(D) > 0 such that
1. D is a degree 3-closure of C ;
2. there is a 1-round o(n)-efficient IOPP for Rel(C );
3. there is a 2-round o(n)-efficient IOPP for Rel(SC,D).
4. TC (n), TD(n) = O(n1+η).

Proof. Let m = d3/η + 1e. Take C = A ⊗m, and D = B⊗m where A and B are code families from Theorem 2.3
over Fq for some fixed prime power q such that τ(C ), τ(D), ρ̂(C ), ρ̂(D) > 0. The second item follows now from
Theorem 5.3; the third item from Theorem 7.4, and the fourth from Theorem 2.3 together with the formula for the
efficiency of tensor product codes mentioned in Section 2.4.

To conclude, we note that by plugging the code family from Corollary 7.5 into Theorem 7.2 we obtain Theorem 7.1.
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