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Abstract

We present direct constructions of pseudorandom function (PRF) families based on Gol-
dreich’s one-way function. Roughly speaking, we assume that non-trivial local mappings f :
{0, 1}n → {0, 1}m whose input-output dependencies graph form an expander are hard to in-
vert. We show that this one-wayness assumption yields PRFs with relatively low complexity.
This includes weak PRFs which can be computed in linear time of O(n) on a RAM machine
with O(log n) word size, or by a depth-3 circuit with unbounded fan-in AND and OR gates
(AC0 circuit), and standard PRFs that can be computed by a quasilinear size circuit or by a
constant-depth circuit with unbounded fan-in AND, OR and Majority gates (TC0).

Our proofs are based on a new search-to-decision reduction for expander-based functions.
This extends a previous reduction of the first author (STOC 2012) which was applicable for the
special case of random local functions. Additionally, we present a new family of highly efficient
hash functions whose output on exponentially many inputs jointly forms (with high probability)
a good expander graph. These hash functions are based on the techniques of Miles and Viola
(Crypto 2012).

Although some of the reductions provide only relatively weak security guarantees, we believe
that our constructions yield novel approach for designing PRFs, and consequently enrich the
study of pseudorandomness.
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1 Introduction

A pseudorandom function (PRF) is a family of efficiently computable functions with the property
that the input-output behavior of a random instance of the family is “computationally indistinguish-
able” from that of a truly random function. Abstractly, such functions provide a “direct access”
to an exponentially long pseudorandom string. Since their discovery by Goldreich, Goldwasser
and Micali [GGM86], PRFs have played a central role in cryptography and complexity theory.
Correspondingly, the question of minimizing the complexity of PRFs has attracted a considerable
amount of attention.

Indeed, apart of being a fundamental object, fast PRFs are strongly motivated by a wide range of
applications. Being the core component of symmetric cryptography, highly-efficient PRFs directly
imply highly-efficient implementations of Private-Key cryptosystems, Message-Authentication Codes,
and Identification Schemes. Fast pseudorandom objects (PRFs and PRGs) can be also used
to speed-up several expensive Cryptomania-type applications. For example, secure computa-
tion protocols, functional encryption schemes, and program obfuscators that efficiently support
a PRF functionality can be bootstrapped with relatively minor cost to general functionalities
(cf., [DI05, IKOS08, GVW12, App14]). Interestingly, for these applications parallel-complexity
(e.g., circuit depth) seems to be the main relevant complexity measure (affecting round complexity
or the number of multilinear levels), while time (e.g., circuit size) is secondary. Another somewhat
different motivation comes from the theory of computational complexity. PRFs with low-complexity
shed light on the power of low-complexity functions, and partially explain our inability to analyze
them. For example, the existence of PRFs in a complexity class C can be used to show that this
class is not PAC-learnable [PW88, Val84] and that certain “natural proof” techniques will fail to
prove circuit lower-bounds for functions in C [RR97]. Last, but not least, identifying the sim-
plest construction of PRFs may provide valuable insights regarding the nature of computational
intractability and the way it is achieved by a sequence of cheap and basic operations. This “magic”
of hardness which arises from highly-efficient computation can be viewed as the essence of modern
cryptography.

Being relatively complicated objects, a considerable research effort has been made to put PRFs
on more solid ground at the form of simpler one-wayness assumptions (cf. [GGM86, HILL99, NR95,
NR97, NRR00, LW09, BMR10, BPR12]). Annoyingly, the existence of a security reduction seem
to incur a cost in efficiency. Indeed, existing theoretical constructions (either based on general
primitives or on concrete intractability assumptions) are relatively slow compared to “practical
constructions” whose security is based on first-order cryptanalytic principles rather than on a
security reduction. As a concrete example, theoretical constructions of PRFs Fk : {0, 1}n → {0, 1}n
have super-linear (or even quadratic) circuit size. In contrast, Miles and Viola [MV12] presented a
candidate PRF which can be computed by a quasilinear circuit of size Õ(n). (The notation Õ(n)
subsumes polylogarithmic factors.) Similarly, Akavia et al. [ABG+14] proposed a candidate for a
weak PRF1 which can be computed by a constant-depth circuit with unbounded fan-in AND, OR
and XOR gates, whereas it is unknown how to construct such a weak PRF based on one-wayness
assumption.

Our goal in this paper is to narrow the gap between provably-secure constructions and highly-
efficient candidates. We present several constructions of pseudorandom functions with low-complexity,

1A weak PRF is a relaxation of a PRF which is indistinguishable from a random function for an adversary whose
queries are chosen uniformly at random.
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and show that their security can be reduced to variants of Goldreich’s one-way function. Before
introducing our constructions, let us present Goldreich’s one-way function. (For more details see
the survey [App15].)

1.1 Goldreich’s one-way function

Let n be an input length parameter, m ≥ n be an output length parameter and d� n be a locality
parameter. For a d-local predicate P : {0, 1}d → {0, 1} and a sequence G = (S1, . . . , Sm) of d-tuples
over the set [n] := {1, . . . , n}, we let fG,P : {0, 1}n → {0, 1}m denote the mapping

x 7→ (P (x[S1]), . . . , P (x[Sm])),

i.e., the i-th output bit is computed by applying the predicate P to the input bits which are
indexed by the i-th tuple Si. Goldreich [Gol00] conjectured that for m = n and possibly small
value of d (e.g., logarithmic or even constant), the function fG,P is one-way as long as the set
system (S1, . . . , Sm) is “highly expanding” and the predicate P is sufficiently “non-degenerate”.
We elaborate on these two requirements.

Expansion. To formalize the expansion property let us think of G = (S1, . . . , Sm) as a d-uniform
hypergraph with m hyperedges (which correspond to the outputs) over n nodes (which correspond
to the inputs). The expansion property essentially requires that every not-too-large subset of
hyperedges is almost pair-wise disjoint. Formally, for a threshold r, the union of every set of ` ≤ r
hyperedges Si1 , . . . , Si` should contain at least (1− β)d` nodes, i.e., |

⋃`
j=1 Sij | ≥ (1− β)d`, where

β is some constant smaller than 1
2 (e.g., 0.1).

Secure predicates. A noticeable amount of research was devoted to studying the properties
of “secure” predicates accumulating in several algebraic criteria (cf., [Ale03, MST03, ABW10,
BQ12, ABR12, OW14, FPV15]). It is known for example, that in order to support an output
length of m = nc one must use k-resilient predicate P which is uncorrelated with any GF(2)-
linear combination of at most k = Ω(c) of their inputs. Additionally, the predicate P must have
algebraic degree (as a GF(2) polynomial) of at least c. Moreover, P must have high rational degree
in the following sense: any polynomial Q whose roots cover the roots of P or its complement
must have algebraic degree of Ω(c) [AL15]. An example for such a predicate (suggested in [AL15])
is the d-ary XOR-MAJd predicate which partitions its input w = (w1, . . . , wd) into two parts
wL = (w1, . . . , wbd/2c) and wR = (wbd/2c+1, . . . , wd), computes the XOR of the left part and the
majority of the right part, and XOR’s the results together.2 This predicate achieves resiliency of
d/2 and rational degree of d/4 and therefore seems to achieve security for m = nΩ(d) outputs.

Security. Intuitively, large expansion (together with high resiliency) provide security against local
algorithms that employ some form of divide-and-conquer approach. Due to the expansion of the
input-output hypergraph, any small subset of the outputs gives very little information on the global
solution x. High rational degree provides security against more global approaches which rely on
different forms of linearization and algebraic attacks. These intuitions were formalized and proved
for several classes of algorithms in previous works (cf.[AHI05, ABW10, CEMT14, ABR12, BR13,
OW14]). Following these works, we make the following strong version of Goldreich’s conjecture:

2In fact, it seems better to allocate a larger fraction of the inputs to the Majority part. See [AL15].
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Assumption 1.1 (Expander-based OWFs (Informal)). For some universal constant α ∈ (0, 1) and
every d-uniform hypergraph G with n nodes and m < nαd hyperedges which is expanding for sets of
size r = nΩ(1), the function fG,XOR-MAJd cannot be inverted in polynomial time.3

This assumption is consistent with known attacks. In fact, hardness results (against limited
families of attacks) suggest that inversion is hard even for adversaries of complexity exp(r) where
r is the expansion threshold. We refer to this variant as the strong EOWF assumption. We further
mention that although previous works mainly focused on the case where the locality d is constant
or logarithmic in n (which is going to be our main setting here as well), it seems reasonable to
conjecture that the assumption holds even for larger values of d (e.g., d = nδ for constant δ ∈ (0, 1)).
Finally, we note that the expansion requirement implicitly puts restrictions on the values of n,m
and d. Roughly speaking, an expansion of r = n1−β requires Θ(1/β2) ≤ d ≤ nΘ(β) and restricts m
to be at most nΘ(dβ2).

1.2 Results and Techniques

We present several constructions of expander-based PRFs.

1.2.1 Weak PRF

Let P be some d-ary predicate (e.g., XOR-MAJd). In our first construction F1, we think of the
input x ∈ {0, 1}n as specifying a hypergraph Gx and let the output y be the value of fGx,P applied
to the collection key k ∈ {0, 1}n. Namely, we think of the data x as specifying a computation
that should be applied to k. The hypergraph Gx is defined in the natural way: Partition x to
(d log n)-size substrings, and view each substring as a d-tuple of elements in [n] where each element
is given in its binary representation. An adversary that makes q queries x1, . . . , xq essentially sees
the value of fG,P (k) where G =

⋃
Gxi . When the adversary is allowed to choose the queries, the

outcome cannot be pseudorandom (think of the case where Gx1 and Gx2 share the same hyperedge).
However, when the queries x1, . . . , xq are chosen at random (as in the setting of a weak PRF), the
resulting graph G is a random hypergraph which is likely to be expanding. At this point, we can
employ a search-to-decision reduction from [App13], which shows that for random hypergraphs G,
one-wayness implies pseudorandomness. It follows that, for a proper choice of parameters (e.g.,
d = Ω(log n)), our assumption implies that the function F1 is a weak PRF.4

This construction can be instantiated with different locality parameters d, ranging from O(log n)

to nδ. In the logarithmic regime, this gives rise to a construction F1 : {0, 1}n → {0, 1}n/ log2 n which
is computable in linear time of O(n) on a RAM machine with O(log n) word size. Additionally, this
function can be computed, for any fixed key k, by a depth-3 circuit with unbounded fan-in AND
and OR gates (i.e., an AC0 circuit).5 To the best of our knowledge this is the first construction of
a weak PRF that achieves such efficiency guarantees.

3In Section 2 we provide a more general assumption which allows the hypergraph to be non-uniform, and is
parameterized by an expansion parameter, by a predicate family P and by a concrete bound on the security of the
function in terms of the (circuit) size of the adversary and its success probability. The above assumption is given
here in a simplified form for ease of presentation.

4Formally, Assumption 1.1 implies that for a random hypergraph G, the function fG,P is one-way (since such a
graph is likely to be expanding). Then, we can apply the result of [App13].

5When analyzing parallel-complexity it is common to restrict the attention for the case where the key is fixed,
cf. [NR95, NR97, NRR00, LW09, BMR10, MV12, ABG+14].
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Concrete security and application to learning. The (strong) EOWF assumption implies that
F1 resists almost-exponential size adversaries (computable by circuits of size t = exp(n1−β) for any
β > 0) as long as they make only q = nO(d) queries to the function. Hence, logarithmic locality
provides only security against a quasi-polynomial number of queries (e.g., exp(polylog(n)). Simi-
larly, the distinguishing advantage of the adversary is only quasi-polynomial ε = exp(−polylog(n)).
While this setting of parameters may seem too weak for many cryptographic applications, it provides
a useful theoretical insight. The classical learning algorithm of Linial, Mansour and Nisan [LMN93]
shows that any AC0-computable weak PRF can be broken either with quasipolynomial distinguish-
ing advantage or by making quasipolynomial number of queries. (In the computational learning ter-
minology, AC0 functions are PAC-learnable under the uniform distribution using a quasipolynomial
number of samples and time, or weakly learnable in polynomial-time with advantage 1/polylog(n)
over 1

2 .) The LMN algorithm relies on the Fourier spectrum of AC0 functions, and the possibility
of improving it to a polynomial-time algorithm is considered to be an important open problem in
learning theory. Our construction suggests that this is impossible even for depth-3 circuits, and
so the Fourier-based algorithm of [LMN93] is essentially optimal. To the best of our knowledge,
this is the first hardness result for learning depth-3 AC0 circuits over the uniform distribution.
Previous hardness results either apply to AC0 circuits of depth d for large (unspecified) constant
depth d [Kha93], to depth-3 arithmetic circuits [KS09], or to depth-2 AC0 circuits but over a
non-uniform distribution [ABW10, DLS14].

1.2.2 Reducing the distinguishing advantage

Our second construction attempts to strengthen the distinguishing advantage ε of F1. In F1 the
hypergraph G =

⋃
Gxi fails to be expanding with quasipolynomial probability, and in this case

pseudorandomness may be easily violated. As a concrete example note that, with probability
Ω(n−d), the hypergraph G contains a pair of identical hyperedges Si = Sj , and so the corresponding
outputs will be identical, and distinguishing (with constant advantage) becomes trivial.

Following [CEMT14], we observe that, although expansion is violated with quasipolynomial
small probability, not all is lost, and, except for a tiny (almost exponentially small) probability, the
hypergraph G is almost expanding in the sense that after removing a small (say sub-linear) amount
of hyperedges the remaining hypergraph is expanding. We use this combinatorial structure to argue
that fG,P (k) can be partitioned into two functions f1 and f2, where the input-output hypergraph
G1 of f1 is highly expanding and the function f2 depends only on a relatively small (sub-linear)
number of inputs. As a result we can show that, for such an almost-expander G, the distribution
fG,P (Un) is pseudorandom except for small number of “bad outputs”.6 In fact, the number of “bad
outputs” is small enough to argue that each block of fG,P (Un) (corresponding to the i-th query) has
a large amount of “pseudoentropy”. Hence, we can get a pseudorandom output (even for almost
expanding graphs) by adding a postprocessing stage in which a randomness extractor is applied to
the output of F1 (i.e., extraction is performed separately per each block of fG,P (Un)).

Formally, our second construction F2 is keyed by a pair of n-bit strings (k, s), and for a given
input x, we output the value Exts(fGx,P (k)) where Ext is a strong seeded randomness extractor.
Since there are linear-time computable extractors [IKOS08], the construction can be still imple-

6Technically, this requires an extension of our assumption to the case of non-uniform hypergraphs, and the ability
to analyze the function with respect to new predicates (obtained by restricting some of the inputs of the original
predicate).
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mented by a linear-time RAM machine. Moreover, since the extractor can be computed by a linear
function (and therefore by a single layer of unbounded fan-in parity gates), the function F2 can
be computed by a constant-depth circuit with unbounded fan-in AND, OR and XOR gates (or
even in MOD2 ◦AC0). We prove that the distinguishing advantage of the construction is almost
exponentially-small. We do not know whether F2 provides security against larger (say subexpo-
nential) number of queries, and leave it as an open question.

1.2.3 Handling non-random inputs

Our next goal is to move from the weak PRF setting in which the function is evaluated only over
random inputs, to the standard setting where the queries can be chosen by the adversary. It is
natural to try to achieve this goal by introducing a preprocessing mapping M that maps an input
x to a hypergraph M(x) with the property that every set of q queries x1 . . . , xq form together a
hypergraph G =

⋃
iM(xi) with good expansion properties. This approach faces two challenges.

First, it is not clear at all how to implement the mapping M (let alone in a very efficient way).
Second, we can no longer rely on the standard search-to-decision reduction from [App13] since it
applies only to randomly chosen hypergraphs (as opposed to arbitrary expanders).

Search-to-decision reduction for expander-based functions. We solve the second chal-
lenge, by proving a new search-to-decision reduction that applies directly to expander hypergraphs.
Namely, we show that if fG,P is one-way for every expander hypergraph G (as conjectured by in
Assumption 1.1) then it is also pseudorandom for every expander hypergraph. Technically, the
original reduction of [App13] shows that if an adversary A can distinguish fG,P (Un) from a truly
random string, then there exists an adversary B that inverts fH,P (Un) where G and H are random
hypergraphs (with polynomially related parameters). This reduction strongly exploits the ability of
A to attack many different hypergraphs G. Roughly speaking, every attack on a hypergraph Gi is
translated into a small piece of information on the input x (i.e., a noisy estimation on some bit xi),
and by accumulating the information gathered from different Gi’s the input x is fully recovered.7

In contrast, in the new search-to-decision theorem we are given a distinguisher AG which suc-
ceeds only over some fixed expanding hypergraph G. First, we observe that one can slightly modify
G and define, for every index i ∈ [n], a hypergraph Gi such that given y = fGi(x) the attacker AG
can be used to obtain an estimation for the i-th bit of x. (This is already implicit in [App13].) One
may therefore try to argue that the function f⋃

iGi,P
(x) = (fG1(x), . . . , fGn(x)) can be inverted by

calling AG for each block separately. This is problematic for two reasons: (1) inversion may fail
miserably since the calls to AG are all over statistically-dependent inputs (the same x is being used);
and (2) the resulting hypergraph H =

⋃
iGi is non-expanding (due to the use of almost identical

copies of the same hypergraph G), and so inversion over H does not contradict the theorem.
Fortunately, both problems can be solved by randomizing each of the Gi’s (essentially by per-

muting the names of the inputs). By concatenating the randomized Gi’s, we get a probability
distribution D(G) over hypergraphs which satisfies the following two properties: (1) a random hy-

pergraph H
R← D(G) is typically a good expander; and (2) Inverting fH,P for a random H

R← D(G)
reduces to inverting fG,P . Since we work in a non-uniform model of adversaries (circuits), this
suffices to prove the theorem. (See Section 3 for details.)

7An analogous use of public randomness appears in the seminal Goldreich-Levin theorem [GL89] which can be
viewed as search-to-decision reduction for the keyed function fk(x) = (g(x), 〈x, k〉).
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Mapping inputs to expanders. Going back to the first challenge, we still need to provide
a mapping M(x) which, when accumulated over different inputs, results in a highly expanding
hypergraph. Note that although M operates on n-bit inputs, it should satisfy a global property that
applies to collection of super-polynomial (or even exponential) number of inputs. Unfortunately, we
do not know how to obtain such a mapping deterministically with a low computational cost. Instead,
we show how to provide a family of mappings Mσ with the property that for every fixed sequence of
inputs x1, . . . , xq and for a random σ, the hypergraph G =

⋃
iMσ(xi) is highly expanding with all

but exponentially small probability. The key idea is to note that in order to guarantee expansion
for r-size sets, it suffices to make sure that each set of r hyperedges of G is (almost) uniformly
distributed. This means that Mσ should be almost R-wise independent in the following sense: For
a random σ, every subset of R = rd log(n) bits of the random variable (Mσ(x))x∈{0,1}n should be
statistically-close to uniform. This setting is somewhat non-standard: Efficiency is measured with
respect to a single invocation of Mσ (i.e., the complexity of generating a block of m hyperedges),
but pseudorandomness should hold for any set of r hyperedges (R bits) across different invocations.

We construct such a mapping Mσ by tweaking a construction of low-bias generator due to Miles
and Viola [MV12]. We view σ ∈ {0, 1}2n as a pair of GF(2n) elements σ1, σ2, and map an input
x ∈ GF(2n) to the GF(2n)-element (x+ σ1)−1 · σ2.8 The resulting function F3 is keyed by (k, σ, s)
and for an input x it outputs the value Exts(fMσ(x),P (k)) where Mσ(x) is parsed as a d-uniform
hypergraph with m = n/(d log n) hyperedges and d is treated as a parameter. Due to the high
efficiency of M (which consists of a single multiplication and a single inversion over GF(2n)), the
function F3 can be computed by a quasilinear circuit Õ(n) or by a constant-depth circuit with
unbounded fan-in AND, OR, and Majority gates (i.e., TC0 circuit), for any choice of the locality
parameter d.

The use of keyed mapping, allows us to prove security against a non-adaptive adversary whose
i-th query is independent of the answers for the previous queries. We do not know whether the
construction remains secure for adaptive adversaries, however, using the non-adaptive to adaptive
transformation of [BH15], we can turn our function into a standard PRF without increasing the
asymptotic cost of the construction (in terms of size and depth). We mention that the parallel
complexity (i.e., TC0) seems essentially optimal for PRF and it matches the complexity of the
best known PRF constructions based on number-theoretic or lattice assumptions [NR95, NR97,
NRR00, BPR12].

Concrete security. Recall that the locality parameter d can vary from logarithmic to nδ for some
δ ∈ (0, 1). To get an expansion for sets of size n1−β (and therefore security against exp(n1−β)-size
circuits), we must restrict the number of queries q to be smaller than ndβ

2
. In addition, the locality

d should satisfy 4/β2 < d < nβ/4. Hence, polynomial locality d = nδ allows to support sub-
exponential number of queries while providing security against sub-exponential size circuits with
respect to sub-exponential distinguishing advantage. Note that polynomial locality has also some
effect on efficiency: The number of output bits per invocations decreases to Õ(n/d) and so the
computational cost per output bit is Õ(d) = Õ(nδ). On the other extreme, a logarithmic value of
d achieves an almost-optimal complexity per bit (i.e., Õ(1)), and provides security against circuits
of almost-exponential size (exp(n1−β) for every β > 0) which make a quasipolynomial number of
queries.

8The generator of [MV12] uses binary inner-product instead of field multiplication and accordingly outputs a
single bit; We observe that the multi-output version still achieves low-bias. See Section 5.
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Security beyond expansion. We do not know whether our analysis is tight. To the best
of our knowledge, F3 with logarithmic locality may achieve security even in the presence of sub-
exponentially many queries. We remark that our analysis is somewhat pessimistic since it essentially
assumes that the seed s of the extractor and the seed σ of the preprocessing mapping are both
given to the adversary. Indeed, in this case the adversary sees the underlying hypergraph and, after
sufficiently many queries, it can exploit its non-expanding properties. In contrast, when s and, more
importantly, σ are not given, the adversary does not get a direct access to the hypergraph. One
may assume that as long as M somewhat hides the hypergraph G, lack of expansion cannot be used
to break the system. The question of identifying the right (and minimal) notion of hiding remains
open for future research.9

1.3 Conclusion

We presented several elementary constructions of pseudorandom functions. All our constructions
follow a similar template: The input x is mapped to a hypergraph Gx, which represents a simple
(essentially single-layered) circuit fGx,P , the resulting circuit is applied to the key k, and the
output is fed through some randomness extractor. We believe that this structure provides a new
methodology for constructing pseudorandom functions which deserves to be further studied.

Following Goldreich, we conjecture that as long as the input-output relations is expanding the
computation is hard to invert. We further show that such one-wayness leads to pseudorandomness
by extending the techniques of [App13]. We believe that understanding this assumption, or more
generally, relating the combinatorial structure of circuits to their cryptographic properties is a key
question, which may eventually lead to faster and highly secure PRFs. Our proofs, which fall short
of providing optimal security (in some cases they are very far from that), should be viewed as a
first step in this direction.

Finally, we believe that the tools developed here (e.g., pseudoranodmness over imperfect ex-
panders, the expander-based search-to-decision reduction, and the use of low-bias generators for
generating expanders with “direct-access”) will turn out to be useful for future works in the field.

Acknowledgement. We thank Adam Klivans and Shai Shalev-Shwartz for helpful discussions.

Organization. In Section 2 we provide necessary preliminaries and set-up the formal setting
for expander based functions. The reduction from pseudorandomness to one-wayness appears in
Section 3, and Section 4 presents the three basic constructions of PRFs. Section 5 describes the
construction of the hypergraph mapper based on low-bias generator.

2 Preliminaries

General preliminaries. We let [n] denote the set {1, . . . , n}. For a string x ∈ {0, 1}n and i ∈ [n],
we let x[i] denote the ith bit of x. For a tuple S = (i1, . . . , id), we let x[S] = x[i1, . . . , id] denote the
restriction of x to indices in S, i.e., the string x[i1] . . . x[id]. For strings x1, . . . , xq we write (xi)

q
i=1

to denote the concatenation of the strings x1|| · · · ||xq. We write logd n to denote the logarithm of n

9It is not hard to show that if M by itself is a PRF then security holds for F3. The hope is to get somewhat
weaker form of hiding, ideally, one which can be satisfied by some concrete and highly-efficient mapping M such as
the one proposed here.
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base d, if d = 2 we omit writing it explicitly. A function ε(·) is said to be negligible if ε(n) < n−c for
any constant c > 0 and sufficiently large n. We will sometimes use neg(·) to denote an unspecified
negligible function. For a function t(·), we write t = Õ(n), if t = O(n logk(n)) for some k ∈ N.

Probabilistic notation. For a probability distribution or random variable X (resp., set), we

write x
R← X to denote the operation of sampling a random x according to X (resp., sampled

uniformly from X). We let Un (resp., US) denote a random variable uniformly distributed over
{0, 1}n (resp., over the set S). We write supp(X) to denote the support of the random variable
X, i.e., supp(X) = {x | Pr[X = x] > 0}. The statistical distance between two probability
distributions X and Y , denoted ∆(X;Y ), is defined as the maximum, over all functions A, of
the distinguishing advantage ∆A(X,Y ) := |Pr[A(X) = 1]− Pr[A(Y ) = 1]|. We say that X is ε-

statistically indistinguishable from Y if ∆(X;Y ) ≤ ε and write X
s≡ε Y . The random variable X

is (t, ε)-computationally indistinguishable from Y if for every circuit A of size t, the distinguishing

advantage ∆A(X,Y ) is at most ε, and we write X
c≡t,ε Y .

Cryptographic primitives. A random variableX over n-bit strings is called (t, ε)-pseudorandom

if X
c≡t,ε Un. A function f : {0, 1}n → {0, 1}m is (t, ε) one-way if for every t-size adversary A it

holds that Prx[A(f(x)) ∈ f−1(f(x))] < ε.

Definition 2.1 (PRF). A keyed function f : K × X → Y is called (q, t, ε)-pseudorandom if for
any t-size circuit D(·) aided with q oracle gates, the distinguishing advantage∣∣∣∣∣ Pr

k
R←K

[Dfk = 1]− Pr
h
R←H

[Dh = 1]

∣∣∣∣∣ ≤ ε,
where H is a set of all functions mapping inputs from X to Y. An adversary is called non-adaptive
if it generates all the queries at the beginning independently of the received responses from the oracle
gates.

A (q, t, ε)-PRF family is a sequence of keyed functions F = {fn : Kn ×Xn → Yn} equipped
with an efficient key sampling algorithm and an efficient evaluation algorithm where each fn is
(q(n), t(n), ε(n))-pseudorandom. We say that F is a (q, t, ε) non-adaptive PRF (resp., weak PRF)
if the above holds for non-adaptive adversaries (resp., for adversaries such that each of their queries
is chosen independently and uniformly from Xn).

Low-bias generators. We employ the following notions of low-bias and bitwise-independence
generators. As in the case of PRFs, we view a two-argument function f(k, x) as a keyed function
whose first argument k serves as a key. We emphasize this distinction by writing fk(x) for f(k, x).

Definition 2.2. Let g : {0, 1}κ × {0, 1}m → {0, 1}n be a keyed function. For x ∈ {0, 1}m, let Y (x)

denote the random variable gk(x) induced by k
R← {0, 1}κ, and let Y denote the random variable

(Y (x))x∈{0,1}n where the same random key is used for all x’s. We say that g is:

– (t, ε)-bitwise independent if every t-bit subset of Y is ε-close to uniform (in statistical dis-
tance), i.e., for every ` ≤ t distinct indices i1, . . . , i` we have that

∆(U`; (Y[ij ])
`
j=1) ≤ ε.
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– (t, ε)-biased over GF(2) if for every ` ≤ t distinct indices {i1, . . . , i`}, we have that∣∣∣∣∣∣Pr

∑̀
j=1

Y[ij ] = 1

− 1

2

∣∣∣∣∣∣ ≤ ε,
where the sum is computed over GF(2).

– (t, ε)-linear-fooling over GF(2n) if for every t outputs Y (x1), . . . , Y (xt) (parsed as elements
of GF(2n)) of distinct x1, . . . , xt, every t constants b1, . . . , bt from GF(2n) (that are not all
equal to zero), we have that

∆

(
t∑
i=1

biY (xi) ; UGF(2n)

)
≤ ε.

Sources and Extractors. The min-entropy of a random variable X (denoted by H∞(X)) is
defined to be minx∈supp(X) log 1

Pr[X=x] . A keyed function E : S ×X → Y is a strong (k, ε)-extractor

if for every distribution X over X with H∞(X) ≥ k, it holds that ∆((s,Exts(x)) ; (s, U(Y))) ≤ ε,
where s

R← S , x
R← X and ∆(·; ·) stands for statistical distance.

We consider the following notion of random sources that can be viewed as a convex combination
of the traditional bit-fixing sources [CGH+85].

Definition 2.3 (Generalized Bit-Fixing Source). A distribution X over {0, 1}n is a generalized k-
bit-fixing source if there exist k distinct indices S such that X[S] is distributed like Uk and X[[n] \ S]
is independent from X[S].

We use the following simple lemma (whose proof is deferred to Appendix A.1).

Lemma 2.4. Let Ext be a strong (m− r, δ)-extractor for m-bit sources. Let Z = Z1|| · · · ||Zq be a
generalized (qm−r)-bit-fixing source, where each |Zi| = m. Then for a uniformly chosen seed s, the
random variable (s,Exts(Z1), . . . ,Exts(Zq)) is (q · δ)-statistically indistinguishable from uniform.

Hypergraphs. An (n,m)-hypergraph G is a hypergraph over vertices [n] with m hyperedges
(S1, . . . , Sm) where each hyperedge is viewed as a tuple (i1, . . . , ik), i.e., it is ordered and may
contain duplications. It is sometimes convenient to think of a hypergraph G as a bipartite graph,
where the n vertices represent the lower layer of the graph, the hyperedges represent the upper
layer of the graph such that each hyperedge S = (i1, . . . , ik) is connected to the vertices i1, . . . , ik.
We say that G is d-uniform (denoted by (n,m, d)-hypergraph) if all the hyperedges are of the same
cardinality d. G is almost d-uniform (denoted by [n,m, d]-hypergraph) if d/2 < |Si| ≤ d for all
i ∈ [m]. We let Gn,m,d denote the probability distribution over (n,m, d)-hypergraphs in which each
of the m hyperedges is chosen independently and uniformly at random from [n]d. We say that a
distribution over (n,m, d)-hypergraphs is (k, ε)-random if any k hyperedges are ε-close (in statistical
distance) to the uniform distribution Gn,k,d. A distribution over hypergraphs is (r, d, ε)-random if
any s ≤ r hyperedges S1, . . . , Ss contain at least sd entries that are ε-close to uniform.

For a set of hyperedges T = {S1, . . . , Sk} we write Γ(T ) to denote the union of tuples S1, . . . , Sk
(where the union of tuples is naturally defined to be the set of all indices occuring in S1, . . . , Sk).
Let G \ T denote the hypergraph obtained from G by removing hyperedges T and updating the
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remaining hyperedges by deleting from them vertices that belong to Γ(T ). A hypergraph G is an
(r, c)-expander if for any set I of hyperedges of size at most r we have Γ(I) ≥ c|I|. We refer to r as
“the expansion threshold” and to c as “the expansion factor”. A hypergraph G is an rbad-imperfect
(r, c)-expander if there exists a subset of G’s hyperedges Ibad of size |Ibad| ≤ rbad such that G\ Ibad

is an (r, c)-expander.
It is well known that a random hypergraph is likely to be highly expanding. The following

lemma (whose proof is deferred to Appendix A.3) generalizes this fact to the case of (r, d, ε)-
random hypergraphs and to the case of imperfect expansion. (Note that the failure probability
drops down exponentially with the size of the imperfectness parameter t.)

Lemma 2.5. Let β be a constant in (0, 1) and d ∈ N such that 4/β2 ≤ d ≤ nβ/4. Let r =
n1−β and m ≤ ndβ

2/4. Let t = t(n) be a non-negative function such that t ≤ r. Then, a (r +
t, d, 2−Ω(n))-random (n,m)-hypergraph G is t-imperfect (r, (1−β)d)-expander except with probability
n−(t+1)dβ2/10.

The union of an (n,m1)-hypergraphG = (S1, . . . , Sm1) and (n,m2)-hypergraphH = (R1, . . . , Rm2)
is the (n,m1 +m2)-hypergraph J = G∪H whose hyperedges are (S1, . . . , Sm1 , R1, . . . , Rm2). Since
union is an associative operation, the union of q hypergraphs G1∪· · ·∪Gq is defined unambiguously.

2.1 Expander-based Functions

For an (n,m)-hypergraph G = (S1, . . . , Sm), a sequence of m predicates P = (P1, . . . , Pm) where
Pi : {0, 1}|Si| → {0, 1}, we let fG,P : {0, 1}n → {0, 1}m denote the function that takes an input
x ∈ {0, 1}n and maps it to the m-bit string (P1(x[S1]), . . . , Pm(x[Sm])). (If all predicates are
identical we simply write fG,P .) In its most abstract form, our assumption is parameterized by an
expansion parameter β (that quantifies the “expansion loss”), and by a (possibly infinite) predicate
family P. Formally, the Expander-based OWF assumption (EOWF) and Expander-based PRG
assumption (EPRG) are defined as follows.

Definition 2.6 (EOWF and EPRG). The EOWF(P,m, β, t, ε) assumption asserts that for every
[n,m, d]-hypergraph G = (S1, . . . , Sm) that is (n1−β, (1 − β)d)-expanding, and every sequence of
predicates10 P = (Pi)i∈[m] taken from P, the function fG,P is (t, ε) one-way. The EPRG(P,m, β, t, ε)
is defined similarly except that fG,P (Un) is (t, ε) pseudorandom.

A considerable amount of research was devoted to studying the properties of “secure” pred-
icates. (See [App15] and references therein.) These results suggest that for some predicates of
logarithmic arity d = Θ(log n), and some constant β < 1

2 , the EOWF(P,m, β, t, ε) assumption
holds for every polynomial m, t and every inverse polynomial ε. We adopt this setting as our main
intractability assumption and abbreviate this assumption by EOWF(P). Similarly, we let EPRG(P)
denote the analogous assumption for pseudorandomness. In fact, known results suggest that for
a proper family of predicates P, every d = d(n) and every β < 1

2 , the assumption holds against
adversaries whose size t and success probability ε are exponential in the expansion threshold, i.e.,
t = exp(Ω(n1−β)) and ε = 1/t, as long as the output length satisfies m < no(d) or even m < nαd

for some constant α. We refer to this variant of the assumption as the strong EOWF(P) and strong
EPRG(P).

10Here and through the paper, we implicitly assume that for all i ∈ [m] the arity of the i-th predicate Pi matches
the cardinality of the i-th hyperedge Si of G.
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Concrete instantiation. A candidate for such a secure predicate (suggested in [AL15]) is the
d-ary XOR-MAJd predicate which partitions its input w = (w1, . . . , wd) into two parts wL =
(w1, . . . , wbd/2c) and wR = (wbd/2c+1, . . . , wd), computes the XOR of the left part and the majority
of the right part, and XOR’s the results together. This predicate satisfies several useful properties
such as high resiliency, high algebraic degree and high rational degree (see Section 1.1). In fact,
these properties hold for the more general case of XOR-Threshold predicates defined by:

XOR-THd,α,τ (w1, . . . , wd) =

bαdc∑
j=1

wj > τbαdc

⊕
 d⊕
i=bαdc+1

wi

 ,

where the first term evaluates to one if w1 + · · · + wbαdc > τ and to zero otherwise. We de-
fine11 XOR-THd = {XOR-THd,α,τ : ∀α, τ ∈ (1/3, 2/3)} and let XOR-TH =

⋃
d∈N XOR-THd. We

conjecture that strong EOWF holds for this family of predicates.

3 From One-Wayness to Pseudorandomness

In this section, we show that EPRG reduces to EOWF as long as the predicate family P is sensitive.
The latter condition means that every d-ary predicate P ∈ P can be written as P (w) = wi⊕P ′(w)
where i is some input variable and P ′ does not depend on wi. (Namely, the predicate is fully
sensitive to one of its coordinates.)

Theorem 3.1. Let β be a constant in (0, 1); and d = d(n), m = m(n) and ε = ε(n) be such that:

4

β
≤ d(1− β) ≤ nβ/4 and

4nm3 lnn

ε2
≤ n(β2/4)(1−β)d,

and P be a sensitive predicate family. Then, the EPRG(P,m, β, t, ε) assumption follows from the
EOWF(P,m′, β′, t′, ε′) assumption where m′ = m ·O(n lnnm2/ε2), β′ = 3β, t′ = t ·O(n lnnm2/ε2)
and ε′ = Ω(ε/(mn)).

Note that once d(n) is logarithmic in n, the conditions in the theorem are satisfied for every
polynomial m = poly(n), every inverse polynomial ε(n), and every constant β. We conclude the
following corollary.

Corollary 3.2. For every sensitive family of predicates P, if EOWF(P) holds then so does EPRG(P).
In particular, this holds for the special case of P = XOR-TH.

Note that if we plug in larger (super logarithmic) values of d in Theorem 3.1, we can support
larger (super-polynomial) values of m and smaller values of ε (at the expense of decreasing β to
some concrete constant).

11The constants (1/3, 2/3) in the definition are somewhat arbitrary and it seems that any constants bounded away
from 0 and 1 will do.
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3.1 Proof of Theorem 3.1

Assume, towards a contradiction, that there exists a t-size adversary that breaks the pseudorandom-
ness of fG,P with advantage ε for some [n,m, d]-hypergraph G which is (n1−β, (1− β)d)-expanding
and some sequence of sensitive predicates P = (P1, . . . , Pm) ∈ Pm. Then, due to Yao’s theo-
rem [Yao82], there exists an adversary AG of similar complexity that predicts some bit of fG,P with
advantage εp = ε/m. To simplify notation, we assume that AG predicts the last bit12 of fG,P . That
is,

Pr
x
R←{0,1}n,y=fG,P (x)

[AG(y[1, . . . ,m− 1]) = y[m]]− 1

2
≥ εp. (1)

We will prove the following lemma.

Lemma 3.3. Let κ = 4 lnn/ε2
p, m

′ = κ ·m · n and P ′ = P κn = (P1, . . . , Pm)κn. There exists a
distribution D over (n,m′, d)-hypergraphs such that:

1. A hypergraph H sampled from D is (n1−3β, (1−3β)d)-expanding with probability 1−1/(n lnn).

2. There exists an adversary B of size t′ = O(κ · n · t) and a set of inputs Good ⊆ {0, 1}n which
contains at least εp/2-fraction of all n-bit strings, such that for every string x ∈ Good,

Pr
H
R←D

[B(H, fH,P ′(x)) = x] ≥ 1/(2n).

We show that Theorem 3.1 follows from Lemma 3.3. Call H good if

Pr
x
R←{0,1}n

[B(H, fH,P ′(x)) = x|x ∈ Good] ≥ 1/(3n).

By a Markov argument, a random H
R← D is likely to be good with probability Ω(1/n). Combing

this with the first item, it follows, by a union bound, that there exists a good H which is also
(n1−3β, (1− 3β)d)-expanding. By hardwiring H to B, we get an adversary BH which inverts fH,P ′

with probability of at least

Pr
x
R←{0,1}n

[x ∈ Good] · Pr
x
R←{0,1}n

[BH(fH,P ′(x)) = x|x ∈ Good] ≥ Ω(εp/n) = Ω(ε/(mn)),

contradicting the EOWF(P,m′, 3β, t′, ε/(mn)) assumption. We move on to prove Lemma 3.3.

Proof of Lemma 3.3. Before describing the distribution D, we need some additional notation. For
a permutation π : [n] → [n] and a tuple S = (i1, . . . , id) ⊆ [n]d, let π(S) denote the tuple
(π(i1), . . . , π(id)). For an [n,m, d]-hypergraph G with the hyperedges (S1, . . . , Sm), let π(G) denote
a [n,m, d]-hypergraph with the hyperedges (π(S1), . . . , π(Sm)). For a string x ∈ {0, 1}n, let π(x)
denote the bit-string whose coordinates are permuted under π. We define the distribution D based
on the hypergraph G via the following procedure:

12The choice of the last bit unpredictability is without loss of generality since we can permute the order of the bits
of fG,P (see [App13]).
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Figure 1: The Distribution D
1. Take [n,m, d]-hypergraph G as an input. Let `∗ ∈ [n] denote the first index of the last

hyperedge of G.

2. Sample a random index τ
R← [n]. For each j ∈ [n], let πj1, . . . , π

j
κ be κ = 4 lnn/ε2

p random

permutations over [n] subject to πji (`
∗) = τ .

3. For each j ∈ [n] and i ∈ [κ], let Gji be the hypergraph πji (G) modified such that the first
entry of its last hyperedge is set to j.

4. The output of D is the graph H =
⋃
j∈[n],i∈[κ]G

j
i .

We start by proving the first item of Lemma 3.3. Consider the distribution D′ resulting from
generating κ · n uniform and independent permutations φji (j ∈ [n], i ∈ [κ]), and outputting the

graph H ′ = ∪i,jH ′i,j where H ′i,j = φji (G). Observe that D can be viewed as a two step process in
which: (1) H ′ is sampled from D′; and (2) We modify at most two nodes in every hyperedge of
H ′ based on some random process.13 Since the second step can reduce the expansion of a set T
by at most 2|T |, and since our setting of parameters implies that βd > 2, it suffices to show that
PrH′ [H

′ is (n1−2β, (1− 2β)d)-expanding] ≥ 1− 1/(n lnn).
To see this, recall that G is (r, d′ = (1−β)d)-expanding and therefore, for every i, j, the random

variable φji (G) is (r, d′, 0)-random. Moreover, the permutations φji are sampled independently at

random, and therefore H ′ =
⋃
i,j φ

j
i (G) is a (r, d′, 0)-random (n, κmn)-hypergraph. Observe that

our parameters satisfy the requirements of Lemma 2.5 (i.e., 4/β2 ≤ d′ ≤ nβ/4 and κmn ≤ nβ2d′/4).
By applying the lemma with t = 0, we conclude that H ′ is (n1−β, (1− β)2d)-expanding (and thus
also (n1−2β, (1 − 2β)d)-expanding), except with failure probability of at most n−(β2/4)(1−β)d. The

latter quantity is upper-bounded by 1/(n lnn) since 4nm3 lnn
ε2

≤ n(β2/4)(1−β)d. This completes the
proof of the first part of Lemma 3.3.

We proceed with the proof of the second item of Lemma 3.3. Let S = (`∗, i2, . . . , id) be the
last hyperedge of G. Let S′ denote the d− 1 tuple (i2, . . . , id) and let Pm : {0, 1}d → {0, 1} be the
predicate computed by the last output of fG,P . We assume (WLOG) that the first input of Pm is
sensitive and so it can be written as Pm(w1, . . . , wd) = w1 ⊕ Q(w2, . . . , wd) for some (d − 1)-ary
predicate Q.

The algorithm B is a variant of the inversion algorithms given in [App13]. The input is a
hypergraph H =

⋃
j∈[n],i∈[κ]G

j
i and a string y ∈ {0, 1}κ·n·m such that y = fH,P ′(x). Let y be

parsed as (yji )j∈[n],i∈[κ] where each yji = f
Gji ,P

(x). For each j ∈ [n] and i ∈ [κ], the algorithm B

runs AG on input yji [1, . . . ,m− 1] and gets a prediction bit eji . Let σji be the inverse permutation

of πji , and xji = σji (x); then, we get that yji = f
σi(G

j
i ),P

(xji ). By construction, this means that

yji [1, . . . ,m − 1] = fG,P (xji )[1, . . . ,m − 1] and so AG attempts to predict the value Pm(xji [S]) =

xji [`
∗]⊕Q(xji [S

′]). Note that the bit yji [m] equals to xji [σ
j
i (j)]⊕Q(xji [S

′]), and so

Pm(xji [S])⊕ yji [m] = xji [`
∗]⊕ xji [σ

j
i (j)] = x[πji (`

∗)]⊕ x[j] = x[τ ]⊕ x[j].

Assuming that x[τ ] is known (indeed, we can either guess it or try both values), the above equation
provides an estimation for x[j]. Since our predictor may err, this estimation is “noisy”, i.e., it

13Specifically, sample a random index τ ∈ [n], and for every sub-hypergraph H ′i,j and hyperedge S ∈ H ′i,j swap the

node φji (`
∗) with the node τ , except for the first entry in the last hyperedge of Hi,j which φji (`

∗) is replaced by j.

14



equals to x[j] only with probability 1
2 +Ω(εp). After collecting κ such votes (and arguing that these

votes are “independent enough”) we eventually recover the input x bit by bit by deciding on the
majority of the votes for each x[j]. We proceed by formally describing the algorithm B.

Figure 2: The inverter B

– Input: A graph H =
⋃
j∈[n],i∈[κ]G

j
i and yji = f

Gji ,P
(x).

– Initialize v1, . . . , vn to 0.

– For j ∈ [n] and i ∈ [κ]:

1. Compute eji := AG(yji [1, . . . ,m− 1]), and let bji = eji ⊕ y
j
i [m].

2. If bji = 1, then increase vj by 1, otherwise decrease vj by 1.

– For j ∈ [n], set zj to 1 if vj > 0, otherwise set it to 0. Let s0 = z1 · · · zn and s1 = z1 · · · zn.

– Output: s0 if y = fH,P ′(s0) and s1 if y = fH,P ′(s1). Otherwise, output ⊥.

We now prove that B inverts fH,P ′ well. Let wt(x) be the hamming weight of x ∈ {0, 1}n and
for w ∈ [n], let Xw = {x ∈ {0, 1}n|wt(x) = w}. Call x good if AG predicts with advantage εp/2 the

last bit of fG,P (x′) for x′
R← Xwt(x), i.e.,

Pr
x′
R←Xwt(x),y=fG,P (x′)

[AG(y[1 . . .m− 1]) = y[m]]− 1/2 ≥ εp/2.

We let Good denote the set of good x’s and show that this set is εp/2-dense.

Claim 3.4. Pr
x
R←{0,1}n

[x ∈ Good] ≥ εp/2.

Proof. Recall that our predictor AG has an advantage of εp when it is invoked on fG,P (x′) where

x′
R← Un. Note that we can sample a uniform vector x′

R← {0, 1}n by first selecting x
R← Un and

then selecting x′
R← Xwt(x). Hence, the claim follows from Markov’s inequality.

Now fix a good x. Let Sn denote the set of all permutations from [n] to [n]. Observe that

sampling x′
R← Xwt(x) is equivalent to taking a random permutation σ

R← Sn and computing
x′ = σ(x). Hence, it holds that

Pr
σ
R←Sn,y=fG,P (σ(x))

[AG(y[1 . . .m− 1]) = y[m]]− 1/2 ≥ εp/2.

By an averaging argument, we get that there exists an index τx ∈ [n] such that

Pr
σ
R←{π∈Sn|π(τx)=`∗},y=fG,P (σ(x))

[AG(y[1 . . .m− 1]) = y[m]]− 1/2 ≥ εp/2.

Next, we show that the algorithm B recovers x with probability at least 1
2 when invoked with

a good input x and with a graph H generated under condition that τ = τx. Since τ is generated
uniformly at random this implies that PrH [B(H, fH,P ′(x)) = x] ≥ 1/(2n).

Claim 3.5. For every good x, it holds that PrH [B(H, fH,P ′(x)) = x|τ = τx] ≥ 1
2 .
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Proof. We assume that x[τ ] = 0 and show that, with high probability, s0 is likely to be x. (A
similar argument shows that when x[τ ] = 1, s1 is likely to be x). We prove that for each j ∈ [n]
the value zj equals to x[j] with probability 1 − 1/(2n). The theorem then follows by applying a
union bound over all n indices.

Fix some index j ∈ [n]. Call a vote bji good if it is equal to x[j]. Our goal is to show that
with high probability a majority of the votes are good. Observe that in each iteration i ∈ [κ], the
predictor AG is invoked on yji [1, . . . ,m− 1] = fG,P (xji )[1, . . . ,m− 1] where xji = σji (x) and that the

vote bji is good if the predictor succeeds in predicting Pm(xji [S]). Since the permutations σji ’s (that

are the inverses of πji ’s) are independent and are uniform subject to σji (τ) = `∗, and since x is good,
each call to the predictor succeeds independently with probability 1

2 + εp/2. Hence, by an additive
Chernoff bound, the majority of the votes are good except with probability exp(−2κ · (εp/2)2) =
exp(−2 lnn) < 1/(2n).

This completes the proof of Lemma 3.3.

4 PRF constructions

We describe a general template for constructing pseudorandom functions. The template is pa-
rameterized with a predicate family P = {Pd} where Pd is a d-ary predicate14 and two (possibly
keyed) algorithms: mapper M and extractor E. Let n ∈ N denote the security parameter and
let d = d(n) be a locality parameter. Given an input x ∈ {0, 1}n and a uniformly chosen key
k ∈ {0, 1}n we define the output of the function as follows. First, we use the mapper M to map
x to an (n, n/(d log n), d)-hypergraph Gx. Second, given the key k we compute a pseudorandom
string y = fGx,P (k), where P = Pd. Finally, we apply a randomness extractor E to y in order to
produce the final output. (The keys of E and M are appended to the key k and are treated as part
of the key of the construction.) The main intuition behind this template is that if the graph Gx
has good expanding properties, the string y contains enough pseudoentropy which once extracted
via E looks pseudorandom.

In the following we describe several instantiations of the template by choosing different M and
E.

Notation switch. Through this section, the symbol x denotes a query to the PRF while k
denotes the PRF’s key. Due to the structure of our construction, this means that the input to the
function fG,P is denoted by k (the key) and the graph G is computed based on the input x. (Unlike
the notation used in Section 3.)

4.1 Instantiation F1

The first instantiation F1 can be seen as a “plain” instantiation of the template, where the inputs
are mapped to the graphs directly and no extractor is applied in the end.

14The construction can be easily generalized to handle non-uniform hypergraphs and/or different predicates d-ary
predicates for each output.
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Figure 3: Instantiation F1

– Parameters: Let K = {0, 1}n be the key space, X = {0, 1}n be the input space, and
Y = {0, 1}n/(d logn) be the output space of F1. Let d = Θ(log n) and let P ∈ P be a d-ary
predicate.

– Mapper M : The input x is parsed into n/(log n) indices, then each consecutive group of d
indices is interpreted as a hyperedge of the hypergraph G.

– Extractor E: No extractor is applied in the end.

– Code of F1: The function F1 : K ×X → Y is defined as F1(k, x) := fM(x),P (k).

Theorem 4.1. Let n be the security parameter. For every q = no(logn), every t(n), ε(n), and
every constant β ∈ (0, 1) the function F1 is a (q, t, ε + n−Ω(logn)) weak PRF under assumption
EPRG(P, n · q, β, t, ε).

Proof. Fix some constant β and let d = Θ(log n). Let x1, . . . , xq be q = no(logn) random strings from
{0, 1}n asked by the adversary. For i ∈ [q], let Gi = M(xi). Since the xi’s are uniformly distributed,
the graph H :=

⋃q
i=1Gi is a (n1−β, 0)-random (n,m, d)-hypergraph with m = qn/(d log n) < ndβ

2/4.
Hence, by Lemma 2.5 (with imperfectness parameter t = 0), H is (n1−β, (1−β)d)-expanding except
with probability εexp = n−Ω(logn). (The condition 4/β2 ≤ d ≤ nβ/4 required for Lemma 2.5 holds
since β is constant and d = Θ(log n).) The theorem follows by noting that conditioned on H being
(n1−β, (1− β)d)-expanding, the EPRG(P, n · q, β, t, ε) assumption implies that the random variable
V = (F1(k, xi))

q
i=1, induced by a uniformly chosen k ∈ {0, 1}n, is (t, ε)-pseudorandom.

Remark 4.2. We note that the theorem extends to the case where logn q + 1 < β2d/4.

Corollary 4.3. Suppose that EOWF(XOR-MAJ) holds. Then, there exists a weak PRF F1 :

{0, 1}n × {0, 1}n → {0, 1}n/ log2 n which is computable in linear time of O(n) on a RAM machine
with O(log n) word size, or by a boolean circuit of size Õ(n). Moreover, for every fixed key k, the
function F1(k, ·) can be computed by a depth-3 AC0 circuit.

Proof. By Corollary 3.2, EOWF(XOR-MAJ) implies EPRG(XOR-MAJ), which in turn, implies, by
Theorem 4.1, that F1 is a weak PRF.

Observe that the computation of F1 consists of two steps. (1) Access the key k in the n/ log n
addresses specified by the input x and retrieve the corresponding content. Namely, for 1 ≤ i ≤ `
where ` = n/ log n, output the bits zi = k[x[(i− 1) log n+ 1 : i log n]] where x[i : i+ j] denotes the
address represented by the substring (x[i] · · ·x[i+j]) under the standard binary representation. (2)
Partition the bits z1, . . . , z` to d-size `/d blocks, and compute for each block 1 ≤ i ≤ `/d the bit
yi = XOR-MAJd(z(i−1)d+1, . . . , zid).

Time. On a RAM machine with log n word size, the first step is implemented in time O(n)
(these are just accesses to an array) and the second step takes O(n/ log n) time.

Size. In Appendix B we show that the first step can be implemented by a circuit of quasilinear
size O(n log2 n log logn). In the second part, each computation of zi consists of computing two
symmetric functions (XOR and Majority) over d/2-long inputs. The classical result of [MP75] (see
also [Weg87]) shows that every d-ary symmetric predicate can computed by a linear-size circuit (of
size O(d)) and so the overall complexity of the second step is linear in n.
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Depth. Fix some key k. Observe that both the first part and the second part of the computation
have logarithmic locality (each bit zi depends on at most O(log n) bits of x and each yi depends
on at most O(log n) bits of the zi’s). Observe that any such function can be computed by a
polynomial size DNF (OR of AND’s) and a polynomial size CNF (AND of OR’s). Hence, the
overall computation can be naively computed by a depth-4 circuit. In fact, by using DNF for the
first part and CNF for the second part we can collapse the two middle layers of OR gates and
implement F1 by a depth-3 AC0 circuit.

We note that, under strong EOWF(XOR-MAJ), F1 achieves security against adversaries of
almost-exponential size (exp(n1−β) for every β > 0) who make polynomially many queries (or even
slightly super-polynomial number of queries q) with quasipolynomial distinguishing advantage of
ε = n−Ω(logn). As mentioned in the introduction, the quasipolynomial value of ε is inherent for
AC0 constructions.

We also remark that one can extend the output length of F1 to {0, 1}n by stretching the output
using a pseudorandom generator G : {0, 1}n/ logn → {0, 1}n. Using fast constructions of PRGs
(e.g., [App13]) one can do this while keeping the efficiency guarantees stated in the theorem.

4.2 Instantiation F2

The second instantiation F2 is a modification of F1, where an extractor is applied in the end. As
explained in the introduction, this allows us to reduce the distinguishing advantage ε.

Figure 4: Instantiation F2

– Parameters: Let K = Kf × Ke = {0, 1}n × {0, 1}O(n) be the key space, X = {0, 1}n be
the input space, and Y = {0, 1}n/(2d logn) be the output space of F2. Let P ∈ P be a d-ary
predicate.

– Mapper M : As in F1, M(x) parses x as (n, n/(d log n), d)-hypergraph.

– Extractor: Let Ext : Ke × {0, 1}n/(d logn) → {0, 1}n/(2d logn) be a strong (`, εExt)-extractor
where ` = 0.9 · n/(d log n) and εExt = 2−Ω(n)).

– Code of F2: The function F2 : K × X → Y is defined as F2((k, s), x) := Exts(fM2(x),P (k)),
where (k, s) ∈ Kf ×Ke.

Our goal is to provide a tight security reduction from breaking F2 to the EPRG assumption.
For this, we will have to rely on the security of EPRG over a predicate family Pβ containing all
predicates which can be obtained by selecting some d-ary predicate P ∈ P and arbitrarily fixing at
most βd of its inputs. Although the security of EOWF with respect to Pβ may seem like a strong
assumption, we will later show that natural candidates for EOWF already satisfy it.

Theorem 4.4. Let n be the security parameter. Let β be a constant in (0, 1), q = q(n) and
d = d(n) such that 4/β2 ≤ d ≤ nβ/4 and q ≤ ndβ

2/4−1. Let t = t(n), ε = ε(n) be arbitrary

functions. Then, the function F2 is a (q, t, ε+n−Ω(dn1−β) +q ·2−Ω(n)) weak PRF, under assumption
EPRG(Pβ, n · q, β, t, ε).

Proof. Let x1, . . . , xq be q random strings from {0, 1}n asked by the adversary. For i ∈ [q], let Gi =

M2(xi). Consider the (n,m, d)-hypergraph H :=
⋃q
i=1Gi where m = nq/(d log n) < ndβ

2/4. Since
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the Gi’s are random, the hypergraph H is (2r, 0)-random for r = n1−β. By applying Lemma 2.5 with
t = r = n1−β and d-uniform hypergraphs, we conclude that, except with probability εexp = n−Ω(dr),
the hypergraph H is r-imperfect (r, (1− β)d)-expander.

From now on we fix a sequence of queries (x1, . . . , xq) which leads to such an imperfect ex-
pander H. It suffices to prove that, for a uniformly chosen (k, s) ∈ K, the random variable
V := (F2((k, s), xi))

q
i=1 is (t, ε+ q · εExt)-pseudorandom for εExt = 2−Ω(n).

By construction, V can be rewritten as Exts(fH,P (k)) where Exts(y1, . . . , yq) := (Exts(y1), . . . ,Exts(yq)).
First, we show that the distribution of fH,P (k) is computationally indistinguishable from a gener-
alized bit-fixing source (the proof is deferred to Appendix A.2).

Lemma 4.5. Let G be a [n,m, d]-hypergraph which is n1−β-imperfect (n1−β, (1 − β)d)-expander
for some constant β ∈ (0, 1). Then, under assumption EPRG(Pβ,m, β, t, ε), the random variable
fG,P (Un) is (t, ε)-computationally indistinguishable from a generalized (m−n1−β) bit-fixing source.

It follows that fH,P (k) is (t, ε)-computationally indistinguishable from some generalized ( qn
d logn−

r) bit-fixing source Y . We therefore conclude that V = Exts(fH,P (k)) is (t, ε)-indistinguishable
from Exts(Y ). By Lemma 2.4 (Section 2), the latter distribution is (q · εExt)-statistically indistin-
guishable from uniform. Hence, conditioned on H being an almost expander, V is (t, ε + qεExt)-
indistinguishable from uniform. Overall, we conclude that for q random queries, V is (t, ε+ qεExt +
εexp)-pseudorandom, as required.

Corollary 4.6. Suppose that strong EPRG(XOR-TH) holds. Then, there exists a weak PRF

F2 : {0, 1}O(n) × {0, 1}n → {0, 1}n/2 log2 n which is (q, t = exp(n1−β), ε = exp(−n1−β)) for ev-
ery polynomial q and every constant β, and can be computed in linear time of O(n) on a RAM
machine with O(log n) word size, and by a boolean circuit of size Õ(n). Moreover, for every fixed
key k, the function F2(k, ·) can be computed by an MOD2 ◦AC0 circuit.

Proof. Instantiate F2 with P = XOR-MAJ and observe that Pβ = XOR-TH for sufficiently small
β (e.g., every β < 1/6). By Theorem 4.4, the strong EPRG(XOR-TH) assumption implies that, for
every polynomial q and constant β > 0, F2 is (q, t = exp(n1−β), ε = exp(−n1−β)) weak PRF.

The efficiency analysis is identical to the analysis of F1 except that we need to add the complexity
of the extractor. Ishai et al. [IKOS08, Theorem 3.3] constructed a strong (0.9 ·N, 2−Ω(N))-extractor
for N -bit sources outputting an (N/2)-bit string using a seed of length O(N) that can be computed
by a linear function (over the binary field) whose circuit is of size O(N). By employing this extractor
we get a linear-time implementation in the RAM model and quasilinear-size circuit implementation.
Furthermore, since the extractor is a linear function it can be implemented by a single layer of XOR
gates and so the overall computation is in MOD2 ◦AC0.

4.3 Instantiation F3

The third instantiation, F3, is a modification of F2, where the input x is mapped to a hypergraph
using an (n, 2−Ω(n))-bitwise independent generator M : Km × X → X . An efficient construction
of such a (n, 2−Ω(n))-bias generator (with Km = {0, 1}2n) is presented in Section 5.
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Figure 5: Instantiation F3

– Parameters: Let K = Kf × Km × Ke = {0, 1}n × {0, 1}2n × {0, 1}n be the key space,
X = {0, 1}n be the input space, and Y = {0, 1}n/(2d logn) be the output space of F3. Let P
be some d-ary predicate chosen from P.

– Mapper M : Let M : Km ×X → X be a (n, 2−Ω(n))-biased generator and let σ
R← Km be its

key. We parse the n-bit output of M as an (n, n/(d log n), d)-hypergraph.

– Extractor: Let Ext : Ke × {0, 1}n/(d logn) → {0, 1}n/(2d logn) be a strong (0.9 ·
n/(d log n), 2−Ω(n))-extractor.

– Code of F3: The function F3 : K×X → Y is defined as F3((k, σ, s)), x) := Exts(fMσ(x),P (k)).

Theorem 4.7. Let n be the security parameter. Let β be a constant in (0, 1), q = q(n) and
d = d(n) such that 4/β2 ≤ d ≤ nβ/4 and q ≤ ndβ

2/4−1. Let t = t(n), ε = ε(n) be arbitrary

functions. Then, the function F3 is a non-adaptive (q, t, ε + n−Ω(dn1−β) + q · 2−Ω(n))-PRF, under
assumption EPRG(Pβ, n · q, β, t, ε).

Proof. Fix a sequence of q distinct non-adaptive queries x1, . . . , xq. For i ∈ [q], let Gi := Mσ(xi).
Since M is (n, 2−Ω(n))-biased, the hypergraph H :=

⋃q
i=1Gi is (`, 2−Ω(n))-random hypergraph for

` = n/(d log n) ≥ 2n1−β. Recall also that H has at most n · q ≤ ndβ
2/4 hyperedges and d is

chosen such that 4/β2 ≤ d ≤ nβ/4. By applying Lemma 2.5 with t = r = n1−β and d-uniform
hypergraphs, we conclude that, except with probability εexp = n−Ω(dr), the hypergraph H is r-

imperfect (r, (1− β)d)-expander (where the probability is taken over σ
R← Km).

From now on we fix a good σ which leads to such an imperfect expander H. It suffices to prove
that, for a uniformly chosen (k, s), the random variable V := (F3((k, σ, s), xi))

q
i=1 is (t, ε+ q · εExt)-

pseudorandom for εExt = 2−Ω(n). By construction, V can be rewritten as Exts(fH,P (k)) where
Exts(y1, . . . , yq) stands for (Exts(y1), . . . ,Exts(yq)). Lemma 4.5 shows that the random variable
fH,P (k) is (t, ε)-computationally close to some generalized (qn/(d log n) − r) bit-fixing source Y ,
and Lemma 2.4 shows that Exts(Y ) is q · εExt-close to uniform. The theorem follows.

In Section 5 (Theorem 5.1) we show that there exists a (n, 2−Ω(n))-bias generator M : {0, 1}2n×
{0, 1}n → {0, 1}n which can be computed in quasilinear time Õ(n) or by a TC0 circuit (i.e.,
a constant-depth circuit with unbounded fan-in AND, OR and Majority gates). The following
corollary follows.

Corollary 4.8. Suppose that EOWF(XOR-MAJ) holds. Then, there exists a non-adaptive PRF

F3 : {0, 1}3n × {0, 1}n → {0, 1}n/ log2 n which is computable by a boolean circuit of size Õ(n).
Moreover, for every fixed key k, the function F3(k, ·) can be computed by a TC0 circuit.

Proof. Let P = XOR-MAJ and observe that Pβ = XOR-TH for sufficiently small β (e.g., every
β < 1/6). By Corollary 3.2, EOWF(XOR-TH) implies EPRG(XOR-TH), which in turn, implies, by
Theorem 4.7, that F3 is a non-adaptive PRF.

The efficiency analysis is identical to the analysis of F2 except that we need to add the complexity
of M which can be computed in quasilinear time Õ(n) or by a TC0 circuit. (See Theorem 5.1).

20



Under the strong EPRG(XOR-TH) assumption, a logarithmic d implies that F3 is (q, t =
exp(n1−β), ε = exp(−n1−β)) secure for every polynomial q and every constant β. For polyno-
mial locality d = nδ, for some constant δ > 0, we get q = exp(nΩ(δ)), t = exp(n1−Ω(δ)) and
ε = exp(−n1−Ω(β)).

5 A Bitwise Independent Generator Construction

In this section we construct an efficient generator that is (t, ε)-bitwise independent in the regime
of t = n and negligible ε.

Theorem 5.1. Let k0, k1 be two keys chosen uniformly from GF(2n). For x ∈ GF(2n), define
the generator Vk0,k1(x) := k1

k0+x . Then, V is (d, d · 2d/2+1−n)-bitwise independent for any d ≤ 2n.

Furthermore, the generator V can be computed by a circuit of quasilinear size O(n log2 n log log n)
and by a TC0 circuit.

Proof. We observe that in order to prove that V is (d, d · 2d/2+1−n)-bitwise independent, it is
sufficient to prove that V is (d, d

2n−1 )-linear-fooling over GF(2n). Indeed, we know that (t, ε)-linear-
fooling over GF(2n) implies (t, ε)-bias over GF(2) [Tzu09, Theorem 4.5], which in turn implies
(t, 2t/2 · ε)-bitwise independence [NN93, Corollary 2.1].

We now turn to showing that V is (d, d
2n−1 )-linear-fooling over GF(2n) for any d ≤ 2n. The

proof is based on the work of [MV12, Theorem 3.5]. We prove that V is (d, d
2n−1 )-linear-fooling over

GF(2n), i.e., for any distinct a1, . . . , ad ∈ GF(2n), any d constants b1, . . . , bt from GF(2n) (that are
not all equal to zero), we have that

∆

(
d∑
i=1

biVk0,k1(ai) ; UGF(2n)

)
≤ d

2n−1
.

After letting p(x) denote the polynomial
∑d

i=1
bi

x+ai
=
∑d

i=1 bi(x+ai)
2n−2, we get that

∑d
i=1 biVk0,k1(ai)

can be rewritten as k1 · p(k0). Observe that conditioned on p(k0) 6= 0, we have that k1 · p(k0) is
uniformly distributed over GF(2n). Hence, it suffices to show that p(x) has at most 2d−1 distinct
roots. First, we define auxiliary polynomials:

p(x) := p(x) ·
d∏
j=1

(aj + x) =

d∑
i=1

bi(x+ ai)
2n−1

∏
j 6=i

(aj + x)

 ,
and

p∗(x) :=

d∑
i=1

bi
∏
j 6=i

(aj + x).

Observe that any root y of p(x) is also a root of p(x). Moreover, note that for any y 6∈ {a1, . . . , ad}
we have that p(y) = p∗(y) (since y2n−1 = 1 for any non-zero y). Hence, the only possible roots
of p(x) are the roots of p∗(x) and {a1, . . . , ad}. This means that in order to show that p(x) has
at most 2d − 1 distinct roots, it is sufficient to show that p∗(x) has at most d − 1 distinct roots.
Because p∗(x) is a degree d− 1 polynomial, this will always be the case unless p∗(x) is identically
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zero. This is ruled out by observing that p∗(ai) 6= 0, where i is chosen such that bi 6= 0. Indeed,
p∗(ai) = bi

∏
j 6=i(aj + ai) which is non-zero because a1, . . . , ad are distinct.

(Complexity of V) Finally, we turn to the analysis of the circuit complexity of V. The complexity
of V equals to the complexity of the division and summation circuits (dividing k1 by k0 + x). As
stated in [MV12] this can be done by a TC0 circuit or by a circuit of size O(n log2 n log logn) using
the techniques of [GvzGPS00].
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A Omitted Proofs

A.1 Proof of Lemma 2.4

Lemma 2.4 (Restated). Let Ext be a strong (m − r, δ)-extractor for m-bit sources. Let Z =
Z1|| · · · ||Zq be a generalized (qm− r)-bit-fixing source, where each |Zi| = m. Then for a uniformly
chosen seed s, the random variable (s,Exts(Z1), . . . ,Exts(Zq)) is (q·δ)-statistically indistinguishable
from uniform.

Proof. Because Z = Z1|| · · · ||Zq is a generalized (qm − r)-bit-fixing source, there exist at least
(qm − r) bits of Z that are uniform, while the remaining ones are independent from them. This
implies that the bits of each Zi can be split into two parts Gi and Bi such that Gi’s are independent
uniform bit strings of length m− r and Bi’s are independent of them. To simplify the notation we
assume that Gi is the prefix of Zi and Bi is the suffix of Zi, i.e., one can rewrite Zi as (Gi, Bi). We
have that

(s,Exts(Z1), . . . ,Exts(Zq)) = (s,Exts(G1, B1), . . . ,Exts(Gq, Bq)).

Consider now the distribution T (b1, . . . , bq) obtained from the distribution

(s,Exts(G1, B1), . . . ,Exts(Gq, Bq))

by fixing B1, . . . , Bq to some b1, . . . , bq:

T (b1, . . . , bq) := (s,Exts(G1, B1), . . . ,Exts(Gq, Bq]) | (B1 = b1, . . . , Bq = bq).

We have that each (Gi, bi) is a bit-fixing source, such that (Gi, bi)’s are mutually independent. We
now employ the following fact about strong extractors.

Fact A.1. Let Ext be a strong (m − r, δ)-extractor for m-bit sources. Let X1, . . . , Xq be q m-bit
random variables such that each Xi is a (m−r)-bit-fixing source and Xi’s are mutually independent.
Then, for a uniformly chosen seed s, the random variable (s,Exts(X1), . . . ,Exts(Xq)) is (q · δ)-
statistically indistinguishable from uniform.

After applying the fact, we get that each T (b1, . . . , bq) is (q · δ)-statistically close to uniform. It
remains to notice that the original random variable (s,Exts(Z1), . . . ,Exts(Zq)) is a convex combi-
nation of T (b1, . . . , bq)’s and hence is also (q · δ)-statistically close to uniform (see the fact below).

Fact A.2. For any convex combination of distributions X =
∑k

i=1wiDi and any probability dis-

tribution Y , it holds that ∆(X;Y ) ≤
∑k

i=1wi∆(Di;Y ).
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A.2 PRG with Imperfect Expansion

Lemma 4.5 (Restated). Let G be a [n,m, d]-hypergraph which is n1−β-imperfect (n1−β, (1− β)d)-
expander for some constant β ∈ (0, 1). Then, under assumption EPRG(Pβ,m, β, t, ε), the random
variable fG,P (Un) is (t, ε)-computationally indistinguishable from a generalized (m−n1−β) bit-fixing
source.

Proof. Let A denote the set of hyperedges that make G imperfect and let B be the set of the
remaining hyperedges from G. Let C denote the set Γ(A) and let D be the set of the remaining
indices in [n]. Let J := G \ A and r := |A|. Without loss of generality, assume that all indices
of hyperedges in A are smaller than indices in B and all indices in C are smaller than indices
in D. Let G(i, j) denote the jth index in the ith hyperedge from G. For a |C|-bit string z,
consider an n-bit random variable Xz such that Xz[D] = U|D| and Xz[C] is fixed to z. Now
define a random variable Yz := fG,P (Xz), where P = (P1, . . . , Pm). By construction we have
that Yz[B] = fJ,P ′(X[D]), where P ′ = (P ′r+1, . . . , P

′
m) such that for each i ∈ [r + 1, . . . ,m] the

predicate P ′i is obtained from Pi by fixing its jth input bit to zG(i,j) if G(i, j) ∈ [|C|]. Given that

J is (n,m − r)-hypergraph which is (n1−β, (1 − β)d)-expanding and P ′ is an (1 − β)-restriction
of P , after applying assumption EPRG(Pβ,m, β, t, ε), we get that the random variable Yz[B] =
fJ,P ′(X[D]) is (t, ε)-indistinguishable from uniform, while Yz[A] is fixed. This means that Yz is
(t, ε)-indistinguishable from an (m − r) bit-fixing source Rz whose A entries are fixed. Since the
random variable Y = fG,P (Un) is a convex combination of {Yz}z∈{0,1}|C| , we conclude that the
random variable Y = fG,P (Un) is computationally indistinguishable from a generalized (m − r)
bit-fixing source.

A.3 Proof of Generalized Expansion Lemma (Lemma 2.5)

Let a := (1− β)d. Let ε = 2−Ω(n), and assume that the hypergraph G is (r + t, d, ε)-random. The
proof follows by a standard calculation. Details follow.

First, we upper bound the probability that a fixed set S of size s ≤ r+ t is non-expanding which
we denote with p(s). We show an upper bound on p(s) in two steps. In the first step, we compute
the probability p′(s) that a set S′ with exactly sd random outgoing edges is non-expanding. In the
second step, we use the fact that G is (r + t, d, ε)-random and therefore p(s) ≤ p′(s) + ε.

Consider a set S′ of with exactly sd random outgoing edges. By definition p′(s) = Pr[|Γ(S′)| ≤
as]. Now fix any T ⊆ [n] of size as. The probability that S′ is mapped inside T is exactly(
|T |
n

)sd
= (asn )sd. By applying a union bound over all T ’s of size as, we get that p′(s) ≤

(
n
as

) (
as
n

)ds
.

It remains to notice that since G is (r+t, d, ε)-random every set of hyperedges S in G of size s ≤ r+t
has at least sd outgoing edges that are ε-close to uniform. Hence, we have that p(s) ≤ p′(s) + ε for
s ≤ r + t. Finally, we conclude that

p(s) ≤ p′(s) + ε ≤
(
n

as

)(as
n

)ds
+ ε ≤

(en
as

)as (as
n

)ds
+ ε, (2)

where the last inequality holds because for all n, k we have that
(
n
k

)
≤
(
ne
k

)k
.

Now we turn to proving the main statement of the lemma. Let I be a largest set of hyperedges
of size at most r + t such that Γ(I) ≤ a|I|. Let G′ := G \ I. Then any set S of hyperedges from
G′ of size at most r + t − |I| has Γ(S) ≥ a|S|. Thus, in order to show that G is an t-imperfect
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(r, a)-expander, we just need to show that |I| ≤ t except with probability n−(t+1)dβ2/10. Consider
a maximum non-expanding I, with |I| ≤ r + t. Then, by a union-bound,

Pr[|I| > t] =
t+r∑
s=t+1

Pr [|I| = s] ≤
t+r∑
s=t+1

(me
s

)s
p(s).

Plugging in the upper bound for p(s) from Eq. 2, we get that

Pr[|I| > t] ≤
t+r∑
s=t+1

(me
s

)s (ne
as

)as (as
n

)ds
︸ ︷︷ ︸

S1

+ ε

t+r∑
s=t+1

(me
s

)s
︸ ︷︷ ︸

S2

.

We now give upper bounds for S1 and S2 separately. We start with giving an upper bound for S1.
After regrouping the summands, S1 can be rewritten as

S1 =

t+r∑
s=t+1

(
ea+1 · ad−a ·m · s

d−a−1

nd−a

)s
.

Let us :=
(
ea+1 · ad−a ·m · sd−a−1

nd−a

)
, denote the sth term inside the brackets of S1. We now give

an upper bound for us by splitting it into a product of four terms ea+1, ad−a, sd−a−1

nd−b
, m, and then

giving an upper bound for each of the terms.
First, we have that

ea+1 = e(1−β)d+1
(?)

≤ ed = nd/ lnn. (3)

where (?) holds because of the assumption d ≥ 4/β2. Second, we have that

ad−a = aβd ≤ dβd ≤ n(β2/4)d, (4)

where the last inequality holds because of the assumption d ≤ nβ/4. Third, we have that

sd−a−1

nd−a
≤
( s
n

)d−a (?)

≤
(

2n1−β

n

)d−a
= 2βd · n−β2d ≤ nd/ lnn · n−β2d, (5)

where (?) holds because s ≤ t+ r ≤ 2n1−β. Finally, after combining Equations 3, 4, 5, and the fact
that m ≤ n(β2/4)d, we get that

us ≤ n(2/ lnn)d · n(β2/4)d · n(β2/4)d · n−β2d = n−(β2/2+2/ lnn)d ≤ n−(0.4β2)d,

where the last inequality holds because β is a constant and 2/ lnn is o(1). Given the upper bound
for us, we can upper bound the sum S1 as follows.

S1 =
t+r∑
s=t+1

(us)
s ≤

t+r∑
s=t+1

(
n−(0.4β2)d

)s
≤ rn−(0.4β2)·d·(t+1).
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where the last inequality holds since there are r summands and each is maximized when s = t+ 1.
Finally, it remains to notice that since β2d/4 ≥ 1, we have r ≤ n ≤ n(β2d/4)(t+1). Hence, S1 ≤
n−0.15β2d·(t+1).

We complete the proof by showing that S2 < 2−Ω(n). Indeed, each summand
(
me
s

)s
is upper

bounded by (me)t+r, and therefore

S2 ≤ εr(me)t+r ≤ 2−Ω(n) · n1−β · e2n1−β · n(β2d/4)·2n1−β ≤ 2−Ω(n),

where the last inequality follows by noting that n(β2d/4)·2n1−β
= 2o(n).

B Array Multi-Access in Quasilinear time

We consider the following functionality. Given ` = n/ log n indices of length log n each I[1], . . . , I[`]
and a data vector K ∈ {0, 1}n output K[I[1]], . . . ,K[I[`]]. We will show that this can done by
O(n log2 n log logn)-size circuit. We assume that the input indices are sorted which is without loss
of generality since t elements of bit-length b = log n can be sorted by a circuit of size O(b` log `) =
O(n log n) (e.g., using a sorting network [AKS83] where comparison is implemented via Parallel
Prefix Computation [LF80]). Instead of describing an O(n log2 n log logn)-size circuit, we describe
a Turing Machine M that solves the problem in time T = O(n log n) using a constant number of
tapes. The latter can be simulated by a circuit of size O(T log T ) (e.g., by turning the computation
M into an oblivious Turing machine M ′ of complexity O(T log T ) [PF79] and then moving to a
circuit of size O(T log T )). We sketch the description of the machine M . The machine M places
the indices I on one tape, the data K on another tape and places the output on a special output
tape. During its run, M maintains two counters i and j which are initialized to 1. At each step,
M checks if the index I[i] equals to j if this is the case then K[j] is written to the current position
in the output tape. Also, the head of the output tape is moved one step and the head of the index
tape is moved to the next index. In case of inequality, the head of the data tape is moved forward
by one step, and the counter j is increased by one. Since each step costs O(log n) operations and
there are at most n steps, the overall complexity is O(n log n).
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