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Abstract

We consider the following problem. A deterministic algorithm tries to find a
string in an unknown set S ⊆ {0, 1}n that is guaranteed to have large density (e.g.,
|S| ≥ 2n−1). However, the only information that the algorithm can obtain about
S is estimates of the density of S in adaptively chosen subsets of {0, 1}n, where the
estimates are up to a relative error of µ > 0. This problem is especially appealing
as a derandomization problem, when S is the set of satisfying assignments for a
circuit that accepts many assignments.

If the error µ is sufficiently small (i.e., µ = O(1/n)), then an algorithm can
find an n-bit solution using n iterative estimations, via the classical method of
conditional probabilities. Our first question is whether the problem can be solved
faster “in parallel”. That is, assume that the algorithm works in iterations, where in
each iteration it obtains estimates of the density of S in p = p(n) sets, in parallel.

For this setting, we show a lower bound of Ω
(

n
log(p)+log(1/µ)

)
iterations, which

holds even when S is very dense, and is tight for natural settings of the parameters.
Our second question is what happens when the estimation error µ is too large to
use the method of conditional probabilities. For this setting, we show that if the
error satisfies µ = ω(n/ log(n)), then 2Θ(µ·n) estimations are both necessary and
sufficient to solve the problem, regardless of parallelism.

Our results extend the results of Karp, Upfal, and Wigderson (1988), who stud-
ied the setting in which the algorithm can only probe subsets for the existence of
a solution in them. Our lower bound on parallel algorithms also affirms a weak
version of a conjecture of Motwani, Naor, and Naor (1994).
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1 Introduction

We are interested in the following problem. A deterministic algorithm tries to find a
string in an unknown set S ⊆ {0, 1}n, where it is a-priori guaranteed that the density
of S is large (e.g., |S| ≥ 2n−1). The only information that the algorithm can obtain
about S is an estimation of the density of S in any subset Q ⊆ {0, 1}n of its choice.
That is, for any subset Q ⊆ {0, 1}n, the algorithm can obtain a value ν̃(Q) such that
ν̃(Q) = |Q∩S|

|Q| ± µ, for a small µ > 0. Can the algorithm find a string s ∈ S in a way that
is more efficient than simply going over all singletons in {0, 1}n and checking whether
each of them is in S or not?

This question is especially appealing in the context of derandomization. In this
context, a good motivating example is when S is the set of satisfying assignments for
some circuit C. The deterministic algorithm then tries to efficiently find a satisfying
assignment for C, by obtaining estimates of the acceptance probability of C on some
carefully-chosen subsets of {0, 1}n. In other words, in this context we are interested
in reducing the problem of deterministically hitting a given circuit to the problem of
estimating its acceptance probability on subsets of {0, 1}n, without using any “white-box”
information about the circuit.

As observed by Goldreich [Gol11, Thm. 3.5], if the estimation error µ is sufficiently
small, then the general problem described above can be solved efficiently, using a
method similar to the classical method of conditional probabilities. Specifically, the algo-
rithm can iteratively construct a string s ∈ S bit-by-bit, where in each iteration the
algorithm decides which value for the next bit would yield a higher density of S in
the resulting subcube, up to the estimation error of µ. Unfortunately, this method has
the drawback of being inherently sequential: Constructing an n-bit solution involves se-
quentially solving n decision problems. Moreover, the method requires that the error
µ will be inversely proportional to the number of iterations (i.e., µ = O(1/n)).

1.1 The minimal number of estimations

As an initial question, we ask whether n density estimations are indeed necessary in
order to find a string s ∈ S; that is, whether the number of estimations used by the
method of conditional probabilities is optimal. Recall that in our setting, the algorithm
obtains density estimations, rather than binary answers, and thus a naive information-
theoretic lower bound of n estimations does not hold. Nevertheless, we show that
n−O(1) estimations are necessary to solve the problem, even when considering algo-
rithms without any estimation error (i.e., when µ = 0).

Theorem 1 (the minimal number of queries; informal). Consider algorithms that, for an
unknown set S of size |S| ≥ 2n−1, can query an oracle to obtain the exact density of S in any
subset Q ⊆ {0, 1}n. Then, the number of queries that such algorithms need in order to find
a string s ∈ S is at least n − 2. Moreover, for any constant ρ ∈ (0, 1), if the size of S is
|S| = ρ · 2n, then the number of queries required is n−O(1).
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The lower bounds in Theorem 1, like all the lower bounds in this paper, are
information-theoretic; that is, the arguments hold without making any assumptions
on the computational complexity of the algorithm searching for a solution, and with-
out any assumptions about the complexity of its queries. In Section 7 we state and
prove a refined version of the “moreover” part of Theorem 1, in which the O(1) term
is replaced by a precise term, which depends on the density ρ (and ρ is not necessarily
a constant). This refined version is tight, up to a single bit.

1.2 Lower bounds on parallel algorithms

The next question that we consider is whether the problem can be solved faster by a
parallel algorithm. Specifically, assume that the algorithm searching for a string in S
works in iterations. In each iteration, the algorithm sends p = p(n) queries to a density
oracle, where each question is a set Qi ⊆ {0, 1}n, and then receives p answers, where
each answer is a density estimation ν̃(Qi) =

|Qi∩S|
|Qi | ± µ. Can such an algorithm find a

string s ∈ S using less than n iterations?
One can obtain an efficient parallel algorithm that uses n/ log(p) iterations, 1 by

a straightforward adaptation of the method of conditional probabilities. Specifically,
instead of constructing a solution bit-by-bit, an algorithm constructs a solution block-
by-block, where each block consists of log(p) bits. That is, in each iteration, the algo-
rithm equipartitions the “current” search space to p sets, estimates the density of S in
each of the sets, and recurses into the set with highest estimated density. This yields
the following upper bound.

Theorem 2 (an upper bound for parallel algorithms; informal). For any p ∈ N and µ <
log(p+1)

4n , an algorithm that uses p density estimations with error µ in each iteration can find a
string in an unknown set S of size |S| ≥ 2n−1 using n

log(p+1) iterations. 2

For completeness, we provide the (straightforward) details for the proof of The-
orem 2 in Appendix A.1. Our main result for the setting of parallel algorithms is
that, unless the estimation error is extremely small (i.e., unless µ = o(1/poly(p))), the
algorithm described above is essentially optimal.

Theorem 3 (a lower bound on the number of iterations of parallel algorithms; informal). For
any µ > 0 and p ∈N, algorithms that use p density estimations with error µ in each iteration
need at least n

log(p+1)+log(1/µ)
iterations to find a string in a set S of size |S| ≥ 2n−1.

In the proof of Theorem 3, for every algorithm using less iterations than the as-
serted lower bound, we construct a set S (and a way to answer the algorithm’s queries
in a manner consistent with S, up to an error of at most µ) such that the algorithm
cannot find a string in S. In many natural cases, the circuit complexity of this “hard”

1All logarithms in the paper are to base 2.
2To obtain an upper bound of n/ log(p + 1), instead of n/ log(p), the algorithm partitions the space

in each iteration into p + 1 sets, and relies on the estimations for the density of S in the first p sets in
order to estimate the density of S in the (p + 1)th set.
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S is quite low, and in some of these cases membership in S can even be decided by a
poly(n)-size CNF.

Recall that the lower bound in Theorem 3 is proved under the assumption that
|S| ≥ 2n−1. One might expect that if S has significantly larger density (e.g., |S| =
(1 − o(1)) · 2n), then algorithms as above might be able to find a string in S using
less iterations. Our second result shows that even if |S| ≥ (1− 2−Ω(n)) · 2n, then the
lower bound asserted in Theorem 3 still holds, up to a constant multiplicative factor.
Actually, we generalize Theorem 3, by showing a trade-off between the density of S
and a lower bound on the number of iterations required to find a string in S.

Theorem 4 (a lower bound for parallel algorithms and large sets; informal). For any 0 < µ ≤
1/2, and p ∈ N, and ε > 0, algorithms as above need at least ε·n

log(p+1)+log(1/µ)
iterations in

order to find a string in an unknown set S of size |S| ≥ 2n − 2ε·n.

When S is the set of satisfying assignments for some circuit C, the setting of
|S| = (1− o(1)) · 2n corresponds to circuits that accept almost all of their assignments.
This derandomization setting has recently been studied by Goldreich and Wigder-
son [GW14].

1.3 Lower bounds on algorithms with large estimation error

The final question that we consider in this paper is what happens when the estimation
error µ is too large to use the method of conditional probabilities (i.e., µ = ω(1/n)). In
this setting, we are not necessarily interested in parallel algorithms, but rather simply
ask what is the number of estimations needed in order to find a string s ∈ S.

Similarly to the two previous sections, a simple algorithm will essentially be the
optimal one. Specifically, consider an algorithm that works in iterations; in each iter-
ation, the algorithm equipartitions the “current” search space into 24µ·n sets, obtains
estimates for the density of S in each of these sets, and recurses into the set in which
S has the highest estimated density. The point is that the depth of the recursion tree
is less than 1/µ, and thus an estimation error of µ suffices for this algorithm. 3 This
yields the following upper bound.

Theorem 5 (an upper bound for algorithms with large estimation errors; informal). For any
error µ > 0, an algorithm that only uses density estimations with error µ can find a string in
an unknown set S of size |S| ≥ 2n−1 using less than 2

µ · 24µ·n density estimations.

We provide the details for the proof of Theorem 5 in Appendix A.2. Note that
when the estimation error is µ = O(log(n)/n), the algorithm described above uses
poly(n) density estimations. Our main result in the current section is that whenever
µ ≥ 4·log(n)

n , the upper bound in Theorem 5 is essentially tight. To see this, observe
that when µ ≥ 4·log(n)

n , the upper bound in Theorem 5 is 2
µ · 24µ·n = 2O(µ·n); and when

3Indeed, when µ = O(log(n)/n), this is essentially the same algorithm as the parallel algorithm from
Theorem 2, when setting the number of estimations in each iteration to be p = 24·µ·n = poly(n).

3



µ > 1/4, the upper bound is trivial (i.e., larger than 2n). Thus, it is nearly matched by
the following lower bound.

Theorem 6 (a lower bound on the number of estimations needed by algorithms with large
estimation errors; informal). For any error µ ≥ 4·log(n)

n , at least 2Ω(µ·n) density estimations
are needed in order to find a string in an unknown set S of size |S| ≥ 2n−1. Moreover, if
µ ≥ 1

4 +Ω(1), then 2n/poly(n) estimations are needed to find a string in S of size |S| ≥ 2n−1.

Theorem 6 implies in particular that if the error satisfies µ = ω(log(n)/n), then
the problem cannot be solved efficiently (i.e., using only poly(n) estimations). We also
generalize Theorems 5 and 6, by showing a trade-off between the density of S, denoted
by ρ, and the number of estimations required to find a string in S. This generalization
is most interesting when considering sets S with small density (e.g., density ρ = O(µ)),
in which case the problem is much more difficult.

Theorem 7 (a generalization of Theorems 6 and 5; informal). For any error µ ≥ 12 ·
log(n)/n, the following holds:

1. For any density ρ ≤ (2−Ω(1)) · µ, at least 2n/poly(n) density estimations are needed
to find a string in a set S of size |S| ≥ ρ · 2n.

2. For any density ρ ≥ (2 − o(1)) · µ, it holds that 2Θ((µ/ρ)·n) density estimations are
necessary and sufficient to find a string in a set S of size |S| ≥ ρ · 2n.

1.4 Organization

In Section 2 we discuss the context of our results and previous related work. In Sec-
tion 3 we explain the techniques used to obtain our results, in high-level. Section 4
contains the formal definitions of the algorithms described above.

In Section 5 we prove the lower bounds on solving the problem in parallel (i.e.,
Theorems 3 and 4), and the corresponding upper bound (i.e., Theorem 2) is proved
in Appendix A.1. In Section 6 we prove the lower bounds on solving the problem
when the estimation error is large (i.e., Theorems 6 and 7), and the corresponding
upper bounds (i.e., Theorem 5 and the upper bound in Item (2) of Theorem 7) are
proved in Appendix A.2. In Section 7 we prove the lower bound on the number of
estimations needed to solve the problem when there is no estimation error (i.e., we
prove Theorem 1). Finally, in Section 8 we pose a strong version of the conjecture
of [MNN94] as an open question.

2 Previous works

Goldreich [Gol11] recently considered the hypothesis that promise-BPP = P , and
showed that it implies that BPP search problems (see [Gol11, Sec. 3]) can also be solved
in deterministic polynomial time. In particular, he showed that if promise-BPP = P ,
then there exists a deterministic polynomial-time algorithm that finds a satisfying as-
signment for an input circuit that accepts most of its assignments. Indeed, his solution

4



for search problems is based on reducing them to problems of estimating the density of
solutions in subsets of the search space, via the method of conditional probabilities. In
this context, our results demonstrate that his iterative solution cannot be significantly
improved upon when relying only on “black-box” techniques.

The current paper is thus situated within a line of work that studies the limitations
of black-box techniques in derandomization. Although many of the best current de-
randomization results are based on constructions that are essentially black-box (i.e.,
on pseudorandom generators that use very little information about the circuit that
they wish to “fool”), black-box techniques nevertheless have certain disadvantages in
the context of derandomization. In particular, constructing a black-box pseudoran-
dom generator (or even just a hitter) for a circuit class necessitates proving corre-
sponding lower bounds against that circuit class; 4 and black-box techniques cannot
be used in certain settings for hardness amplification, which is a common strategy to
try and prove the lower bounds necessary to construct pseudorandom generators via
the hardness-randomness paradigm (see, e.g., [Vio05, TV07]).

In addition, our results extend the results of Karp, Upfal, and Wigderson [KUW88],
who considered the question of parallelizing the method of conditional probabilities
in a different setting. Specifically, they considered algorithms that, for any set Q ⊆
{0, 1}n, can decide whether or not a solution for the search problem exists in Q (i.e.,
whether Q ∩ S = ∅). Also, in their setting the set S is only guaranteed to be non-
empty, rather than dense (as in our setting). While the algorithms in their setting
can employ the method of conditional probabilities, the authors showed that such
algorithms require n/ log(p + 1) iterations to find a solution, in general, where p is
the number of decision problems that can be solved in parallel in each iteration.

Motwani, Naor, and Naor [MNN94] conjectured that a similar lower bound would
hold even for a much stronger class of algorithms, namely the class of algorithms that
can compute exactly how many solutions exist in any subset Q. Thus, Theorems 3
and 4 affirm a weak version of their conjecture, where the difference is that in our
case, instead of obtaining the exact number of solutions in Q, the algorithm can only
obtain an estimate of the number of solutions in Q. In addition, Theorem 1 proves
their conjecture for the special case of p = 1 (i.e., when there is no parallelism).

3 Our techniques

Karp, Upfal, and Wigderson [KUW88] proved their lower bound (for algorithms that
can only probe for the existence of a solution in any subset) by an adversarial argu-
ment: For any algorithm A, they simulated the execution of A, and supplied adversar-
ial answers, in order to delay A’s progress in finding s ∈ S. In their argument, in each
iteration, the adversary has to answer A’s queries in a manner that is consistent with
the current information available to A (i.e., with all previous answers). However, since

4Impagliazzo, Kabanets, and Wigderson [IKW02] (and also, e.g., [KI04, Wil13, CIKK15]) showed an
analogous implication given any type of derandomization of promise-BPP (i.e., not necessarily a black-
box one), but the implied circuit lower bounds in this case are weaker and less direct.
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the adversary only provides “yes/no” answers, relatively little information is revealed
about S in each iteration, and thus relatively few constraints are imposed upon the
adversary when engineering answers in subsequent iterations.

As noted by [MNN94], the strategy of [KUW88] does not easily extend to a setting
in which A obtains the exact number of solutions in any subset that it queries. This is
because in the latter case, the adversary has to answer A’s queries with exact density
values that are perfectly consistent with a fixed set S, which imposes strict constraints
on the adversary in subsequent iterations. This seems to require much more careful
engineering of answers on the adversary’s part.

The key observation underlying most of the proofs in this work is that if we, as
adversaries, are allowed a small error in our answers to A, then we do not need to
engineer the answers so carefully. One natural approach to circumvent this challenge,
which we use in the proofs of Theorems 6 and 7, is to give adversarial answers to
A, and in the end show that a random set is consistent with our answers, up to a
small error. Another approach, which we use in the proofs of Theorems 3 and 4, is
to start the simulation with a “tentative” set S, modify this set adversarially through-
out the execution, and answer A in each iteration according to the current state of S
(instead of engineering artificial answers). If the modifications that we make to the
set S throughout the execution are not too substantial, then the final version of S is
not very different from any of the tentative ones, which implies that the error in our
answers was never too big. The latter approach also allows upper bounding the circuit
complexity of S (since S is iteratively constructed, rather than being a random set).

In contrast to the above, in Theorem 1 we consider algorithms without an estima-
tion error, and thus we need to fully engineer exact adversarial answers. To do so, we
maintain a template for the set S, which is a partition of {0, 1}n such that each set P
in the partition is labeled with the density of S in P. Given each query of A, we refine
the partition, splitting each set P in the partition into two subsets, and allocating the
|P ∩ S| strings of S in P to each of these two subsets. When allocating these strings
(after each query and for each P), we make sure that unless the partition is extremely
refined, neither of the subsets of P is fully contained in S. Thus, the algorithm needs
to use many queries, in order to yield an extremely refined partition, which will allow
it to find a singleton s ∈ S. This is formally proved by defining a potential function
over the sets in our partition, and bounding its rate of change.

4 Preliminaries

All logarithms in the paper are to base 2. We formally define the algorithms described
in Section 1 by using the notion of oracle machines, where the oracle is the device
supplying density estimations. An oracle function for a set S gets as input a sequence
of p density queries, and outputs p estimations for the density of S in each of the
queried sets, where each estimation is correct up to a relative additive error of µ.

Definition 8 (p-parallel µ-error density estimators). For n, p ∈ N, and µ < 1, and a set
S ⊆ {0, 1}n, a function fS : P({0, 1}n)p → [0, 1]p is called a p-parallel µ-error density
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estimator for S if for every ~Q = (Q1, Q2, ..., Qp) ∈ P({0, 1}n)p, and every j ∈ [p], it holds

that
∣∣∣ν̃(Qj)−

|Qj∩S|
|Qj|

∣∣∣ ≤ µ, where ν̃(Qj) is the jth element in the sequence fS(~Q).5

Definition 9 (hitters with access to density estimators). Let µ : N→ [0, 1), and let p : N→
N. A deterministic algorithm A is called a hitter with oracle access to p-parallel µ-error
density estimators if for every n ∈ N and S ⊆ {0, 1}n, given input 1n and oracle access to a
p(n)-parallel µ(n)-error density estimator for S, the algorithm A outputs a string s ∈ S.

We deliberately avoid the question of how A specifies its queries to the oracle, and
just assume that all queries can be perfectly communicated. Our lower bounds are
thus solely information-theoretic. On the other hand, the algorithms establishing the
upper bounds in the paper only use queries about subcubes of {0, 1}n, which can be
easily communicated in any reasonable model of an oracle Turing machine.

When p = 1 (i.e., when there is no parallelism), we just refer to a µ-error density

estimator and to a hitter with oracle access to µ-error density estimators.
A hitter as in Definition 9 operates in iterations, where in each iteration it issues a
query-tuple to the oracle (i.e., a sequence of p sets), and receives an answer-tuple (i.e.,
p correponsing density estimations). When we will discuss a specific query (resp.,
specific answer), we will usually mean one of the p sets queried in some iteration
(resp., one of the p density estimations given in the answer).

5 Lower bounds on parallel algorithms

In this section we show lower bounds on solving the problem discussed in this paper
“in parallel”; that is, we lower bound the number of iterations used by hitters with
oracle access to a p-parallel µ-error density estimator.

5.1 The main lower bound

Let us state Theorem 3 formally, using the definitions from Section 4, and prove it.

Theorem 10 (a lower bound for parallel algorithms; Theorem 3, restated). For µ : N→ (0, 1
2 )

and p : N → N, let A be a hitter with oracle access to p-parallel µ-error density
estimators. Then, for any n ∈ N, there exists a set S ⊆ {0, 1}n of size |S| ≥ 2n−1 and a
p(n)-parallel µ(n)-error density estimator fS for S such that the number of iterations that A
uses when given oracle access to fS is at least

n
log(p(n)) + log(1/µ(n)) + 1

.

The lower bound in Theorem 10 is slightly weaker than the bound claimed in
Theorem 3 (i.e., than n

log(p(n)+1)+log(1/µ(n)) ). The slightly stronger upper bound will
be obtained by optimizing the value of a single parameter in the proof. Since this
improvement is technical and relatively simple, we defer its proof to Appendix C.

5We denote by P({0, 1}n) the power set of {0, 1}n.
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Proof. Let n ∈ N, and let p = p(n) and µ = µ(n). Assume towards a contradiction
that A always uses R < n

log(p)+log(1/µ)+1 iterations. We will construct a set S and a
p-parallel µ-error density estimator fS for S that “fool” A: That is, fS answers all of
A’s queries in a manner that is consistent with S, up to a relative error of µ, but in the
end of the execution of A, the algorithm outputs a string that is not in S.

Actually, in the proof it will be technically more convenient to work with a def-
inition for hitters that is slightly different from the one in Definition 9: Instead of
requiring that the algorithm outputs a string s ∈ S in the end of the execution (as in
Definition 9), we require that the hitter will ask the oracle about a singleton Q = {s},
and receive an answer ν̃({s}) > µ (which implies that s ∈ S). The number of iterations
required to solve the problem is identical in both definitions, up to ±1 iteration.6

High-level overview. Our strategy is similar to the one in the proof of [KUW88, Thm.
1]: We simulate the execution of A, and answer the algorithm’s queries adversarially, in
order to delay its progress in finding small sets that contain elements in S. Specifically,
let us call a set Q a positive set if at some point during the execution of A, the algorithm
queried the oracle about the set Q and was answered by a non-zero value (i.e., by
ν̃(Q) > 0). Our goal is that in the end of the execution, all positive sets will be of size
at least 2, which will imply that A did not find any positive singleton.

Of course, our answers throughout the execution of A have to be consistent with
some fixed set S, up to an estimation error of µ. To ensure this, we will maintain
a “tentative set” (i.e., a tentative version of the set S), and provide answers in each
iteration according to the tentative set at that iteration. We will show that the final
version of the set S, which is the tentative set in the end of the execution, is not
very different from any of the non-final versions. Thus, the answers given to A are
consistent, up to a small error (less than µ), with the set S.

We initialize the tentative set as S0 = {0, 1}n. In iteration i ∈ [R], we modify the
current tentative set, denoted Si−1, and obtain the new tentative set, Si, as follows:

• We start iteration i with a guarantee that all positive sets are of size at least hi
(where hi is a parameter to be determined).

• Given A’s queries, we remove from the tentative set all the strings from queried-
sets that are “too small”. That is, the new tentative set Si is obtained by removing
from Si−1 every string that belongs to a queried set Q′ such that |Q′| < `i (where
`i is also a parameter to be determined).

• We answer the queries of A according to the (current) tentative set Si; that is, the
query Q is answered by |Q ∩ Si|/|Q|. Thus, in the next iteration, all positive sets
will be of size at least hi+1 = `i.

We define S to equal the tentative set at the end of the execution (i.e., S = SR).
Let us now describe our setting of parameters, and explain why it suffices to prove

6This is the case because if an algorithm found a string s ∈ S, it can use an additional iteration to
query Q = {s} and obtain an estimation that is at least 1− µ > µ (since µ < 1/2); and given an answer
greater than µ to a singleton query Q′ = {s′}, it follows that s′ ∈ S, and thus the algorithm can output s′.
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the theorem. In the first iteration we have h1 = 2n, which holds vacuously. We define
`i in each iteration such that `i/hi = µ/(2 · p). It follows that `R = (µ/(2p))R · h1 =
(2p/µ)−R · 2n. Relying on the hypothesis that R < n

log(p)+log(1/µ)+1 = log2p/µ(2
n), we

have that `R > 1, which means that A did not find any positive singleton after R
iterations.

Now, let Q be a positive set that was queried in iteration i, and let us count the
number of strings removed from the tentative set in subsequent iterations. Observe
that the number of strings removed in iteration i + 1 is less than p · `i+1 = (µ/2) ·
hi+1 = (µ/2) · `i. Since in iteration i we answer positively only for sets of cardinality
at least `i, we know that |Q| ≥ `i, and thus the number of strings removed in iteration
i + 1 is less than (µ/2) · |Q|. This observation is generalized in Claim 10.4, where we
show that in subsequent iterations, the number of strings removed from the tentative
set decays exponentially. Hence, when summing over all iterations i + 1, ..., R, the
overall number of strings removed is less than µ · |Q|. In similar fashion, we also show
that the overall number of strings removed from S0 = {0, 1}n is less than µ · |S0|, and
thus we have that |S| > 2n−1.

The proof details. Without loss of generality, assume that A never repeats the same
query more than once. We construct the set S by the following procedure.

1. Let S0 ← {0, 1}n, and let α = µ/(2 · p).

2. Run the algorithm A. For i ∈ [R], answer the queries of A in iteration i as follows:

(a) Let T be a temporary set, initialized with the value T ← Si−1. Let ~Q =(
Q(i)

1 , ..., Q(i)
p

)
be the query-tuple sent by A to the oracle in iteration i.

(b) For every j ∈ [p] such that |Q(i)
j | < αi · 2n, remove the strings in Q(i)

j from

T; that is, let T ← T \Q(i)
j .

(c) Let Si ← T. Send the algorithm A the answer-tuple
(

ν̃(Q(i)
1 ), ..., ν̃(Q(i)

p )
)

such that for every j ∈ [p] it holds that ν̃(Q(i)
j ) = |Q(i)

j ∩ Si|/|Q(i)
j |; that is,

answer according to the density of Si in Q(i)
j .

3. Let S def
== SR.

We will prove the following facts: (1) At the end of the execution, all positive sets
are not singletons; (2) All the answers given to the algorithm throughout the execution
are consistent with the final set S, up to an error of µ; and (3) The set S satisfies
|S| > 2n−1. Let us begin by a simple observation that will allow us to infer Fact (1):

Observation 10.1. Let Q ⊆ {0, 1}n be a positive set that was queried by the algorithm in
iteration i (i.e., Q was answered by ν̃(Q) > 0). Then |Q| ≥ αi · 2n.
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Proof. In Step (2b) of iteration i we removed every queried set of size less than αi · 2n

from S, before answering the queries in Step (2c). Since Q is positive, it means that we
answered the query Q with a non-zero value, and thus |Q| ≥ αi · 2n. �

Claim 10.2. Let Q be a positive set. Then |Q| > 1.

Proof. By Observation 10.1, we have that |Q| ≥ αi · 2n, for some i ≤ R. However, by
the hypothesis that R < n

log(p)+log(1/µ)+1 = log2p/µ(2
n) = log1/α(2

n), we have that

αi · 2n ≥ (1/α)−R · 2n > 1. �

Let us now state another simple observation, which will be used to prove Facts (2)
and (3).

Observation 10.3. Let Q ⊆ {0, 1}n. Then, in any iteration i ∈ [R], we remove less than
p · αi · 2n strings from the intersection of Q with the tentative set; that is,

|Q ∩ Si−1| − |Q ∩ Si| < p · αi · 2n .

Proof. In Step (2b) of iteration i we remove strings from at most p sets from T = Si−1
to obtain Si, whereas each of these p sets is of size less than αi · 2n. �

The following claim asserts that for any query Q issued by A, the discrepancy
between the answer that we give for Q and the density of the final set S in Q is at most
µ. For the sake of streamlining the overall proof (of Theorem 10), we also define a
fictitious “iteration zero”: Recalling that S0 = {0, 1}n, we consider a fictitious iteration
i = 0, in which the algorithm queried Q = {0, 1}n, and received the answer ν̃(Q) = 1.
Then, the meaning of the following claim with respect to this query is that in the end
of the execution, the density of the final set S in {0, 1}n is at least 1− µ > 1/2.

Claim 10.4. For every iteration 0 ≤ i ≤ R and every query Q = Q(i)
j , where j ∈ [p], recall

that ν̃(Q) denotes the answer given to the algorithm to query Q, and denote the density of the
final set S in Q by ν(Q) = |Q∩S|

|Q| . Then, it holds that

∣∣∣ν̃(Q)− ν(Q)
∣∣∣ = 1
|Q| ·

(∣∣∣|Q ∩ Si| − |Q ∩ S|
∣∣∣) < µ .

Proof. If ν̃(Q) = 0, then ν(Q) = 0 (since we only remove strings from the tentative set
throughout the execution), and the claim follows. Also, if i = R, then the assertion in

10



the claim is trivial (since SR = S). Otherwise, it holds that

|Q ∩ Si| − |Q ∩ S| =
R

∑
j=i+1

|Q ∩ Sj−1| − |Q ∩ Sj|

<
R

∑
j=i+1

p · αj · 2n (Obs. 10.3)

≤ |Q|
αi ·

R

∑
j=i+1

p · αj (Obs. 10.1)

= |Q| ·
R−i

∑
j=1

p · αj = |Q| ·
R−i

∑
j=1

p ·
(

µ

2 · p

)j

= |Q| ·
R−i−1

∑
j=0

(µ/2) ·
(

µ

2 · p

)j

< |Q| · (µ/2) ·
R−i−1

∑
j=0

2−j ( µ
p < 1)

< µ · |Q| ,

which implies that
∣∣∣ν̃(Q)− ν(Q)

∣∣∣ < µ. �

Fact (2) follows immediately from Claim 10.4. To see that Fact (3) holds, invoke

Claim 10.4 for i = 0, to get that
∣∣∣|S|/2n − 1

∣∣∣ = ∣∣∣|S0 ∩ S|/|S| − 1
∣∣∣ < µ, which implies

that |S| > (1− µ) · 2n > 2n−1 (since µ < 1/2). Theorem 10 follows.

5.2 The lower bound holds even when S has density 1− o(1)

In this section we prove Theorem 4, which asserts a trade-off between the density of
S and a lower bound on the number of iterations that hitters with oracle access to
density estimators need to find a string s ∈ S.

Theorem 11 (a lower bound for parallel algorithms and large sets; Theorem 4, restated). For
µ : N → (0, 1

2 ) and p : N → N, let A be a hitter with oracle access to p-parallel µ-error
density estimators. Then, for any ε > 0 and n ∈ N, there exists a set S ⊆ {0, 1}n of size
|S| ≥ 2n− 2ε·n and a p(n)-parallel µ(n)-error density estimator fS for S such that the number
of iterations that A uses when given oracle access to fS is at least ε·n

log(p(n))+log(1/µ(n))+1 . 7

Proof. In the proof of Theorem 10, the threshold that defines a “small” query starts
out quite high; that is, `1 = α · 2n, where α = (µ/2p). (In each subsequent iteration,

7Similarly to Theorem 10, the lower bound in Theorem 11 can be slightly strengthened, and this
improvement is detailed in the end of Appendix C.
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the threshold decreases by a multiplicative factor of α.) Thus, in the first iteration we
might remove `1 · p ≈ µ · 2n strings from the tentative set.

In the current proof we wish to avoid the removal of so many strings from the
tentative set. To do so, we will set the threshold in the first iteration to be about 2ε·n.
Specifically, denoting by R = n

log(p)+log(1/µ)+1 the number of iterations in the proof of
Theorem 10, we will set the threshold `1 to the value that it obtained (in the proof of
Theorem 10) in iteration i ≈ (1− ε) · R; that is, `1 ≈ α(1−ε)·R · 2n = 2ε·n. Then, in
each subsequent iteration, we will decrease the threshold by a multiplicative factor of
α. The number of removed strings will thus be less than 2ε·n, whereas the number of
iterations (i.e., the lower bound) will be ε · R = ε·n

log(p)+log(1/µ)+1 . Details follow.
Let n ∈N, and let p = p(n) and µ = µ(n). Let α = µ/(2p), and letR = log1/α(2

n).
Let A be a hitter as in the theorem’s hypothesis, and assume towards a contradiction
that A always uses R < ε · R iterations. We use the same adversarial simulation
process as in the proof of Theorem 10, but with different parameters. Specifically, we
start with h1 = 2n, but define `1 = αR1 · 2n, where R1 = (1− ε) · R+ 1. Then, in each
subsequent iteration i ≥ 2, we define `i such that `i/`i−1 = α.

To see that in the end of the execution every positive set is not a singleton, observe
that for every i ∈ [R] it holds that `i = `1 · αi−1 = αR1+(i−1) · 2n. Thus, for every positive
set Q that was queried in iteration i ∈ [R] it holds that |Q| ≥ `i ≥ `R = αR1+(R−1) · 2n >
αR · 2n = 1, where the last inequality is since R < ε · R. The fact that our answer for
every positive set is correct, up to an error of µ, can be proven almost identically to
the proof in Theorem 10. 8 Finally, to see that |S| ≥ 2n − µ · 2ε·n, note that the overall
number of strings that we removed from S0 = {0, 1}n throughout the execution in
order to obtain the final set S is less than

R

∑
i=1

p · `i = p · `1 ·
R

∑
i=1

αi−1

< p · αR1 · 2n · 1
1− α

< 2 · p · α(1−ε)·R+1 · 2n

= µ · 2ε·n .

5.3 The circuit complexity of the “hard” set S

Recall that a motivating example for the problem discussed in this paper is when S is
the set of satisfying assignments for some circuit C, and the algorithm A tries to find
a satisfying assignment for C. One might intuitively expect that in order to construct
a “hard” set S for A (i.e., a set S that forces A to use many iterations), a “complicated”
circuit C will be needed. However, we observe that the circuit complexity of the “hard”

8For a positive set Q that was queried in iteration i we have that |Q ∩ Si| − |Q ∩ S| < ∑R
j=i+1 p · `j =

∑R
j=i+1 p · αR1+j−1 · 2n ≤ |Q|

αR1+i−1 ·∑R
j=i+1 p · αR1+j−1 = |Q| ·∑R−i

j=1 p · αj < µ · |Q|.
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sets that are constructed in the proofs of Theorems 10 and 11 is proportional only to
the circuit complexity of the sets that A queried.

To see that this is the case, note that in both proofs, S = {0, 1}n \ Q, where Q is
the set of queries that were considered “too small” in the corresponding iteration, and
removed from the tentative set (i.e., Q =

{
Q(i)

j : i ∈ [R] ∧ |Q(i)
j | < `i

}
). Since we are

discussing non-uniform complexity, the collection Q can be hard-wired to the circuit,
so the circuit does not need to compute the sizes of queried-sets in order to find out
which sets are actually small (i.e., which sets are in Q). It follows that S can be decided
by an AND of NOTs of circuits that decide the small Q’s. In particular, if A only queried
a polynomial number of subcubes of {0, 1}n, then S can be decided by a polynomial-sized CNF.

6 Lower bounds on algorithms with large estimation error

In this section we prove lower bounds on the number of estimations needed to find a
string in an unknown set S (with large density) when the estimation error µ is large
(i.e., when µ ≥ 4·log(n)

n ). We stress that in this setting we do not consider parallel
algorithms, but rather focus only on the total number of estimations needed to solve the
problem. Recall, from Section 4, that when p = 1 (i.e., when there is no parallelism),
we refer to 1-parallel µ-error density estimators simply as µ-error density estimators.

The section is organized as follows. First, as a warm-up, we prove Item (1) of
Theorem 7; that is, we show that finding a string in a set S with density less than 2 · µ
requires 2n/poly(n) queries. This proof will illustrate a basic idea that will appear
in the subsequent proofs. Then, we will prove Theorem 6, which asserts that finding
a string in a set S of size |S| ≥ 2n−1 requires 2Ω(µ·n) queries. Finally, we will prove
Item (2) of Theorem 7, which generalizes Theorem 6, by showing a trade-off between
the density of S and the number of estimations needed to find a string in S.

6.1 Warm-up: When the error is close to the density of S

Let us begin by proving a statement that implies both the “moreover” part of Theo-
rem 6 and Item (1) of Theorem 7. Specifically, we show that for any value of µ (rather
than µ ≥ 4·log(n)

n or µ ≥ 12·log(n)
n , as in the statements of Theorems 6 and 7, respec-

tively), finding a string in a set S with density (2−Ω(1)) · µ requires Ω
(
µ2 · 2n/n

)
density estimations.

Proposition 12 (a lower bound for small density). Let µ : N → (0, 1/2), and let A be
a hitter with oracle access to µ-error density estimators. Then, for any constant β < 2, and
sufficiently large n ∈N, there exists a set S ⊆ {0, 1}n of size |S| ≥ ρ · 2n, where ρ = β · µ(n),
and a µ-error density estimator fS for S, such that the number of iterations that A uses when
given oracle access to fS is Ω

(
µ(n)2 · 2n/n

)
.

Proof sketch. We present a high-level description of the proof, which, for simplicity,
assumes that µ is constant. Since the low-level details are relatively straightforward,
we defer their presentation to Appendix B.
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Similar to the proofs of Theorems 10 and 11, we simulate A for R = o(2n/n) iter-
ations and provide adversarial oracle answers. However, in the current proof we use
a threshold for defining “small” sets that is fixed throughout the execution, instead
of iteratively decreasing the threshold (as in the previous proofs). Specifically, when-
ever A queries a set of size less than (roughly) n, we provide the estimate zero; and
whenever A queries a set of larger size, we provide the fixed estimate µ (instead of an
estimate that is based on a “tentative” set). Indeed, in the latter case, our estimate µ is
equal to the estimation error. In the end of the execution, we let S be a random subset
of density τ ∈ (ρ, 2µ) of the set L, where L consists of all elements that do not belong
to any small queried set.

The idea behind this approach is as follows. First, observe that A did not find a
positive singleton, since we answer zero for all small sets; and note that the density
of S in any small set is indeed zero. Now, in a large set Q, the density of S might be
small, if many elements in Q also belong to small sets. However, since our estimate
for Q is sufficiently close to zero (i.e., ν̃(Q) equals the estimation error µ), even if the
actual density is zero (i.e., if S∩Q is empty), this estimate is still correct, up to an error
of µ. On the other hand, the expected density of S in Q is at most τ < 2 · µ, and thus,
with very high probability, this density will not exceed 2 · µ (recall that |Q| > n). 9 To
conclude the proof, note that the expected density of S in {0, 1}n is τ · |L| > ρ · 2n,
where the inequality relies on the fact that |L| > 2n − R · n and on the choice of τ > ρ.
The full proof, which appears in Appendix B, merely details the above with more
accurate parameters, in order to also handle a sub-constant µ.

6.2 The main lower bound

We now formally state Theorem 6 and prove it, by refining the basic idea that was
used in the proof of Proposition 12. Note that we only have to prove the first part
of the theorem’s assertion (i.e., without the “moreover” part), since the “moreover”
part follows from Proposition 12. We will actually prove a statement slightly stronger
than the one in Theorem 6: Instead of proving the lower bound when the set S of size
|S| ≥ 2n−1, we will prove it assuming that |S| ≥ (1− µ) · 2n.

Theorem 13 (a lower bound for large errors; Theorem 6, restated). Let µ : N → (0, 1/2)
such that µ(n) ≥ 4·log(n)

n , and let A be a hitter with oracle access to µ-error density estimators.
Then, for any sufficiently large n ∈N, there exists a set S ⊆ {0, 1}n of size |S| ≥ (1− µ) · 2n,
and a µ-error density estimator fS for S, such that the number of iterations that A uses when
given oracle access to fS is at least 2Ω(µ·n).

Proof. Let µ′ = µ/2. We will first present an overview of the proof, where we assume
for simplicity that µ is constant. Similar to the proof of Proposition 12, we simulate A,
and answer its queries according to one fixed rule, which does not change throughout

9Specifically, we will use a Chernoff bound to claim that the density of S in Q deviates from τ by less
than 2µ− τ < µ · (1− β), and hence (to have the probability of such a deviation be at most 2−n) we will
actually require that |Q| > n

(1−β)2·µ2 = Ω(n/µ2).
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the execution. However, in the current proof, instead of using only one threshold
for the size of “small” sets (as in the proof of Proposition 12), we consider several
thresholds for the sizes of sets.

The main idea is to arrange all sets of size more than n in “levels”, where the ith

level contains sets of size between 2(i−1)·µ′·n and 2i·µ′·n. Then, during the execution, we
will output the same fixed estimate for all queried-sets in the same level; specifically,
for sets in level i, we will output the estimate i · µ′. Note that if we use 1/µ′ levels,
then our estimate for the set {0, 1}n, which is in the highest level, is ν̃({0, 1}n) = 1;
this implies that any S consistent with our answers has density at least 1− µ. To see
that there exists a set S that is consistent with such answers, fix a queried-set Q in
level i. If the algorithm makes at most R � 2µ′·n queries, then the vast majority of
strings in Q do not belong to queried-sets of level i − 2 or less, since the number of
such strings is at most R · 2(i−2)·µ′·n � |Q|. Thus, if we include every string w ∈ Q
in S with probability `(w) · µ′, where `(w) is the level of the smallest queried-set that
contains w, then the vast majority of strings in Q will be included in S with probability
either (i − 1) · µ′ or i · µ′. Hence, the expected density of S in Q will be close to the
interval

[
(i− 1) · µ′, i · µ′

]
, which implies that, with high probability, the actual density

of S in Q will not deviate from our estimate of ν̃(Q) = i · µ′ by more than 2 · µ′ = µ.
Let us now provide further details for this idea. We partition the power set of

{0, 1}n into levels as follows. The zero level, denoted L0, consists of all sets of size
at most (roughly) n; this is analogous to “small” sets in the proof of Proposition 12.
For i = 1, ..., 1/µ′, the ith level, denoted Li, consists of all sets that are not included
in any level j < i, and that are of size at most 2i·µ′·n. Observe that for every i ≥ 3,
every set in Li is larger than every set in Li−2 by a multiplicative factor of at least 2µ′·n.
After R ≈ µ′ · 2µ′·n iterations, in which we act as above (i.e., answer ν̃(Q) = i · µ′ for
Q ∈ Li), we let S be a random set such that every string w ∈ {0, 1}n is included in S,
independently, with probability `(w) · µ′ (recall that `(w) is the level of the smallest
queried-set that contains w, or `(w) = 1/µ′, if w was not included in any queried-set).

Note that A cannot find a positive singleton, since we output the estimate zero
for every queried-set in L0 (i.e., every set of size smaller than (roughly) n). Also note
that strings in queried-sets in L0 are never included in S, and thus our estimate (of
zero) for every queried-set in L0 is always correct. Our main claim is that, with high
probability, for any queried-set Q ∈ Li, where i ≥ 1, the density of S in Q, denoted by δS(Q),
satisfies i · µ′ − µ ≤ δS(Q) ≤ i · µ′ + µ. This claim implies that our estimate for Q is
correct, up to an error of µ. Let us sketch the proof of this claim.

• To see that δS(Q) ≤ i · µ′+ µ = (i + 2) · µ′, note that every w ∈ Q is included in S
with probability `(w) · µ′ ≤ i · µ′, where the inequality is because `(w) is upper
bounded by the level of Q, which is i.

• To see that δS(Q) ≥ i · µ′ − µ = (i − 2) · µ′, first note that this lower bound is
trivial for i ≤ 2 (because i− 2 ≤ 0). If i ≥ 3, the number of strings from queried-
sets of level j ≤ i− 2 in Q is at most R ·maxQ′∈Li−2 |Q′|. Now, recall that every set
in Li is larger than every set in Li−2 by a multiplicative factor of at least 2µ′·n, and
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that R ≈ µ′ · 2µ′·n. Hence, the vast majority of strings w ∈ Q satisfy `(w) ≥ i− 1,
and they will be included in S with probability at least (i− 1) · µ′. 10

The foregoing establishes that a random set is consistent with our answers to A.
Since we output the estimate 1 for any set in level i = 1/µ′, and in particular for the set
{0, 1}n ∈ L1/µ′ , it follows that the overall density of S is at least (1− µ) · 2n. We now
turn to the actual argument, which uses slightly more refined parameters, in order to
also handle the case of a sub-constant µ.

The setting of parameters. Recall that µ′ = µ/2, and, for simplicity, assume that 1/µ′

is an integer. We will repeatedly use the fact that

µ′ ≥ 2 · log(n)
n

> 2− log(n)+log log(n) ≥ 2−(µ
′·n)/2+ω(1) . (6.1)

For α = 1/4µ′, we define the zero level to be L0 = {T ⊆ {0, 1}n : |T| ≤ α · n},
and the first level to be L1 = {T ⊆ {0, 1}n : α · n < |T| ≤ 2µ′·n}. To see that L1 is
non-empty, note that α · n = n/4µ′ < 2log(n)+(µ′·n)/2 < 2µ′·n, where the first inequality
relies on Eq. (6.1), and the second inequality uses the fact that µ′ ≥ 2·log(n)

n . Now, for
every i ∈ {2, ..., 1/µ′}, we define the ith level to consist of all sets of size more than
2(i−1)·µ′·n and at most 2i·µ′·n (i.e., Li = {T ⊆ {0, 1}n : 2(i−1)·µ′·n < |T| ≤ 2i·µ′·n}).

Assume towards a contradiction that the number of iterations used by A is at most
R = µ′

2 · 2µ′·n > 2Ω(µ·n), where the inequality relies on Eq. (6.1). The following fact
follows from the definition of R and of the levels.

Fact 13.1. For every i ≥ 3 it holds that minT∈Li{|T|} >
(

2
µ′ · R

)
·maxT∈Li−2{|T|}.

Proof. Since i− 2 ≥ 1, the maximal size of a set in Li−2 is 2(i−2)·µ′·n. On the other hand,
the minimal size of a set in Li is more than 2(i−1)·µ′·n = 2

µ′ · R · 2(i−2)·µ′·n. �

The proof itself. We simulate A for R iterations, and for every query Q that it makes,
we answer ν̃(Q) = i · µ′, where i is such that Q ∈ Li. For the sake of streamlining
the proof, we assume that A also queried the set Q′ = {0, 1}n ∈ L1/µ′ , and received
the estimate ν̃(Q′) = 1. Let S̃ be a random set such that every string w ∈ {0, 1}n is
included in S̃ with probability `(w) · µ′, where `(w) is the minimal i ∈ {0, ..., 1/µ′}
such that w is included in a queried set Q ∈ Li.

Note that for any Q ∈ L0, and any choice of S̃, it holds that S̃ ∩ Q = ∅, and thus
our estimate of ν̃(Q) = 0 is correct. Now, fix a queried-set Q ∈ Li, where i ≥ 1.
The following claim asserts that with high probability, the density of S̃ in Q does not
significantly exceed i · µ′.

10Note that the gap between our estimate of i · µ′ and the lower bound of δS(Q) ≥ (i− 2) · µ′ is actually
comprised of two gaps: The first is the gap between i · µ′ and (i− 1) · µ′, which is because many strings
w ∈ Q might be included in S with probability `(w) = i− 1; and the second is the gap between (i− 1) · µ′
and (i− 2) · µ′, due to the deviation of the density of S from its expectation. This differs from the case
of the upper bound of δS(Q) ≤ (i + 2) · µ′, in which the gap of 2 · µ′ is only due to the deviation of the
density of S from its expectation.
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Claim 13.2. For i ∈ [1/µ′], let Q ∈ Li be a queried-set. Then, with probability more than
1− 2−µ′·n, the density of S̃ in Q is at most (i + 2) · µ′; that is, |Q∩S̃|

|Q| ≤ (i + 2) · µ′.

Proof. Every string w ∈ Q is included in S̃ with probability `(w) · µ′ ≤ i · µ′ (where
the inequality is since `(w) is upper bounded by the level of Q, which is i). Thus, the
expected density of S̃ in Q is at most i · µ′. Since i ≥ 1, it holds that |Q| > α · n = n/4µ′.

Relying on a Chernoff bound, we have that Pr
[
|Q∩S̃|
|Q| > (i + 2) · µ′

]
< 2−(2µ′)2·|Q| <

2−µ′·n. �

Referring again to a fixed set Q ∈ Li, where i ≥ 1, the following claim asserts that
with high probability, the density of S̃ in Q is at least (i− 2) · µ′.

Claim 13.3. For i ∈ [1/µ′], let Q ∈ Li be a queried-set. Then, with probability more than
1− 2−µ′·n, the density of S̃ in Q is at least (i− 2) · µ′.

Proof. When i ≤ 2 the claim is trivial. For i ≥ 3, the number of strings w ∈ Q such that
`(w) ≤ i− 2 is at most R ·maxQ′∈Li−2{|Q′|} <

µ′

2 · |Q|, where the inequality is due to
Fact 13.1. Now, note that every string w′ such that `(w′) ≥ i− 1 is included in S̃ with
probability at least (i− 1) · µ′. Thus, the expected density of S̃ ∩Q is at least

(1− µ′/2) · (i− 1) · µ′ > (i− 1.5) · µ′ ,

where the inequality is since µ′ · (i− 1) ≤ µ′ · (1/µ′ − 1) < 1.
Since i ≥ 3, we have that |Q| > 22·µ′·n. Using a Chernoff bound, we get that

Pr
[
|Q∩S̃|
|Q| < (i − 2) · µ′

]
< 2−(µ

′/2)2·|Q|; to upper bound the right-hand side (i.e., the

expression 2−(µ
′/2)2·|Q|), note that

(µ′/2)2 · |Q| > 2−µ′·n+ω(1)−2 · |Q| (Eq. (6.1))

> 2µ′·n (|Q| > 22·µ′·n)
> µ′ · n ,

which implies that Pr
[
|Q∩S̃|
|Q| < (i− 2) · µ′

]
< 2−µ′·n. �

Combining Claims 13.2 and 13.3, we deduce that for every queried-set Q ∈ Li, the
probability that the density of S̃ in Q deviates from i · µ′ by more than 2 · µ′ = µ is
less than 2 · 2−µ′·n < 1/R. By a union-bound over R sets, there exists a choice of S̃
that satisfies the above for every queried-set, and we let S be such a choice. Since we
assumed that A also issued the query Q′ = {0, 1}n ∈ L1/µ′ (and was answered by
ν̃(Q′) = 1), it follows that the overall density of S in {0, 1}n is at least 1− µ.
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6.3 A generalization: When S has density between 2µ and 1− µ

We now formally state and prove the lower bound in Item (2) of Theorem 7, which
generalizes Theorem 13, by asserting a trade-off between the density of S and a lower
bound on the number of estimations required to find a string in it. The proof will be
obtained by slightly modifying the proof of Theorem 13. The corresponding upper
bound in Item (2) of Theorem 7 is proved in Appendix A.2.

Theorem 14 (a lower bound for large errors and arbitrary density; Theorem 7, restated). Let
µ : N → (0, 1/2) such that µ(n) ≥ 12·log(n)

n , and let A be a hitter with oracle access to
µ-error density estimators. Then, for any sufficiently large n ∈ N, and any density ρ ∈
[µ(n), 1− µ(n)], there exists a set S ⊆ {0, 1}n of size |S| ≥ ρ · 2n, and a µ-error density
estimator fS for S, such that the number of iterations that A uses when given oracle access to
fS is at least 2Ω((µ/ρ)·n).

Note that in Theorem 14 we actually consider densities in the interval ρ ∈ [µ, 1− µ].
Thus, there is a slight overlap between the lower bound in Theorem 14 and the stronger
lower bound in Proposition 12, for density ρ ≤ (2−Ω(1)) · µ.

Proof. In the proof of Theorem 13, we partitioned the collection of sets of size larger
than (roughly) n into 1/µ′ levels. The density of the set S was proportional to the
number of levels, because we supplied the density estimate i · µ′ for sets in level i (and
in particular, the estimate 1 for the set {0, 1}n in level i = 1/µ′). On the other hand,
the lower bound on the number of estimates was proportional to the height of each level
i = 2, 3, ..., 1/µ′, where the height of a level is ratio between the size of the largest set
in it and the size of the smallest set in it.

In the current proof, we wish to obtain a set S with smaller density (i.e., density
ρ instead of density 1− µ), but improve the lower bound on the number of estimates.
We will do so by partitioning the subsets of {0, 1}n into fewer levels, each of larger
height. Specifically, we let µ′ = µ/2, and partition the collection of sets of size more
than n into slightly more than ρ/µ′ levels, each of height about 2n/(ρ/µ′). Using an
analysis very similar to that in the proof of Theorem 13, we will obtain a lower bound
of about 2(µ

′/ρ)·n estimates, and the set S will be of density about (ρ/µ′) · µ′ = ρ.

The parameter settings. Recall that µ′ = µ/2, and assume for simplicity that ρ/µ′ is
an integer. Let η = ρ/µ′ + 2 be the number of non-zero levels that we will have. We
will repeatedly use the following bounds on µ′ and on η:

Fact 14.1. The following two lower bounds hold:

µ′ > 2−(µ
′·n)/6 , (6.2)

n
η
>

µ′ · n
2
≥ 3 · log(n) . (6.3)
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Proof. By the hypothesis that µ ≥ 12·log(n)
n , we have that µ′ ≥ 6·log(n)

n > 2− log(n) ≥
2−(µ

′·n)/6. To lower bound n
η , note that

n
η
=

n
ρ/µ′ + 2

≥ n
2 · (ρ/µ′)

≥ µ′ · n
2
≥ 3 · log(n) ,

where the first inequality is because ρ/µ′ ≥ 2 (since ρ ≥ µ = 2 · µ′), and the last
inequality uses the fact that µ′ ≥ 6 · log(n)/n. �

For α = 1/(4 · µ′2 · η), we define the zero level to be L0 = {T ⊆ {0, 1}n : |T| ≤
α · n}, and the first level to be L1 = {T ⊆ {0, 1}n : α · n < |T| ≤ 2n/η}. Note that the
first level is non-empty, because α · n = n

4·µ′2·η , and

n
4 · µ′2 · η <

n
µ′2

(η > 1)

< 2µ′·n/3+log(n) (Eq. (6.2))

< 2n/η . (Eq. (6.3))

For every i ∈ {2, ..., η}, we define the ith level to consist of all sets of size more
than 2(i−1)·n/η and at most 2i·n/η . Assume towards a contradiction that the number
of iterations used by A is at most R = µ′

2 · 2n/η > 2n/η−(µ′·n)/6−1 ≥ 2Ω((µ/ρ)·n), where
the first inequality relies on Eq. (6.2), and the second inequality relies on Eq. (6.3).
Similarly to Fact 13.1, observe that for every i ≥ 3, every set in Li is larger than every
set in Li−2 by a multiplicative factor of at least 2

µ′ · R.

The proof itself. We simulate A for R iterations, and for every query Q that it makes,
we answer ν̃(Q) = i · µ′, where i is such that Q ∈ Li. In the end of the execution, let
S̃ be a random set such that every string w ∈ {0, 1}n is included in S̃ with probability
`(w) · µ′ (where `(w) is defined as in the proof of Theorem 13). 11 Let us now fix
a queried-set Q, and prove that S̃ is consistent with our estimate ν̃(Q), with high
probability.

Claim 14.2. For i ∈ [1/µ′], let Q ∈ Li be a queried-set. Then, with probability more than
1− 2−n/η+1, the density of S̃ in Q is at least (i− 2) · µ′ and at most (i + 2) · µ′.

Proof. The upper bound is proved similarly to the proof of Claim 13.2, relying on
the fact that |Q| > α · n (since i ≥ 1), and using a Chernoff bound to deduce that

Pr
[
|Q ∩ S̃|/|Q| > (i + 2) · µ′

]
< 2−(2µ′)2·|Q| < 2−(2µ′)2·α·n = 2−n/η .

As for the lower bound, when i ≤ 2 it is trivial. When i ≥ 3, using an argument
analogous to the one in the proof of Claim 13.3, we infer that the number of strings w ∈
Q such that `(w) ≤ i− 2 is at most R ·maxQ′∈Li−2 |Q′| <

µ′

2 · |Q|, and thus the expected
density of S̃∩Q is at least (i− 1.5) ·µ′. Since i ≥ 3, we have that |Q| > 22·n/η , and using

11Here we use the fact that ρ ≤ 1− µ, to avoid outputting estimations that are larger than 1, or taking
probabilities that are larger than 1.
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a Chernoff bound, we get that Pr
[
|Q∩S̃|
|Q| < (i− 2) · µ′

]
< 2−(µ

′/2)2·|Q| < 2−22·n/η−2·log(4/µ′)
.

To bound this expression, note that

22·n/η−2·log(4/µ′) > 22·(n/η)−(µ′·n)/6−2 (Eq. (6.2))

> 22·(n/η)−(µ′·n)/2 (µ′ · n = ω(1))

> 2n/η (Eq. (6.3))
> n/η ,

which implies that Pr
[
|Q∩S̃|
|Q| < (i− 2) · µ′

]
< 2−n/η . �

Relying on Claim 14.2, and applying a union-bound over R sets, there exists a
choice of S̃ that satisfies the above for every queried-set, and we let S be such a choice.
The overall density of S in {0, 1}n is at least (η − 2) · µ′ = ρ.

7 A lower bound on the number of density queries when there
is no estimation error

In this section we show that hitters with oracle access to zero-error density estimators
need n−O(1) density queries in order to find a string in a set S with constant density.
We actually show a tight lower bound on the number of queries that such algorithms
need, where this lower bounds depends on the exact density of S.

Theorem 15 (a lower bound on the number of queries when there is no estimation error;
Theorem 1, restated). Let A be a hitter with oracle access to zero-error density estimators (i.e.,
µ = 0). Then, for any n ∈ N, and any density ρ ∈ (0, 1), there exists a set S ⊆ {0, 1}n of
size |S| > ρ · 2n, and a zero-error density estimator fS for S, such that the number of queries
that A uses when given oracle access to fS is at least n− blog(1/(1− ρ))c − 1.

Note that for any density ρ < 1/2, the lower bound in Theorem 15 is simply n− 1
queries. As mentioned in Section 1.1, the lower bound in Theorem 15 is tight up to a
single bit, due to the following algorithm. Given a guarantee that |S| > ρ · 2n, for some
ρ ∈ (0, 1), the algorithm can disregard arbitrary ρ · 2n elements of the search space
(e.g., the last ones lexicographically), and use the method of conditional probabilities
to find a string s ∈ S among the remaining (1 − ρ) · 2n elements. The number of
queries that such algorithm uses is dlog((1− ρ) · 2n)e = n− blog(1/(1− ρ))c.

Proof. Similar to previous proofs, we will simulate A and provide adversarial answers.
Throughout the execution, we will maintain a template for S: This is a partition of
{0, 1}n, where each set P in the partition is labeled with the (exact) density of S in
P. The partition starts out only with the set {0, 1}n, which is labeled with the overall
density S is guaranteed to have. Given each query Q of A, we will refine the existing
partition, by splitting each set P in the partition to P∩Q and P \Q, and labelling each
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of these two parts with a corresponding density of S. Then, we will answer A’s query
(i.e., output the density of S in Q) according to the updated template. Indeed, we have
not yet specified exactly how we split the density of S in P between P ∩ Q and P \ Q,
for each P; for the moment, just assume that this is done in a way consistent with the
density of S in P.

Since we only refine the partition throughout the execution, this approach yields
answers to A that are perfectly consistent with any set S that is constructed according
to the template. 12 Our main challenge is to prove that this approach prevents A from
finding a positive singleton using few queries. To this end, note that if A queried
a singleton and received a positive answer, then one of the sets in our partition is a
singleton, labeled with density 1. Thus, it suffices for us to prove that after less than
n − log(1/(1− ρ)) queries, the partition does not contain a set that is labeled with
density 1 (i.e., a set that is fully contained in S).

This will be done by showing an appropriate method to split, for any given set
P in a partition and query Q, the |P ∩ S| strings of S in P, between P ∩ Q and P \
Q. Specifically, our method will maintain the following invariant: Denote by m the
number of strings in P that are not in S, and assume for simplicity that m is an even
number. We will ensure that if P ∩ Q contains any string from S, then it contains at
least m/2 strings that are not in S, and ditto for P \ Q. Since the initial set {0, 1}n has
(1− ρ) · 2n = 2n−1/(1−ρ) strings that are not in S, after the ith query we have that every
set in the partition that contains a string from S, also contains at least 2n−1/(1−ρ)−i strings
that are not in S. Hence, the algorithm will need more than n− log(1/(1− ρ)) queries
to obtain a set that is fully contained in S.

The specific method that yields the invariant above is as follows: If both P∩Q and
P \Q are of size at least m/2, then we allocate the m strings that are not in S such that
both sets contain m/2 such strings. Otherwise, we allocate the strings such that the
smaller of the two sets (which is of size less than m/2) contains only strings that are
not in S; and it follows that the larger set contains more than m/2 strings that are not
in S. We now provide the full details, which are slightly more cumbersome, since they
also account for the case when m is odd.

The proof details. We formalize the approach above by defining a potential function
Φ over the sets in a partition of {0, 1}n (in which each set is labeled by the density of S
in it) as follows: The potential of a set P is Φ(P) = |P| − |P∩ S|+ 1, if |P∩ S| > 0; and
the potential is Φ(P) = ∞, if |P∩ S| = 0 (where the latter case also includes the case in
which P is empty). That is, the potential of a non-empty set P is the number of strings
in P that are not in S, plus 1; or ∞, if no string in P is in S. Note that if a set P in the
partition is a positive singleton, then Φ(P) = 1. Thus, to show that after i iterations
the algorithm did not find a positive singleton, it suffices to show that in the end of
the ith iteration, for every set P in the corresponding partition it holds that Φ(P) > 1.

Recall that we want to construct a set S of density larger than ρ. In the beginning
of the algorithm’s execution, the partition is comprised only of the set {0, 1}n, and

12For example, in the end of the execution, we can construct S by including in it, for each set P in the
final partition, the first lexicographically |P ∩ S| strings from P.
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we define the density of S in {0, 1}n to be exactly ρ′ = ρ + 2−n. Thus, Φ({0, 1}n) =
2n − ρ′ · 2n + 1 = 2n−log(1/(1−ρ)). Given each query Q of A, and for each set P in the
partition, we will rely on the following claim:

Claim 15.1. Let P ⊆ {0, 1}n such that the density of S in P is determined (i.e., P is labeled
with the value |P ∩ S|), and let Q ⊆ {0, 1}n. Then, there exists a way to label P ∩ Q and
P \ Q with densities of S that are consistent with the density of S in P, such that Φ(P ∩ Q)
and Φ(P \Q) are lower bounded by Φ(P)/2.

Proof. Let T1 = P ∩Q and T2 = P \Q. It will be useful for us to think about allocating
the strings that are not in S to T1 and to T2 (instead of allocating the strings that are in
S to the two subsets). To this end, denote by m = Φ(P)− 1 the number of strings in P
that are not in S. Our goal is to allocate these m strings such that, for i = 1, 2, it holds
that Φ(Ti) will be lower bounded by Φ(P)/2. This will happen if either all the strings
in Ti are not in S, in which case Φ(Ti) = ∞; or the number of strings in Ti that are not
in S is at least Φ(P)/2− 1 = m−1

2 (which implies that Φ(Ti) ≥ Φ(P)/2).
Our allocation rule is as follows. If one set (say, T1) is of size less than bm/2c, then

the other set (say, T2) is necessarily of size more than dm/2e (because |P| ≥ m). In
this case, we let T1 ∩ S = ∅; that is, all the strings in T1 are not in S, which implies
that Φ(T1) = ∞. It follows that the number of strings in T2 that are not in S is
m− |T1| > m/2 > m−1

2 . Otherwise, both T1 and T2 are of size at least bm/2c. In this
case, we allocate bm/2c strings that are not in S to T1, and dm/2e strings that are not
in S to T2, and rely on the fact that dm/2e ≥ bm/2c ≥ m−1

2 . �

Given each query Q and set P, we allocate the |P ∩ S| strings to P ∩ Q and to
P \Q as in Claim 15.1. It follows that after the ith iteration, the potential of each set in
the partition is at least 2n−log(1/(1−ρ))−i. Hence, at least n− blog(1/(1− ρ))c queries
are required in order to find a positive singleton. Omitting the requirement that the
algorithm actually queries the string s ∈ S that it found (recall that this requirement
is convenient for the proof, but was not required in Definition 9), we deduce that any
algorithm needs at least n− blog(1/(1− ρ))c − 1 queries to solve the problem.

8 An open question: A strong version of the [MNN94] conjec-
ture

The results in Section 1.2 affirm a weak version of the conjecture of Motwani, Naor,
and Naor [MNN94] (see Section 2), but fall short of proving the strongest possible
version of this conjecture, which asserts the following.

Conjecture 1 (a strong version of the conjecture of [MNN94]). Consider an unknown set of
solutions S ⊆ {0, 1}n of size |S| ≥ ρ · 2n−1, and algorithms that, in each iteration, can obtain
the exact density of S in p subsets of {0, 1}n of their choice, in parallel. The conjecture is that
such algorithms require Ω(n/ log(p + 1)) iterations to find a string in s ∈ S.
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Note that Theorem 1 proves the special case of Conjecture 1 for p = 1 (i.e., when
there is no parallelism). The theorem also implies a lower bound of n/p iterations
for parallel algorithms with no estimation error (otherwise, a non-parallel algorithm
could simulate the parallel algorithm and solve the problem using less than n queries).
We mention that even proving Conjecture 1 for restricted types of algorithms (e.g.,
computationally bounded algorithms, or algorithms that are restricted to “simple”
types of queries) would be interesting.
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Appendix A Two upper bounds

In the current appendix we prove two upper bounds: Theorem 2, for the setting of
parallel algorithms, and Theorem 5, for the setting of a large estimation error. Both
algorithms follow a similar approach: They operate in iterations, where in each iter-
ation they equipartition the current search space, obtain estimates for all sets in the
partition, and recurse into the set with the highest estimated density. The difference
between the algorithms lies in the parameters and in some low-level details.

A.1 An upper bound for parallel algorithms.

We state Theorem 2 formally, using the definitions from Section 4.

Theorem 16 (an upper bound for parallel algorithms; Theorem 2, restated). Let p : N → N

and µ : N→ R+ such that µ(n) < blog(p(n)+1)c
4n . Then, there exists a hitter with oracle access

to a p-parallel µ-error density estimator, denoted A, such that for any S ⊆ {0, 1}n satisfying
|S| ≥ 2n−1, and any p(n)-parallel µ(n)-error density estimator fS for S, when A is given
access to fS, then A finds a string s ∈ S after at most

⌈
n

blog(p(n)+1)c

⌉
iterations.

Proof. Let n ∈ N, and let p = p(n) and µ = µ(n). For any string w ∈ {0, 1}k, where
k ≤ n, denote by Cw ⊆ {0, 1}n the subcube that consists of all strings that start with
the prefix w; that is, Cw = {w ◦ x : x ∈ {0, 1}n−|w|}. Let R = dn/ blog(p + 1)ce.

The algorithm constructs a string s ∈ S in R iterations, where in each iteration a
prefix of s is extended by blog(p + 1)c bits. Specifically, the algorithm initializes s0 as
the empty string, and for every iteration i = 1, ..., R, acts as follows:

1. Let β = min {blog(p + 1)c , n− |si−1|}. Send the following 2β − 1 ≤ p queries to
the oracle: For every w ∈ {0, 1}β such that w 6= 1β, the query-tuple includes the

query Csi−1◦w (i.e., the queries are
{

Csi−1◦w : w ∈ {0, 1}β \ {1β}
}

).

2. If there exists w ∈ {0, 1}β \ {1β} such that ν̃(Csi−1◦w) ≥ 1
2 − 2 · µ · (i− 1)− µ, then

let si = si−1 ◦ w (if there exist several such w’s, pick one arbitrarily). Otherwise,
let si = si−1 ◦ 1β.

24



In the end of the execution, the algorithm outputs s = sR.
Since for every i ∈ [R− 1] it holds that |si| = |si−1|+ blog(p + 1)c, after R iterations

we have that |s| = n. The main claim in the analysis is the following:

Claim 16.1. For every i ∈ {0, ..., R − 1} it holds that the density of S in Csi is at least
1
2 − 2 · µ · i.

Proof. The proof is by induction on i. The base, when i = 0, follows by the hypothesis
that |S| ≥ 2n−1. For the induction step, we assume that the claim holds for a generic
i < R − 1, and show that it also holds for i + 1. In iteration i + 1, if at least one of
the p answers returned by the oracle is at least 1/2− 2 · µ · i − µ, then in Step 2(b)
the algorithm will define si = si−1 ◦ w, where w 6= 1blog(p+1)c is such that ν̃(Csi◦w) ≥
1/2− 2 · µ · i− µ. Since the estimation error is at most µ, it follows that in this case,
the density of S in Csi+1 = Csi◦w is at least 1/2− 2 · µ · (i + 1).

Otherwise, if the answers to all the p queries are less than 1/2− 2 · µ · i− µ, then
the density of S in each of the corresponding p subcubes is less than 1/2− 2 · µ · i.
However, by the induction hypothesis, the density of S in Csi is at least 1/2− 2 · µ · i.
Since the collection {Csi◦w : w ∈ {0, 1}blog(p+1)c} is a partition of Csi , it follows that the
density of S in Csi+1 = Csi◦1blog(p+1)c is more than 1/2− 2 · µ · i > 1/2− 2 · µ · (i + 1). �

Claim 16.1 implies that the density of S in CsR−1 is at least 1
2 − 2 · µ · (R − 1) >

1
2 −

2·µ·n
blog(p+1)c > 0, where the last inequality is due to our hypothesis that µ < blog(p+1)c

4n .

It follows that CsR−1 ∩ S 6= ∅. Now, in the Rth iteration, the algorithm queries all the
singletons in CsR−1 , and thus it will indeed find sR ∈ S.

A.2 An upper bound for algorithms with a large estimation error

We now prove a statement that implies both Theorem 5 and the upper bound in
Item (2) of Theorem 7.

Theorem 17 (an upper bound for algorithms with a large estimation error; Theorem 5, re-
stated). Let µ : N → (0, 1/2), and let ρ : N → R+. Then, there exists a hitter with
oracle access to a µ-error density estimator, denoted A, such that for any S ⊆ {0, 1}n of size
|S| ≥ ρ(n) · 2n, and any µ(n)-error density estimator fS for S, when A is given access to fS,
then A finds a string s ∈ S using less than 2

µ(n) · 2
(2µ(n)/ρ(n))·n estimates.

As mentioned in Theorem 5, when µ ≥ log(n)/n, the upper bound in Theorem 17
is less than 2O((µ/ρ)·n). This is the case because µ ≥ log(n)/n implies that 1/µ <
2log(n) ≤ 2µ·n < 2(µ/ρ)·n, and thus 2

µ · 2(2µ/ρ)·n < 2(3µ/ρ)·n+1 = 2O((µ/ρ)·n).

Proof. Let n ∈ N, and let µ = µ(n) and ρ = ρ(n). When ρ ≤ 2µ, the upper bound
is trivial (since it is larger than 2n), and thus we assume that ρ > 2µ. Similarly to
the proof of Theorem 16, the algorithm that yields the upper bound constructs s ∈ S
in iterations, where in each iteration a prefix for s is extended by d(2µ/ρ) · ne bits.
Thus, the total number of iterations is R = n/ d(2µ/ρ) · ne < ρ/2µ. Now, as in the
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proof of Theorem 16, in each iteration, after extending the prefix for s, the density of
S in the resulting subcube might be lower by 2µ than the density of S in the subcube
corresponding to the non-extended prefix. However, since the number of iterations is
less than ρ/2µ, the total “loss” of density is less than ρ, which implies that the final
string is in S. Details follow.

Let β = d(2µ/ρ) · ne be the number of bits by which the prefix of s is extended
in each iteration, and let s0 be the empty string. Let R = dn/βe. For i = 1, ..., R, the
algorithm acts as follow:

1. For every w ∈ {0, 1}min{β,n−|si−1|}, send the query Csi−1◦w to the oracle.

2. Let w′ be such that the estimate ν̃(Csi−1◦w′) is maximal among the received an-
swers. Then, let si = si−1 ◦ w′.

In the end of the execution, the algorithm outputs s = sR.
Since for every i ∈ [R− 1] it holds that |si| = |si−1|+ β, after R iterations we have

that |sR| = n. Also note that for every i ∈ {0, ..., R− 1}, the density of S in Csi is at least
ρ− 2 · µ · i; the proof of this fact is analogous to the proof of Claim 16.1. 13 Thus, the
density of S in CsR−1 is at least ρ− 2 · µ · (R− 1) > ρ− 2 · µ · (ρ/2µ) = 0, which implies
that CsR−1 ∩ S 6= ∅. Now, in the Rth iteration, the algorithm queries all the singletons
in CsR−1 , and thus (since µ < 1/2) it will indeed find sR ∈ S. The overall number of
density estimations used by the algorithm is

R · 2β <

(
ρ

2µ
+ 1
)
· 2(2µ/ρ)·n+1 <

2
µ
· 2(2µ/ρ)·n .

A.3 On the “loss” of 2µ in density in each iteration

In the two algorithms described in the proofs of Theorems 16 and 17, in each iteration,
the guarantee on the density of S in the “current” search space (i.e., in the subcube
Csi ) decreases by a value of 2µ. We note that this loss is essentially unavoidable, in
the worst case, when only obtaining estimations of the density of S in the sets of an
equipartition. To see this, consider the following setting.

Fix an arbitrary equipartition of {0, 1}n to p = ω(1) sets. Let ε = 2µ/p = o(µ),
and define S such that the density of S in each of the first (p − 1) sets is 1/2 + ε,
and the density of S in the pth set is 1/2 − 2µ + ε. Note that the density of S in
{0, 1}n is p−1

p · (1/2 + ε) + 1
p · (1/2− 2µ + ε) = 1/2. However, in this setting, even if

the algorithm queries all p sets, an oracle might return an estimation of 1/2− µ + ε
for each of the sets. Thus, the algorithm might recurse into the pth set, with density
1/2− 2µ + ε = 1/2− (2− o(1)) · µ.

13Specifically, we use induction on i. The base case i = 0 holds due to the hypothesis that |S| ≥ ρ · 2n.
For the induction step (assuming that the claim holds for i < R, and proving for i + 1), denote η =
ρ− (i− 1) · 2µ. Due to the induction hypothesis, the density of S in at least one subcube Csi1◦w will be
η or more, which implies that the estimate ν̃(Csi−1◦w) will be at least η − µ. Hence, the algorithm will let
si = si−1 ◦ w′, where w′ is such that ν̃(Csi−1◦w′ ) ≥ η − µ. It follows (since the estimation error is µ) that
the density of S in Csi−1◦w′ is at least η − 2µ.
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Appendix B Proof details for Proposition 12

Let us restate Proposition 12 and prove it in full.

Proposition 18 (a lower bound for small density; Proposition 12, restated). Let µ : N →
(0, 1/2), and let A be a hitter with oracle access to µ-error density estimators. Then, for any
constant β < 2, and sufficiently large n ∈N, there exists a set S ⊆ {0, 1}n of size |S| ≥ ρ · 2n,
where ρ = β · µ(n), and a µ-error density estimator fS for S, such that the number of iterations
that A uses when given oracle access to fS is Ω

(
µ(n)2 · 2n/n

)
.

Proof. For µ ≤
√

n/2n, the asserted lower bound is trivial; we thus assume that µ >√
n/2n. Let A be a hitter as in the theorem’s hypothesis, and let α = 16/ (2 · µ− ρ)2.

Assume towards a contradiction that A uses at most R = 1
α ·

2·µ−ρ
2·µ+ρ · (2n/n) = Ω(µ2 ·

(2n/n)) iterations. We simulate A, and for each query Q that it sends, if |Q| ≥ α · n,
then our answer is ν̃(Q) = µ, and otherwise (if |Q| < α · n), our answer is ν̃(Q) = 0.
Let L0 be the union of all queried-sets of size smaller than α · n, and let L = {0, 1}n \
L0. Let S̃ be a random subset of L such that every element in L is included in S̃
independently with probability τ = ρ + 3

4 · (2 · µ− ρ).
Note that for any choice of S̃, and any queried-set Q such that |Q| < α · n, our

answer ν̃(Q) = 0 is consistent with S̃ (because S̃ ∩ L0 = ∅). The following claim
implies that with high probability, all of our answers for larger sets are also consistent
with S̃, up to an error of µ.

Claim 18.1. With probability at least 2/3, for every queried-set Q such that |Q| ≥ α · n we
have that |Q∩S̃|

|Q| ≤ 2 · µ.

Proof. Let Q be a queried-set such that |Q| ≥ α · n. Note that every string w ∈ Q is
included in S̃ with probability either τ or 0 (the latter case happens if w belongs to a
small queried-set). Thus, the expected density of S̃ in Q is at most τ < 2 · µ. Relying
on a Chernoff bound, we have that Pr

[
|Q∩S̃|
|Q| ≥ 2 · µ

]
< 2−(2·µ−τ)2·|Q| ≤ 2−

1
16 (2·µ−ρ)2·α·n,

which equals 2−n, since α = 16/ (2 · µ− ρ)2. The claim follows by a union bound over
the number of queries-sets of size at least α · n, which is at most R = o(2n). �

The following claim asserts that with high probability, S̃ has density at least ρ.

Claim 18.2. With probability at least 2/3, the set S̃ satisfies |S̃| ≥ ρ · 2n.

Proof. First note that |L| > 2·ρ
2·µ+ρ · 2n. To see that this holds, observe that L = {0, 1}n \

L0, where L0 is the union of at most R sets, each of them of size less than α · n. Thus,
|L| is lower bounded by 2n − R · (α · n) =

(
1− 2·µ−ρ

2·µ+ρ

)
· 2n = 2·ρ

2·µ+ρ · 2n.
Now, relying on a Chernoff bound, for any η > 0, the probability that the size of

S̃ is less than (τ − η) · |L| is at most 2−η2·|L|. In particular, for η = 2·µ−ρ
4 , we have that
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(τ − η) · |L| equals(
τ − 2 · µ− ρ

4

)
· |L| = 1

2
· (2 · µ + ρ) · |L|

>
1
2
· (2 · µ + ρ) ·

(
2 · ρ

2 · µ + ρ
· 2n
)

= ρ · 2n , (B.1)

and the probability of S̃ being of size less than the expression in Eq. (B.1) is at most

2−
(2·µ−ρ)2

16 ·|L| < 2−Ω(µ2·2n) < 2−Ω(n), where the last inequality relied on the fact that
µ >
√

n/2n. �

Overall, with positive probability over choice of S̃ it holds that our answers to all
the queries of A are consistent with S̃, up to an error of µ, and that |S̃| ≥ ρ · 2n. We
take S to be any set that satisfies these two conditions.

Appendix C A slight tightening of the lower bounds in Theo-
rem 10 and 11

We describe a way to modify the proof of Theorem 10, in order to obtain the slightly
strong lower bound of n

log(p+1)+log(1/µ)
iterations. We will use the exact same notation

and high-level structure of the proof of Theorem 10, and just modify the value of the
parameter α in the proof.

Specifically, we define α = 1
p+µ · µ (instead of α = 1

2p · µ in the original proof) and
assume towards a contradiction that R < log1/α(2

n) = n
log((p+µ)/µ)

. Going through the
proof of Theorem 10, the only places in which we actually use the values of R and of α
are in the proofs of Claim 10.2 and of Claim 10.4. In the proof of Claim 10.2, we only
rely on the fact that R < log1/α(2

n), and thus the claim holds also with the new values
of α and R. For Claim 10.4, let us re-do the main calculation, using the new value of α:

|Q ∩ Si| − |Q ∩ S| < |Q| ·
R−i

∑
j=1

p · αj (as in the original proof)

= |Q| ·
R−i

∑
j=1

p ·
(

µ

p + µ

)j

= |Q| · p · µ

p + µ
·

R−i−1

∑
j=0

(
µ

p + µ

)j

< |Q| · p · µ

p + µ
· 1

1− µ
p+µ

= µ · |Q| .

Thus, we obtain the slightly stronger lower bound R ≥ n
log((p+µ)/µ)

≥ n
log(p+1)+log(1/µ)

.
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Improving the lower bound in Theorem 11. We improve the lower bound in Theo-
rem 11 in a manner that is nearly identical to the improvement of Theorem 10. Specif-
ically, we define α = 1

p+µ · µ and, as in the original proof, define R = log1/α(2
n) and

R1 = (1− ε) · R+ 1, and assume towards a contradiction that R < ε · R. The claims
made throughout the proof hold also with these parameter values.
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